Sandia
National
Laboratories

E- en e n
ANEENRY EEEEREEN

-
TR [ LT TT71]
l==. ENEEEEEE .

The Schwarz alternating method as a means for concurrent

multi-scale coupling of conventional and data-driven models
Irina Tezaur?!, Alejandro Mota?, Coleman Alleman?, Greg Phlipot?, Joshua Barnett!:3

1Sandia National Labs 2MSC Software 3Stanford University
University of Nevada, Reno DMS Colloquium February 2, 2023

LA 2&5 Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
ENERGY ’IL,M,&W%'E owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2023-11341A



Outline rh) feima

1. Alternating Schwarz Method for Coupling of Lo >r1 N
Full Order Models (FOMs) in Solid Mechanics \
 Motivation & Background ”

* Quasistatics
 Extension to Dynamics " )F "
* Summary & Next Steps \asz

2. Alternating Schwarz Method for
FOM-ROM* and ROM-ROM Coupling

 Motivation & Background

— — — Schwarz “glue”

Q3
High-fidelity
--1- mesh-free

model
(Physics 3)

* Demonstration
* Ongoing & Future Work

* Projection-based Reduced Order Model




Outline rh) feima

1. Alternating Schwarz Method for Coupling of Lo >r1 .
Full Order Models (FOMs) in Solid Mechanics \
* Motivation & Background ”
* Quasistatics
 Extension to Dynamics " )F "
* Summary & Next Steps \asz

2. Alternating Schwarz Method for
FOM-ROM* and ROM-ROM Coupling

 Motivation & Background

— — — Schwarz “glue”

Q3
High-fidelity
--1- mesh-free

model
(Physics 3)

* Demonstration
* Ongoing & Future Work

* Projection-based Reduced Order Model




Motivation for Concurrent Multiscale h) e,
Coupling

= [Large scale structural failure frequently
originates from small scale phenomena such
as defects, microcracks, inhomogeneities and
more, which grow quickly in unstable manner.

= Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks, Roof failure of Boeing 737 aircraft due to

etc.) and large scale (vibration, impact, high fatigue cracks. From imechanica.org
loads and other perturbations).

Concurrent multiscale methods are
essential for understanding and prediction
of behavior of engineering systems when a .

) ) Surface flaw in pressure

Sma” SCGIe fallure determlneS the vessel: interacts with

performance of the entire system. microstructure, which may
or may not lead to failure.
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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Three-field multiscale
coupling formulation
with compatibility
enforced weakly using
Lagrange multipliers.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
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it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-

Method works well, but is
difficult to implement into



Requirements for Multiscale Coupling Method

* Coupling is concurrent (two-way).
* Ease of implementation into existing massively-parallel HPC codes.

* Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

*  “Plug-and-play” framework: simplifies task of meshing complex geometries

» Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

> Ability to use different solvers/time-integrators in different regions.

* Coupling does not introduce
nonphysical artifacts.

* Theoretical convergence
properties/guarantees.




Schwarz Alternating Method for Domain ()&
Decomposition

* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use ‘
those as pieces to iteratively build a solution for the more complex domain. (;'Sji‘lﬂf;;)
Basic Schwarz Algorithm overlapping
Initialize:
* Solve PDE by any method on £; w/ initial guess for transmission BCs on I}. v >Fl 3
Iterate until convergence: \aQ
*  Solve PDE by any method on (), w/ transmission BCs on I', based on values non-overlapping
just obtained for ().
* Solve PDE by any method on ; w/ transmission BCs on I} based on values . )F .
just obtained for (1. \8Q
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Schwarz Alternating Method for Domain
Decomposition

* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

A

Crux of Method: if the solution is known in regularly shaped domains, use

those as pieces to iteratively build a solution for the more complex domain. (;'éjgh‘lﬂ’;;)
— Basic Schwarz Algorithm overlapping
Initialize:
0 Ty Iy Q2
* Solve PDE by any method on ; w/ initial guess for transmission BCs on TI}.
Iterate until convergence: \m

* Solve PDE by any method on , w/ transmission BCs on I, based on values
just obtained for ().

* Solve PDE by any method on ; w/ transmission BCs on [ based on values
just obtained for ().

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs! if ;N Q, # @.

