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Focal Area(s)  

To ensure the US is positioned to scientifically attribute noncooperative climate interventions, we propose 

developing a foundational analytical framework for increased confidence in the assessment and attribution 

of observed changes in the climate.  This framework will enable probabilistic attribution of prospective 

climate interventions.  The target is to glean insight from complex Earth system data (Focal Area 3) by 

using AI to develop a prediction system comprised of a hierarchy of models (Focal Area 2).  

Science Challenge 

We propose a predictive capability for assessing the impacts of climate interventions on the Earth system, 

and also for the inverse problem of attributing observed changes to potential sources.  Proposed climate 

interventions have the potential to significantly impact the global water cycle in addition to affecting water 

cycle extremes and modifying regional precipitation (Tilmes 2013). If noncooperative climate 

interventions are launched, how will the US know, can we identify the source of the interventions, and 

what interconnected impacts to the water cycle should we expect?  For instance, as more projects like the 

‘Sky River’ cloud-seeding arrays—being developed by China to control rainfall over the Tibetan Plateau 

(Watts, 2020)—become reality, we should naturally question what the longer term effects on the water 

cycle in southeast Asia will be.  However, complex internal feedbacks and interacting physical 

mechanisms within the Earth system make attribution of a source to an impact a grand challenge.  

Capabilities developed through this research are targeted precisely at being able to address questions like 

these through novel techniques to enhance understanding from existing Earth System Model (ESM) 

output.  Our hypothesis is that using machine learning (ML) tools to track the simulated and observed 

pathways between source and impact can be developed to identify the dominance of multiple sources to a 

given impact and thus increase certainty in attribution. 

Rationale 

The process of establishing source-impact relationships typically requires ensembles of forward 

simulations in ESMs where initial conditions (sources) are perturbed resulting in modified outcomes 

(impacts) at the end of the simulation. Because of the computational expense and storage requirements of 

long integration time ensembles, the typical number of ensemble members generated for fully coupled 

ESMs (see Urrego-Blanco et al. 2019 using E3SMv0 and Peterson et al., 2020 using a low-resolution 

version of E3SMv1 for two of the only coupled sensitivity analyses) is often too small for robust analysis 

of internal variability or source-impact relationships.  Traditionally, these approaches also look at a single 
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source for an impact, which predetermines the correlative relationship without first establishing the 

collection of direct and indirect impacts to be expected from a given source.   

With an inverse formulation, the model parameters and input conditions (e.g., sources) that produce a 

particular, and often observed, impact are sought (Tarantola, 1987).  Inverse problems have been 

extensively developed in various areas such as contaminant transport and seismic imaging (Parker, 1994; 

Menke, 2018).  However, inversion techniques that look to establish a source for an impact are ill-

conditioned in the complex Earth system; many possible causes lead to similar effects due to numerous 

feedbacks (e.g. non-uniqueness, lack of identifiability). Climate is especially challenging for traditional 

inverse techniques: climate simulations are computationally expensive; the forward simulation may not 

vary smoothly in time; overfitting to limited data is a risk (Tarantola, 1987; Kress, 1998); and partial 

differential equation (PDE)-constrained optimization (Antil et al., 2018; Biegler et al., 2007; Biegler et 

al., 2011) may not be feasible due to the number of and interplay between mechanistic processes 

represented in coupled ESMs. 

There is a plethora of observational data, but it is often only used for climate model assimilation, 

calibration, or validation.  More recently observational data has been used to build surrogates for 

submodels that are not physically represented in climate models (e.g. Weber et al., 2019), but full 

characterization of interdependent processes across space and time is still largely underutilized.  The fact 

that many of these observations are from distinct measurement devices (ground (e.g. ARM) and satellite 

(e.g. MODIS)), at varying temporal and spatial scales, and of varying resolution makes fusing of these 

data sets difficult and is thus one of the largest barriers to developing observationally-based data-driven 

models.  This abundance of data provides an opportunity to elevate our understanding and improve 

uncertainty quantification (UQ) of physical processes, but much work needs to be done to integrate data 

into digestible forms for statistical and ML algorithms (Maskey et al., 2020).     

