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ABSTRACT

The interplay of a rapidly changing climate and infectious disease occurrence is emerging as a
critical topic, requiring investigation of possible direct, as well as indirect, connections between
disease processes and climate-related variation and phenomena. First, we introduce and overview
three infectious disease exemplars (dengue, influenza, valley fever) representing different trans-
mission classes (insect-vectored, human-to-human, environmentally-transmitted) to illuminate the
complex and significant interplay between climate disease processes, as well as to motivate dis-
cussion of how Sandia can transform the field, and change our understanding of climate-driven
infectious disease spread. We also review state-of-the-art epidemiological and climate modeling
approaches, together with data analytics and machine learning methods, potentially relevant to
climate and infectious disease studies. We synthesize the modeling and disease exemplars infor-
mation, suggesting initial avenues for research and development (R&D) in this area, and propose
potential sponsors for this work. Whether directly or indirectly, it is certain that a rapidly changing
climate will alter global disease burden. The trajectory of climate change is an important control
on this burden, from local, to regional and global scales. The efforts proposed herein respond to
the National Research Council’s call for the creation of a multidisciplinary institute that would
address critical aspects of these interlocking, cascading crises.
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1. INTRODUCTION

Global climate change is transforming the infectious disease landscape. Rising seas, increasing
ocean and air surface temperatures, altered patterns of precipitation, humidity and radiative ef-
fects, polar ice sheet loss and deepening drought in arid regions are setting the stage for poten-
tially significantly higher disease burdens for societies across the globe. That climate and weather
contribute substantially to disease patterns and processes is ancient knowledge; Hippocrates, the
“Father of Medicine” (5th century BCE), observed that epidemics were associated with natural
climatic phenomena (seasonal and interannual variation, the hydrological cycle and atmosphere
status):

“Whoever would study medicine aright must learn of the following subjects. First, he
must consider the effect of the seasons of the year and the differences between them.
Secondly, he must study the warm and the cold winds, both those which are in common
to every country and those peculiar to a particular locality. Lastly, the effect of water
on the health must not be forgotten.”
– Airs, Waters, and Places, Hippocrates

Colloquialisms that persist in our language, such as “having a cold”, and “feeling under the
weather”, reflect our innate understanding of the relationship between climate and disease; how-
ever, despite the National Research Council’s urging in 2001 to create the highly-interdisciplinary
institute for this purpose [28], integrated analytic predictive frameworks for studying this interplay
do not exist at the present time. The growing tide of scientific reports documenting expanding
geographic and temporal disease ranges, and more frequent, intense and novel outbreaks, both
agricultural and human, highlight the obvious need for quantitative, predictive understanding of
how a rapidly changing climate and concomitant environmental degradation drive and modulate
contagion. Our own recent work in climate [105], coupled with expertise in vector-borne diseases,
microbial pathogenesis, genome-based studies and ecosystem ecology, bring together a unique ca-
pability for addressing emerging, potentially high consequence-high probability, climate-infectious
disease challenges.

The U.S. defense establishment views global climate change is a “threat multiplier1,” a gener-
ally destabilizing force for societies and economies, with exploding risks and costs of strategic
priorities and missions. Similarly, the changing climate-infectious disease nexus multiplies risks
and costs to societies and economies, and will further magnify inequities and structural weak-
nesses in agricultural production and health care systems. In recent months, the rapid spread of
SARS-Coronavirus-2 (a.k.a., COVID-19) has underscored both the devastation that unforeseen,
novel pathogens can visit upon society, as well as the costs, human and otherwise. Comparable

1https://yaleclimateconnections.org/2019/07/
a-brief-introduction-to-climate-change-and-national-security/.
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pandemics, in terms of prevalence (proportion of people in a population with disease), incidence
(number of new cases appearing in a time interval), and mortality, include the Black Death (14th
century Europe) and the 1918 Spanish Flu. Both both of these pandemics profoundly reshaped
societies and economies, and it has been argued that both were indirectly the result of altered
modes of climate variation (Black Death [124]), and changing land use patterns (1918 Spanish
Flu), respectively.

In this effort, we focus on human pathogens, and survey the state of climate and infectious disease
research and development (R&D). We also outline Sandia’s potential contribution to this impor-
tant research domain. To motivate discussion of the interplay of climate and infectious disease,
we will use exemplars representing key transmission categories: dengue virus for insect-vectored
pathogens (positive strand RNA virus belonging to the Flavivirus genus); species of Coccidioides,
the ascomycetous soil fungus that causes Valley Fever for environmentally transmitted infectious
agents; and seasonal influenza (negative strand RNA viruses belonging to the Orthomyxoviridae
genus) for human-to-human communicated disease with zoonotic potential and history.

The remainder of this report is organized as follows. In Chapter 2, we introduce three exemplars
mentioned in the previous paragraph, and discuss briefly how each exemplar is influenced by natu-
ral climatic variation, and also responds to a rapidly warming climate. Chapter 3 provides a review
of existing models for understanding the relationships between weather, climate and disease. To-
wards the end of this chapter, we identify some existing modeling and knowledge gaps hampering
robust prediction of climate-driven spread of infectious disease. In Chapter 4, we discuss ideas for
new modeling strategies for predictive modeling of climate and infectious disease, together with
insights into how genome science and bioinformatics can advance this field, focusing on R&D that
is well-suited to be undertaken at Sandia National Laboratories. Concluding remarks are offered
in Chapter 5, in addition to a discussion of potential sponsors.
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2. DISEASE EXEMPLARS

In this chapter, we introduce three exemplars, each one representing one of three key transmission
categories of disease. Coccidiomycosis, also known as “Valley Fever” (Section 2.1), is caused by
a species of Coccidioides, a soil fungus. It is representative of a wider class of diseases that are
transmitted environmentally, such as wheat rust [106] and pollen-borne viruses [156, 34]. The
dengue virus (Section 2.2) is a mosquito-borne viral infection that we take as an exemplar for a
broader class of insect-vectored pathogens. Finally, seasonal influenza (Section 2.3), is meant to
serve as an exemplar for a class of human-to-human communicated diseases, which include the
recent COVID-19 virus. The diseases described in this chapter, and, more broadly, the classes of
diseases they represent, are referenced later in Chapters 3 and 4 in the context of existing and new
modeling approaches aimed at understanding and improving the study of climate-driven infectious
disease spread.

2.1. Coccidiomycosis (“Valley Fever") in the Americas

2.1.1. Background

Coccidioides immitis and C. posadasii are the etiologic agents of “Valley Fever” (VF, also known
as “San Joaquin Valley Fever”, desert rheumatism, and Coccidioidomycosis) in New World arid
lands (Figure 2-1). The disease, first described in the 1800s by Dr. Alejandro Posadas in Ar-
gentina, presents with a range of symptoms from mild pneumonia and flu-like symptoms, to po-
tentially deadly pulmonary or meningoencephalitis syndromes when dissemination in a patient
has occurred. The incidence of VF has dramatically increased in recent years [65, 50, 49, 53].
This increase is attributed in part to improved reporting, diagnosis and awareness, but also to
climate-driven shifts resulting in higher incidence and prevalence in endemic regions, exacerbated
by range expansion [50, 77]. Most human and animal infections occur as a result of inhaling in-
fectious spores that are transferred from soil to the air in dust as a result of wind and other types of
disturbance, including fires that remove plant cover.

Coccidioides endemism, the natural distribution of a species, is inferred from epidemiological data,
i.e., confirmed diagnoses of Coccidioidomycosis [29, 50, 73, 148]. The majority of confirmed VF
cases are in the American southwest, primarily Arizona and the Central Valley of California, with
recent clusters occurring beyond historical disease centers in arid regions of Washington state in
2010 [77]. Most regions of New Mexico and portions of Utah and Texas are also in the known
endemic region. New Mexico has many fewer cases a year than either California or Arizona,
likely the result of a combination of factors, including lower human population density, different
land use practices, and the ecology of species of Coccidioides. In the following sections, we
summarize salient features of the biology of species of Coccidioides, pathogenesis, transmission
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and interaction with a rapidly changing climate. Later, in Chapter 4, we discuss ways in which our
climate-infectious disease team can help define and advance the field.

(a) U.S.A.

(b) Americas

Figure 2-1. Endemic regions for Coccidioides species in the U.S. and the
Americas. Coccidioides immitis and C. posadasii, causative agents of Valley
Fever, are present throughout arid lands in the Americas. Evidence sug-
gests that climate change is contributing to significantly increased preva-
lence and incidence. Maps were adapted from the Centers for Disease Con-
trol resources [46].

2.1.2. Life cycle, ecology and transmission mode

Coccidioides immitis and C. posadasii are arid land, soil-dwelling, dimorphic ascomycetous fungi
belonging to the order Onygenales. Onygenealan fungi are believed to have evolved as highly
adapted animal pathogens ∼150 million years ago, and Coccidioides species are estimated to have
diverged ca. 5.1 million years ago, well before human arrival in the New World [127]. These organ-
isms are dimorphic in terms life cycle, growing saprobically as mycelia (multicellular filaments)
on non-living organic matter (likely decaying animal carcasses), and upon inhalation of arthro-
conidia (asexual durable propagules, Figure 2-2) by an animal or human host, initiate the parasitic
phase of growth in a yeast-like spherule stage [53]. Long and short-term temperature and moisture
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conditions control the shift from saprobic growth to parasitism in the complex Coccidioides life
cycle (Figure 2-3). When substrates become desiccated beyond a certain threshold, mycelia form
arthroconidia, which can be inhaled by humans and other animals. Inhalation of arthroconidia
promote lung infections that initiate the parasitic phase of the Coccidioides life cycle.

Figure 2-2. Coccidioides arthroconidia chains. When substrates become
desiccated beyond critical thresholds, Coccidioides mycelia asexually dif-
ferentiate into arthrocondia that are readily airborne upon soil disturbance.
Human and animal hosts inhale arthroconidia, initiating pulmonary infec-
tion. Climate controls both the shift to parasitism and establishing envi-
ronmental conditions that favor the atmospheric transport of arthroconidia.
Image adapted from the Centers for Disease Control information about Coc-
cidioides [44].

In addition to numerous potential climate-controlled points in the complex life cycle (Figure 3 2-3),
there is a strong association between small-mammal burrows and soils testing positive for Coccid-
ioides. Arid land rodents and other small mammals are hypothesized reservoirs, but definitive
host delineations have not been made, nor has the potential role of animal reservoirs in outbreaks
been made clear. A recent report provided a first molecular characterization of the small-mammal
lung mycobiome (i.e., the commensal community of fungi in pulmonary tissues), and showed that
potentially pathogenic members of the Onygenales were present [54], supporting the small mam-
mals as reservoirs hypothesis. If small mammals and rodents are reservoirs for Coccidioides, then a
rapidly changing climate will also affect the ecology of these animals, in turn, potentially changing
the VF disease burden in human populations.

As mentioned above, spores of Coccidioides are transmitted in air, and climate substantially deter-
mines the environmental conditions that facilitate spore loads and movements. Human infections
result from soil disturbance, in work-related activities (e.g., construction, agriculture, solar farms,
archeological digs, etc.) and changing patterns of human settlement in arid lands. Weather events
and natural disasters, such as wind and dust storms, fires and earthquakes are also important in
promoting VF outbreaks [29, 65, 77, 132, 142, 148]. Additionally, prison populations and work-
ers can have high rates of exposure and disease in regions with high endemicity [65]. Recent
findings suggest a strong association between increasingly frequent dust storms and VF incidence
and prevalence [142]. Coccidioidomycosis is not transmitted from human to human (the clinical
aspects of Coccidioidomycosis are discussed in the “Therapeutics” section below).
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Figure 2-3. Complex lifecycle of Coccidioides, causative agent of Valley
Fever. Species of Coccidioides have complex lifecycles comprised of two
main modes of growth and development: saprobic and parasitic. In the
saprobic mycelial mode of growth, these organisms reside in substrates (hy-
pothesized to be decaying animals) in desert soils with suitable temperature
and moisture profiles. When arid land soils become desiccated beyond a
certain threshold, arthroconidia (durable, transportable infectious propag-
ules) form, and can be inhaled by humans and other animals. Upon contact
with airways, these propagules initiate the parasitic phase of the lifecycle. In
vivo, arthroconidia form spherules, which in turn develop disease- dissem-
inating endospores. If unchecked, disseminated endospores spread infec-
tion to other tissues, organs (spine, skin, brain), bones and joints. Figure
adapted from Lewis et al. [73].

