
Journal Pre-proof

Automatic performance tuning for Albany Land Ice

Max Carlson, Jerry Watkins, Irina Tezaur

PII: S0377-0427(23)00166-8
DOI: https://doi.org/10.1016/j.cam.2023.115222
Reference: CAM 115222

To appear in: Journal of Computational and Applied
Mathematics

Received date : 31 October 2022
Revised date : 7 March 2023

Please cite this article as: M. Carlson, J. Watkins and I. Tezaur, Automatic performance tuning for
Albany Land Ice, Journal of Computational and Applied Mathematics (2023), doi:
https://doi.org/10.1016/j.cam.2023.115222.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.cam.2023.115222
https://doi.org/10.1016/j.cam.2023.115222

Journal Pre-proof

Preprint
Jo
ur

na
l P

re
-p

ro
of

Automatic performance tuning for Albany Land Ice

Max Carlson1, Jerry Watkins1, and Irina Tezaur1

1Sandia National Laboratories, Quantitative Modeling & Analysis Department, Livermore, CA, USA.

March 7, 2023

Abstract

Accurate simulation of the evolution of polar ice-sheets requires a massive amount of com-
putational power. In order to take advantage of the newest generation of supercomputing
clusters, the Albany Land Ice code has been modernized for performance portability across a
variety of parallel architectures, with a focus on enabling end-to-end GPU capability. Albany
uses a multigrid preconditioning approach for solving linear systems via performance portable
smoothers from the Trilinos package Ifpack2. Since the Albany Land Ice code is constantly
evolving and both Albany and Trilinos are in constant development, it is likely that the optimal
choice of solver parameters will change over time. It is therefore critical to have an automatic
performance tuning framework to ensure that the best possible performance is maintained. To-
ward this effect, we have developed an automatic performance tuning framework to determine
the best fine- and coarse-grid smoothing algorithms and parameters. We treat the underlying
performance model of the linear solve as a black box and use the python-based GPTune Bayesian
optimization library to determine the optimal smoother choice and parameters. Using this ap-
proach, we have found smoothers and their corresponding parameters that result in, on average,
1.2 times faster, and up to 1.5 times faster solve-times than our manually-tuned parameters.
We also show that the proposed auto-tuning approach produces reliably better parameters than
naive black box optimization techniques like random search for a given function evaluation bud-
get. By implementing our tuning framework in the Python-based workflow management tool
parsl, we also ensure that we efficiently use available computing resources during the tuning
process and avoid unnecessary long wait times in computing cluster job queues.

Journal Pre-proof

Preprint

1

In or nts,
there nce
porta ting
archi rks.
Addi take
adva arth
syste ules
that t of
the p LI)
[1] h k to
enab ork,
in th tain
maxi

T tive
funct s of
optim n or
inacc ince
we a oice
of al lack
box. the
prob not
make s for
black arch
and on a
speci the
perfo hms
for c

S ods
[4, 5 ning
treat ying
perfo rain
a mo we
are i uch
meth ding
HYP

A [10].
Over ons,
inclu D)
simu 15],
the A lver
[17]. lves
the s mic
land cale
Eart ales
(MP ; for
more
Jo
ur

na
l P

re
-p

ro
of

Introduction

der to properly take advantage of the new generation of exascale computing environme
are a number of performance challenges that scientific software must overcome. Performa
bility is one of these challenges due to the ever increasing number of parallel compu
tectures that come with their own specific performance needs and development framewo
tionally, software must exhibit a very high degree of scalability in order to actually
ntage of the available hardware needed to achieve exascale performance. For the task of E
m modeling, these challenges are compounded due to the variety of component climate mod
are developed independently, each with their own specific performance concerns. As par
ush for scalable and portable climate simulation software, the Albany Land Ice model (A
as been modernized to take advantage of the Kokkos performance portability framewor
le GPU runs. While improving the scalability of linear solvers on the GPU is ongoing w
is paper we present a method for automatically choosing linear solver parameters to at
mal performance for any given linear solver strategy.
ypical optimization techniques rely on producing or approximating derivatives of an objec
ion with respect to the parameters of interest. Black box optimization refers to the clas
ization problems where the inner-workings of the function being minimized is unknow
essible and derivatives cannot be constructed or are too expensive to be constructed. S
re not only interested in tuning the linear solver parameters but also wish to treat the ch
gorithm as a tunable parameter, we must treat the underlying performance model as a b
It is also likely that the optimal solver parameters will change as ALI is developed or

lems of interest are modified. Therefore, it is necessary for us to have a method that does
strong assumptions about the underlying performance model. There are many technique
box optimization, including naive methods like grid/exhaustive search and random se

