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Motivation for Concurrent Multiscale 
Coupling
▪ Large scale structural failure frequently 

originates from small scale phenomena such 
as defects, microcracks, inhomogeneities and 
more, which grow quickly in unstable manner.

▪ Failure occurs due to tightly coupled 
interaction between small scale (stress 
concentrations, material instabilities, cracks, 
etc.) and large scale (vibration, impact, high 
loads and other perturbations).

Roof failure of Boeing 737 aircraft due to 
fatigue cracks. From imechanica.org
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Concurrent multiscale methods are 
essential for understanding and prediction 
of behavior of engineering systems when a 

small scale failure determines the 
performance of the entire system.

Surface flaw in pressure 
vessel: interacts with 

microstructure, which may 
or may not lead to failure.
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Previous Multiscale Coupling Work
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Previous Multiscale Coupling Work

Three-field multiscale 
coupling formulation 

with compatibility 
enforced weakly using 
Lagrange multipliers. 
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Previous Multiscale Coupling Work

Method works well, but is 
difficult to implement into 

existing codes.
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Requirements for Multiscale Coupling Method
• Coupling is concurrent (two-way).

• Ease of implementation into existing massively-parallel HPC codes.

• Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

• “Plug-and-play” framework: simplifies task of meshing complex geometries 

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement.

➢ Ability to use different solvers/time-integrators in different regions.

• Coupling does not introduce 
nonphysical artifacts.

• Theoretical convergence 
properties/guarantees.
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overlapping

non-overlapping
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• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz 
(1843–1921)

Initialize:

• Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

• Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 
just obtained for Ω1.

• Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

Schwarz Alternating Method for Domain 
Decomposition
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• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz 
(1843–1921)

Initialize:

• Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

• Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 
just obtained for Ω1.

• Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

Schwarz Alternating Method for Domain 
Decomposition

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs1 if Ω1⋂ Ω2≠ ∅.

Non-overlapping Schwarz: convergent with Robin-Robin2 or alternating Neumann-Dirichlet3

transmission BCs.  

1Schwarz, 1870; Lions, 1988.  
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• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz 
(1843–1921)

Initialize:

• Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

• Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 
just obtained for Ω1.

• Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

Schwarz Alternating Method for Domain 
Decomposition

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs1 if Ω1⋂ Ω2≠ ∅.

Non-overlapping Schwarz: convergent with Robin-Robin2 or alternating Neumann-Dirichlet3

transmission BCs.  

2Lions, 1990.  3Zanolli et al., 1987. 1Schwarz, 1870; Lions, 1988.  

Common use of Schwarz: preconditioner for Krylov iterative methods to solve linear systems.



How we use the Schwarz Alternating 
Method
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Quasistatic Solid Mechanics Formulation

15

• Energy functional defining weak form of the governing PDEs 

Φ 𝝋 ≔ න
Ω

𝐴 𝑭, 𝒁 𝑑𝑉 − න
Ω

𝜌𝑩 ∙ 𝝋𝑑𝑉

➢ 𝐴(𝑭, 𝒁): Helmholtz free-energy density

➢ 𝑭:= ∇𝝋: deformation gradient

➢ 𝒁: collection of internal variables (for plastic materials) 

➢ 𝜌: density, 𝑩: body force

• Euler-Lagrange equations, obtained by minimizing Φ 𝝋 : 

• Quasistatics solves sequence of problems in 
which loading (body force) 𝑩 is incremented 
quasistatically w.r.t. pseudo time 𝑡𝑖:

For 𝑖 = 1,… , 𝑛
Solve Div 𝑷 + 𝜌𝑩(𝑡𝑖) = 𝟎 with appropriate boundary conditions (BCs)
Increment pseudo time 𝑡𝑖 to obtain 𝑡𝑖+1

ቊ
Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω
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Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Relevant for multi-material and 
multi-physics coupling 

• Alternating Dirichlet-Neumann 
transmission BCs [Zanolli et al., 
1987]

• Robin-Robin transmission BCs also 
lead to convergence [Lions,1990] 

• 𝜃 ∈ 0,1 : relaxation parameter (can 
help convergence)

• Dirichlet-Dirichlet transmission 
BCs [Schwarz, 1870; Lions, 1988]

Spatial Coupling via Alternating Schwarz

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ1

𝝋1
(𝑛+1)

= 𝝋2
(𝑛)

on Γ2

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ2

𝝋2
(𝑛+1)

= 𝝋1
(𝑛+1)

on Γ2

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ

𝝋1
(𝑛+1)

= 𝝀𝑛+1 on Γ

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ

𝑷2
(𝑛+1)

𝒏 = 𝑷2
(𝑛+1)

𝒏, on Γ

𝝀𝑛+1 = 𝜃𝝋2
(𝑛)

+ 1 − 𝜃 𝝀𝑛, on Γ, for 𝑛 ≥ 1

Model PDE: ቊ
Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω



17

Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Relevant for multi-material and 
multi-physics coupling 

• Alternating Dirichlet-Neumann 
transmission BCs [Zanolli et al., 
1987]

• Robin-Robin transmission BCs also 
lead to convergence [Lions,1990] 

• 𝜃 ∈ 0,1 : relaxation parameter (can 
help convergence)

• Dirichlet-Dirichlet transmission 
BCs [Schwarz, 1870; Lions, 1988]

Spatial Coupling via Alternating Schwarz

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ1

𝝋1
(𝑛+1)

= 𝝋2
(𝑛)

on Γ2

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ2

𝝋2
(𝑛+1)

= 𝝋1
(𝑛+1)

on Γ2

Model PDE: ቊ
Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ

𝝋1
(𝑛+1)

= 𝝀𝑛+1 on Γ

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ

𝑷2
(𝑛+1)

𝒏 = 𝑷2
(𝑛+1)

𝒏, on Γ

𝝀𝑛+1 = 𝜃𝝋2
(𝑛)

+ 1 − 𝜃 𝝀𝑛, on Γ, for 𝑛 ≥ 1

Part 1 of talk

Part 2 of talk



Overlapping Schwarz Coupling in Quasistatics

Advantages:

▪ Conceptually very simple.

▪ Allows the coupling of regions with different non-conforming meshes, different element 
types, and different levels of refinement.

▪ Information is exchanged among two or more regions, making coupling concurrent.

▪ Different solvers can be used for the different regions.

▪ Different material models can be coupled if they are compatible in the overlap region.