2.1.3. Biogeography, biodiversity and their potential impacts on disease

Populations of the two Coccidioides species causing VF show diversity among isolates, and also
strong geographic structuring [50, 53]. A recent study based in the Four Corners region of north-
western New Mexico demonstrated the presence of Coccidioides in the state, with C. posadasii
as the main infectious agent, and identified Native Americans in this area as an at-risk group. C.
immitis, known as the “California species” was also associated with New Mexico VF cases in this
study [53]. Other studies show similar magnitude of within-species diversity and geographic struc-
turing of populations (Figure 2-4). How this genetic and phenotypic diversity in Coccidioides play
out in a clinical setting is entirely unexplored, but accumulating evidence suggests this diversity is
important in VF disease processes. Just as uncertain is how Coccidioides biological (genetic, phe-
notypic, etc.) diversity and geographic distribution will interact with a rapidly warming and drying
climate; all reasonable estimates indicate expansion of the disease, both in space and time.

2.1.4. Therapeutics

Coccidioidomycosis typically presents as a pulmonary infection [53]. While the majority of in-
fections progress asymptomatically, symptomatic VF cases present as mild flu-like symptoms,
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Figure 2-4. Species-Level Diversity in Coccidioides posadasii in the Ameri-
cas. C. posadasii commonly causes Valley Fever (VF) outside of California.
C. posadasii populations show strong geographical structuring, with iso-
lates from a specific location being closely related. While evidence exists
for interspecies hybridization and recombination at the population level, a
sexual stage has not yet been described. The medical impact of genetic
and phenotypic diversity is entirely unexplored, as are interactions with the
rapidly changing climate. Panel adapted from [50].

with muscle and joint pain, rash and pulmonary symptoms [69]. Hypersensitivity skin testing (us-
ing the Coccidioidin antigen) suggest that large fractions of infected populations have few, if any
symptoms. Similar to COVID-19 epidemiology, certain populations, including the immunocom-
promised or pharmaceutically immunosuppressed, African and Native Americans, and Filipinos
are at much higher risk for severe, disseminated Coccidioidomycosis [53]. In a small percentage
of cases, infection results in severe illness and death, even in immunocompetent hosts [69]. U.S.
Cases of VF have increased steadily since the 1990s, with regular reporting by only 24 states and
the District of Columbia (Figure 2-5). Most documented cases now occur in specific regions, e.g.,
southern Arizona and central California, showing high disease incidence and prevalence. States
with confirmed and suspected elevated rates of endemism, such as Texas, Colorado, Oklahoma,
Washington and Idaho do not report disease. Other countries in the endemic region do not system-
atically report Coccidioidomycosis, and therefore, the U.S. provides the only reliable, if incom-
plete, data for the disease [65].

Upon infection of human or animal lungs, arthroconidia form spherules, or parasitic structures
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Figure 2-5. Cases of Coccidioidomycosis, or Valley Fever (VF) over time.
The number Coccidioidomycosis cases have increased significantly in two
decades, as indicated by confirmed diagnoses in reporting states. This dra-
matic increase is almost certainly an underrepresentation of the true number
of cases, as many, if not most, cases are neither evaluated by, or reported to,
medical authorities or state-level public health agencies. The increase in VF
is attributed to better diagnostics, reporting and awareness of the medical
community, but also changes in climate and human population pressures
in arid lands. Chart adapted from the Centers for Disease Control Coccid-
ioidomycosis Statistics resources [45].

that give rise to endospores, in pulmonary tissues (Figure 2-6) [93]. If severe infections remain
unchecked by immune response and / pharmaceutical intervention, then spherules rupture, dis-
persing endospores to different tissues, organs (e.g., spleen, brain, spinal column, skin) bones and
joints [65, 69]. Such severe cases can require life-long, harsh antifungal therapies, as no effec-
tive vaccine exists. The limited repertoire of antifungals slow or arrest fungal growth, but are not
fungicidal. Resistance is prevalent among the main class of anti-fungals, the azoles.

2.1.5. Climate and Coccidioidomycosis

Temperature and moisture conditions are climatically controlled, and determine both Coccidioides
endemicity and incidence. Recent reports point to endemicity in counties in the U.S. where annual
mean surface temperature is at least 10◦C and annual mean precipitation does not exceed 600
mm (Figure 2-7, [50, 65]). Regions such as the San Joaquin Valley of California and south-central
Arizona are termed “highly endemic” with respect to VF disease incidence; highly endemic regions
have at least 70 cases per 100,000 population, and an annual mean surface temperature of 16◦C
[65]. These same studies suggest that interannual moisture variation is a strong determinant of
disease incidence, based on the life cycle of the fungus (Figure 2-3; [65]). When soil moisture
is high, Coccidioides grows as a saprobic mycelium, but when soils become desiccated beyond a
certain threshold, hyphal cells of mycelia differentiate into arthroconidia, the infectious propagule
that is dispersed into the atmosphere by wind and dust (Figure 2-3). Epidemiological and climate
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Figure 2-6. Spherule formation in pulmonary tissues initiates the parasitic
phase of the Coccidioides life cycle in animal and human hosts. Inhalation
of Coccidioides arthroconidia (associated with soil desiccation and distur-
bance in arid lands) leads to VF infection. Spherules are formed from inhaled
arthroconidia, and give rise to endospores, which, if unchecked, lead to dis-
seminated Coccidioidomycosis, invading different tissues, organs (including
brain, spine and skin), bones and joints. In such severe cases, life-long treat-
ments can be required. Panel adapted from Muñoz-Hernandez et al. [93].

data from Arizona show that when early summer precipitation is low, there is higher incidence
of VF in the late summer. Conversely, with increased North American monsoonal activity in the
early summer, the incidence of VF is lower in the late summer, ostensibly because soil conditions
favor mycelial growth, versus arthroconidia development [65]. Kollath and others [65] also show
an association between high winter and spring precipitation and increased VF incidence in the
summer months. The explanation for this association: abundant winter and spring precipitation
favoring fungal (mycelial) biomass proliferation, followed by the onset of higher temperatures
in the summer that increase evaporative demand, resulting in the soil desiccation known to drive
development of arthroconidia (Figures 2-2 and 2-3).

A rapidly warming climate is projected to increase VF disease burden significantly for the U.S.
by 2100 [29, 50, 53, 65]. The landmark study from Gorris et al. [50] used a climate niche model
to give county-level predictions for Coccidioides endemism for different time points in the 21st
century with different climate trajectories: “Representative Concentration Pathway” (RCP) 4.5, an
increase of 4.5◦F in global mean annual temperature, and RCP 8.5, the “business as usual” path-
way, with a projected increase of 8.5◦F. Validated datasets from fully coupled climate models (in
the “Coupled Model Intercomparison Project” (CMIP) [136, 40]), were used as inputs, as were
human population projections from Shared Socioeconomic Pathways (SSP) data. Findings of this
study suggest that on the “business as usual pathway” with invariant population, VF disease inci-
dence will increase 12% by 2035, and 50% by 2095. Taking both climate change (RCP8.5) and
population pressures (SSP2 and SSP5 population scenarios) into account, VF disease incidence is
projected to skyrocket 72% (SSP2) or 80% (SSP5) by 2100. In both RCP scenarios, significantly
expanded endemism is expected, with VF potentially ranging into the Great Plains and Canada
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by 2100 under RCP8.5. Increased VF incidence and prevalence is predicted in regions where
Coccidioides is already endemic (Figure 2-8; [50]).

While the majority of VF infections are believed to come from endemic populations, there has been
some evidence that Coccidioides spores can be transported fairly long distances (across states)
under the right atmospheric and wind conditions. In a 1979 paper by Flynn et al. [43], it was
demonstrated that a 1977 high-velocity wind storm originating near Bakersfield, California led to
the dispersion of the C. immitis fungi up to 700 km to the north, covering an area encompassing
approximately 87,000 square kilometers.

Under all future climate scenarios, projected land use changes and demographic shifts indicate
that U.S. arid lands will become hotter, drier and more populous, thus establishing environmental
conditions for significantly increased VF disease burden. Given lack of reporting by states with
existing endemism, together with the fact that large fractions of VF infections go undetected, undi-
agnosed and/or untreated in a clinical setting, the startling projections for disease burden reported
by Gorris et al. [50] almost certainly represent underprediction (Figure 2-8).

2.1.6. Gaps

A myriad of gaps exist in all aspects of Coccidioides science, from the clinical and ecological,
to the climatological. Here, we focus on gaps and uncertainties relevant to understanding VF en-
demism, range expansion and outbreaks in the context of hotter, drier arid lands in the Americas.
Chief among these challenges is the dearth of longitudinal (both in time and space) epidemiological
data for endemic regions. This lack of epidemiological data hampers the ability to develop climate-
informed disease forecasting from year to year, and to estimate the likelihood of outbreaks in a
warmer world. On the scientific side, there are no comprehensive temporally and geographically
indexed collections of these organisms in a key microhabitat, desert soils, nor has there been sys-
tematic investigation of possible small mammal and rodent reservoirs, complicating interpretation
of disease endemism, incidence, prevalence and outbreaks. Similarly, it is generally understood
that various stages of the Coccidioides complex life cycle (e.g., the shift from mycelial growth
to formation of infectious arthroconidia, arthroconidia dispersal by soil disturbance, fires, wind
and increasing atmospheric instability, etc.) will interact with rapidly changing climate, but these
presumed interactions have not been quantified on an annual basis for endemic regions, nor has
arthroconidia viability been investigated under real-world conditions, such as desiccation, wide di-
urnal temperature variation, exposure to UV radiation, and long-range transport from point sources
(animal burrows, carcasses, dust storms, etc.). Moving forward, comprehensive field, laboratory
and standardized epidemiological data collection and reporting efforts, together with sophisticated
climate and epidemiological modeling, will quantitatively address uncertainty in VF disease pro-
cesses, seasonality, and range expansion to deliver robust disease burden forecasts for a warmer
world.
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Figure 2-7. Coccidioidomycosis endemism is controlled by temperature and
moisture. Valley Fever (VF) incidence for counties in the southwestern U.S.
as a function of (a) mean annual temperature, (b) mean annual precipitation.
Counties with endemic levels of VF (at least 10 cases per 100,000 population
per year for 2000-2015) have a mean annual temperature of at least 10.7◦C,
and mean annual precipitation of not more than 600 mm/year. Higher VF
disease incidence are observed in areas that are hotter and drier (c). Panels
adapted from [50].

2.2. Dengue

2.2.1. Background

Dengue is a mosquito-borne viral infection that now affects 390 million people each year [13]. It
is transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Forty percent of the world’s
population (3 billion people) live in areas with a risk of dengue. That area of risk is expected to
expand due to climate change and urbanization [89]. Due to the high number of human infections
worldwide, dengue is considered the most important of arthropod-borne viral disease in humans
[28]. Dengue symptoms include fever, severe headaches, and muscle and bone pain that last 3-7
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Figure 2-8. Upper bound projections for future Valley Fever (VF) incidence
under the climate “business as usual” scenario. With respect to a 2007
baseline (a), projections for years up to 2095 show marked increase in VF
incidence in the American west, ranging up into the Great Plains, and in-
tensifying in regions where endemism is established. Taking only climate
change into account, this increased disease burden will come with an es-
timated cost of $365M annually above current costs (in 2015 U.S. Dollars).
Panel adapted from [50].

days after 3-14 day incubation period. Occasionally, shock and fatal hemorrhage occur. Fatality
rates from dengue hemorrhagic fever is about 5 percent.

2.2.2. Lifecycle, Ecology, and Transmission Mode

Dengue virus belongs to the genus Flavivirus in the family Flaviviridae. Other members of the
genus include West Nile virus, tick-borne encephalitis virus, yellow fever virus, and Zika virus.
Shared features of flavivurses include size (50-65 nm), symmetry (enveloped, icosahedral nucle-
ocapsid), nucleic acid (positive-sense single-stranded RNA), and appearance. Dengue, like zika
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and yellow fever viruses, require mosquito vectors and are also replicated to high enough titers in
humans to reinfect the bugs needed to continue the virus lifecycle. In other words, humans are not
a dead-end host to dengue virus (Figure 2-9).

Figure 2-9. Dengue, zika, and yellow fever viruses require mosquito
vectors for transmission. Humans reinfect the bugs because the
virus accumulates to sufficiently high titers inside the human host.
Direct interactions between mosquitoes and humans continue the
virus lifecycle. Image adapted from https://www.treehugger.com/
reason-mosquitoes-bite-some-people-more-others-4858811.