more advanced methods like Bayesian optimization. In this paper, we focus our attention
fic Bayesian optimization implementation known as GPTune [2] that has been used to tune
rmance of applications including SuperLU [3] and choosing randomized sketching algorit
omputing least squares [3].
ome of the approaches used for automatic performance tuning include racing-based meth
] and population-based evolutionary methods [6]. Recent methods for performance tu
the problem as a surrogate-assisted bi-level optimization [7]. In the case where the underl
rmance model is not treated as a blackbox, gradient-based approaches can be used to t
del that predicts optimal parameters for unseen input problems. [8] The type of method
nterested in for this paper is a sequential model based global optimization method and s
ods have been benchmarked [9] on a variety of performance tuning applications inclu
RE.
lbany is a C++ finite element code developed for solving partial differential equations
the years, the Albany code base has housed a variety of science and engineering applicati
ding the Aeras global atmosphere code [11], the Quantum Computer Aided Design (QCA
lator [12], and the Laboratory for Computational Mechanics (LCM) research code [13, 14,
rctic Coastal Erosion (ACE) model [16] and the Albany Land Ice (ALI) ice sheet model so
Attention herein is restricted to the ALI module within Albany, which discretizes and so
o-called first-order Stokes equations [18, 19] for the ice velocities. In order to perform dyna
ice simulations and enable coupling to the U.S. Department of Energy’s Energy Exas
h System Model (E3SM) [20], ALI has been coupled to the Model for Prediction Across Sc
AS) climate modeling framework [21] to yield the MPAS-Albany Land Ice (MALI) model
details on MALI, the interested reader is referred to [1].
1

Journal Pre-proof

Preprint

T the
Trilin OX)
and hers
(Ifpa sing
an it [23].
The sure
optim

T Al-
bany tion
softw rove
expe the
rand tion
to m n 2,
we p ork.
In Se ve a
signi ned
smoo tter
optim .

2

2.1

As d ers,
some rent
smoo rom
differ as a
black aive
appr and
retur ially
smal aive
appr be
done rete
or co at
rand ions
can b date
para by
evalu idea
of ex ons)
[25]. eter
tunin ther
meth ters
shou ime
spen out
Alba

T ked
into ach
have une
Jo
ur

na
l P

re
-p

ro
of

he Albany code within which ALI is implemented relies on a number of packages from
os [22] software stack for tasks including automatic differentiation (Sacado), non-linear (N
Krylov linear (Belos) solvers, multigrid preconditioners (MueLu) and multigrid smoot
ck2). For each non-linear iteration, a linear system is produced by Albany and solved u
erative multigrid preconditioner designed to take advantage of extruded ice-sheet meshes
goal of this paper is to choose and tune the performance-portable Ifpack2 smoothers to en
al performance of the total run-time of the linear solve phase of MALI.
o achieve this goal, we have developed an automatic performance tuning framework for
using the Python-based workflow management tool parsl [24] and the Bayesian optimiza
are GPTune. Previous work on automatically tuning Albany used random search to imp
rt-determined linear solver parameters. The tuning framework we present here improves on
om search approach by using black box optimization techniques to guide parameter explora
ore efficiently and reliably find optimal solver parameters for a given problem. In Sectio
resent the design and implementation details of our automatic performance tuning framew
ction 3, we demonstrate the usage of our tuning framework, and show that we can achie
ficant performance improvement on GPU by using Bayesian optimization over manually-tu
ther parameters. We also show that the Bayesian optimization approach results in be
al parameters than more naive black box optimization techniques such as random search

Method

Black Box Optimization

iscussed in more detail in Sections 2.3 and 2.4, we wish to optimize a wide range of paramet
of which take on numeric values, whereas others are strings denoting the names of diffe
thing algorithms used within the ALI linear solver. To handle different parameter types f
ent spaces, e.g., categorical, discrete, continuous, it is helpful to treat the linear solver
box and use existing black box optimization techniques. For discrete parameter spaces, a n

oach is to use ’exhaustive’ search which is equivalent to testing all possible parameters
ning the optimal. This approach is really only feasible when the parameter space is triv
l or function evaluations are cheap. For continuous parameter spaces, the corresponding n
oach is ’grid’ search. By overlaying a grid on the continuous parameter space, search can
exhaustively but there is no guarantee a true optimal is found. Another approach, for disc
ntinuous parameter spaces, is random search where candidate parameters are selected
om from a given distribution. Random search is attractive in that all of the function evaluat
e done completely independently. The drawback is that the choice of any given set of candi
meters from random search does not take into account any of the information exposed
ating other sets of parameters. Bayesian optimization is a technique that balances the
ploration (random search) and exploitation (search guided by previous function evaluati
In this work, we explore the method of Bayesian optimization for performance param
g. Bayesian optimization fits a Gaussian model to the performance data collected by ano
od such as random search and then makes a prediction about what the optimal parame
ld be given the recorded data. The objective of this optimization is to minimize the total t
t during the solve phase of ALI and is measured by existing timing instrumentation through
ny.
here are a number of existing software libraries for doing Bayesian optimization that we loo
for this framework such as ‘sklearn’ [26], ‘OpenTuner’ [27], and ‘HpBandSter’ [28] that e
their own pros and cons. We decided to use a Bayesian optimization library known as GPT
2