▪ Simplifies the task of meshing complex geometries for the different scales.

outer 
quasistatic

loop
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▪ S.L. Sobolev (1936): posed Schwarz method for linear 
elasticity in variational form and proved method’s 
convergence by proposing a convergent sequence of 
energy functionals. 

▪ S.G. Mikhlin (1951): proved convergence of Schwarz 
method for general linear elliptic PDEs.

▪ P.-L. Lions (1988): studied convergence of Schwarz for  
nonlinear monotone elliptic problems using max principle.

▪ A. Mota, I. Tezaur, C. Alleman (2017): proved convergence 
of the alternating Schwarz method for finite deformation 
quasi-static nonlinear PDEs (with energy functional 𝜱[𝝋]) 
with a geometric convergence rate.

S.G. Mikhlin

(1908 – 1990)

S.L. Sobolev (1908 – 1989)

𝜱 𝝋 = න
𝐵

𝐴 𝑭, 𝒁 𝑑𝑉 −න
𝐵

𝑩 ∙ 𝝋 𝑑𝑉

𝛻 ∙ 𝑷 + 𝑩 = 𝟎 A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)

19



A. Mota, I. Tezaur, C. Alleman Schwarz Alternating Method in Solid Mechanics

⌦1 ⌦2 Γ1Γ2 !

Figure 1: Two subdomains⌦1 and⌦2 and the corresponding boundaries Γ1 and Γ2 used by the Schwarz alternating method.

that is i = 1 and j = 2 if n is odd, and i = 2 and j = 1 if n is even. Introduce the following definitions for

each subdomain i :

• Closure: ⌦i := ⌦i [ @⌦i

• Dirichlet boundary: @' ⌦i := @' ⌦\ ⌦i .

• Neumann boundary: @T ⌦i := @T ⌦\ ⌦i .

• Schwarz boundary: Γ i := @⌦i \ ⌦j .

Note that with thesedefinitions we guarantee that @' ⌦i \ @T ⌦i = ; , @' ⌦i \ Γ i = ; and @T ⌦i \ Γ i = ; .

Now define the spaces

Si := ' 2 W 1
2 (⌦i ) : ' = χ on @' ⌦i , ' = P⌦j ! Γ i

[' (⌦j )] on Γ i

 
, (7)

and

Vi := ⇠2 W 1
2 (⌦i ) : ⇠= 0 on @' ⌦i [ Γ i

 
, (8)

where thesymbol P⌦j ! Γ i
[·] denotes the projection from thesubdomain⌦j onto theSchwarz boundary Γ i .

This projection operator plays a central role in the Schwarz alternating method. Its form and implementation

are discussed in subsequent sections. For the moment it is sufficient to assume that the operator is able to

project afield ' from one subdomain to the Schwarz boundary of the other subdomain.

The Schwarz alternating method solves a sequence of problems on⌦1 and⌦2. The solution ' (n ) for the

n-th problem is given by

' (n ) =

8
<

:

idX , for n = 0;

arg min
' 2 Si

Φi [' ], for n > 0;
(9)

where idX is the identity map that maps X onto itself (i.e. zero displacement), and

Φi [' ] :=

Z

⌦i

A(F , Z ) dV −

Z

⌦i

RB · ' dV −

Z

@T ⌦i

T · ' dS. (10)

A better guess, if available, may be used to initialize ' (0) on ⌦2 rather than the identity map idX . The

minimization of the functional (10) leads to a variational formulation of the form (4)–(5) for each subdomain

as

DΦi ['
(n ) ](⇠( i ) ) =

Z

⌦i

P : Grad⇠( i ) dV −

Z

⌦i

RB ·⇠( i ) dV −

Z

@T ⌦i

T ·⇠( i ) dS = 0, (11)

6

Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51. 20



Implementation in Albany LCM Code

▪ Component-based design for rapid development.

▪ Contains a wide variety of constitutive models.

▪ Extensive use of libraries from the open-source Trilinos
project.

➢ Use of the Phalanx package to decompose complex 
problem into simpler problems with managed 
dependencies.

➢ Use of the Sacado package for automatic 
differentiation.

➢ Use of Teko package for block preconditioning for 
Modified and Monolithic Schwarz variants.

▪ Parallel implementation of Schwarz alternating method 
uses the Data Transfer Kit (DTK).

▪ All software available on GitHub.

https://github.com/trilinos/trilinos

https://github.com/SNL
Computation/LCM

https://github.com/ORNL-
CEES/DataTransferKit

The proposed quasistatic alternating Schwarz method is 
implemented within the Albany LCM open-source parallel, 

C++, multi-physics, finite element code.

21
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Schwarz Iteration

Quasistatic Example #1: Cuboid Problem

• Coupling of two cuboids with square base (above).

• Neohookean-type material model.

22



Below: Convergence of the cuboid 
problem for different mesh sizes 

and fixed overlap volume fraction.  
The Schwarz alternating method 

converges linearly.

Above: Convergence factor 𝜇 as a 
function of overlap volume and 
different mesh.  There is faster 

linear convergence with increasing 
overlap volume fraction.

∆𝑦(𝑚+1) ≤ 𝜇∆𝑦(𝑚)

Cuboid Problem: Convergence with 
Overlap & Refinement

23



Cuboid Problem: Schwarz Error 

24



Quasistatic Example #2: Notched Cylinder

• Notched cylinder that is stretched along its axial direction.

• Domain decomposed into two subdomains.

• Neohookean-type material model.

25



▪ The Schwarz alternating method is capable of coupling different mesh topologies.

▪ The notched region, where stress concentrations are expected, is finely meshed with 
tetrahedral elements.

▪ The top and bottom regions, presumably of less interest, are meshed with coarser 
hexahedral elements. 

Notched Cylinder: TET - HEX Coupling

26



Notched Cylinder: TET - HEX Coupling
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Notched Cylinder: TET - HEX Coupling

28
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▪ Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.

▪ Coarse region is elastic and fine region is elasto-plastic. 

▪ The overlap region in the first mesh is nearer the notch, where plastic behavior is 
expected.

Overlap far from notch. Overlap near notch.

Coupled regions

Coarse, elastic region

Fine, elasto-plastic region

Notched Cylinder: Coupling Different Materials
The Schwarz method is capable of coupling regions with different material models.
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▪ When the overlap region is far from the notch, no plastic deformation exists in it: the 
coarse and fine regions predict the same behavior. 

▪ When the overlap region is near the notch, plastic deformation spills onto it and the two 
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.

Notched Cylinder: Coupling Different Materials
Need to be careful to do domain decomposition so that 

material models are consistent in overlap region.