Dengue virus evolved into four serotypes (1-4), based on analysis of the envelope protein. A
Bayesian analysis of all four serotypes estimated that their most recent common ancestor existed
around 340 AD. The rate of nucleotide substitution is similar to other RNA viruses (6.5× 10−4

per nucleotide per year). The American-African genotype is thought to have evolved between
1907 and 1949, spanning both world wars. The consequent movement of large populations and
environmental disturbance are factors known to promote the evolution of new vector-borne viral
species.

The life cycle of dengue virus starts with entry into the host cell via attachment of the viral en-
velope protein (E) to host receptors, which mediates endocytosis. The exact nature of the cellular
receptor is unknown. Endocytosis is triggered by acidification of the endosome, which causes a
conformational change to the envelope protein (E), exposing a fusion peptide that facilitates fusion
of the envelope with the endosomal membrane. Molecular details of E protein binding to host
cells and the membrane-membrane fusion process, and how both depend on lipid composition in
the host cell membrane, are active areas of investigation pursued at Sandia [118, 68, 149] (Figure
2-10). After fusion, the virion capsid is released into the cytoplasm. Replication and transcription
follow the positive-stranded RNA virus models and occurs in the cytoplasm of the host cells. Viral
particles are released via exocytosis.

Transmission of dengue originally proceeded between mosquitoes of the genus Aedes and non-
human primates in Africa, Southeast Asia, and South Asia. The global spread of dengue virus
followed the shift from transmission through mosquitoes and wild animals (sylvatic cycles) to di-
rect transmission between humans and Aedes mosquitoes. In fact, mosquitoes prefer to bite people,
both indoors and outdoors, during the day and night (Figure 2-9) [66].
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Figure 2-10. A snapshot from molecular dynamics simulations of the enve-
lope protein of dengue virus (serotype 2, molecule colored in yellow, red, and
blue and surrounded by aqueous solution of sodium chloride electrolytes,
depicted as blue and red circles) inserting into lipid membranes represent-
ing a target human cell. Insertion of the envelope protein into the target
membrane serves to anchor the envelope protein prior to fusion of the viral
and target membranes. Molecular studies, such as these and others carried
out at Sandia [118, 68, 149], focus on understanding the detailed mechanism
of viral infection since fusion of the viral and target membranes are essen-
tial for infectivity. Membrane fusion is a target for therapeutic development.
Figure adapted from [118].

Infection stimulates host homeostatic processes such as autophagy (orderly cell degradation and re-
cycling) and ER (endoplasmic reticulum) stress response that stimulates the unfolding of proteins,
and apoptosis, depending on infected cell type. Activation of autophagy and ER stress during
infection enhances virus reproduction [33, 88].

2.2.3. Biogeography, biodiversity potential impacts on disease processes

The current distribution of dengue, based on data from 2015 (Figure 2-11), shows that the proba-
bility of dengue infection occurs in tropical and sub-tropical zones, especially in South America,
Southeast Asia, and central Africa. This distribution is consistent with the historical spread of
Aedes mosquitoes, which have driven the expansion of dengue around the world.

The four dengue serotypes occur together in the same geographical regions. An interesting char-
acteristic of dengue is that each serotype can cause disease independently of prior infection by
another serotype. When infected with dengue virus, the immune system produces cross-reactive
antibodies that provide immunity to that particular serotype. Those antibodies do not neutral-
ize other serotypes upon reinfection, but instead increase viral replication. This occurs because the
virus can replicate within macrophages that consume the so-called neutralized virus, inducing more
severe disease (hemorrhagic fever and shock syndrome). This effect is called antibody-dependent
enhancement.

Models of the global distribution of Aedes mosquitoes and the geographical determinants of their
ranges were developed by Kraemer, et al. [66] (Figure 2-12). The authors used a probabilistic

26



Figure 2-11. Data in a 5x5-km resolution map showing the probability of oc-
currence of dengue in 2015 due to suitability of the environment (red, suit-
able environment, gray, unsuitable environment). Environmental suitability
for dengue transmission measured in terms of (a) temperature, (b) cumula-
tive annual precipitation, (c) minimum relative humidity, (d) gross domestic
product per capita, (e) human population density, (f) environmental suitabil-
ity for mosquitoes Aedes aegypti and Aedes albopictus. Figure adapted from
[89].

species distribution model, with boosted regression trees for each mosquito vector. The models
combined both environmental, and, for the first time, land-cover variables to predict the global dis-
tribution of both mosquito species at high resolution. The results show that the Aedes mosquitoes
have expanded their ranges and are now found all around the world. As of 2015, most Aedes
mosquitoes occur in Asia (more than 60% of Aedes aegypti and 75% of Aedes albopictus). The
distributions have expanded in both space and time, but most studies to date have focused on spa-
tial distributions. These mosquitoes are predicted to occur primarily in the tropics and sub-tropics,
with Ae. aegypti showing a wider geographic distribution than Ae. albopictus. This difference
in geographic distribution is attributed to the well-established ability of Ae. albopictus to tolerate
lower temperatures [144, 82, 138, 16]. The most important predictor of mosquito occurrence, for
both Aedes species, was found to be temperature. This work lays an important foundation for un-
derstanding the relationship between the vectors for dengue and climate, but further work is needed
to understand which factors are contributing to the rapid expansion of both mosquitoes’ ranges.

2.2.4. Therapeutics

Direct treatments for dengue fever do not exist. Most drug research for dengue infections has fo-
cused on inhibition of the NS2B/NS3 protease or NS5 proteins. NS denotes nonstructural protein.
In 2013 and 2014, studies of the drug Balapiravir, an NS5 polymerase inhibitor used for hepatitis
C infections, progressed to a Phase II clinical trial before being stopped due to lack of efficacy
[97, 25]. Prevention consists of avoiding mosquito bites.

Currently, one vaccine is approved for dengue in eleven countries. Several vaccines are under
development. The challenge to vaccine development is that it must immunize against all four
serotypes to be effective. Vaccination against only one serotype could lead to severe disease when
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(a)

(b)

Figure 2-12. Predicted geographical distribution of Aedes aegypti (a) and
Aedes albopictus mosquitoes at a spatial resolution of 5 km x 5 km based
on a probabilistic species distribution model [66]. Aedes mosquitoes are the
primary transmission vector for dengue. Figure adapted from [66]

.

infected with another serotype due to antibody-dependent enhancement, as described above. Sim-
ilarly, offspring of mothers infected with dengue carry immunity to particular serotypes, but are
susceptible to hemorrhagic fever if infected with any of the other serotypes.

2.2.5. Climate and Dengue Virus

The abundance of dengue vectors (mosquitoes) depends on the availability of water-filled breeding
sites, such as water storage containers. The survival of eggs and adults depends on both tempera-
ture and relative humidity, taken into account as saturation deficit. Desiccation destroys eggs, high
humidity destroys adult mosquitoes, but these conditions are rarely encountered in humid tropi-
cal locations [28]. Atmospheric moisture influences the rate of water loss from containers, thus
affecting the abundance of dengue vectors (mosquitoes).

Temperature affects each stage of the mosquito life cycle, thus affecting potential spread of dengue
virus. A. aegypti are tough. They can survive a broad range of temperatures (5◦C to 42◦C). Nev-
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ertheless, temperatures below 20◦C inhibit the hatching of mosquito eggs. Temperature influences
the time for each stage of mosquito life cycle (embryonic, larval, pupal). Temperature plays a
major role in the frequency of biting. Temperature even alters the time between mosquito bite and
infection, introducing seasonality into transmission dynamics [28].

Effects of climate change on the dengue virus may be mixed. On the one hand, increased tempera-
ture by 1◦C are projected to increase infection rates by as much as 47 percent, which translates into
more people with multiple infections and thus serious dengue illness. On the other hand, higher
temperatures may lower atmospheric moisture levels, which could reduce dengue transmission
[28].

Messina and colleagues performed statistical modeling to predict the influence of the environment
on future global distribution of dengue infection [89]. This work differs from prior modeling ef-
forts by being the first to restrict the models to make predictions only within areas that correspond
to the occurrence and future potential spread of relevant mosquito populations (Ae. aegypti and Ae.
albopictus). Those researchers fit a boosted regression tree statistical model based on more than
13,000 locations of dengue infection between 1960 and 2015. In their model, they also included
a set of environmental covariates to characterize the distribution of dengue: temperature suitable
for dengue transmission, cumulative annual precipitation, minimum relative humidity, and envi-
ronmental suitability for mosquitoes that transmit dengue (Aedes aegypti and Aedes albopictus)
from the work of Kraemer [66]. In addition to environmental covariates, the models also included
socioeconomic covariates of gross domestic product per capita and human population density.

The resulting predictions (Figure 2-13) show increasing probability that dengue will occur in cer-
tain regions, and declining probability in other regions. Notably, those models predict that the
suitability of dengue is particularly influenced by the environmental variables of temperature, pre-
cipitation, and relative humidity, contributing 68, 13, and 6 percent to the variation in the ensemble
of models. Much of the southeastern USA is predicted to become suitable to dengue by 2050, and
the risk of dengue infection is predicted to extend to higher altitudes in central Mexico, northern
areas of Argentina and inland areas of Australia. The largest increases in suitability are predicted in
southern Africa and West Africa, due to more favorable temperatures and increased rainfall. Glob-
ally, the models predict about 2.25 billion more people will be at risk of dengue in 2080 compared
to 2015, mainly due to changes in temperature. That scenario would bring the total population at
risk to over 6 billion people, or 60% of the world’s population.

2.3. Influenza

2.3.1. Introduction/background

Influenza virus is a pathogen of global health significance, but human-to-human transmission re-
mains poorly understood. In particular, the relative importance of the different modes of trans-
mission (direct and indirect contact, large droplet, and aerosols (airborne droplet nuclei)) remains
uncertain during symptomatic and asymptomatic infection [17, 64, 135]. Concerns about the likely
occurrence of an influenza pandemic in the near future are increasing. The highly pathogenic
strains of influenza A (H5N1) virus circulating in Asia, Europe, and Africa have become the most

29



Figure 2-13. Changes in the environmental suitability for dengue occurrence
predicted for years 2020-2050 by the modeling presented in [89]. Areas of
expansion denoted in red, areas of contraction denoted in blue. Declines in
suitability occur as geographical areas become hotter and drier, while ex-
pansion of suitability occurs with temperatures and increased rainfalls that
favor mosquito breeding, survival, and biting activity. Figure adapted from
[89].

feared candidates for giving rise to a pandemic strain. The evidence base for influenza transmis-
sion is derived from studies that have assessed virus deposition and survival in the environment,
the epidemiology of disease; pharmaceutical and non-pharmaceutical interventions, animal mod-
els and mathematical models of transmission. Those approaches have yet to produce conclusive
data quantifying the relative importance of human-human transmission modes.

In temperate regions, wintertime influenza epidemics are responsible for considerable morbidity
and mortality. These seasonal epidemics are maintained by the gradual antigenic drift of surface
antigens, which enables the influenza virus to evade host immune response. Recent influenza
epidemics have resulted from the cocirculation of three virus (sub)types, A/H1N1, A/H3N2, and
B, with one generally predominant locally in a given winter. In contrast, influenza pandemic
activity can occur any time of year, including during spring or summer months, in the rare instances
when a novel virus to which humans have little or no immunity jumps from avian or mammalian
hosts into the human population, as in the on-going H1N1v pandemic. Despite numerous reports
describing wintertime transmission of epidemic influenza in temperate regions, our understanding
of the mechanisms underlying influenza seasonal variation remains very limited.

Despite 70 years of research since the influenza virus A was discovered, there continues to be a
vocal debate about the modes of influenza transmission, specifically whether influenza is transmit-
ted via the airborne route, via the droplet or contact route, or a combination of these routes [67].
Establishing how influenza is transmitted under different circumstances, and whether transmission
requires close contact, is of great importance because the results will have a major influence on the
choice of infection control measures in health-care settings. Infection control guidance for pan-
demic and seasonal influenza assumes that most transmission occurs during symptomatic infection,
predominantly via large droplet spread at short range (1-2m). Thus, social distancing measures are
often proposed to mitigate the spread and impact of a pandemic. Hand washing, and respiratory
etiquette are also promoted to reduce transmission.
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During the past 100 years, four pandemics of human influenza have occurred, with the 1918 pan-
demic caused by an influenza A H1N1 virus being the most devastating, as it was associated with
more than 40 million deaths. Influenza A H2N2, H3N2 and H1N1 viruses caused the 1957, 1968
and 2009 pandemics, respectively. In 1977, influenza A H1N1 restarted circulation in humans
without causing a pandemic, as the strain was similar to that which preceded the 1957 influenza A
H2N2 pandemic. In contrast, the 2009 pandemic influenza A H1N1 virus was antigenically very
different to the previous seasonal influenza A H1N1 viruses and replaced them as the circulating
influenza A H1N1 strain. Examples of the spreading of human influenza A viruses in the world
are shown for pandemic 1918 and 1957 viruses and for seasonal H3N2 viruses (Figure 2-14). For
pandemic virus outbreaks, the arrows in the figure indicate the first and second waves of transmis-
sion. For seasonal influenza A H3N2 spread, the arrows indicate the seeding hierarchy of seasonal
influenza A (H3N2) viruses over a 5-year period, starting from a network of major cities in east and
southeast Asia; the hierarchy within the city network is unknown. Seasonal influenza B viruses
(not shown) are co-circulating in humans with influenza A viruses.