Journal Pre-proof

Preprint

[2] fo que,
amon that
the r that
has a do
optim mall
mesh sive
funct ases
wher

2.2

Auto Of-
fline tion
via t rac-
tical tical
execu ion,
we m ine
tunin

O tical
execu this
appr are
migh ast,
with cost
of th ls of
this p ning
havin inty
in pr htly
perfo do
not c nce
is de

A pa-
rame imal
in ge asis.
Ther und
in an ince
the s

2.3

Alba ess,
veloc olve
whic d in
two-d emi-
unst emi-
coars two-
dime

F can
be tu bled
Jo
ur

na
l P

re
-p

ro
of

r this framework due to its multi-task optimization functionality that seems to be uni
g these tuning software libraries, to GPTune. The idea behind multi-task optimization is
esult of tuning one problem could be used to inform the tuning of another related problem
different but related optimal solution. Multi-task optimization potentially enables us to
ization on problems with less expensive function evaluations (such as a problem over a s
) to give us a good idea of the optimal parameters of a problem that requires more expen
ion evaluations. GPTune also has the ability to include a performance model for tuning c
e we have a good guess of how performance varies with tuning parameters.

Online vs Offline Tuning

matic performance tuning can be further categorized into offline and online methods [29].
tuning consists of generating candidate parameters and then optimizing the objective func
rial executions and then whatever optimal parameters that are found are used for all p
executions. Online tuning, by comparison, evaluates candidate parameters during prac
tion. The framework we present in this work is an example of offline tuning. In this sect
ention some of the tradeoffs between online and offline tuning and justify the usage of offl
g for automatic performance tuning of ALI.
ne of the benefits of online performance tuning is that online tuning is done during prac
tion of the software so that the time-cost of tuning is somewhat hidden. However,
oach exposes the user to uncertainty in performance since any given execution of the softw
t use a sub-optimal set of parameters in order to explore the parameter space. In contr
offline tuning, performance guarantees are available for practical execution but the time-
e tuning process can not be hidden and may be prohibitively expensive. One of the goa
aper is to determine the cost of offline tuning for Albany Land Ice. In the case of offline tu
g an acceptable cost, we can then avoid exposing the end-user from performance uncerta
actical execution. The intended use case for this tuning framework is to supplement our nig
rmance and regression testing of ALI with tuning runs. Since optimal parameters likely
hange on a nightly basis, these tuning runs will only be done when a change in performa
tected by a changepoint algorithm within Albany’s performance monitoring tool.
nother tradeoff between online and offline tuning is that offline tuning produces optimal
ters for a specific instance of a problem but these optimal parameters may not be opt
neral. With online tuning, tuning is done during practical execution on a per-problem b
e are approaches, such as multi-task optimization, for transferring the optimal solutions fo
offline setting to similar problems and is something we intend to explore in the future s
cope of this paper is limited to tuning a single problem instance.

Problem Details

ny can be used to model various aspects of the evolution of ice-sheets including the thickn
ity, and temperature. For these experiments, we focus our effort on tuning the velocity s
h is modeled as a first-order Stokes equation. The meshes used in ALI are unstructure
imensions and then extruded in the relatively-thin vertical direction, resulting in a s

ructured discretization. ALI employs a hybrid multigrid approach that does structured s
ening in the vertical direction until the only remaining matrix entries correspond to the
nsional unstructured grid which is then coarsened using algebraic multigrid.
or this problem, Albany employs two multigrid smoothers (fine and coarse grid) that
ned to reduce total solve time. For each smoother, there are three choices of GPU-ena
3

Journal Pre-proof

Preprint

algor hev.
For t ping
facto hree
para and
min the
smoo and
conti

• v}
•

•

•

•

•

•

O olve
in A has
a sin lver
gene tion
using ions
for a

2.4

Since erse
comm ning
scrip any
using the
data allel
from lify
the w dget
and t een
gene

F plo-
ratio fore
each sen
rand ndi-
date sion
unifo ling
(LHS date
para can
be ev s by
upda l in
term ure
1.
Jo
ur

na
l P

re
-p

ro
of

ithms from Ifpack2: Multi-threaded Gauss-Seidel, Two-stage Gauss-Seidel, and Chebys
he Gauss-Seidel smoothers, we need to choose the number of total sweeps and the dam
r (or inner damping factor for the two-stage variant). The Chebyshev smoother has t
meters. The first is the degree of the Chebyshev polynomial, second is the ratio of max
eigenvalues of the linear operator, and the third is the maximum number of iterations for
ther. The search space for a given smoother is then a combination of categorical, discrete
nuous spaces:

Smoother Type: {Multi-threaded (MT) Gauss-Seidel, Two-stage Gauss-Seidel, Chebyshe