30



Quasistatic Example #3: Laser Weld

Laser weld specimen

• Problem of practical scale.

• Isotropic elasticity and J2 plasticity with 
linear isotropic hardening.

• Identical parameters for weld and base 
materials for proof of concept, to 
become independent models.

10

20

30

0.000e+00

4.000e+01
Cauchy_Stress_05

Coupled Schwarz discretization
(50% reduction in model size)

Single domain discretization

31



Laser Weld: Strong Scalability of Parallel 
Schwarz with DTK

• Near-ideal linear speedup (64-1024 cores).

Data Transfer Kit (DTK)

32



Quasistatic Example #4: Tensile Bar

The alternating Schwarz method can be used as part of a homogenization
(upscaling) process to bridge gap b/w microscopic and macroscopic regions

macro-
scale

micro-
structure

macro-
scale

Work by C. Alleman, J. Foulk,
D. Littlewood, G. Bergel

• Microstructure embedded in ASTM 
tensile geometry (right).

• Fix microstructure, investigate          
ensemble of uniaxial loads. 

• Fit flow curves with a macroscale J2

plasticity model (below).

Goal: study strain localization in microstructure.

33
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Dynamic Solid Mechanics Formulation

35

• Kinetic energy: 𝑇 ሶ𝝋 ≔
1

2
න
Ω

𝜌 ሶ𝝋 ∙ ሶ𝝋 𝑑𝑉

• Potential Energy: 𝑉 𝝋 ≔ න
Ω

𝐴 𝑭, 𝒁 𝑑𝑉 − න
Ω

𝜌𝑩 ∙ 𝝋 𝑑𝑉

• Lagrangian: 𝐿 𝝋, ሶ𝝋 ≔ 𝑇 ሶ𝝋 − 𝑉(𝝋)

• Action functional: 𝑆 𝝋 ≔ න
𝐼

𝐿 𝝋, ሶ𝝋 𝑑𝑡

• Euler-Lagrange equations: Div 𝑷 + 𝜌𝑩 = 𝜌 ሷ𝝋, in Ω × 𝐼

𝝋 𝑿, 𝑡0 = 𝒙0, in Ω

ሶ𝝋 𝑿, 𝑡0 = 𝒗0, in Ω

𝝋 𝑿, 𝑡 = 𝝌, on 𝜕Ω × 𝐼

• Semi-discrete problem following FEM discretization in space: 

𝑴 ሷ𝒖 + 𝒇int 𝒖, ሶ𝒖 = 𝒇ext



Schwarz Alternating Method for 
Dynamics
▪ In the literature the Schwarz method 

is applied to dynamics by using space-
time discretizations.

Overlapping non-matching meshes and 
time steps in dynamics.
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▪ In the literature the Schwarz method 
is applied to dynamics by using space-
time discretizations.

Overlapping non-matching meshes and 
time steps in dynamics.

Pro ☺: Can use non-matching meshes 
and time-steps (see right figure).

Con : Unfeasible given the design of our 
current codes and size of simulations.

Schwarz Alternating Method for 
Dynamics

37



Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0 𝑇1

Step 0: Initialize 𝑖 = 0 (controller time index).

38

Schwarz Alternating Method for Dynamic 
Multiscale Coupling Controller time stepper: defines global Δ𝑇s 

at which subdomains are synchronized



𝑇0 𝑇1

Integrate using 𝛥𝑡1

Interpolate from 
Ω2 to Γ1

Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1

Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
time-step 𝛥𝑡1, using solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

39
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at which subdomains are synchronized



Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0

Integrate using 𝛥𝑡2

Interpolate 
from Ω1 to Γ2

𝑇1

Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
time-step 𝛥𝑡1, using solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with 
time-step 𝛥𝑡2, using solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.
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𝑇0
Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1

Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
time-step 𝛥𝑡1, using solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with 
time-step 𝛥𝑡2, using solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.
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Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0 𝑇1

Interpolate from 
Ω2 to Γ1

Integrate using 𝛥𝑡1

Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
time-step 𝛥𝑡1, using solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with 
time-step 𝛥𝑡2, using solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
time-step 𝛥𝑡1, using solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with 
time-step 𝛥𝑡2, using solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 
➢ If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1
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Schwarz Alternating Method for Dynamic 
Multiscale Coupling

Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
time-step 𝛥𝑡1, using solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with 
time-step 𝛥𝑡2, using solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 
➢ If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1

Can use different integrators 
with different time steps

within each domain!
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Schwarz Alternating Method for Dynamic 
Multiscale Coupling: Theory
• Like for quasistatics, dynamic alternating Schwarz method converges provided 

each single-domain problem is well-posed and overlap region is non-empty, 
under some conditions on Δ𝑡.  

• Well-posedness for the dynamic problem requires that action functional 𝑆 𝝋 ≔

𝐼׬ Ω׬ 𝐿 𝝋, ሶ𝝋 𝑑𝑉𝑑𝑡 be strictly convex or strictly concave, where 𝐿 𝝋, ሶ𝝋 ≔

𝑇 ሶ𝝋 + 𝑉 𝝋 is the Lagrangian.

➢ This is studied by looking at its second variation 𝛿2𝑆[𝝋ℎ]

• We can show assuming a Newmark time-integration scheme that for the fully-
discrete problem:

𝛿2𝑆[𝝋ℎ]=𝒙
𝑇

𝛾2

(𝛽Δ𝑡)2
𝑴−𝑲 𝒙

➢ 𝛿2𝑆[𝝋ℎ] can always be made positive by choosing a sufficiently small Δ𝑡

➢ Numerical experiments reveal that Δ𝑡 requirements for stability/accuracy 
typically lead to automatic satisfaction of this bound. 

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022. 45



Implementation in Albany LCM & Sierra/SM

Numerical results shown here for dynamic Schwarz are from two codes: 
Albany LCM and Sierra/Solid Mechanics (Sierra/SM)

• Albany LCM: Trilinos-based open-source* parallel, C++, multi-physics, FE code.

• Sierra Mechanics Framework: Sandia Lagrangian 3D code for FEA of solids                               
& structures.

Sierra/SM: quasistatics,  
implicit/explicit dynamics + 
loose coupling via Arpeggio

* https://github.com/SNLComputation/LCM 46
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Implementation in Albany LCM & Sierra/SM

Numerical results shown here for dynamic Schwarz are from two codes: 
Albany LCM and Sierra/Solid Mechanics (Sierra/SM)

• Albany LCM: Trilinos-based open-source* parallel, C++, multi-physics, FE code.