1Schwarz, 1870; Lions, 1988.
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* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use

those as pieces to iteratively build a solution for the more complex domain. (;'éjgh‘lﬂ’;;)

Basic Schwarz Algorithm

Initialize:
* Solve PDE by any method on ; w/ initial guess for transmission BCs on TI}.
Iterate until convergence:

* Solve PDE by any method on , w/ transmission BCs on I, based on values non-overlapping
just obtained for ;.

* Solve PDE by any method on Q4 w/ transmission BCs on I'; based on values . )F e
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Non-overlapping Schwarz: convergent with Robin-Robin? or alternating Neumann-Dirichlet?
transmission BCs.

2Lions, 1990. 3Zanolli et al., 1987.
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* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use

those as pieces to iteratively build a solution for the more complex domain. (;'S:i‘lﬂ’;;)
Basic Schwarz Algorithm overlapping
Initialize:
*  Solve PDE by any method on Q; w/ initial guess for transmission BCs on I7. v >F} )
Iterate until convergence: \m
*  Solve PDE by any method on (), w/ transmission BCs on I', based on values non-overlapping
just obtained for Q.
* Solve PDE by any method on ; w/ transmission BCs on [ based on values . )F %
just obtained for (). \m

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs! if ;N Q, # @.

Non-overlapping Schwarz: convergent with Robin-Robin? or alternating Neumann-Dirichlet?
transmission BCs.

Common use of Schwarz: preconditioner for Krylov iterative methods to solve linear systems.

1Schwarz, 1870; Lions, 1988.  2Lions, 1990. 3Zanolli et al., 1987.



How we use the Schwarz Alternating ~ [JE=.
Method

AS A
PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

| AS A SOLVER FOR
THE COUPLED

| FULLY NONLINEAR
PROBLEM
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Quasistatic Solid Mechanics Formulation [ g%
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* Energy functional defining weak form of the governing PDEs

D[] = JQ A(F,Z)dV — jﬂ oB - @dV

» A(F,Z): Helmholtz free-energy density
» F:= V: deformation gradient
» Z: collection of internal variables (for plastic materials)
» p: density, B: body force
* Euler-Lagrange equations, obtained by minimizing ®[¢]: {DiVP +pB=0,in{}
Q=¥ on 0}
* (Quasistatics solves sequence of problems in
which loading (body force) B is incremented

quasistatically w.r.t. pseudo time ¢;:

Fori=1,..,n
Solve Div P + pB(t;) = 0 with appropriate boundary conditions (BCs)
Increment pseudo time t; to obtain t; 4




Spatial Coupling via Alternating Schwarz

Overlapping Domain Decomposition

)
Div PV + pB(t) =0, inQ,

1o =1, on 90;\I
1

k(p§n+ ) = (pgn) on [,

(. o (n+1) P .
Div P, + pB(t;)) =0,in(Q,
) ‘Pgnﬂ) =X on 00, \I;

+1 +1
k(pgn ) = (pgn ) on [
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DivP+pB =0,in(}

Model PDE: {(p =¥, on 99

* Dirichlet-Dirichlet transmission
BCs [Schwarz, 1870; Lions, 1988]

Qo

Non-overlapping Domain Decomposition

)
Div P\ + pB(t) =0, inQ,
(n+1)

\ @, = X, on dQ;\I'
L (p§n+1) = Ant1 on I ”
Div PIY L pB(t) =0,inQ,
3 (pgn+1) =y, on 0Q,\I
Py n = P, on T

Anyr = H‘Pgn)

+(1—-0)A,,on I',forn>1

* Relevant for multi-material and
multi-physics coupling

* Alternating Dirichlet-Neumann

transmission BCs [Zanolli et al.,
1987]

Qo

* Robin-Robin transmission BCs also
lead to convergence [Lions,1990]

* @ € [0,1]: relaxation parameter (can
help convergence)
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Overlapping Domain Decomposition

. DivP+pB =0,in(}

Div Pgnﬂ) + pB(t;)) =0,inQ, Model PDE: {(p =X, on d()

{ (pgnﬂ) =¥, on dQ4\I;

k(p§n+1) - (pgn) on I . * Dirichlet-Dirichlet transmission
fDiv Pgn+1) +pB(t) =0, inQ, : ’ BCs [Schwarz, 1870; Lions, 1988]
3 (pg"“) = ¥, on dQ,\I} o0

(o) = g™ on I} Part 1 of talk

Part 2 of talk




Overlapping Schwarz Coupling in Quasistatics

1: 0« idx in Qo > initialize to zero displacement or a better guess in {25
2:n+1
outer 3: repeat > Schwarz loop
ictati 4: @™ «— y on 0p$2; > Dirichlet BC for €2;
quasistatic 5 o™ Po, o, [p™ V] onT; O s roo > Schwarz BC for €;
loop 6: p™ « arg mig ;] in ; > solve in ;
€5;
7: n<n+1
8: until converged
Advantages:

= Conceptually very simple.