Number of sweeps: {1, 2} [MT Gauss-Seidel, Two-stage Gauss-Seidel]

Damping factor: [0.8, 1.2] [MT Gauss-Seidel]

Inner damping factor: [0.8, 1.2] [Two-stage Gauss-Seidel]

Chebyshev degree: {1, 2, 3, 4, 5, 6} [Chebyshev]

Eigenvalue ratio: [10.0, 50.0] [Chebyshev]

Maximum chebyshev iterations: {5, 6, ..., 100} [Chebyshev]

ur goal for performance tuning is to minimize the total runtime of a first-order Stokes s
LI. The objective function we are minimizing takes smoother parameters as inputs and
gle scalar output of total runtime. We refer to a single run of the first-order Stokes so
rically as a ”function evaluation”. For efficiency, we would like to produce an optimal solu
as few function evaluations as possible and refer to the total number of function evaluat
given tuning run as the ”total function evaluation budget”.

Design and implementation

we would like to control the parallelism for any given function evaluation, we use the rev
unication interface (RCI) mode in GPTune. This means that each call to the GPTune tu

t will update a tuning database with candidate parameters and then exit. We then run Alb
each of the proposed candidate parameters and then write the total solve time back into

base and run the GPTune script again. Since we are running Albany many times in par
a high-level python tuning script, we utilize the PyAlbany [30] python interface to simp
orkflow. This process continues until we have exhausted the total function evaluation bu
hen the tuning script will report the optimal parameters according to the model that has b
rated.
or a given tuning run, the total function evaluation budget is split evenly between the ex
n phase and the exploitation phase. In notation, we refer to the total budget as 2ϵ, there
phase does ϵ function evaluations. In the exploration phase, candidate parameters are cho
omly and evaluated in parallel. GPTune has multiple sampling approaches for choosing ca
parameters. The first is Monte Carlo sampling (MCS) which samples each search dimen
rmly and is equivalent to our previous random search. The second is Latin hypercube samp
) which ensures samples are evenly distributed through the search space. All of the candi
meters for the sampling phase are returned in a single call to the RCI GPTune script and
aluated in parallel. During the exploitation phase, GPTune chooses candidate parameter
ting the underlying Gaussian model and making a prediction and is therefore sequentia
s of function evaluations. An example diagram of the full tuning process can be seen in Fig
4

Journal Pre-proof

Preprint

Figu plo-
ratio) is
sequ nce
mod ated
in th

2.5

A na une

for c hey
are r ould
requ eue.
The b to
reach that
runs , we
want ean
most job
on a lism
of th

T unc-
tion ent
tool [31].

1 # 1

2 req

3 num

4
5 whi

6
7
8
9

10
11
12
13
14
Jo
ur

na
l P

re
-p

ro
of

re 1: Example of GPTune reverse communication interface workflow. The sampling (ex
n) phase can be done in parallel, whereas the modeling and search phase (exploitation
ential. Modeling step mi involves updating the underlying assumed (Gaussian) performa
el. The total number of function evaluations that will happen in a given tuning run is not
is figure as 2ϵ.

Workflow Management

ive approach to tuning via GPTune’s RCI mode would be to have a script that queries GPT
andidate parameters and then launches a job for each independent function evaluation as t
eceived. In practice, this approach is untenable on large computing clusters since it w
ire for each new requested function evaluation to put a new job into the back of the qu
majority of the wall-clock time for this approach would likely be spent waiting for a jo
the front of the cluster’s queue. An alternative approach would be to launch a single job
the entire tuning process. However, this is not ideal either since, for the sampling phase
a large number of machines to be doing function evaluations in parallel but that would m
machines are idle during the modeling phase. The other extreme would be to launch a
single machine for the modeling phase; the downside of this approach is that the paralle
e sampling phase could not be taken advantage of.
he solution to this problem is to use a workflow management tool to dynamically assign f
evaluations to available helper jobs. For our purposes, we use the Python workflow managem
known as parsl but there are other tools with attractive functionality such as fireworks

) get number of function evaluations

uested_num_evals = get_num_function_evals (...)

_func_evals = requested_num_evals.result ()

le num_func_evals > 0:

2) create function evaluation configuration files

requested_eval_configs = get_function_eval_configs (...)

3) do function evaluations

function_evaluated = []

for k in range(num_func_evals):

function_evaluated.append(evaluate_function (...))
5

Journal Pre-proof

Preprint

15
16
17
18
19
20
21
22
23
24
25

Listi e in
para that
retur

3

3.1

In or ons.
First Ul-
tima s as
possi rom
just and
all fu d as
“sma ntly
does n of
Alba ning
proc hod
that fin-
ishes , for
this cted
as ca lver
flags this
prob ded
the m

T lver
on a tion
rang rder
Stok rts.
The ctor
of 0. uss-
Seide ents
on th hese
defau for
comp ding
Jo
ur

na
l P

re
-p

ro
of

4) get function evaluations

evaluation_results = []

for k in range(num_func_evals):

evaluation_results.append(get_evaluation_result (...))