• Sierra Mechanics Framework: Sandia Lagrangian 3D code for FEA of solids                               
& structures.

Sierra/SM: quasistatics,  
implicit/explicit dynamics + 
loose coupling via Arpeggio

Schwarz alternating method 
was “implemented” in 

Sierra/SM using Arpeggio
loose coupling framework

We did not have to write any code in Sierra/SM to implement Schwarz!

* https://github.com/SNLComputation/LCM 48



Dynamic Example #1: Elastic Wave Propagation

• Linear elastic clamped beam with Gaussian initial                       
condition for the 𝑧-displacement.

• Simple problem with analytical exact solution but very stringent test 
for discretization methods.

• Test Schwarz with 2 subdomains: Ω0 = 0,0.001 × 0,0.001 ×
0,0.75 , Ω1 = 0,0.001 × 0,0.001 × 0.25,1 . 

Left: Initial condition 
(blue) and final solution 

(red).  Wave profile is 
negative of initial profile 

at time  T = 1.0e-3.

Time-discretizations:
Newmark (implicit, explicit).

Meshes: HEX, TET
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z-displacement

Table 1: Averaged (over times + domains) relative errors in z–displacement (blue) and z-
velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

LM = Lumped Mass, CM = Consistent Mass

z-velocity

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal HEX - HEX 2.79e-3 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2

Nonconformal HEX - HEX 2.90e-3 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3

TET - HEX 2.79e-3 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

Dynamic Schwarz coupling introduces no 
dynamic artifacts that are pervasive in 

other coupling methods!

Elastic Wave: Diff. Integrators, Same ∆𝑡s

50



Elastic Wave: Diff. Integrators, Diff. ∆𝑡s

Figures above: Plots of displacement, velocity and acceleration for the elastic 
wave propagation problem using different time integrators (implicit and 
explicit) and different time steps (1e-2s and 2e-7s) for each subdomain, 

superimposed over the analytic single domain solution. 

The analytic solution is indistinguishable from Schwarz solutions 

(hidden behind the solutions for Ω0 (red) and Ω1 (green))!

Displacement Velocity Acceleration
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Dynamic Example #2: Tension Specimen

Ω1

Ω0

+

• Uniaxial aluminum cylindrical tensile 
specimen with inelastic J2 material 
model.

• Domain decomposition into two 
subdomains (right): Ω0 = ends,      
Ω1 = gauge.

• Nonconformal HEX + composite 
TET10 coupling via Schwarz.

• Implicit Newmark time-integration 
with adaptive time-stepping 
algorithm employed in both 
subdomains.

• Slight imperfection introduced at 
center of gauge to force necking 
upon pulling in vertical direction.
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Tension Specimen: Expected Result



Tension Specimen: Disp. & EQPS

Average of ~3 Schwarz 
iterations/time step required 
for convergence to Schwarz 

tolerance of 1e-6.

y-displacement EQPS*

*EQPS = Equivalent Plastic Strain 54



Tension Specimen: Domain Decomposition
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Tension Specimen: EQPS
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Tension Specimen: Cauchy Stress
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Dynamic Example #3: Bolted Joint Problem

Ω2

Ω1

• Ω1 = bolts (Composite TET10), Ω2 = parts (HEX).

• Inelastic J2 material model in both subdomains.
• Ω1: steel
• Ω2: steel component, aluminum (bottom) plate

• Schwarz solution compared to single-domain 
solution on composite TET10 mesh.

• BC: x-disp = 0.02 at T = 
1.0e-3 on top of parts.

• Run until T = 5.0e-4 w/ dt = 
1e-5 + implicit Newmark 
with analytic mass matrix 
for composite tet 10s.

Problem of practical scale.
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Single Ω Schwarz

Bolted Joint Problem: Displacement
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Bolted Joint Problem: EQPS

Single Ω Schwarz
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Bolted Joint Problem: Convergence Rate

Figure above: Convergence behavior of the dynamic Schwarz 
algorithm for the bolted joint problem

Linear convergence rate 
is observed for dynamic 

Schwarz algorithm, as for 
the quasistatic Schwarz 

algorithm.
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Bolted Joint Problem: Performance

CPU times (64 procs*) Avg # Schwarz iters Max # Schwarz iters

Single Domain 3h 34m − −

Schwarz 2h 42m 3.22 4

Single Domain 
(finer)

17h 00m − −

Schwarz (finer 
mesh of bolts)

29h 29m 3.28 4

62* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6. 62
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• Despite its iterative nature, Schwarz can actually be faster than single domain 
run for discretizations having comparable # of elements in the bolts.

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6. 63
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• Despite its iterative nature, Schwarz can actually be faster than single domain 
run for discretizations having comparable # of elements in the bolts.

➢ Even if the method is more computationally expensive for some 
resolutions, it may be preferred for its ability to rapidly change and 
evaluate a variety of engineering designs (our typical use case).

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.



Bolted Joint Problem: Performance

• Despite its iterative nature, Schwarz can actually be faster than single domain 
run for discretizations having comparable # of elements in the bolts.

➢ Even if the method is more computationally expensive for some 
resolutions, it may be preferred for its ability to rapidly change and 
evaluate a variety of engineering designs (our typical use case).

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.

CPU times (64 procs*) Avg # Schwarz iters Max # Schwarz iters

Single Domain 3h 34m − −

Schwarz 2h 42m 3.22 4

Single Domain 
(finer)

17h 00m − −

Schwarz (finer 
mesh of bolts)

29h 29m 3.28 4
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• Dynamic Schwarz converges in between 2-4 Schwarz 
iterations per time-step despite the overlap region 
being very small for this problem.

overlap region



Outline

1. Alternating Schwarz Method for Coupling of 
Full Order Models (FOMs) in Solid Mechanics

• Motivation & Background

• Quasistatics

• Extension to Dynamics 

• Summary & Next Steps

2. Alternating Schwarz Method for                          
FOM-ROM* and ROM-ROM Coupling

• Motivation & Background 

• Demonstration

• Ongoing & Future Work

66* Projection-based Reduced Order Model



Summary
The Schwarz alternating method has been developed/implemented for 

concurrent multiscale quasistatic & dynamic modeling in Sandia’s 
Albany LCM and Sierra/SM codes.

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement.

➢ Ability to use different solvers/time-integrators in different regions.               