Figure 2-14. Timeline of influenza geographical spread (from [67])

2.3.2. Influenza epidemiology and ecology

The influenza virus, like all of its viral cousins, is a shell of protein and lipid protecting a nucleic
acid core. In, addition to these general features, it has characteristics typical to the orthomyox-
oviridae family to which it belongs, including a complicated structure of plasma membrane derived
from the host cell enveloping sequential protein shells and, finally the virus’ RNA genome. Like
HIV and the smallpox virus, the influenza virus recognizes particular receptor molecules on the
outside of a human cell. In this case, the appropriate receptors are usually found in the cells of the
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respiratory tract such as the epithelial cell lining of the throat, bronchial tubes, and trachea. The
availability and identity of the receptors accounts for why some viruses infect particular species
better than others. For example, a chicken has different receptor molecules on the surface of its
cells than a human, and the viral HA proteins usually stick more strongly to the receptor of one
species than another. The cases of avian flu in which the virus jumped from birds to humans can
be explained by viral mutations in the composition of the virus’ outer coat, resulting in “stickier”
virions that now bind to human cells (Figure 2-15). There has also been evidence that the avian
flu virus is more difficult to transmit between humans because only human cells deep within the
respiratory tract have the necessary receptors to the stick to the virus.

In theory, influenza viruses can be transmitted through aerosols, large droplets, or direct contact
with secretions (or fomites) [135]. These three modes are not mutually exclusive. Humans acutely
infected with influenza A virus have a high virus titer in their respiratory secretions, which will be
aerosolized when the patient sneezes or coughs. The viral titer measured in nasopharyngeal washes
culminates on approximately day two or three after infection and can reach up to 107 50% tissue
culture infective dose (TCID50)/mL [94]. The persistence of the infectivity of influenza virus in
aerosols has been studied in the laboratory. In experiments that used homogeneous aerosolized
influenza virus suspensions (mean diameter 6 µm), virus infectivity (assessed by in vitro culture)
at a fixed relative humidity undergoes an exponential decay; this decay is characterized by very
low death rate constants, provided that the relative humidity was in the low range of 15%–40%. In
all these studies, the decay of virus infectivity increased rapidly at relative humidity > 40%. The
increased survival of influenza virus in aerosols at low relative humidity has been suggested as a
factor that accounts for the seasonality of influenza.

Influenza virus enters the cell by endosomal uptake and release, and its negative-sense genetic ma-
terial in the form of viral ribonucleoproteins (vRNPs) is imported to the nucleus for transcription
of mRNA and replication through a positive-sense complementary ribonucleoprotein (cRNP) in-
termediate. Viral mRNA is translated into viral proteins in the cytoplasm, and these are assembled
into new virions together with the newly synthesized vRNPs (Figure 2-16). In the case of influenza
virus, constant mutation via antigenic shift and drift, and a wide, shifting host range also add an ad-
ditional layer of complexity to the interpretation of the existing data: different strains of influenza
clearly behave differently, and this also depends on the species infected. For example, avian in-
fluenza strains are generally transmitted between birds via the faecal-oral route, yet transmission of
avian strains to human beings is believed to occur mostly via direct contact between infected bird
secretions and human respiratory mucosa. Therefore, we do not believe that the results of animal
transmission studies can necessarily be extrapolated to human beings, but rather, should provide
guidance in developing appropriate human-based studies.

Influenza A viruses have been found in multiple species all seemingly derived from viral ancestors
in wild birds, with the possible exception of bat influenza-like virus, which is of still uncertain ori-
gin. Influenza viruses from wild birds can spill over through water or fomites to marine mammals
and to domestic free-range ducks. Transmissions to other avian species (for example, poultry) from
domestic ducks or directly from wild birds can also occur from contaminated water. Transmission
from ducks to other species occurs through ‘backyard’ farming, whereby the animals are raised
together, and in live poultry and/or animal markets. Transmission from backyard to commercial
farms can occur via lack of biosecurity and via spread through live markets (Figure 2-17). Humans
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Figure 2-15. Influenza A virus particle or virion. The figure represents an in-
fluenza A virus particle or virion. Both influenza A and influenza B viruses
are enveloped negative-sense RNA viruses with genomes comprising eight
single-stranded RNA segments located inside the virus particle. Although
antigenically different, the viral proteins encoded by the viral genome of in-
fluenza A and influenza B viruses have similar functions: the three largest
RNA segments encode the three subunits of the viral RNA-dependent RNA
polymerases (PB1, PB2 and PA) that are responsible for RNA synthesis and
replication in infected cells; two RNA segments encode the viral glycopro-
teins haemagglutinin (HA, which has a ‘stalk’ domain and a ‘head’ domain),
which mediates binding to sialic acid-containing receptors and viral entry,
and neuraminidase (NA), which is responsible for releasing viruses bound
to non-functional receptors and helping viral spread. The RNA genome is
bound by the viral nucleoprotein (NP), which is encoded by RNA segment
5. RNA segments 6 and 8 encode more than one protein, namely, the matrix
protein (M1) and membrane protein (M2) – BM2 in the case of influenza B
– and the nonstructural protein NS1 (not shown) and nuclear export protein
(NEP). The M1 protein is thought to provide a scaffold that helps the struc-
ture of the virion and that, together with NEP, regulates the trafficking of the
viral RNA segments in the cell; the M2 protein is a proton ion channel that is
required for viral entry and exit and that, together with the HA and NA glyco-
proteins, is located on the surface of the virus anchored in a lipid membrane
derived from the infected cell. Finally, the NS1 protein is a virulence factor
that inhibits host antiviral responses in infected cells. The influenza viruses
can also express additional accessory viral proteins in infected cells, such
as PB1-F2 and PA-x (influenza A), that participate in preventing host innate
antiviral responses together with the NS1 protein or NB (influenza B), the
function of which is unknown. NS1, NEP, PB1-F2 and PA-x are not present in
the virus particle or are present in only very small amounts. NB is a unique
influenza B virus surface protein anchored in the lipid membrane of the virus
particles. Figure adapted from [146] and [67].

can be infected with poultry and swine influenza viruses through aerosols, fomites or contaminated
water. However, in most instances these infections do not result in subsequent human-to-human
transmission. Human-to-human transmission of seasonal or pandemic human viruses can be medi-
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Figure 2-16. Influenza viral life cycle (from [67]). PB1–F2 is shown here as a
dimer, but can also be multimeric. HA, haemagglutinin; M1, matrix protein;
M2, membrane protein; NA, neuraminidase; NEP, nuclear export protein; NP,
nucleoprotein; NS1, nonstructural protein; PB1, PB2 and PA, viral RNA poly-
merases.

ated by respiratory droplets, aerosols or self-inoculation after touching of fomites. Additional virus
adaptations would be required for sustainable human-to-human transmission of animal influenza
viruses. Other domestic animals known to be susceptible to influenza virus infections are dogs and
cats. Dashed lines represent transmission that bypasses a domestic duck intermediate.

2.3.3. Influenza biodiversity and evolutionary relationships

The substantial increase in the number of publicly available IAV sequences in recent years has
given researchers and the public health community new opportunities to study the biology and
evolutionary dynamics of this globally significant virus. Most of these studies focused specifically
on one of several subtypes of primary concern for humans (H1N1, H3N2, H5N1, and H7N9)
or for companion animals, including dogs and horses (H3N8). Influenza A viruses (IAVs) are
found throughout the world and cause frequent epidemics in humans and domestic animal species,
including poultry, pigs, and horses.

The IAV genome consists of eight segments of negative-stranded RNA which code for at least
10 proteins. IAVs are classified on the basis of two highly variable glycoproteins, hemagglutinin
(HA) and neuraminidase (NA), expressed inside the host cell and assembled on the surface of
the virus particles. Avian IAVs are further classified based on their pathogenicity in poultry, with
high-pathogenicity avian influenza (HPAI) virus strains causing severe and often fatal disease and
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Figure 2-17. Emergence of influenza A virus from aquatic wild bird reservoirs (from [67])

low-pathogenicity avian influenza (LPAI) virus strains causing mild disease in domestic fowl. To
date, 18 HA and 11 NA antigenic subtypes of IAV have been identified [79, 143]. Over 120 unique
HA and NA combinations (e.g., H3N2, H5N1, and H10N8) have been documented. Variation
among IAVs is further enhanced by their high mutation rates (due to the presence of an RNA poly-
merase that lacks proofreading ability) and the ability of coinfecting viruses to exchange segments
(reassortment), producing novel strains. Therefore, understanding the long-distance movement of
wild migratory birds between breeding and wintering grounds is critical in explaining the circula-
tion of avian influenza virus (AIV). Upon arrival at their breeding and wintering sites, migratory
birds are thought to introduce AIV into native populations facilitating exchange and reassortment
of AIV subtypes.

Evolutionary analysis of 14 high-priority subtypes showed that nucleotide substitution rates for all
subtypes except H5N3, H7N3, and H7N7 were higher in East Asian countries, including China,
Hong Kong, Japan, Mongolia, South Korea, and Taiwan, than in Canada and the United States.
However, we did not observe consistently high nucleotide substitution rates across all the subtypes
in any single East Asian country, indicating that there was not a specific focal point or evolutionary
‘hot spot’ for all the IAVs analyzed. A regional analysis of nucleotide substitution rates further
demonstrated that evolutionary rates for several subtypes, including H5N1, H5N2, and H6N2,
were significantly greater in East Asia than in North America. These findings suggested that,
among the majority of high-priority subtypes analyzed, novel, potentially pathogenic IAV strains
may be more likely to evolve in East Asia. In fact, the majority of emerging IAV strains that have
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Figure 2-18. Global distribution of influenza A virus subtypes. (A) Number of
unique IAV subtypes (subtype diversity) per country. (B) Number of unique
IAV animal host groups with reported IAV sequences per country (see Ta-
ble S1 in the supplemental material for host group designations). (C) IAV
subtype diversity, controlling for reporting effort. Data are presented as the
log-normalized proportion of subtype diversity over the number of reported
IAV strains per country. Data are based on GenBank and Influenza Resource
Database (IRD) submissions as of April 2013. (Maps were created by Kate
Thomas with ArcGIS version 10.2 software.) Figure adapted from [115].

caused disease and mortality in humans in recent years, including those belonging to subtypes
H5N1, H7N9, H9N2, and H10N8, were first detected in China and Hong Kong.

The growing number of unique subtypes detected in humans and poultry in recent years suggests
that subtype diversity might be an important factor associated with the emergence of pathogenic
IAV strains. While not all subtypes likely exist in all countries or regions, current strategies of tar-
geted testing for specific influenza virus subtypes such as H5N1 severely limit our understanding
of the total diversity of subtypes present and circulating in many countries. These strategies, in
turn, limit our ability to monitor the evolution and diversity of influenza virus subtypes circulating
globally. As such, there is a great need to encourage all countries currently conducting only tar-
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geted IAV testing to perform broader testing that includes protocols to detect all subtypes, followed
by sequencing and subtyping procedures, in at least a subset of surveillance samples.