5) write function evaluations to database

database_updated = update_database (...)

6) get remaining number of function evaluations

requested_num_evals = get_num_function_evals (...)

num_func_evals = requested_num_evals.result ()

ng 1: ”Pseudocode example of the core tuning algorithm in parsl. Steps 3 and 4 are don
llel and synchronization occurs at step 5. Each function call corresponds to a parsl app
ns a Python futures object to handle synchronization and file I/O dependencies.”

Tuning Framework Evaluation

Experiment Setup

der to evaluate our automatic tuning framework, we need to answer the following questi
, what is the optimal budget for the number of function evaluations for a tuning run?
tely, we would like to find the optimal solver parameters in as few function evaluation
ble. Second, does using Bayesian optimization improve the results we would have gotten f
a simple random search? With random search, there is no sequential modeling phase
nction evaluations can be done in parallel. Therefore, if random search is just as goo
rter” approaches, then random search would be the efficient choice. Third, how freque
each method produce a parameter set that results in a failed run of Albany? A failed ru
ny could take considerably longer than a successful one. The total time elapsed of the tu
ess could be excessive if the majority of evaluations are timing out and failing; hence, a met
produces quality candidate parameters is important. It is also possible that a failed run
significantly faster due to invalid parameters causing the solve to fail right away. However
problem, we have chosen the search space such that no invalid parameters would be sele
ndidates. Our framework detects and reports the type of failure by checking internal so
that are exposed by the PyAlbany interface. The two types of failures that show up for
lem are when maximum wall-time has elapsed or the number of solver iterations has excee
aximum without convergence.
o answer these questions, we use our tuning framework to tune ALI’s first-order Stokes so
n extruded unstructured tetrahedral mesh of the Greenland ice sheet with variable resolu
ing from 20km to 3km. The results of these experiments are compared against the first-o
es solver with “default” solver parameters that were originally chosen by multigrid expe
default fine-grid smoother uses a two-stage Gauss-Seidel method with an inner damping fa
25 and only 1 relaxation sweep. For the coarse-grid, the default smoother is two-stage Ga
l with inner damping factor of 1.0 and 4 relaxation sweeps. We ran all of these experim
e Perlmutter computing cluster using a single A100 GPU per function evaluation. Using t
lt smoother parameters, the total runtime was about 30.2 seconds and is used as a baseline
aring the tuning results. It should be noted that the optimal parameters may vary depen
6

Journal Pre-proof

Preprint

Figu mes
are r

on ar ther
mach

3.2

In or th a
rang lver
para atch
the e ng a
good 200
is no at a
budg able
resul oice
of ev arge
budg .

A iled
run o ll of
the r ube
rand d in
failu hese
funct ters
will r sian
optim ther
by sp n of
Jo
ur

na
l P

re
-p

ro
of

re 2: Best runtimes for a range of function evaluation budgets. For each budget, best runti
eported for 6 sample runs of the tuning process.

chitecture so it is helpful to have an automatic tuning framework for deploying ALI on o
ines.

Results

der to determine the optimal function evaluation budget, we ran the tuning framework wi
e of budgets, six times for each choice of budget, and then recorded the best times and so
meters. The results of this experiment can be seen in Figure 2. The results seem to m
xpectation that as you increase the number of function evaluations, the likelihood of findi
time increases. However, the best times produced using a function evaluation budget of
t dramatically better than simply using a budget of 30. It is also interesting to note th
et of 30 seems to reliably produce better results than a budget of 40 or 50 and compar
ts to large budgets like 100 or 200. These results seem to indicate that 30 is a good ch
aluation budget for this particular problem. While a budget of 30 is a good choice, a l
et could potentially be more likely to find outlier solve times that are significantly better
dditionally, we are interested in how frequently a candidate parameter set results in a fa
f Albany. To evaluate this, we looked at all of the function evaluations produced over a
uns in Figure 2 separated into samples generated during the sampling phase (latin hyperc
om search) and the modeling phase. For the sampling phase, about 64% of runs resulte
re whereas in the modeling phase, about 18% of runs resulted in failure. Combining t
ion evaluations, we see that on a given run of the tuning framework, about 41% of parame
esult in a failed run. Since the sampling phase is equivalent to random search, using Baye
ization brings the failure rate down from about 64% to 41% and could be brought down fur
ending more of the evaluation budget in the modeling phase. In Figure 3, the distributio
7

Journal Pre-proof

Preprint

Figu ase.
Failu rall
distr and
the f

runti ase
are s een
the p

T ults
in go For
this hree
sepa hod
descr 15
sequ tion
evalu e is
the s se is
equiv mes
to pr