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees.

☺

☺

☺

☺

☺

☺

☺

☺
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• Continuing to apply the Schwarz alternating method to problems of interest to 
production using Sierra/SM.

• Advancing the Schwarz alternating method to enable coupling of structural 
elements to continuum elements.

• Developing a Schwarz-like algorithm for simulating contact to address well-
known challenges (contact constraint enforcement, multiple scales).

➢ Done by introducing a combination of Dirichlet and Neumann boundary 
conditions into different subdomains in a non-overlapping alternating 
fashion.

➢ See the following reference for more info:

Ongoing Work and Next Steps

68

J. Hoy, I. Tezaur, A. Mota. "The Schwarz alternating method for multiscale contact mechanics". 
in Computer Science Research Institute Summer Proceedings 2021, J.D. Smith and E. Galvan, 

eds., Technical Report SAND2021-0653R, Sandia National Labs, 360-378, 2021.
(https://www.sandia.gov/ccr/csri-summer-programs/2021-proceedings/)

➢ Journal article with D. Koliesnikova in preparation.

https://www.sandia.gov/ccr/csri-summer-programs/2021-proceedings/
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The past decades have seen tremendous investment in simulation 
frameworks for coupled multi-scale and multi-physics problems.  

• Monolithic (Lagrange 
multipliers)

• Partitioned (loose) coupling
• Iterative (Schwarz, 

optimization)

M1 M2

M3 M4
N3

N4

N1
N2

N5

N3

N4

N5

N2N1

• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS)
• Implicit, explicit
• Eulerian, Lagrangian, …

Complex System Model Traditional Methods Coupled Numerical Model

Ocean
(MPAS-

O)

Atmos.
(EAM)

Sea Ice
(MPAS-SI)

Land Ice
(MALI)

Land

(ALM)

Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

Motivation

• Frameworks rely on established mathematical theories to couple 
physics components.

• Most existing coupling frameworks are based on traditional 
discretization methods.
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The past decades have seen tremendous investment in simulation 
frameworks for coupled multi-scale and multi-physics problems.  

• Frameworks rely on established mathematical theories to couple 
physics components.

• Most existing coupling frameworks are based on traditional 
discretization methods.

• Monolithic (Lagrange 
multipliers)

• Partitioned (loose) coupling
• Iterative (Schwarz, 

optimization)

M1 M2

M3 M4
N3

N4

N1
N2

N5

N3

N4

N5

N2N1

• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS)
• Implicit, explicit
• Eulerian, Lagrangian, …

Complex System Model Traditional Methods Coupled Numerical Model

Ocean
(MPAS-

O)

Atmos.
(EAM)

Sea Ice
(MPAS-SI)

Land Ice
(MALI)

Land

(ALM)

DMD=N3

ROM=N4

N1
PINN=N2

UDE=N5

Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

Unfortunately, existing algorithmic and software infrastructures are ill-equipped
to handle plug-and-play integration of non-traditional, data-driven models!

• There is currently a big push to integrate data-driven methods into modeling & 
simulation toolchains.

Motivation



• Alternating Schwarz-based coupling

• Optimization-based coupling

• Coupling via generalized mortar methods

73

Principal research objective: 

• Discover mathematical principles guiding the assembly of standard and data-driven
numerical models in stable, accurate and physically consistent ways. 

Principal research challenges: we lack mathematical and algorithmic understanding of how to

• “Mix-and-match” standard and data-driven models from three-classes

➢Class A: projection-based reduced order models (ROMs)

➢Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

➢Class C: flow map approximation models, i.e., dynamic model decomposition 
(DMD) models

• Ensure well-posedness & physical consistency of  
resulting heterogeneous models.

• Solve such heterogeneous models efficiently.

Three coupling methods:

Flexible Heterogeneous Numerical 
Methods (fHNM) Project

This talk.

This talk.



74

Projection-Based Model Order Reduction 
via the POD/Galerkin Method

Full Order Model (FOM): 𝑴
𝑑2𝒙

𝑑𝑡2
+ 𝒇int 𝒙 = 𝒇ext

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 

time steps

N
u

m
b

e
r 

o
f 

S
ta

te
 

V
a

ri
a

b
le

s

Save solution data

Reduce the 
number of 
unknowns

Perform 
Galerkin
projection

𝜱𝑇𝑴𝜱
𝑑2ෝ𝒙

𝑑𝑡2
+ 𝜱𝑇𝒇int 𝜱ෝ𝒙 = 𝜱𝑇𝒇ext

Hyper-reduce 
nonlinear  
terms

𝒇int 𝜱ෝ𝒙 ≈ 𝑨 𝒇int 𝜱ෝ𝒙

Hyper-reduction/sample mesh

ROM = Projection-Based Reduced Order Model.  HROM = Hyper-Reduced ROM
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Schwarz Extensions to FOM-ROM and 
ROM-ROM Couplings

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices 𝒊Dir
• Method I in [Gunzburger et al. 2007] is employed 

Choice of domain decomposition

• Error-based indicators that help decide in what region of the domain a ROM can be viable  
should drive domain decomposition (future work) [Bergmann et al. 2018]

𝒖(𝑡) ≈ ഥ𝒖 + 𝜱ෝ𝒖(𝑡),   𝒗(𝑡) ≈ ഥ𝒗 + 𝜱ෝ𝒗(𝑡), 𝒂(𝑡) ≈ ഥ𝒂 +𝜱ෝ𝒂(𝑡)

➢POD modes made to satisfy homogeneous DBCs:  𝜱 𝒊Dir, ∶ = 𝟎

➢BCs imposed by modifying ഥ𝒖, ഥ𝒗, ഥ𝒂:  ഥ𝒖 𝒊Dir ← 𝝌𝑢, ഥ𝒗 𝒊Dir ← 𝝌𝑣, ഥ𝒂 𝒊Dir ← 𝝌𝑎

Snapshot collection and reduced basis construction

• Ideally, generate snapshots/reduced bases separately in each subdomain Ω𝑖 [Hoang et al. 
2021, Smetana et al., 2022]

• POD results presented herein use snapshots obtained via FOM-FOM coupling on Ω = 𝑖ڂ Ω𝑖

For nonlinear problems, hyper-reduction needs to preserve Hamiltonian structure

• We employ Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al.  2015]

• Investigating structure-preserving coupling is near-term future work.
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Numerical Example: 1D Dynamic Wave 
Propagation Problem
• 1D beam geometry Ω = 0,1 , clamped at both ends, with 

Gaussian initial condition discretized using FEM + 
Newmark-𝛽

• Simple problem but very stringent test for discretization/ 
coupling methods. 