2.3.4. Influenza in clinical practices

Many are familiar with flu vaccines (i.e. “the flu shot”). There are several different strategies
for preventing infection with the influenza virus (many of which are similar to those discussed
in the HIV/AIDS module): (1) vaccines with live virus (most common form), (2) vaccines using
chemically “killed” viruses, (3) vaccines using only a select portion of the viral coat, such as the
NA or HA proteins, and (4) vaccines partially live, but inactive forms of the virus. While this
last strategy has proven effective in clinical research, the live virus vaccine is still the standard
treatment except for children. The main problem is that the inactive virus must be prepared in a
very pure form before it is approved as a vaccine, a procedure that can take up to two years to
develop. However, influenza vaccine production is a seasonal game. Unlike a DNA virus (like the
smallpox virus) whose careful genetic proofreading minimizes mistakes upon replication, an RNA
virus’ use of the error-prone RNA polymerase allows mutations to propagate from generation to
generation. The surface proteins (HA and NA) are almost always changed, allowing viral strains to
elude detection by the immune system. Antibodies generated for last year’s flu strain may offer no
protection against this year’s variation. Similarly, a drug or vaccine that takes two years to develop
will already be a year too late – by the time it is available, the influenza virus will have already
mutated from the original strain on which the vaccine was based.

Year-round surveillance for human influenza is conducted by > 100 designated national influenza
centers around the world. The laboratories send isolated viruses for genetic and antigenic char-
acterization to five World Health Organization (WHO) Collaborating Centers for Reference and
Research on Influenza, which are located in the United States, the United Kingdom, Australia,
Japan and China. A WHO committee reviews the results of surveillance and laboratory studies
twice per year and makes recommendations on the composition of the influenza vaccine on the
basis of the use of antigenically matched viruses with those that are expected to be highly preva-
lent in the next season. Each country then makes their own decision about which viruses should
be included in influenza vaccines licensed in their country. Despite the availability of seasonal
and pandemic influenza vaccines, debate is ongoing as to the efficacy (as measured by randomized
controlled trials) and effectiveness (as measured by observational studies involving vaccinated and
unvaccinated individuals) of these vaccines.

In addition to vaccines and antiviral drugs, non-pharmaceutical interventions can help to slow the
spread of influenza illness. These interventions include personal measures, such as hand washing
and using alcohol-based sanitizers, covering coughs and/or the nose and mouth when sick and
staying at home when sick. Additionally, social distancing by closures of schools and places of
gathering, quarantine measures and frequent cleaning of potentially virus-contaminated surfaces,
such as doorknobs, can also slow the spread. Mathematical modeling studies suggest that non-
pharmaceutical interventions have a substantial effect on lowering the attack rate of pandemic
influenza before vaccines are available.
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2.3.5. Climate and influenza

The origin of seasonality in influenza transmission is both of palpable public health importance
and basic scientific interest. Though influenzas are thought to mostly spread in the northern hemi-
sphere, it does spread yearly in the tropics. Additional influenza outbreaks have been reported
to occur outside of the traditional flu season, but the climate related spread is currently still un-
determined. Strong evidence for population crowding correlate with start of school or peak dur-
ing winter holidays. However, studies in mice show that influenza transmission, under simulated
crowding, is influenced by a strong seasonal component. Potential climate related influences could
be related to humidity effects on increased survival rate in aerosolized droplets that increase spread
or decreased temperatures. However, the high interannual variability of influenza cases clouds the
interpretation of these data. Therefore, understanding the diverse range of influenza strains related
to geographic regions and their associated weather patterns may reveal underlying linkages that
will enable precise models for emergence and transmission.

Influenza A incidence peaks during winter in temperate regions. The basis for this pronounced
seasonality is not understood, nor is it well documented how influenza A transmission principally
occurs. Previous studies indicate that relative humidity (RH) affects both influenza virus transmis-
sion (IVT) and influenza virus survival (IVS) [125]. Many pathogens, however, are very sensitive
to fluctuations of the environment. For instance, the fluctuations of the temperature and humidity
have been shown to have a huge impact on the infectivity of many viral pathogens like influenza
[125] and a diversity of other infectious diseases [6, 84].

Seasonal influenza epidemics have been shown to have a meteorological component. Many of
focused on the association of absolute humidity. However, in a recent study, a time series analysis
of daily influenza infection data and found that even when absolute humidity is decreasing, the
number of influenzas cases showed significant increases [128]. Therefore, there are other seasonal
factors driving influenza spread across populations.
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3. REVIEW OF EXISTING MODELS FOR UNDERSTANDING
RELATIONSHIPS AMONG WEATHER, CLIMATE AND
DISEASE

In this chapter, we briefly review the existing models relevant to quantifying and understanding
the complex relationship between weather, climate and disease. These include epidemiological
models, climate/weather models, and empirical-statistical as well as mechanistic approaches for
coupling these two classes of models or informing one class of models with output from the other
class. We also overview some of the key climatic variables influencing disease spread in a rapidly
changing climate. The discussion in this chapter enables us to identify some modeling gaps, which
are summarized in Section 3.5.

3.1. Epidemiological models

Epidemiological models are one key ingredient relevant to studying the impact of climate change
on disease spread.

Figure 3-1. Flow diagram for SIR compartmental model

One of the most common approaches for studying the spread of infectious disease that falls into
the former class of models is to use so-called epidemic compartmental models. These models
separate individuals within a given closed population into mutually exclusive “compartments”,
based on their disease status. The most basic compartmental model is the Susceptible-Infected-
Recovered (SIR) model [55, 11]. This model aims to predict the number of individuals who are
susceptible to infection, are actively infected, or have recovered from infection at any given time
using ordinary differential equations (ODEs). Let the variables S(t), I(t) and R(t) denote the
number of susceptible, infectious and recovered individuals respectively at time t. The SIR model
assumes that each member of the population typically progresses from susceptible to infected to
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recovered according to the following evolution equations, as depicted graphically in Figure 3-1:
dS
dt = −β IS

N
dI
dt = β IS

N − γI
dR
dt = γI.

(3.1)

In equation (3.1), N denotes the total population size, and β is the average number of contacts
per person per time multiplied by the probability of disease transmission in a contact between a
susceptible and infectious subject. The variable γ is defined as γ = 1/D, where D is the average
time period during which a particular individual is infectious. A critical parameter in SIR and
related models is the so-called basic reproduction number R0, defined as the following ratio:

R0 ≡
β

γ
(3.2)

The basic reproduction number (3.2) is effectively the expected number of new infections from a
single infection in a population where all subjects are susceptible [8, 51]. Under certain conditions,
the nonlinear system of ODEs (3.1) has an exact analytical solution [55]. In general, it can be
solved numerically on a computer following discretization in time. The extent of an epidemic can
be determined by studying the local stability of the ODE system (3.1) to determine the endemic
equilibrium (EE). In general, if R0 ≤ 1, a disease will eventually go extinct. In contrast, if R0 > 1,
the disease will remain permanently endemic within a given population [51]. Figure 3-2 shows
two possible equilibrium scenarios encompassed within the SIR model: one with R0 < 1 and one
with R0 > 1. The latter situation is possible only in the unlikely case where no individuals are able
to recover from a given disease.

A number of variations of the SIR (3.1) model exist. These include the following:

• The Susceptible-Infectious-Susceptible (SIS) Model [78]: This model is relevant when
attempting to model infections that do not produce immunity upon recovery. It is commonly
used to model diseases such as the common cold and influenza.

• The Susceptible-Infectious-Recovered-Deceased (SIRD) Model [86]: This model is sim-
ilar to the SIR model but takes into account the fact that a particular disease may lead to
death. In addition to the rate of infection β and the rate of recovery γ , the SIRD model takes
in an auxiliary parameter µ , the mortality rate.

• The Susceptible-Exposed-Infectious-Recovered (SEIR) Model [28]: This model takes
into account the fact that, with some diseases, there is a significant incubation period during
which individuals have been infected but are not yet infectious themselves. This is known as
the “Exposed" period within the context of the SEIR model.

• The Susceptible-Exposed-Infectious-Susceptible (SEIS) Model [41]: This model is simi-
lar to the SEIR model, with the exception that no immunity is acquired at the end.

• The Susceptible-Exposed-Infectious-Recovered-Deceased (SEIRD) Model: This model
is effectively a combination of the SIRD and SEIRD models. In recent months, the SEIRD
model has become a popular model for quantifying the spread of the COVID-19 [110].
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(a) R0 < 1

(b) R0 > 1

Figure 3-2. Sample output from an SIR epidemiological model

The list of models itemized above is not exhaustive, and each of the aforementioned models can be
modified to include additional variations or disease-specific factors. For instance, the models can
be modified to include vaccination [48] or humidity-based forcing [126]. In addition, efforts have
been made to formulate stochastic versions of the SIR and related models (e.g., [21, 72]) towards
enabling uncertainty quantification (UQ) using these models. For a more detailed overview of
compartmental models, the reader is referred to [57], [51] and the references therein. The choice
of model of what model or combination of models to employ for a particular disease/epidemic is a
critical part in the mathematical modeling of infectious disease spread.

The primary advantage of the SIR and related models is that they are easy to compute and can
be modified for a variety of diseases. Such models have been used to study a variety of diseases
(e.g., Ebola, malaria, dengue, HIV/AIDS, etc.), including COVID-19 (see [22, 4, 32, 24, 110]
and numerous other references). Compartmental models also have some disadvantages, stemming

41



largely from the fact that they make several simplifying assumptions about the population (e.g.,
assuming homogeneous mixing of a population, not accounting for social structures). In addition,
the parameters in compartmental models such as the SIR model are not always easy to estimate for
a given population [140].

It is important to recognize that compartmental models are often combined with empirical-statistical
approaches (described in more detail in Section 3.4.1). For instance, statistical methods can be
used to estimate the parameters in models where transmission data are incomplete or highly corre-
lated [51], e.g., [10]. Additionally, the use of Bayesian inference methods, designed to incorporate
uncertainty, for estimating epidemiological parameters like R0 have been considered by several re-
searchers [98, 12]. Recently, researchers have turned to machine learning (ML) and artificial intel-
ligence (AI) approaches, using these methods to calibrate more traditional compartmental models
such as the SEIR model [155]. Purely data-driven approaches for real-time characterizations of
partially observed epidemics are also possible, e.g., [120].

3.2. Climate and weather models

Climate and/or weather models are the second ingredient relevant to studying the impact of cli-
mate change on disease spread. First and foremost, it is important to differentiate between climate
models and weather models. The primary difference between climate and weather models has to
do with the spatial and temporal scales which the models are intended to capture and simulate.
Whereas weather models are intended to make short-term predictions (hours-days) over a spe-
cific area, climate models are broader and developed to analyze longer timespans (years-decades-
centuries). Moreover, climate models are often used to simulate average conditions over time (e.g.,
several decades), rather than precise instantaneous conditions. Climate and weather models are in
general both mechanistic models at the heart of which are partial differential equations (PDEs)
describing the physics and dynamics of the underlying physical processes (e.g., atmospheric trans-
port, ocean circulation, etc.). These equations are discretized (or represented approximately using
discrete quantities) on the sphere, and advanced forward in time using sophisticated mathematical
techniques that ensure conservation of relevant quantities (e.g., water). Once this is done, one can
extract relevant temporal and spatial data from the climate or weather simulation, such as tem-
perature, winds and current, ocean salinity and atmospheric pressure. The numerical solution of
the equations underlying these models can be computationally demanding and usually requires the
use of supercomputers. In this report, we focus our attention primarily on climate models, as our
interest is primarily the effect of long-term climate change on disease dynamics; however, it is im-
portant to recognize that it may be interesting and useful to study the spread of disease at a smaller
and more localized scale using weather models.

In the past two decades, efforts have been put forth to develop global climate models known as
Earth System Models (ESMs), sometimes known also as Global Circulation Models (GCMs).
ESMs and GCMs are aimed at projecting and quantifying the effects of global climate change
during the twenty-first century and beyond. ESMs combine the interactions of atmosphere, ocean,
land, ice and biosphere into a single model that allows the estimation of the state of regional as well
as global climate scenarios under a wide variety of conditions (e.g., different emissions scenarios).
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The individual components comprising an ESM are typically developed separately according to
the relevant physics and dynamics, and subsequently synthesized into the ESM, which passes rele-
vant data between the various components through what is known as the “flux coupler”. A number
of ESMs exist worldwide. Chief among them are the two U.S. models: the Community Earth Sys-
tem Model (CESM) [59], a fully-coupled community global climate model developed primarily
at the National Center for Atmospheric Research (NCAR), and the Energy Exascale Earth System
Model (E3SM) [20], a state-of-the-art ESM funded by the U.S. Department of Energy (DOE).
For a review of the history of ESM development during the past century, the reader is referred to
[109].

3.3. Key climatic variables influencing disease spread

In attempting to link climate change with the spread of infectious disease, one must first and
foremost identify the climatic variables that can lead to changes in disease transmission. Although
many climatic variables may be influential in disease transmission, the most influential variables
are in general believed to be temperature, precipitation, humidity (relative or absolute), sunshine
and wind [101, 153, 100]. All five of these variables are strongly affected by global climate change.
We briefly discuss the impacts of each of these variables in the following subsections.