T ably
prod dom
searc cing
relia HS
rand the
Baye ting
cand

F pa-
rame ned.
Whil dful
Jo
ur

na
l P

re
-p

ro
of

re 3: Distribution of runtimes for a single run of the tuning process separated by tuning ph
re rates for each phase are significantly different, but of the successful evaluations, the ove
ibution is largely the same for both phases. The failure rate for sampling is about 64%
ailure rate for modeling is about 18%.

mes can be seen for the modeling and sampling phase. While the failure rates of each ph
ignificantly different, the overall quality of successful runs does not seem to change betw
hases.
he final experiment of this section is set up to determine if using Bayesian optimization res
od enough results to offset the loss of parallelism that can be found in random search.
experiment, we fixed the total evaluation budget to 30 and then ran multiple instances of t
rate methods for parameter tuning. The first is the GPTune Bayesian optimization met
ibed in this paper with 15 evaluations done in parallel for the sampling phase and then
ential evaluations for the modeling/search phase. The second case is using the full func
ation budget to explore candidate parameters produced by LHS. Finally, the third cas
ame as the second case but using MCS to produce candidate parameters. This third ca
alent to our previous work using random search to optimize [32]. Each case was run 20 ti
oduce the best times seen in Figure 4.
he results from the experiment seen in Figure 4 show that random search using MCS reli
uces slower runtimes than the other two methods. However, the difference between ran
h via LHS and Bayesian optimization is not quite as dramatic even though GPTune is produ
bly better runtimes. If the goal is to minimize wall-clock time, it might make sense to use L
om search due to the available parallelism. However, from a node-hours perspective,
sian optimization approach is the better choice since less time is being wasted on evalua
idate parameters that will result in failed runs.
inally, during the exploration of our framework, we found that, on very rare occasions,
ters that resulted in significantly better runtimes than seen in these figures were attai
e the vast majority of optimal runtimes were between 25 and 27 seconds, we found a han
8

Journal Pre-proof

Preprint

Figu arch
via L tion
evalu od.

of pa ault
setti gree
of 3, tage
Gaus out
0.8. how
likely

4

With uce
bette p to
1.5 t the
tunin e we
are m the
fram e of
flexib ility
allow as a
proo ning
clima

T per-
form n to
furth did
Jo
ur

na
l P

re
-p

ro
of

re 4: Comparison of best runtimes for GPTune Bayesian optimization against random se
atin Hypercube Sampling and random search via Monte Carlo Sampling. Total func
ation budget is fixed at 30 and 20 sample runs were conducted and reported for each meth

rameters that result in runtimes of about 21 seconds (about a 1.5× speedup over our def
ngs). This time can be achieved by using a Chebyshev smoother for the fine grid with de
an eigenvalue ratio of about 26.85, and a maximum iteration count of 85 and then a two-s
s-Seidel smoother for the coarse grids with 2 sweeps and an inner damping factor of ab
One of the next steps of this work would be to extend these experiments to determine
each method is to find these extreme outliers.

Conclusions

our automatic performance tuning framework, we have shown that we can reliably prod
r overall runtimes for ALI than our previous random search method with speedups of u
imes greater than manually tuned smoothers. In addition to producing better runtimes,
g process requires fewer node-hours than our previous random search implementation sinc
ore likely to evaluate parameters that do not result in a failed Albany run. Finally, since
ework was developed with the parsl workflow management tool, we achieve a high degre
ility when it comes to mapping tuning tasks to available computing hardware. This flexib
s easy integration of the tuning process into existing nightly testing for ALI and serves
f-of-concept for future workflow management of more complicated workflows such as run
te ensembles.
he results in this paper show that Bayesian optimization can result in better automatic
ance tuning than random search but there are still a few potential avenues of exploratio
er improve the tuning process. One thing to note is that in the many tuning runs we
9

Journal Pre-proof

Preprint

to pr und
on ra t 25
secon are
foun hese
outli unc-
tion -run
budg

I lver
para tely,
we w odel
on sm uch
as A k to
answ nt?,
and r of
evalu ata
colle ially
redu atic
perfo sive
and

Ack

Supp ded
by th Re-
searc the
Nati ergy
Offic arch
used U.S.
Depa ab-
orato

Dis

Sand onal
Tech well
Inter tion
unde

T ions
that ent
of En

Ref

[1] aur,
ble-
odel
Jo
ur

na
l P

re
-p

ro
of

oduce the results in this paper, the best total solve time (about 21 seconds) was only fo
re occasion and the vast majority of tuning runs resulted in a best solve time of abou
ds. One possible next step for this work is to quantify the rate at which outlier runtimes
d for each method which could potentially guide us to a method that more reliably finds t
er runtimes. It would also be interesting to compare multiple tuning runs with a small f
evaluation budget with a single tuning run with a budget equal to the sum of the single
ets.
n this paper, we have presented our exploration of the tunability of some of the linear so
meters within the ALI model with respect to a single mesh and GPU architecture. Ultima
ould like to use GPTune’s multi-task optimization capability to produce a performance m
all meshes that can be extended to predict optimal parameters for much larger meshes s

ntartica. Using a multi-task optimization approach, the two main questions we would see
er are: 1) are the optimal parameters for different size/shape meshes significantly differe
2) can the performance model for a small problem be used to reduce the total numbe
ations on a large mesh to produce optimal results? We also plan to leverage performance d
cted nightly for Albany, which can help us define a prior performance model to potent
ce the necessary number of function evaluations for performance tuning and enable autom
rmance tuning in the presence of an ever changing model. This framework is also non-intru
can be used to tune much larger models including MALI and potentially E3SM.