= Allows the coupling of regions with different non-conforming meshes, different element
types, and different levels of refinement.

= Information is exchanged among two or more regions, making coupling concurrent.
= Different solvers can be used for the different regions.

= Different material models can be coupled if they are compatible in the overlap region.
= Simplifies the task of meshing complex geometries for the different scales.



Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear
elasticity in variational form and proved method’s
convergence by proposing a convergent sequence of
energy functionals.

= S.G. Mikhlin (1951): proved convergence of Schwarz
method for general linear elliptic PDEs.

= P.-L. Lions (1988): studied convergence of Schwarz for 5.G. Mikhlin
nonlinear monotone elliptic problems using max principle., (1908 -1390)

= A. Mota, |. Tezaur, C. Alleman (2017): proved convergence
of the alternating Schwarz method for finite deformation - L. Lions (1956.)
quasi-static nonlinear PDEs (with energy functional @[¢])
with a geometric convergence rate.

<b[(p]=jBA(F,Z)dV—jBB-<pdV

V.-P+B=0 A. Mota, |. Tezaur, C. Alleman




Convergence Proof*

A Mota I Tezaur, . Alleman il Mech

2 Formulation of the Schwarz Alternating Method

We strt by defiing the standand finite deformation variational ormulation 1o stablish notation before
presenting the formulation o the coupling metho

2.1 Variational Formulation on a Single Domain

& = p(X): 2 B,
X 0. Assume that the boundary of the body is 712 = 2,02 U 2 with unit normal N, where 0,51
s a isplacement boundary. 72 is a traction boundary, and 0,91 3712 ~ 0. The prescribed boundary

y 062~ B or
Neumann boundary conditions see T : 92 —» K. Let F' i Gradp be the deformation gradient. Let
also RB 0 & with 7 Furthermore,
introduce the cnergy functional

W [amz - [nmpav [ 1 »
P o W
5= {0 € WH®) ¢ = xon 0,02} @

i
Vs {€e WH) €= 0ond,0} @

hat satisfies

Vs a test function. The potential energy is minimized f and oy if #(¢] < i + €] for al
F. el

Dt[w]tev/}y Grdgav /lmx cav /’YHT cas -, @

Where P = 0./0F denotes the fi The Euler.L
the varitionalsatement (4) is

A Mota, I Tezau, C. Alleman

Fouer L

thatisi = Land] = 2ifnisodd,ad i = 2and] = 1if n iseven Inroduce the following defiitions for
each subdomain -

+ Cloare = = @9

* Dirichlet boundary: @ = @ &3 .

+ Neumem bounday: @ ©:= @ ) B

- Schwarz boundary: T, = @\ 5.
Note tha with these deritons we guerantee hat @ (9 @ (= 5, @ B9\ I = ; ad @ 51 Ty = ;
Now ceing e peces.

Si= {0 2WHE) T = xon@ . = Py r[ (B)onl [
a
Vo= (2 W) e DN @RI T ®
P11, A
playsacenna
project afied

Thesaiuion” () for the

Aot 1 o € e . " "
X ) X A .
2w e X 02 - X(X[) on a0, > initalize for £

E oo
o Taa (KGR K ) (R )
3 e k) kY e

ot \\rw;‘,)l?ww)‘ + (18] " < s [r—

g S Vo S et

135, 34,41, P the

(Considerthe energy functional ] defined i (1). We will denote by (..} the usual L7 inner product
over 2. thatis.

)= [ av, o9
Tty 02 € W),

T the space S defined in ()

1. bl i cosreive
2 5] it 1] denting.
3. ol s sty comves.
4. i i lower semi-connuous
5. @] isuniformly continsouson K, where
Kii=lp 5 :0lel < B RERR< ) o
e b Pk At
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Remark that [50]

e @S, s Ve s, @

Theorem 1. Assume hat the energy functional () saisfies properties 1-S above, Consder the Schwarz
2 O 39). Then

(@ 9IF0) 2 HEV] 2 2 B D] 2 0E] 2 > ig], where i he minimiser of ¥ig]
overs.