3.3.1. Temperature

The importance of ambient temperature on disease spread can be explained by the fact that this
variable has in general a strong effect on the life cycle of disease vectors (e.g., mosquitoes, fleas,
ticks, flies). Vectors typically need a certain temperature range to survive and develop. Rising
temperatures can influence the reproduction period of vectors. Extended periods of hot weather can
raise the average temperature of bodies of water, which may promote vector breeding. Little work
has been done to date in understanding the effect of temperature extremes on disease dynamics
[101]. It is expected that regional increases in mean temperatures will cause non-linear changes
in disease incidence, due to the relationship between temperature and other factors relevant to
disease transmission. Temperature change can actually restrict the distribution of some disease
vectors. For example, excessive heat can increase the mortality rates for certain pathogens, e.g.,
mosquitos, which cannot survive in prolonged temperatures greater than 40◦C [26]. As global
temperatures rise, it is therefore likely that diseases transmitted by mosquitos (e.g., malaria) will
begin to appear in higher latitude locations.

3.3.2. Precipitation

Precipitation plays an important role in the development of water-borne disease pathogens: there
is in general an increased likelihood of water-borne parasitic, bacterial and viral diseases follow-
ing severe rainfall events [101]. Precipitation also plays a role in the proliferation of vector hosts.
While the population of vectors can decline during an extreme rainfall event, increased precip-
itation almost always increases vector abundance as it creates additional vector breeding sights.
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According to the Intergovernmental Panel for Climate Change’s (IPCC’s) Fourth Assessment Re-
port [2], increases in precipitation appears to be almost independent of the emissions scenario
during the next few decades, but displays significant variability thereafter. Increases in the inten-
sity of rainfall extremes is expected to be greater than changes in mean precipitation worldwide
[101].

3.3.3. Humidity

Humidity is a particularly important variable that impacts the pathogens of infectious diseases.
Absolute humidity and temperature have been found to affect influenza virus transmission and
survival in a number of studies [126, 154]. Humidity changes also affect viruses of water-borne
and vector-borne diseases. Studies have suggested that increased relative humidity (RH) increases
vector abundance of Anopheles gambiae mosquitoes, known to transmit malaria [62]. It is ex-
pected that globally averaged RH will remain approximately constant under climate change [5],
but considerable regional structural and temporal variability remains [152]. According to [152],
additional research is needed to better understand RH trends and anomalies in areas most severely
affected by diseases such as malaria.

3.3.4. Sunshine

It has been demonstrated by Islam et al. [60] that sunshine hours and temperature act synergis-
tically during cholera periods, thereby creating favorable conditions for the multiplication of the
Vibrio cholerae bacteria in aquatic environments. More specifically, high temperature and medium
sunshine hours tend to provide the most agreeable conditions for a cholera outbreak. Cholera can
spread in relatively low temperatures provided sunshine is available [153]. A study reported on a
recent U.S. White House briefing suggested that increased sunlight, together with increased tem-
perature and humidity, is detrimental to SARS-Coronavirus-2 (a.k.a., COVID-19) in saliva droplets
and in the air1.

3.3.5. Wind

As one may expect, wind is a key factor that can spread air-borne diseases. Global and local wind
patterns affect the spread of infectious disease in the following ways [101]:

• they affect the dispersal ability and behavior of disease vectors;

• they change hydrological processes (e.g., evaporation) that have a correlation with vector
abundance;

• they can affect human susceptibility to diseases.

1See: https://justthenews.com/sites/default/files/2020-04/
Coronavirus%20Half-Life-Department%20of%20Homeland%20Security.pdf.
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Additionally, it has been reported that the presence of desert dust in the atmosphere is associated
with increased concentrations of cultivable bacteria, fungi and fungal spores [153, 43]. According
to [101], little research to data has looked at the potential impact of changes in wind patters on
diseases. The IPCC’s Fourth Assessment Report [2] suggests that peak wind intensities will likely
increase in future tropical cyclones.

3.3.6. Accounting for seasonal and interannual climate variability

It is important to recognize that seasonal and interannual cycles of climate variability play an
important role in determining if/when an epidemic will occur. Such relationships can be stud-
ied using empirical-statistical and/or mechanistic methods (described below in Sections 3.4.1 and
3.4.2), though the bulk of past work has focused on approaches of the former flavor. Some recent
work in this area is reviewed succinctly below.

Within the field of epidemiology, seasonal variation in disease transmission is known as seasonal
forcing [119]. Certain diseases2, such as influenza, measles, malaria, cholera and have a clear
seasonal cycle [84]. Influenza typically arrives in colder winter months (Figure 3-3). Measles cases
typically drop in summer months in temperate climates, while peaking in the dry season in tropical
regions. Seasonal patterns for cholera vary by region, but peak in the spring/summer months in
many locations [38]. Recently, there has been much speculation about the effect of seasons on the
transmission of the novel COVID-19 virus [7, 9]. While some authors have suggested humidity
and temperature play a significant role in the seasonal spread of coronaviruses [122, 151], the
effects of seasonality on COVID-19 are difficult to predict without long time series [108].

The persistence of extreme temperature and/or precipitation conditions is thought to have a strong
effect on virus transmission patterns and seasonality [131, 145, 76]. Despite evidence for correla-
tion between seasonality and disease spread for these and other notable examples, the mechanisms
driving disease seasonality have yet to be systematically characterized for most infections [84].
When interpreting correlations between seasonal changes and disease prevalence, it is important to
incorporate domain knowledge, so as not to confuse correlation with causation (see [90] and Sec-
tion 3.4.1 above). For example, in the specific case of influenza, while it is reasonable to assume
that the disease transmission cycle is influenced by climate, studies have demonstrated that annual
influenza outbreaks do not appear to correlate with mean winter temperature [70]. It is likely that
the cause of increased influenza cases in winter is an increase in indoor crowding, which leads
to greater disease transmission. For diseases spread by mosquito vectors, such as malaria, sea-
sonality can be explained by changes in the relevant vectors’ extrinsic incubation periods (EIPs)
[100, 129, 18, 56]. Again, researchers are warned about interpreting the results of correlative stud-
ies of malaria prevalence and seasonal climate fluctuations: “the distribution of malaria cases ia
complex and poorly understood consequence of ecological, socio-economic and other factors, such
that causal relationships are frequently obscured” [100].

In addition to seasonal correlations between climate and infectious disease spread, interannual cli-
mate fluctuations can also be important to investigate. In particular, it has been suggested in numer-
ous references, including in three recent assessment reports [1, 28, 147], that the El Niño/Southern

2Tables 1-3 in [84] summarize the hypothesized seasonal drivers for a number of human infectious diseases.
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Figure 3-3. Figure from Shaman et al. [125, 126] showing average daily ex-
cess pneumonia and influenza mortality during the years 1972–2002 in the
states of New York and California. One can see that the mortality peaks in
the winter season.

Oscillations (ENSO) cycle (an irregular cycling back and forth between warm El Niño and cold La
Niña phases) has been at least partially responsible for major outbreaks of diseases such as cholera
and dengue [28, 131]. El Niño events are characterized by abnormally heavy rainfall over the warm
Pacific waters off the coast of Ecuador and Peru, together with drought conditions in Australia,
Malaysia, Indonesia, Micronesia, Africa, northeast Brazil, Central America and tropical Africa
[28]. Higher temperatures in northern Pakistan resulting from El Niño events have correlated with
increased malaria incidence [15]. Similar conclusions have been drawn from studies correlating El
Niño with outbreaks of malaria in India, Sri Lanka, Venezuela and Colombia [28]. Associations
have been found between warmer water temperatures during El Niño years and cholera cases in
various locations, e.g., Peru [85] and Bangladesh [27], as well as chikungunya, hantavirus, Rift
Valley fever, cholera, plague and Zika [131]. Other recurring interannual events shown to correlate
with disease transmission include La Niña, the Quasi-Biennial Oscillation (QBO), and extreme
weather events such as droughts, heatwaves and floods [153]3. These associations can be extrap-
olated to infer the potential impact of longer-term climate change on infectious disease spread.
More specifically, there has been some speculation that a climate warming trend is likely to affect
the occurrence and intensity of El Niño events (floods, droughts, storms/hurricanes, etc.); however,
more observational data are needed to corroborate this hypothesis [1].

3For specific details, the author is referred to Table 1 of [153], which summarizes the relationship between different
interannual extreme weather events and disease types.
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3.4. Methodologies for modeling the impact of climate change on disease
spread

In recent years, researchers have developed various mathematical modeling approaches aimed at
studying the relationship between weather/climate and infectious disease. Existing modeling ap-
proaches fall into roughly two categories: empirical-statistical models and mechanistic (or process-
based) models [28, 101, 90]. Both approaches are useful in certain contexts, with each one having
its own set of strengths and weaknesses. It is important to emphasize that empirical-statistical
modeling approaches are not mutually exclusive: a potentially powerful approach is to harness
statistical methods within a mechanistic modeling framework.

3.4.1. Empirical-statistical models

Empirical-statistical models aim to correlate climate and disease-related variables that have been
estimated from observational and/or simulated data in time and/or space. These models typically
derive relationships between relevant variables (e.g., disease transmission and climate factors) from
a purely descriptive perspective and do not attempt to incorporate known mechanistic relationships
between these variables [100]. Prime examples of statistical modeling approaches are traditional
time-series and regression methods, e.g., autoregressive integrated moving average (ARIMA) mod-
els [90]. Such methods have been used to study the relationship between key climatic variables
such as precipitation, temperature, and humidity and various diseases (e.g., water-borne diseases
within the U.S. [31], cutaneous leishmaniasis in Brazil [74]). More recently, an autoregressive
model known as a generalized additive model (GAM) was developed and used to calculate relation-
ships between temperature data and the number of cumulative total confirmed cases of COVID-19
in Brazil [107]. In [124], a permutation test was used to calculate whether plague-relevant climate
fluctuations in Asian climate proxies preceded reintroductions of plague into Europe between the
fourteenth and nineteenth centuries. An early statistical model based on “fuzzy logic” was used
to quantify disease transmission in different regions in sub-Saharan Africa given local temperature
and rainfall data in [30]. Statistical approaches have been used to study the expected global malaria
distribution change by 2050 [117], as well as correlate relative risk maps (estimations of the spatial
distribution of human risk of infection) with future malaria risk in Africa [91]. Examples of other
statistical models for the effect of climate change on the spread of vector-borne diseases such as
malaria are provided in Section 3(i) of [100].

In recent years, researchers have begun to look at combining traditional time series models with
machine-learning (ML) algorithms using epidemiological (e.g. malaria, dengue) and meteorolog-
ical data [150, 52, 23]. A machine-learning approach known as MaxEnt (short for “maximum
entropy”) [36] is gaining popularity within epidemiological modeling communities. The approach
enables the prediction of species distributions based on environmental variables and is capable of
accounting for interactions between variables. The approach is used to study the effects of global
climate change on Chikungunya transmission in the twenty-first century in [139]. In [50], Gor-
ris et al. use MaxEnt to perform a sensitivity analysis using an ecological niche model forced
with bias-corrected spatially downscaled Coupled Model Intercomparison Project (CMIP5) [136]
climate projections under several possible emissions scenarios.
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The main advantage of empirical-statistical models lies in their simplicity: these models are in
general far simpler to develop and use than mechanistic models. They are also in general far less
computationally expensive than mechanistic models [100]. As discussed in [63] and [100], when
carefully trained, evaluated and tested, non-mechanistic autoregressive models can make reliable
predictions over short time-horizons.

Empirical-statistical models have several deficiencies. Generally speaking, empirical-statistical
models are not explanatory in nature, since they do not incorporate the underlying mechanisms
driving climate change and disease spread [28]. One must therefore be careful in interpreting
results from such models as well as extrapolating the results beyond the data from which the mod-
els were derived: inference using empirical-statistical models is in general correlative rather than
causative, so simple correlations and statistical associations between climatic variables and disease
outbreaks cannot in general be used to infer the underlying causal mechanisms [90]. According
to [100], statistical models aiming to correlate climate change with the distribution of recorded
cases of diseases such as malaria “are fraught with problems of interpretation and should be inter-
preted carefully”. Another limitation comes from the fact that there are often limited data points
to calibrate model projections. This makes predictions made by the models difficult to validate
[28]. Additionally, empirical-statistical approached, in particular, ML-based approaches, typically
require a large amount of data. Unfortunately, high-quality epidemiological data on disease inci-
dence is lacking in many locations, and the data that are available can be highly uncertain [101].
A final challenge faced by statistical models stems from discrepancies between the spatial and
temporal scales in the available data: for most epidemics, disease incidence data are available
at smaller spatial and temporal scales than those typically employed in and relevant to climate
modeling [100].