nowledgments

ort for this work was provided through the SciDAC projects FASTMath and ProSPect, fun
e U.S. Department of Energy (DOE) Office of Science, Advanced Scientific Computing
h and Biological and Environmental Research programs. This research used resources of
onal Energy Research Scientific Computing Center (NERSC), a U.S. Department of En
e of Science User Facility operated under Contract No. DE-AC02-05CH11231. This rese
resources of the National Energy Research Scientific Computing Center (NERSC), a
rtment of Energy Office of Science User Facility located at Lawrence Berkeley National L
ry, operated under Contract No. DE-AC02-05CH11231.

claimer

ia National Laboratories is a multimission laboratory managed and operated by Nati
nology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honey
national, Inc., for the U.S. Department of Energy’s National Nuclear Security Administra
r contract DE-NA-0003525.
his paper describes objective technical results and analysis. Any subjective views or opin
might be expressed in the paper do not necessarily represent the views of the U.S. Departm
ergy or the United States Government.

erences

M. J. Hoffman, M. Perego, S. F. Price, W. H. Lipscomb, T. Zhang, D. Jacobsen, I. Tez
A. G. Salinger, R. Tuminaro, and L. Bertagna. Mpas-albany land ice (mali): a varia
resolution ice sheet model for earth system modeling using voronoi grids. Geoscientific M
Development, 11(9):3747–3780, 2018.
10

Journal Pre-proof

Preprint

[2] em-
. In
ro-
ting

[3] ted-

[4] erg,

[5] and
ion.

[6] ms.

[7] uto-
sted

[8] anio
7th
igh

[9] hpc
uted

[10] ota,
aur.
Int.

[11] : A
015.

[12] and
ctor

[13] ma-
s at
ics,

[14] olid
Jo
ur

na
l P

re
-p

ro
of

Yang Liu, Wissam M. Sid-Lakhdar, Osni Marques, Xinran Zhu, Chang Meng, James W. D
mel, and Xiaoye S. Li. Gptune: Multitask learning for autotuning exascale applications
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel P
gramming, PPoPP ’21, page 234–246, New York, NY, USA, 2021. Association for Compu
Machinery.

Xiaoye S Li, Paul Lin, Yang Liu, and Piyush Sao. Newly released capabilities in distribu
memory superlu sparse direct solver. 2022.

Mauro Birattari. F-Race for Tuning Metaheuristics, pages 85–115. Springer Berlin Heidelb
Berlin, Heidelberg, 2009.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configurat
Operations Research Perspectives, 3:43–58, 2016.

S.K. Smit and A.E. Eiben. Comparing parameter tuning methods for evolutionary algorith
In 2009 IEEE Congress on Evolutionary Computation, pages 399–406, 2009.

Jesús-Adolfo Mej́ıa-de Dios, Efrén Mezura-Montes, and Marcela Quiroz-Castellanos. A
mated parameter tuning as a bilevel optimization problem solved by a surrogate-assi
population-based approach. Applied Intelligence, 51(8):5978–6000, aug 2021.

Jae-Seung Yeom, Jayaraman J. Thiagarajan, Abhinav Bhatele, Greg Bronevetsky, and Tz
Kolev. Data-driven performance modeling of linear solvers for sparse matrices. In 2016
International Workshop on Performance Modeling, Benchmarking and Simulation of H
Performance Computer Systems (PMBS), pages 32–42, 2016.

Harshitha Menon, Abhinav Bhatele, and Todd Gamblin. Auto-tuning parameter choices in
applications using bayesian optimization. In 2020 IEEE International Parallel and Distrib
Processing Symposium (IPDPS), pages 831–840, 2020.

A. Salinger, R. Bartlett, A. Bradley, Q. Chen, I. Demeshko, X. Gao, G. Hansen, A. M
R. Muller, E. Nielsen, J. Ostien, R. Pawlowski, M. Perego, E. Phipps, W. Sun, and I. Tez
Albany: Using agile components to develop a flexible, generic multiphysics analysis code.
J. Multiscale Comput. Engng., 14(4):415–438, 2016.

William F. Spotz, Thomas M. Smith, Irina P. Demeshko, and Jeffrey A. Fike. Aeras
next generation global atmosphere model. Procedia Computer Science, 51:2097–2106, 2
International Conference On Computational Science, ICCS 2015.