Narrative 

Techniques that enable detection of multi-faceted water cycle impacts due to complex internal feedbacks 

and interacting physical mechanisms are needed to ensure the security of the US from climate 

interventions.  The approaches outlined above leave valuable information in the source-impact 

relationship unused—they do not account for nor incorporate the pathways of mechanisms linking source 

and impact.  We propose employing ML techniques to dynamically trace pathways from a source thus 

enabling identification of the dominant drivers of an impact. 

A novel analytical framework that combines advanced UQ techniques with state-of-the art ML approaches 

will be used to identify the pathways as the drivers of change for climate impacts.  We will build on recent 

work in causal discovery methods (e.g., Nowack et al., 2020) to develop machine learning techniques that 

infer causal relationships between sources and impacts rather than simple correlations.  We propose to 

expand these techniques by combining the pathway information with existing “fingerprinting” techniques 

which involve dimension reduction and statistical processing to compare observations with expected 

climate change patterns determined from simulations (Marvel et al., 2020).  Our premise is that the 
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pathway information will improve the ability to detect a signal from noise and hence improve the 

confidence in source attribution. 

To solve the inverse problem, we propose using physics-informed machine learning (Raissi et al., 2019) 

to develop surrogates for the identified pathways and for individual components of the E3SM model.  For 

instance, deep neural networks (Lu et al., 2020) may be able to approximate the differential equations for 

each individual mechanistic process in the E3SM modules.  This enables coupling of the modules in an 

optimization framework that would otherwise be intractable for inverse problems.  One difference 

between previous work and what we propose is the addition of information about dominant physical 

pathways.  That is, we are not only focused on impact to source mapping but constraining or augmenting 

this with information about intermediate steps along a pathway. 

Statistical and machine learning methods are needed that can fuse and interpret data of varying resolution 

and fidelity collected from across the globe (Maskey et al., 2020). To address the data challenges of high 

dimensionality and complex nonlinear processes, cutting-edge techniques like deep echo state networks 

(McDermott and Wikle, 2018) can be adapted.  Similarly, multivariate space-time statistical approaches 

can be leveraged to characterizing the dynamic relationship across space and time between multiple 

observed processes (e.g., Gelfand and Banerjee, 2010; Datta et al., 2014).  Illuminating the climate 

dynamics via the pathways between sources and impacts from a nonlinear spatio-temporal modeling 

framework of observational data will be a parallel and complementary capability to the ESM simulation.   

Detecting anomalies, such as precipitation extremes, within the simulations and observations can be useful 

for dynamically tracing the pathway from source to impact.  Particularly interesting for this research are 

techniques that locate regions of anomalous activity, or anomalous features, within the state variables of 

the simulation itself as the method to trace the pathway.  Understanding that anomalous climate features 

are occurring in greater amounts for a particular simulation parameterization can inform scientists that 

this parameterization may be exceptional, requiring further study. If the anomalies are in a particular 

spatial or temporal region, this can narrow the focus, and subject matter experts can devote increased time 

and attention to a narrowed domain.  In addition, the number, size, and locations of anomalous features 

within the simulation can be used as input to downstream prediction algorithms. Using this methodology, 

machine learning algorithms could utilize the anomaly map across the simulation domain as inputs to 

predict either future anomalous states or particular climate impact events. 

Together, the simulated and observational frameworks focused on tracing the pathways between source 

and impact will be capable of laying the groundwork for the development of a climate intervention 

monitoring, detection, and attribution scheme able to identify the launch of a climate intervention, the 

source of the intervention, and the set of interconnected impacts we should expect.  ML is the anchor 

allowing integration of observational knowledge with existing modeling efforts to reduce uncertainties 

and radically improve the predictive capabilities of ESMs.   
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