3.4.2. Mechanistic (process-based) models

In contrast to empirical-statistical models, mechanistic, or process-based, models are based on the-
oretical knowledge of the underlying biophysical, epidemiological and/or environmental processes
describing the relationships between weather/climate and infectious disease [28, 101]. These pro-
cesses are modeled using mathematical equations that represent the relevant mechanisms involved.
The resulting models are dynamic: future states of the underlying system are evolved in time given
an initial state using discretizations of fundamental laws that are known to drive the relevant mech-
anisms and processes. Hence, mechanistic models offer explanatory and forecasting power.

3.4.2.1. Epidemiological models driven by climate data

One approach in developing predictive mechanistic models for climate-driven disease spread is to
take observational and/or simulation data from climate drivers and these data to drive a dynamic
model for the spread of an infectious disease (e.g., the SEIR model, or one of the other models
described in Section 3.1). Numerous researchers have explored this approach. In [125], Shaman
et al. develop a dynamic SIRS (Susceptible Infectious Recovered Susceptible) epidemiological
model for the spread of influenza in the U.S. which incorporates observed absolute humidity con-
ditions. The resulting model was used to simulate the seasonal cycle of observed influenza-related
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mortality. Similar approaches were taken in [35] and [83], where epidemiological models forced
with observational and/or experimental data were used to examine associations between precipi-
tation and cholera in Haiti and temperature and dengue in Europe, respectively. For an in-depth
overview of other relevant mechanistic modeling approaches, the reader is referred to Section 3.2.2
of [101] and Section 3(ii) of [100].

With the advancement of regional and global climate modeling in recent years, a number of re-
searchers have turned their attention to integrating readily-available data from these models into
their epidemiological models. In [39], the Liverpool Malaria Model (LMM) was used to simulate
and project the spread of malaria under past and future weather conditions using daily temperature
and rainfall data from the high-resolution regional climate model REMO. A similar approach was
taken in [71], which also employs the LMM but forces it with seasonal forecasts of meteorologi-
cal variables (e.g., rainfall) from a state-of-the-art operational coupled ocean-atmosphere forecast
model developed at the European Center for Medium-Range Weather Forecasts (ECMWF). A
number of recent works have looked at integrating into epidemiological models climate change
data from ESMs that participated in CMIP5 [136]. Many of these studies considered various emis-
sion scenarios. In [92], Monaghan et al. used monthly near-surface air temperature and precipi-
tation fields from fifteen members of the CESM [59] ensemble generated under CMIP5 to study
diseases spread by the Aedes aegypti mosquito (dengue, chikungunya, Zika, yellow fever). Two
emissions scenarios were considered: Representative Concentration Pathway (RCP) 4.5 and 8.5,
the latter of which corresponds to the “business as usual” scenario, and the former to reduced emis-
sions. Human population growth was incorporated into the model. It was demonstrated that there
are statistically significant changes to expected human exposure to the relevant diseases under the
RCP8.5 emissions scenario. In a recent study, Tomkins and Caporaso [141] assessed the potential
for land use change (LUC) with low-end and high-end emissions scenarios (RCP2.6 and RCP8.5
respectively) to impact malaria transmission in Africa. These authors incorporated into a gridded
mathematical malaria model known as VECTRI (vector-borne disease community model of the
International Center for Theoretical Physics in Trieste, Italy) daily precipitation and temperature
output from the four ESMs that participated in the LUC experiment under CMIP5.

3.4.2.2. Fully coupled epidemiological and weather/climate models

A second approach for studying the impact of climate change on disease is one in which an epi-
demiological model is coupled or integrated into a regional or global weather or climate model.
To the authors’ knowledge, there exist few models of this sort in the climate/epidemiology liter-
ature [101]. Approximately a decade ago, two notable references came out, namely [123] and
[14]. In [123], Schaeffer et al. develop a matrix model for viruses transmissible by mosquitos that
integrates climate variables evolved as a part of the model. In [14] et al. present a fully-coupled
hydrology and entomology model.

The aforementioned fully coupled models are simplistic in their treatment of the climate evolution.
Recently, several interesting approaches aimed at integrating epidemiological models into mod-
ern fully coupled ESMs have appeared in the literature. These works are aimed at studying the
emission and long-range transport of molecules that can lead to the spread of disease. In [106],
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the CESM [59] was adapted to include modules for modeling the emission and long-range trans-
port of fungal spores, the most relevant vector for the spread of certain crop diseases, e.g. wheat
stem rust. In [156], Zhang et al. integrate the STaMPS (Simulator of Timing and Magnitude of
Pollen Season) [34] pollen transport model into the WRF (Weather Research Forecasting) [130]
and CMAQ (Community Multiscale Air Quality) [19] regional air-quality modeling system to sim-
ulation the variation of temporal-spatial patterns for different species of pollen under several key
meteorological variables (wind speed/direction, temperature, precipitation, relative humidity and
dew point temperature). Similar to the model in [106], the pollen grains were treated as passive
tracers in CMAQ. Although seemingly irrelevant, a number of studies have demonstrated a cor-
relation between pollen transport and the seasonality of flu-like illnesses, including COVID-19
[58].

3.5. Modeling gaps

The literature review performed while compiling this report has led us to identify a number of re-
search gaps within the field of climate-driven epidemiologically. There are summarized succinctly
below.

• Research is needed to move beyond identifying simple correlations between climatic
variables and disease spread to identifying the underlying causal mechanisms [90, 28].
In order to accomplish this, focus must shift from traditional statistical methods to more
mechanistic or joint statistical-mechanistic modeling approaches [90]. In addition, tight
interdisciplinary work between climate scientists and epidemiologists is needed in order to
make appropriate conclusions based on the relevant mathematical models [90, 28].

• Additional epidemiological surveillance data should be collected to allow model cal-
ibration/validation [28, 100]. Unfortunately, there is in general a lack of high-quality
epidemiological data for most diseases at the present time. This situation is a serious ob-
stacle when it comes to studies aimed at linking disease incidence with climate change. A
concerted effort to collect long-term spatially-resolved disease surveillance data worldwide
would go a long way towards remedying the present data dearth problem [28]. Addition-
ally, it may be possible to use remote-sensing data to study the relationship between disease
outbreaks and climate variables, cf. [80].

• Improvement of “first-principle” disease transmission models (including systematic
data integration into these models) is needed [28]. This is especially true in the case
where there is insufficient observational/surveillance data on disease incidence/transmission,
as empirical-statistical models (in particular, models based on ML and AI principles) typi-
cally require very large data sets to be useful predictive tools. It is also true when longer-term
forecasts are of interest. First-principle mechanistic models are preferable in these situa-
tions, but should incorporate any available observational data to maximize the value in their
predictions. The models can be used to uncover and derive improved parametrization of
computationally cheaper empirical/statistical disease transmission models.
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• There is a need to develop models that take account of multiple co-occurring diseases
and examine how climate change affects co-transmission patterns of diseases [100]. This
can be accomplished through a more direct coupling of climate variables with things like
vector/host population dynamics and geographical factors (e.g., land use change). According
to [100], a study of this sort has yet to be undertaken systematically.

• There is a need to study systematically the health consequences of climate change and
co-benefits actions [42]. “Co-benefits” are defined by the IPCC as positive benefits related
to the reduction of greenhouse gases, e.g., improved energy efficiency, a shift away from the
consumption of animal products, etc. This research gap can be addressed through the inte-
gration of existing longitudinal data on population health into joint climate-epidemiological
models [42].

• The mismatch of spatial and temporal scales between climate prediction and relevant
epidemiological as well as socio-economic data must be addressed [100]. At the heart
of this challenge is the fact that climate and epidemiological data and models are in general
targeting very different spatial and temporal scales. Some ideas for addressing this challenge
are suggested in [100], and include the use of regional climate models rather than global
climate models, where necessary.

• There is a need to provide uncertainty bounds in forecasts from joint climate-epidemio-
logical models [28, 100, 153, 101]. There are numerous uncertainties inherent in empirical-
statistical as well as mechanistic models of climate change as well as disease transmission,
which should be studied in a systematic way using formal methods for uncertainty quan-
tification (UQ) in order to provide projections equipped with uncertainty bounds. While
statistical uncertainty has been considered by a few authors [95, 120, 99], these works have
only scratched the surface of formal UQ within the field of climate-disease modeling [101].

• Data from climate-disease models should be synthesized with relevant socio-economic
variables, towards informing public policy decisions [28]. This information can be used
to develop early warning systems for epidemics and assist with community planning. Cur-
rently there is an important research gap concerning the scientific evaluation of the health
implication of adaptation measures at community and national levels for people from var-
ied demographics and income brackets [3, 42]. There is also a need to better understand
the effectiveness of interventions aimed to protect health, and health implications of various
adaptation/mitigation decisions and strategies [42].

• A systematic study of how climate change may affect the evolution and emergence of
infectious diseases [28] has yet to be performed. There is a need to characterize pathogen
biodiversity and biogeography so as to understand how climate change influences evolution-
ary patterns and processes, including adaptations relevant to altered virulence, drug resis-
tance and shifting spatiotemporal ranges.
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4. NEW MODELING STRATEGIES FOR PREDICTIVE
MODELING OF CLIMATE & INFECTIOUS DISEASE
PATTERNS AND PROCESSES

In this chapter, we outline succinctly several ideas for novel modeling approaches aimed at im-
proved understanding and prediction of the complex relationship between climate change and in-
fectious disease transmission/spread that Sandia is well-positioned to pursue. These approaches
are attempts at addressing some of the known research gaps within this field (see Section 3.5).

4.1. Proposed new modeling methodologies

4.1.1. Development of novel epidemiological models driven by climate data

As discussed in Section 3.4.2.1, a promising approach for advancing the modeling of epidemics
driven by climate change is to create epidemiological models driven or forced with data from
climate models. Previous efforts to do this are have some acknowledged shortcomings [92, 139,
141, 50, 39], including:

• a limited focus on environmental/climate drivers (e.g., considering only temperature and
precipitation, when additional climatological variables can be important as well; see Section
3.3);

• focusing on one particular disease (e.g., malaria, dengue, Coccidioidomycosis) rather than a
set of co-occurring diseases;

• focusing on a limited set of emissions scenarios (e.g., RCP4.5 and RCP8.5 only);

• a limited (or outright missing) incorporation of expected land use change (LUC), a major
driver of emerging infectious diseases;

• the use of ESM/GCM data at too coarse of a spatial and/or temporal scale;

• failure to incorporate more recent climate model ensemble data, e.g., data from CMIP6 [40];

• failure to provide uncertainty bounds on model projections.

As a key player in the development of the Energy Exascale Earth System Model (E3SM) [20], San-
dia is well-positioned to address these limitations. High-resolution output from the E3SM can be
used to derive improved climate forcings to drive epidemiological models. This model has pushed
the envelope in terms of model resolution, and features a unique capability of regional refinement
for all of its component models in a multi-resolution modeling settings. Additionally, the E3SM
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includes new ocean, sea ice and land-ice models, and contains a state-of-the-art dynamic vegeta-
tion model known as ELM-FATES [96] that integrates in situ observations, remote sensing output
and integrated assessments. Ongoing improvements to the E3SM Land Model (ELM) include new
implementations for land disturbances including wildfire1.

4.1.2. Development of fully-coupled mechanistic climate-epidemiology models

As a key player in the development of the E3SM, Sandia is also well-positioned to explore method-
ologies of the flavor described in Section 3.4.2.2 by incorporating epidemiological models or
disease-related diagnostic variables into relevant E3SM components to yield a fully-coupled mech-
anistic climate-epidemiology framework. Several ideas worth exploring are:

• The introduction of tracers into the E3SM Atmosphere Model (EAM) [111] as general prox-
ies for infectious disease transport. This approach is viable for diseases that are transmitted
across long distances environmentally. These include diseases caused by fungi such as wheat
stem rust [106], Aspergilli and Coccidioides [133, 43], and pollen-borne viruses [156, 34],
among others. Tracer transport methods combined with models that predict prevalence of in-
fectious agents on land and how environmental impacts lead to atmospheric transport could
provide important insights on disease spread. In particular, dust storms and wildfire are
known to drive regional valley fever outbreaks [102]. Developing a Coccidioides model
within E3SM that includes environmental drivers like drought, wind, and fire, would pro-
vide future projections of incidence within a coupled modeling system. Modeling with re-
gionally refined grids in E3SM could enable development of disease burden projections for
Southwestern cites (Phoenix, Albuquerque) and the Central Valley in California.