(b) the sequence (") defned in (39) conserges 10 the minimizer  of 91| in S.

| ¢l in S saring
from any initial guess ¢,
@ i@l . hen e sequence ()
il o the minimier .
P See Appendis A o

Finall, while mostof works cited bove present their analysis for the specific case of two sublomains,

specifically in Lions 1] Badea ], and Li-Shan and Evans [34]

4 Numerical Examples

Inthis section, the belavior of
Firs, M W he o
ALnay 21 Next,

Then, features of he

24,
body of square base, aims o study the ffectof th size o the overlap region on the comergence of he
method.

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) P[] > d[@W] > ... > P[E" V] > d[@pM] > ... > D[], where @ is the minimizer of D[p] over S.
(b) The sequence {p™ } defined in (39) converges to the minimizer @ of @[] in S.

(c) The Schwarz minimum values ®[@™] converge monotonically to the minimum value ®[p] in S starting from any

initial guess @.

Remark 1
his funcional over § exist, ... the minimization of @] i well-posed.

Remark 2 Ble]in fnding o €  such
hat

(@lel & - ) 20 N
forall €< 5.

Remark 3 Recall tht the stict onvexity property of ] canbe wrtin 15

Bl — Bl (P, s —61) 20, 2

W1t € S. From (36), remark that f bl s stritly convex over S VI € K such that < o0, we can find
Ay > 0 such that V. ¥ € K we have

D]~ D]~ (@] 2 = 1) > | — 3

Remark 4 By propety . ol > 0,with
@K+ K. such that
11991) = /o2l < o = ). 6
.2 € K. By defniton, (6)  Das 0
Remark S 1t wasshown in 1] that inthe case 1,119, 7 0, ¥ € S, there exist Gy € S, and G € 52
uch that
e=Gt o
nd
wax 161 16:1) < Colll 6
forsome C > D independent of

Remark 6 Note hat (39) can be witen a5

@LEN =0, forg) o
fori € {12} andn € 40,12, (rcall ».
of 5 E Bl over
S
Remark 7 Let 6% < 5, and et € < . By Remark S, there cxis ¢ € 51 and Gy & 8 such that
@10 = LG+ &) o8

*A. Mota, I. Tezaur, C. Alleman. "The Schw

Again wsing (57)and also (58) in (60)keads 10
@] -0, G) = (@0 < 18] - ¢RI g ®1)
and subsiuing (56) inio (1) we finlly obin that
@10 < Gl )] - 16 l- gl ©
vees.
Remark 8 Forpart (d) of Theorem 1 recalthe defnitionof geometric comergence:

Ep £ OE, e
Vi€ 10,12, forsome € 0, where

B [0 - G )

Remark 9 Recal gl ist. 5% near g, then

here exiss  constant K > 0 such that

116 - el _ .
[CEEr i

el I
%161 < Kl — gL )

Proof of Theorem |

s Let ¢ e the minimizer of #(] over S
we can take ¢ = 0. Hence, it cannot be
that {11 < ] where %) = arg i, Bl 1 follows by inducton tha

Proofof o). Let @) = argmin_, Bl By (0, 501
7] > afgt)

B < algt Y] n

forn € (12,3, }. Now let  be the minimizer of #{g] over S. Since the problem is well-posed  is
unique. Hence ] < B@")] foralln € (1.2.5,...} o

T T =GO =0,

hich we can conclude that 37 — 3411 > 0.as 1 - o,

\w@”"u‘s,\‘—“(w\wJ—w\a‘"‘J—(rb’w"ww—@”’))
Since s he
] - #(e) - (F16].0 - 6) < - (#1600 - 60) = (¥160), 6 - 0)
Subsiating (1) o (10) we have

o= @I < L (#56 - )

of ] by () we have that ®l] < BB, It ollows that

Nowby (62 (Remark 7,
(#1071, — 2) < Coll[@ ] - #1606 gl
Subsituing (75 o (72 ads
187 = ol < 22010 - 0
Apoying the iform continity ssumpion (5. we o

o6 - 1)

16— gl <

By 69, [ -
Proofof (). This fllows mmediatey from () and (b)

Proofof (d). By (5) for large enough . there exists some €' > 1 independent of  such that

i I < G| - @2

st now show that ) comverges 1 . the minimizer o ¥{e] o 5. By (53) with 6, = p and

an

an

e

&)