• Two constitutive models considered:

➢ Linear elastic (problem has exact analytical solution)

➢ Nonlinear hyperelastic Henky

• ROMs results are reproductive and predictive, and are based on the POD/Galerkin
method, with POD calculated from FOM-FOM coupled model.

➢50 POD modes capture ~100% snapshot energy for linear variant of this problem.

➢536 POD modes capture ~100% snapshot energy for Henky variant of this problem.

• Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]

➢ Ensures that Lagrangian structure of problem is preserved in HROM.

• Couplings tested: overlapping, non-overlapping, FOM-FOM, FOM-ROM, ROM-ROM, FOM-
HROM, HROM-HROM, implicit-explicit, implicit-implicit, explicit-explicit.

Figure: POD energy 
decay for nonlinear 

Henky problem

This talk.

This talk.
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• Two variants of problem, with different initial conditions (ICs): 

➢ Symmetric Gaussian IC (top right)

➢Rounded Square IC (bottom right) 

• Non-overlapping domain decomposition (DD) of Ω = Ω1 ∪
Ω2, where Ω1 = [0, 0.6] and Ω2 = [0.6, 1.0]

➢DD based on heuristics: during time-interval considered 
(0 ≤ 𝑡 ≤ 1 × 103), sharper gradient forms in Ω2, 
suggesting FOM or larger ROM is needed there. 

• Reproductive problem: 

➢Displacement snapshots collected using FOM-FOM non-
overlapping coupling with Symmetric Gaussian IC 

➢ FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM        
run with Symmetric Gaussian IC 

• Predictive problem:

➢ Snapshots same as for reproductive problem.

➢ FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM   
run with Rounded Square IC 

Figure above: Symmetric Gaussian IC
Figure below: Rounded Square IC

Numerical Example: 1D Dynamic Wave 
Propagation Problem
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Numerical Example: Reproductive Results

• All coupled models evaluated converged on average in <3 Schwarz iterations per time-step

• FOM-ROM coupling has same total # Schwarz iters (𝑁𝑆) as FOM-FOM coupling

• Other couplings require more Schwarz iters than FOM-FOM coupling to converge 

➢ More Schwarz iters required when coupling less accurate models

➢ Larger 300/80 mode ROM-ROM takes less time than smaller 200/80 mode ROM-ROM 

• FOM-HROM & HROM-HROM couplings outperform FOM-FOM coupling in CPU time by 12.5-32.6%

• All couplings involving ROMs/HROMs are at least as accurate as single-domain ROMs/HROMs 

Green 
shading 

highlights 
most 

competitive 
coupled 
models
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• Single-domain ROM and 
HROM are most efficient

• Couplings involving 
ROMs and HROMs 
enable one to achieve 
smaller errors

• Benefits of hyper-
reduction are limited on 
1D problem

Numerical Example: Reproductive Results
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Figure left: FOM (green) – HROM (cyan) coupling 
compared with single-domain FOM solution (blue).  

HROM has 200 modes.

Figure below: ECSW algorithm samples 253/400 
elements  

Numerical Example: Reproductive Results



82

• Predictive accuracy/robustness can be improved by coupling ROM or HROM to FOM

➢ FOM-ROM coupling is remarkably accurate, achieving displacement error O(1 × 10−8)

➢ FOM-HROM and ROM-ROM couplings are more accurate than single-domain ROMs 

➢HROM-HROM on par with single-domain HROM in terms of accuracy

• Wall-clock times of coupled models can be improved

➢ FOM-HROM, ROM-ROM and HROM-HROM models are slower than FOM-FOM model as 
more Schwarz iterations required to achieve convergence 

➢Hyper-reduction samples ~60% of total mesh points

❖Greater gains from hyper-reduction anticipated for 2D/3D problems

Numerical Example: Predictive Results
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Predictive single-domain ROM (𝑀1= 300) 
solution at final time

Predictive FOM-HROM (𝑀2= 200) 
solution at final time

• Predictive single-domain ROM solution exhibits spurious oscillations in velocity 
and acceleration

• Predictive FOM-HROM solution is smooth and oscillation-free

➢Highlights coupling method’s ability to improve ROM predictive accuracy

− Single-domain FOM solution    − Solution in Ω1 − Solution in Ω2

Numerical Example: Predictive Results
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Predictive single-domain ROM (𝑀1= 300) Predictive FOM-HROM (𝑀2= 200)

− Single-domain FOM solution    − Solution in Ω1 − Solution in Ω2

Numerical Example: Predictive Results



Outline

1. Alternating Schwarz Method for Coupling of 
Full Order Models (FOMs) in Solid Mechanics

• Motivation & Background

• Quasistatics

• Extension to Dynamics 

• Summary & Next Steps

2. Alternating Schwarz Method for                          
FOM-ROM* and ROM-ROM Coupling

• Motivation & Background 

• Demonstration

• Ongoing & Future Work

85* Projection-based Reduced Order Model



Ongoing & Future Work
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Ongoing Work

• Extension to multi-material problems (method works; results not shown herein).

• Development of additive Schwarz variant, which has more potential for parallelization and 
speed-ups (preliminary FOM-FOM results show promise).

• Extension of method to multi-D through newly-developed Python code, pressio-demoapps1

library and/or 3D solid mechanics Julia code2.

➢Multi-D implementation requires transfer operators for transmission BCs

• Journal publication on results presented here + 2D/3D results.

• Alternating Schwarz-based coupling of Physics-Informed Neural Networks (PINNs) 

Next Steps

• Development of smart DD approaches based on error indicators, to determine optimal 
placement of ROM and FOM (including on-the-fly ROM-FOM switching).

• Analysis of method’s convergence properties for non-overlapping and ROM/HROM 
coupling cases.

• Extension of coupling approach to POD modes built from snapshots on independently-
simulated subdomains.

• Application to other problems, including multi-physics problems.

• Structure-preservation within ROMs and couplings involving ROMs

1 https://github.com/Pressio/pressio-demoapps, 2 https://github.com/lxmota/norma

https://github.com/Pressio/pressio-demoapps
https://github.com/lxmota/norma
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Careers at Sandia National Labs 

Students: please consider Sandia and other national labs as a 
potential employer for summer internships and when you graduate! 

• Sandia is a multidisciplinary national lab and Federally Funded Research & 
Development Center (FFRDC).