• Addition of SIR-type epidemiology models that incorporate effects of climate variables into
E3SM to investigate seasonal and interannual cycles of climate variability on disease spread.
Machine learning or data-modeling approaches could be used to develop parameterizations
for the epidemiological models based on available data. Influenza would be an exemplar for
this type of approach, which would enable research into average seasonal variability as well
as impacts associated with longer-term climate oscillations such as ENSO.

• Combining models for the spread of animal and insect vectors of disease with E3SM. Models
that predict the spread of disease vectors, such as the Aedes Aegypti mosquito, based on
temperature, humidity, precipitation, and land use changes could be used to generate long-
term projections for human exposure. Incorporation of these models into E3SM would also
enable investigation of the disease response to seasonal and longer-term climate variability.

• Modernizing the representation of biological processes in sophisticated full coupled earth
system models such as the E3SM. Existing ESMs, including the E3SM, fail to include any
of the last three decades’ advances in the molecular biological realm, such as the ability to
parameterize climate models with genome-based information, or with diverse bioinformatics
and computational biology inputs, such as microbial community composition or keystone

1https://e3sm.org/about/organization/ngd-sub-projects/ngd-land-and-energy/
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species’ genotypes in specific ecological zones (e.g., grasslands, boreal forests, different
photic zones of the oceans, etc.).

4.1.3. Application/development/integration of advanced ML/AI data-driven
techniques

As discussed in Section 3.4.1, a popular class of methods in characterizing disease transmission
are empirical-statistical methods. The vast majority of work in developing this class of methods
up to now has focussed on simple time-series and/or regression models, e.g., ARIMA models. We
hypothesize that empirical-statistical models of epidemics can be improved by sophisticated ML
and AI methodologies that are currently being pioneered at Sandia.

Early research utilizing machine learning includes using neural networks to make short term pre-
dictions in stochastic geophysical time series data [37]. This particular machine learning tech-
nique was also used to extract temperature profiles from NOAA-16 Advanced Microwave Sound-
ing Unit-A (AMSU-A) measurements. The results were better or comparable to those from using
the International Advanced TOVS (ATOVS) Processing Package (IAPP), the state of the art for
temperature retrieval at the time [157]. Other machine learning techniques, such as support vector
machines, have been used to classify cloud types from Multi-angle Imaging SpectroRadiometer
data in [87].

Climate and weather modeling often require heavy tuning of parameters, sometimes based on
structural assumptions. Researchers in [47] were able to train generative adversarial networks, a
class of algorithms that use deep neural networks to generate new data from previously observed
data, to create stochastic parameterizations for subgrid forcings in the Lorenz 96 model [81] to
develop more accurate forecastings. Anomaly detection techniques were used in [75] to detect the
presence of cyclones in climate simulation data. The techniques developed in this research are not
specific to cyclones but, rather, to extreme or rare events in general.

Future areas of machine learning and climate research include:

• combining ML/AI-based empirical-statistical models with mechanistic models, e.g., by us-
ing ML techniques to calibrate and inform mechanistic models using available epidemiolog-
ical and/or climate data;

• using ML for data compression (e.g., through the use of autoencoders);

• using ML to detect/predict extreme weather and climate events and correlate them with dis-
ease outbreaks.

Recently, researchers have begun to apply forecasting modeling techniques, popular in climate
studies, to the study of the spread of infectious diseases [103, 114]. These models attempt to
predict the spread of diseases like influenza using mathematical humidity-drive SIRS (susceptible-
infected-recovered-susceptible) models and ensemble approaches. Some research [112] attempts
to create ensembles approaches such as the seasonal autoregressive integrated moving average
(SARIMA) [134] approach, an approach that blurs the line between statistical techniques and ma-
chine learning. However, the inclusion of more popular machine learning approaches, such as deep
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neural networks, for this type of forecasting is still in its beginning stages. Moreover, the study
of approaches that not only borrow methodology from climate studies for the study of diseases,
but instead actually integrates climate and disease models together utilizing machine learning, is
largely unexplored.

4.1.4. Integration/development of UQ methodologies into
climate-epidemiology models

Sandia is also paving the way in advancing methods to enable sensitivity analysis [137] and the
characterization of parametric uncertainties in various E3SM components [116, 61], and devel-
oping Bayesian frameworks for introducing uncertainty quantification into epidemic forecasts
(including COVID-19 forecasts) [121, 113, 120]. These efforts can be leveraged by equipping
epidemiological models driven by climate data as well as fully-coupled climate-epidemiological
models with uncertainty propagation and global sensitivity analysis (GSA) capabilities.

An idea to explore within the realm of UQ is the use of adjoint-based inversion/optimization meth-
ods together with Bayesian approaches. Rigorous optimization-based approaches, e.g., adjoint-
based inversion, can be used to invert for unknown/uncertain parameters in mechanistic models for
disease spread using available data. This approach has been shown to deliver robust and accurate
initial conditions for climate simulations that are far less noisy and give rise to better agreement
with observational data than traditional “spin-up” approaches [104]. In order to provide uncertainty
bounds in predictions made by mechanistic models, one can inform this inversion or inference in
a Bayesian framework to obtain uncertainty bounds on the model parameters, given some known
uncertainty in the available observational epidemiological data. This step is known as “Bayesian
calibration”. The uncertainties in the parameters can then be propagated through the forward model
to obtain uncertainties on the model quantities of interest (QOIs). Figure 4-1 shows a schematic
that demonstrates the proposed workflow. This workflow is similar in flavor to the approach pre-
sented in [61] for land ice models.

4.1.5. Collection and fusion of genome-based biological data as a foundation
for climate change-infectious disease studies and climate model
parameterizations

A high fidelity, climate-informed disease forecasting capability will require the development of a
scalable, automated “wet lab” and bioinformatics workflows for rapidly and cheaply sequencing,
annotating and functionally characterizing the genomes of pathogens from various transmission
classes. This capability should be tied to directed (i.e., focusing on specific pathogens, such as
dengue, influenza and valley fever) and undirected (not focusing on a specific pathogen, but rather
collection of background biota as a moving baseline) surveillance efforts in key locations in all
climatic zones. Such long-term, genome-based, widely-deployed biological surveillance activities
have a precedent in the BioWatch program2, whose stated goal is atmospheric monitoring of bio-
logicals to minimize the risk of biological attacks, a low probability, potentially high consequence

2https://www.dhs.gov/biowatch-program.
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Figure 4-1. Proposed uncertainty quantification workflow for epidemiological
models comprised of three steps: (1) determininstic inversion, (2) Bayesian
calibration, and (3) forward propagation of uncertainty

scenario. Sandia has made sporadic, yet significant investments in biosecurity-oriented, genome-
based technologies, such as Microscale Immune Studies Laboratory (MISL), Rapid Threat Or-
ganism Recognition System (RapTOR), and more recently CRISR-Cas9 programs, but to the best
of our knowledge, none of these have been adopted and scaled by commercial or government
partners. However, the knowledge and experience from these efforts are potentially valuable for
developing the heavily biological components of a climate-infectious disease forecasting capabil-
ity. The importance of sustained investment for building a scientific critical mass of knowledge and
expertise at the intersection of computational biology/bioinformatics and climate science cannot
be overstated.

Climate change-infectious disease studies require large-scale, continual biological monitoring and
analyses to ensure global health. There is an opportunity to create tools to collect and process these
genome-based data, as well as to use these data to develop standard knowledge products useful for
the intelligence and military communities, decision makers and public health authorities, among
others. To accelerate development of new theraputics that will be required for future disease bur-
den, these genome-based knowledge products can be used as inputs to Molecular Dynamics (MD)
modeling for comparative studies of early infection events. MD-based comparisons of early infec-
tion steps are important because these first steps are informative not only for identifying potential
new drug targets, but also because initial steps can illuminate how infections lead to outbreaks
and epidemics. Ancillary benefits will also include: shoring up basic epidemiologically-relevant
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data collection, which are typically uneven, sparse, spatiotemporally mismatched for large-scale
modeling or simply unavailable; deepening our understanding of climate-change signatures in the
genomes of ecosystem inhabitants; discerning possible relationships between pathogenesis and
climate change.
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5. CONCLUDING REMARKS

“Observational, experimental, and modeling activities are all highly interdependent
and must progress in a coordinated fashion. Experimental and observational stud-
ies provide data necessary for the development and testing of models; and in turn,
models can provide guidance on what types of data are most needed to further under-
standing. The committee encourages the establishment of research centers dedicated
to fostering meaningful interaction among the scientists involved in these different
research activities through long-term collaborative studies, short term information-
sharing projects, and interdisciplinary training programs. The National Center for
Ecological Analysis and Synthesis https://www.nceas.ucsb.edu/ provides
a good model for the type of institution that would be most useful in this context.”
–National Research Council (NRC). 2001. Under the Weather: Climate, Ecosystems,
and Infectious Disease. Washington, DC: The National Academies Press (https:
//doi.org/10.17226/10025)

Infectious disease processes have complex webs of causation, and climate is an important, if poorly
understood, component of this web. Climate change and the attendant environmental degrada-
tion, are putting unprecedented pressure on ecosystems and their organisms, including hosts and
pathogens, forcing selection and adaptation at time scales vastly different from those under which
they evolved. This results in a destabilized biosphere and climate, as the two are strongly coupled.
In the previous chapters, we have detailed the interaction of climate with representative exam-
ples of different transmission categories of infectious diseases: insect-vectored, human-to-human
and environmentally-transmitted diseases. We have also reviewed the current state-of-the-art in
climate-informed epidemiological modeling/forecasting, identified significant knowledge gaps in
this field, and proposed a number of ideas for advancing this field.

Sandia is ideally suited for leading the proposed R&D, and developing the multidisciplinary climate-
infectious disease effort highlighted in the NRC quote above. Just within our team, we have
demonstrated highly productive multidisciplinary collaboration in the natural sciences, and com-
putational and mathematical modeling. Our approach will be multi-pronged, as scientific bridges
robustly linking modern disease biology with mathematical and climate modeling must be built.
This multi-pronged approach accepts of the reality of increased future disease burden accompa-
nying a rapidly changing climate, and the need for robust, immediate scientific responses to meet
these challenges, from design of novel therapeutics, to development of new climate-infectious
disease forecasting frameworks. We intend to tackle thematic, high-likelihood, potentially high-
consequence problems, including:

1. Understanding how interannual climate and seasonal variation interact with infectious dis-
ease.
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2. Quantifying impacts of major and multiyear climate phenomena (e.g., El Niño Southern
Oscillation, Pacific Decadal Oscillation, Asian and American Monsoons, teleconnections,
large-scale storms, etc.) on infectious disease burden over space and time.

3. Ascertaining how altered land-use patterns, together with a rapidly changing climate, pro-
mote outbreaks and epidemics.

4. Discovering how early steps in the infection process can profoundly affect disease progres-
sion, in both individual hosts and also at the population/epidemiological levels.

5. Characterizing pathogen biodiversity and biogeography to understand how climate change
influences evolutionary patterns and processes, including adaptations relevant to altered vir-
ulence, drug resistance and shifting spatiotemporal ranges.

Potential external public sponsors for establishing this capability include U.S. Department of En-
ergy (DOE) Biological and Environmental Research (BER), Advanced Scientific Computing Re-
search (ASCR), Scientific Discovery through Advanced Computing (SciDAC), the National In-
stitutes of Health (NIH), the U.S. Department of Defense and Homeland Security, among others.
Private entities whose missions align with our vision include the Moore1 and the Gates2 Founda-
tions. Our near term goal is to secure BER funding to establish key pillars of the climate-informed
disease forecasting capability. Our vision for a multi-disciplinary institute to tackle potentially
civilization-altering climate change-infectious disease challenges, offers the opportunity for fund-
ing agencies to co-invest in areas that do not fit neatly within traditional funding boundaries. In
addition to external resources, our aim is to try to procure Laboratory Directed Research and De-
velopment (LDRD) funding to further our literacy in climate change and infectious disease, to
grow our R&D community, and to develop initial climate-informed infectious disease forecasting
capability using the E3SM, epidemiological modeling frameworks and diverse biological data.

1https://www.moore.org/.
2https://www.gatesfoundation.org/.
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