X. Gao, E. Nielsen, R. P. Muller, R. W. Young, A. G. Salinger, N. C. Bishop, M. P. Lilly,
M. S. Carroll. Quantum computer aided design simulation and optimization of semicondu
quantum dots. Journal of Applied Physics, 114(16):164302, 2013.

WaiChing Sun, Jakob T. Ostien, and Andrew G. Salinger. A stabilized assumed defor
tion gradient finite element formulation for strongly coupled poromechanical simulation
finite strain. International Journal for Numerical and Analytical Methods in Geomechan
37(16):2755–2788, 2013.

Alejandro Mota, Irina Tezaur, and Coleman Alleman. The schwarz alternating method in s
mechanics. Computer Methods in Applied Mechanics and Engineering, 319:19–51, 2017.
11

Journal Pre-proof

Preprint

[15] for
ing,

[16] ical
tics,

[17] : a
lver

[18] ions
l of

[19] mp-
and

[20] olfe,
The
pen

[21]

[22] .

[23] raic
rnal

[24] ar,
ard.
onal
–36,

[25] n of

[26] del,
her,
hine

[27] os-
ork
and
Jo
ur

na
l P

re
-p

ro
of

Alejandro Mota, Irina Tezaur, and Gregory Phlipot. The schwarz alternating method
transient solid dynamics. International Journal for Numerical Methods in Engineer
123(21):5036–5071, 2022.

Jennifer Frederick, Alejandro Mota, Irina Tezaur, and Diana Bull. A thermo-mechan
terrestrial model of arctic coastal erosion. Journal of Computational and Applied Mathema
397:113533, 2021.

I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price. Albany/felix
parallel, scalable and robust, finite element, first-order stokes approximation ice sheet so
built for advanced analysis. Geoscientific Model Development, 8(4):1197–1220, 2015.

John K. Dukowicz, Stephen F. Price, and William H. Lipscomb. Consistent approximat
and boundary conditions for ice-sheet dynamics from a principle of least action. Journa
Glaciology, 56(197):480–496, 2010.

Christian Schoof and Richard C. A. Hindmarsh. Thin-Film Flows with Wall Slip: An Asy
totic Analysis of Higher Order Glacier Flow Models. The Quarterly Journal of Mechanics
Applied Mathematics, 63(1):73–114, 01 2010.

Jean-Christophe Golaz, Luke P. Van Roekel, Xue Zheng, Andrew Roberts, Jonathan D W
Wuyin Lin, Andrew Bradley, Qi Tang, Mathew E Maltrud, Ryan M Forsyth, and et al.
doe e3sm model version 2: Overview of the physical model. Earth and Space Science O
Archive, page 61, 2022.

MPAS development team. MPAS Developers’ Guide. 2013.

The Trilinos Project Team. The Trilinos Project Website, 2020 (acccessed May 22, 2020)

R. Tuminaro, M. Perego, I. Tezaur, A. Salinger, and S. Price. A matrix dependent/algeb
multigrid approach for extruded meshes with applications to ice sheet modeling. SIAM Jou
on Scientific Computing, 38(5):C504–C532, 2016.

Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan Kum
Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde, and Kyle Ch
Parsl: Pervasive parallel programming in python. In Proceedings of the 28th Internati
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’19, page 25
New York, NY, USA, 2019. Association for Computing Machinery.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimizatio
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Bruc
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Mac
Learning Research, 12:2825–2830, 2011.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey B
boom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framew
for program autotuning. In 2014 23rd International Conference on Parallel Architecture
Compilation Techniques (PACT), pages 303–315, 2014.
12

Journal Pre-proof

Preprint

[28] eter
35th
ing

[29] ew

[30] ++
037,

[31] her,
ter,
put
059,

[32] olyn
ith
Jo
ur

na
l P

re
-p

ro
of

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparam
optimization at scale. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learn
Research, pages 1437–1446. PMLR, 10–15 Jul 2018.

Reiji Suda. A Bayesian Method of Online Automatic Tuning, pages 275–293. Springer N
York, New York, NY, 2010.

Kim Liegeois, Mauro Perego, and Tucker Hartland. Pyalbany: A python interface to the c
multiphysics solver albany. Journal of Computational and Applied Mathematics, page 115
2022.

Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael Koc
Miriam Brafman, Guido Petretto, Gian-Marco Rignanese, Geoffroy Hautier, Daniel Gun
and Kristin A. Persson. Fireworks: a dynamic workflow system designed for high-through
applications. Concurrency and Computation: Practice and Experience, 27(17):5037–5
2015.

Jerry Watkins, Max Carlson, Kyle Shan, Irina Tezaur, Mauro Perego, Luca Bertagna, Car
Kao, Matthew Hoffman, and Stephen Price. Performance portable ice-sheet modeling w
mali, 04 2022.
13