• Contractor for U.S. DOE’s National Nuclear Security Administration (NNSA).

• Two main sites: Albuquerque, NM and Livermore, CA
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Students: please consider Sandia and other national labs as a 
potential employer for summer internships and when you graduate! 

• Sandia is a great place to work! 

➢ Lots of interesting problems that require fundamental research in applied 
math/computational science and impact mission-critical applications.

➢ Great work/life balance.

• Opportunities at/with Sandia: 

➢ Interns (summer, year-round)

➢ Post docs

➢ Several prestigious post doctoral 
fellowships (von Neumann, Truman, Hruby, 
Data Science)

➢ Staff 

Please see: www.sandia.gov/careers for info 
about current opportunities.

Careers at Sandia National Labs 
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Careers at Sandia National Labs 

90

⋮

Left: current postings from 
www.sandia.gov/careers

for Summer 2023.  
Summer interns are hired 

by early March.

I am hiring interns to help 
with ROM-ROM/ROM-

FOM coupling work!  

If interested, email me 
(ikalash@sandia.gov)     
and apply to the CSRI 

Internship Posting (left).

http://www.sandia.gov/careers
mailto:ikalash@sandia.gov


Start of Backup Slides

91



Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

Appendix. Four Variants* of Schwarz
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Appendix. Four Variants* of Schwarz

Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

Modified and Monolithic Schwarz variants 
create and solve a block system.

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51. 93



Appendix. Four Variants* of Schwarz

Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

Most performant method: monotonic convergence, 
theoretical convergence guarantee.

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51. 94



Appendix.  Full Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop 
and inner Newton loop, each converged to a tight tolerance (𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒).
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Appendix.  Inexact Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop 
and inner Newton loop, with Newton step converged to a loose tolerance.

96



Appendix.  Monolithic Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with 
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

Advantages:

• By-passes Schwarz loop.

Disadvantages:

• Off-diagonal coupling terms → block linear solver is needed.
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Appendix.  Modified Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with 
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

Least-intrusive variant: by-passes Schwarz 
iteration, no need for block solver.

Advantages:

• By-passes Schwarz loop.
• No diagonal coupling (conventional linear 

solver can be used in each subdomain).
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⚫ 1D proof of concept problem:

⚫ 1D bar with area proportional to square root of length.

⚫ Strong singularity on left end of bar.

⚫ Simple hyperelestic material model with no damage.

⚫ MATLAB implementation.

Appendix. Foulk’s Singular Bar

⚫ Problem goals:

⚫ Explore viability of 4 variants of the Schwarz alternating method.

⚫ Test convergence and compare with literature (Evans, 1986).

⚫ Expect faster convergence in fewer iterations with increased overlap.
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Appendix. Singular Bar and Schwarz Variants
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Region of 
localization 
(necking)

Appendix. Multiscale Modeling of 
Localization

Goals:

• Connect physical length scales to engineering scale 
models.

• Investigate importance of microstructural detail.

• Develop bridging technologies for spatial multiscale/ 
multiphysics.

Region of localization (fracture)

Strain localization can cause localized necking (left) 
and ultimately fracture (above).
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Appendix.  Parallelization via DTK: Weak 
Scaling on Cubes Problem
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1 Processor,
2.5*103 DOF / proc

8 Processors,
2.1*103 DOF / proc

64 Processors,
1.9*103 DOF / proc
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Appendix.  Parallelization via DTK: Strong 
Scaling on Cubes Problem

Small problem (2.5*103 DOFs) Medium problem (1.7*104 DOFs)
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Appendix. Notched Cylinder: HEX-HEX Coupling
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Appendix. Notched Cylinder: Nonconformal                     
HEX - HEX Coupling
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Appendix.  Notched Cylinder: Nonconformal                     
HEX - HEX Coupling
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Appendix. Rubiks Cube Problem

plotting axial

stress 

concurrent 

coupling

Two distinct bodies, the component 
scale and the microstructural scale, 

are coupled iteratively with 
alternating Schwarz 

component 

scale

distinct 

models

microstructural 

scale

Work by J. Foulk, D. Littlewood, 

C. Battaile,  H. Lim
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Appendix.  Tensile Bar

Embed microstructure in 
ASTM tensile geometry
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Appendix.  Tensile Bar: Meso-Macroscale 
Coupling

+
Mesoscale 

Macroscale 

SPARKS-generated  
microstructure (F. Abdeljawad)

Fix microstructure, investigate ensembles 

151 axial vectors 
from 3 of the 10 

ensembles of 
random rotations 
(blue, green, red)

▪ Load microstructural ensembles in uniaxial stress
▪ Fit flow curves with a macroscale J2 plasticity model
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Appendix.  Tensile Bar: Results

Reduction in cross-sectional 
area over time
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Appendix.  Schwarz Alternating Method 
for Dynamics
▪ In the literature the Schwarz method is applied to dynamics by using space-time 

discretizations.

▪ This was deemed unfeasible given the design of our current codes and size of 
simulations.

Overlapping non-matching meshes and time steps in dynamics.
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Appendix. A Schwarz-like Time Integrator
▪ We developed an extension of Schwarz coupling to dynamics using a governing time 

stepping algorithm that controls time integrators within each domain. 

▪ Can use different integrators with different time steps within each domain.

▪ 1D results show smooth coupling without numerical artifacts such as spurious wave 
reflections at boundaries of coupled domains.

Controller time stepper

Time integrator for W1

Time integrator for W2
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Schwarz Alternating Method for Dynamic 
Multiscale Coupling: Theory

• Our dynamic alternating 
Schwarz algorithm can be 
interpreted as applying the 
traditional Schwarz alternating 
iterations in space-time 
between Ω1 × 𝐼𝑘 and Ω2 × 𝐼𝑘

• This interpretation does not 
require the method to be 
implemented using a space-
time framework.
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Appendix.  Sierra/SM: Dynamic Schwarz Coupling

tension.i
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ends.i

gauge.i

Appendix.  Sierra/SM: Dynamic Schwarz Coupling
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schwarz_funcs.i

schwarz_vars.i

solver.i

Appendix.  Sierra/SM: Dynamic Schwarz Coupling
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Appendix.  Dynamic Singular Bar
▪ Inelasticity masks problems by introducing energy dissipation.

▪ Schwarz does not introduce numerical artifacts.

▪ Can couple domains with different time integration schemes (Explicit-Implicit below).
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Appendix. Elastic Wave: Energy Conservation

• For clamped beam problem, total energy (TE = 0.5𝒙𝑇𝑲𝒙 + 0.5 ሶ𝒙𝑇𝑴 ሶ𝒙) should be conserved.

• Total energy is calculated in 2 ways: with most of contribution from Ω0 and from Ω1.

Total energy is conserved
and matches single-domain 

total energy.
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Appendix: Some Schwarz Performance Data
Max / Avg # Schwarz iterations during run

Impl-impl
dt=1e-6,  
Schwarz 
tol=1e-6

Impl-impl
dt=1e-7, 
Schwarz 
tol=1e-6

Impl-impl
dt=1e-7, 
Schwarz 

tol=1e-10

Impl-impl
dt=1e-7, 
Schwarz 

tol=1e-15

Expl-impl
dt=1e-7
Schwarz 
tol=1e-6

Expl-impl
dt=1e-8
Schwarz 
tol=1e-6

Hex-Hex 3 / 2.23 3 / 2.08 4 / 2.83 2 / 2.0

Tet-Hex 2 / 2.0

Nonconformal 
Hex-Hex 

2 / 2.0 3 / 2.36 2 / 2.0 2 / 1.54



Appendix: Some Schwarz Performance Data
Max / Avg # Schwarz iterations during run

Impl-impl
dt=1e-6,  
Schwarz 
tol=1e-6

Impl-impl
dt=1e-7, 
Schwarz 
tol=1e-6

Impl-impl
dt=1e-7, 
Schwarz 

tol=1e-10

Impl-impl
dt=1e-7, 
Schwarz 

tol=1e-15

Expl-impl
dt=1e-7
Schwarz 
tol=1e-6

Expl-impl
dt=1e-8
Schwarz 
tol=1e-6

Hex-Hex 3 / 2.23 3 / 2.08 4 / 2.83 2 / 2.0

Tet-Hex 2 / 2.0

Nonconformal 
Hex-Hex 

2 / 2.0 3 / 2.36 2 / 2.0 2 / 1.54

As Schwarz tolerance is tightened, number of 
Schwarz iterations goes up (as expected)



Appendix: Some Schwarz Performance Data
Max / Avg # Schwarz iterations during run

Impl-impl
dt=1e-6,  
Schwarz 
tol=1e-6

Impl-impl
dt=1e-7, 
Schwarz 
tol=1e-6

Impl-impl
dt=1e-7, 
Schwarz 

tol=1e-10

Impl-impl
dt=1e-7, 
Schwarz 

tol=1e-15

Expl-impl
dt=1e-7
Schwarz 
tol=1e-6

Expl-impl
dt=1e-8
Schwarz 
tol=1e-6

Hex-Hex 3 / 2.23 3 / 2.08 4 / 2.83 2 / 2.0

Tet-Hex 2 / 2.0

Nonconformal 
Hex-Hex 

2 / 2.0 3 / 2.36 2 / 2.0 2 / 1.54

Left: time vs. # Schwarz iterations 
(per time step) – behavior is as 

expected given nature of 
solution/domain decomposition
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Appendix. Elastic Wave Propagation

• Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The 
method does not converge for 0% overlap. If the overlap is 100% then the single-domain 
solution is recovered for each of the subdomains. 

• Right figure shows linear convergence rate of dynamic Schwarz implementation (for small 
overlap fraction of 0.2%).

Some Performance Results
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Appendix. Torsion Problem

• Nonlinear elastic bar (Neohookean material model) 
subjected to a high degree of torsion.

• The domain is Ω = (−0.025,0.025) ×
(−0.025,0.025) × (−0.5,0.5).

• We evaluate dynamic Schwarz with 2 subdomains: 
Ω0 = (−0.025,0.025) × −0.025,0.025 ×
−0.5,0.25 , Ω1 = (−0.025,0.025) ×
−0.025,0.025 × −0.25,0.5 .

• Time-discretizations: Newmark (implicit, explicit) 
with same Δ𝑡.

• Meshes: HEX, Composite TET10.

Ω0 Ω1 Ωref
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Appendix.  Torsion: HEX - HEX Coupling

Schwarz and single-domain results 
agree to almost machine-precision!  

Ω0 Ω1 Ωref• Each subdomain discretized using uniform HEX mesh with ∆𝑥𝑖 =
0.01, and advanced in time using implicit Newmark-Beta scheme 
with ∆𝑡 =1e-6.

• Results compared to single-domain solution on mesh conformal with 
Schwarz domain meshes.

Ω0

Ω1

Ω1

Ω0

Displacement relative errors at final time (T=0.002)

Velocity relative errors at final time (T=0.002)
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Appendix.  Torsion: HEX - CTET10 Coupling
• Coupling of Composite TET10 elements + explicit Newmark with 

consistent mass in Ω0 with HEX elements + implicit Newmark in Ω1.

• Reference solution is computed on fine hex mesh + implicit 
Newmark Ωref

Ω0 Ω1 Ωref

Movie of |displacement|
Left: Single-domain,  

Right: Schwarz

No dynamic 
artifacts!

Relative error <1% and 
does not grow in time!
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Appendix.  Bolted Joint Problem: Performance

• Schwarz tolerance = 1e-6

• Dynamic Schwarz converges in between 2-4 Schwarz iterations per time-step 
despite the overlap region being very small for this problem.

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor). 131



132

• Alternating Dirichlet-Neumann Schwarz BCs with no 
relaxation (𝜃 = 1) on Schwarz boundary Γ

➢A parameter sweep study revealed 𝜃 = 1 gave best performance (min # Schwarz iters)

• All couplings were implicit-implicit with Δ𝑡1 = Δ𝑡2 = Δ𝑇 = 10−7 and Δ𝑥1 = Δ𝑥2 = 10−3

➢Time-step and spatial resolution chosen to be small enough to resolve propagating wave

• All reproductive and predictive cases run on the same RHEL8 and RHEL7 machines.

𝜃
Min # 

Schwarz 
Iters

Max # 
Schwarz 

Iters

Total # 
Schwarz 

Iters

1.10 3 9 59,258

1.00 1 4 24,630

0.99 1 5 35,384

0.95 3 6 45,302

0.90 3 8 56,114

• Model accuracy evaluated w.r.t. analogous FOM-FOM coupling via mean square error (MSE): 

Appendix.  Numerical Example: 1D 
Dynamic Wave Propagation Problem

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ

𝝋1
(𝑛+1)

= 𝝀𝑛+1 on Γ

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ
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