)

&)

Bl = O as n -+ ox. From this we obiain the result, namely that &%) — @ as
o

o

06

Letus choose €' such that C > /K where K is the Lipshitz coninuity constant in (66). Combining

(68) with (76) leads to

o (8] - w1 ) > g

25 Ly _ .
2 e =l

36

an

L ) e L B R e R T )

since ap > 0. Now, by el
of [¢g] (66) we can write.
(#1610 - ™) < 191 lle = $™11 < Kllp - 6. 0
Hence, from (79,
) - bly] < Kl . o

Maorcover,by (53 since #¢]
D[] - ] > agll$™ - . #2)
Using (1) and () we obiain

(2121 - ¥l - (#1g+) - Blel) < KIS - gl - anll§"+0 - o

Combining (53) and (75 leads to

@)

@ — gl < (916 - #le]) - (2161 - ¥lel) < KIS — Il — anllg ™~ I,

@
[y
160 — ol < BJI&" - l] @)
with
B @)
and B e Cy > /K. Furter (e
the minimizer  of ] by (b) and (¢), it ollows that B & (0,1). Define €= 1 — B  (0,1),then (55)
can be rcast as
[ G011 < Cllg™) - @] o
Whereupon the claim s proven. o

B Analytic Solution for Linear-Elastic Singular Bar
As reference, hercin we provide the solution of the singular bar of Section 4.3 for linear clasticity. The
equilibium equation s

P e, o= 5, 0=, a-n (5w

B

rz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51
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Implementation in Albany LCM Code

The proposed quasistatic alternating Schwarz method is
implemented within the Albany LCM open-source parallel,
C++, multi-physics, finite element code.

= Component-based design for rapid development. https://github.com/SNL
Computation/LCM
= Contains a wide variety of constitutive models.

= Extensive use of libraries from the open-source Trilinos
project.

» Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

» Use of the Sacado package for automatic
differentiation.

» Use of Teko package for block preconditioning for
Modified and Monolithic Schwarz variants.

= Parallel implementation of Schwarz alternating method

uses the Data Transfer Kit (DTK). https://github.com/ORNL-

X . CEES/DataTransferKit
= All software available on GitHub.




Quasistatic Example #1: Cuboid Problem

* Coupling of two cuboids with square base (above).

* Neohookean-type material model.

Schwarz Iteration
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1 1 Sandia
Cuboid Problem: Convergence with ) e
Overlap & Refinement

W s -

) o—e (hi,he)=(L})

Below: Convergence of the cuboid e (il =(L})
problem for different mesh sizes e italih
and fixed overlap volume fraction. e b5 (Bl
The Schwarz alternating method £os o (b j;i;
converges linearly. ol e =

10°

1
Overlap Volume Fraction

e Gt = (L)
ol s (i ha) = (1,3
o iy Above: Convergence factor y as a
I e — (b ha)= (3 3) function of overlap volume and
i T o Efj:i; different mesh. There is faster
S —e (k)= () linear convergence with increasing
: e g overlap volume fraction.
Ay M+ < py M)

10-12 d ! i I ] I TR S ! I I
10710210710~ 10 10- 107 10-° 10-° 10-* 10~ 102 10-" 10°
Increment Norm ||Ay™)||
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Cuboid Problem: Schwarz Error

Subdomain ws relative error o33 relative error

o 1.24 x 10714 2.31 x 10713
Qs 7.30 x 1071 3.06 x 10713




Quasistatic Example #2: Notched Cylinder

128

e
32
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16
............ \(T 358
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16
e
I 32
e
64

(a) Schematic

(b) Entire Domain §?2 (c) Fine Region 2

h

Notched cylinder that is stretched along its axial direction.
Domain decomposed into two subdomains.
Neohookean-type material model.
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(d) Coarse Region (22




Notched Cylinder: TET - HEX Coupling ) B

Laboratories

= The Schwarz alternating method is capable of coupling different mesh topologies.

= The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

= The top and bottom regions, presumably of less interest, are meshed with coarser
hexahedral elements.




Notched Cylinder: TET - HEX Coupling () i
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Notched Cylinder: TET - HEX Coupling h) b,

u3 error
5.820e-05

4e-5

3e-5

le-5

Y v —

0.000e+00

us relative error
Absolute residual tolerance 95 Qs

1.0 x 107 9.27 x 107® 3.70 x 102




Notched Cylinder: Coupling Different Materials

The Schwarz method is capable of coupling regions with different material models.

= Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.
= Coarse region is elastic and fine region is elasto-plastic.

= The overlap region in the first mesh is nearer the notch, where plastic behavior is

expected.
Overlap far from notch. Overlap near notch.
”.’”.'.'HHH(
%z’ T
Coupled regions
Coarse, elastic region
AT
A
il

Fine, elasto-plastic region




Notched Cylinder: Coupling Different Materials

Need to be careful to do domain decomposition so that
material models are consistent in overlap region.

=  When the overlap region is far from the notch, no plastic deformation exists in it: the
coarse and fine regions predict the same behavior.

= When the overlap region is near the notch, plastic deformation spills onto it and the two
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.




Quasistatic Example #3: Laser Weld ) i,

Laser weld specimen Single domain discretization

Cauchy_Stress_05
4.000e

IOOO-»D
30

mg Coupled Schwarz discretization

(50% reduction in model size)

* Problem of practical scale.

* Isotropic elasticity and J, plasticity with
linear isotropic hardening. i
* Identical parameters for weld and base

materials for proof of concept, to
become independent models.




Sandia

Laser Weld: Strong Scalability of Parallel .
Schwarz with DTK

(@)}
g

w
DO
T

—
(@}
T

Wall Time [hr]

N
T

* Near-ideal linear speedup (64-1024 cores). L3 64 158 256 512 1824 2048

Number of Processors

Data Transfer Kit (DTK)




Quasistatic Example #4: Tensile Bar h) i,

The alternating Schwarz method can be used as part of a homogenization
(upscaling) process to bridge gap b/w microscopic and macroscopic regions

e Microstructure embedded in ASTM Goal: study strain localization in microstructure.
tensile geometry (right).

* Fix microstructure, investigate

macro- :
ensemble of uniaxial loads. scale ;
* Fit flow curves with a macroscale J,
plasticity model (below).
350
micro-
300¢ Cauchy Stress 11
~ structure p
gzsof w
i
v 200} \
150 macro- ,
e e 10 CPensembles
— it scale
18%00 0.005 0.010 0,015 0.020 0.025 0.030 0.035 0.040 Work by C. Alleman, J. Foulk,

equivalent plastic strain(mm/mm)

D. Littlewood, G. Bergel
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Dynamic Solid Mechanics Formulation ) i,

Laboratories

1
* Kinetic energy: T(p) = 5] P - @dV
Q
* Potential Energy: V(@) := ] A(F,Z)dV — J pB - @ dV
Q Q
* Lagrangian: L(p, @) =T(¢p) —V(p)

« Action functional:  S[¢] ==f L(p, @) dt
1

* Euler-Lagrange equations: (Div P + pB = p@, inQ X1
QX, ty) = xy, in O
@(X, ty) = vy, in Q
Up(X, t) = x, on 0Q X [

* Semi-discrete problem following FEM discretization in space:

Mit + fin (U, 1) = fext




Schwarz Alternating Method for )
Dynamics

= |n the literature the Schwarz method Time
is applied to dynamics by using space- ok {2
time discretizations. T

> & &
T2
D

—0—0—05—0—0—5 O—> Space
- D

h1 ha

Overlapping non-matching meshes and
time steps in dynamics.



Schwarz Alternating Method for )
Dynamics

" |n the literature the Schwarz method Time
is applied to dynamics by using space- N 22
time discretizations. T 1
——¢
® D
Pro ©: Can use non-matching meshes
and time-steps (see right figure). e 7 i
2
o . . ® D
Con ®: Unfeasible given the design of our ’TlI
current codes and size of simulations. DR RIRe
® D
— 11—
0S¢5 © > Space
h1 ho

Overlapping non-matching meshes and
time steps in dynamics.



Schwarz Alternating Method for Dynamic
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M U It | SCa I e CO u p | | N g Controller time stepper: defines global AT's

at which subdomains are synchronized

Q, | |

Step 0: Initialize i = 0 (controller time index).

Controller time stepper
| Time integrator for (2,

| | Time integrator for (2,




Schwarz Alternating Method for Dynamic [ ..
Mu|t| Scale Coup“n g Controller time stepper: defines global AT's

at which subdomains are synchronized

L Ty T,

Controller time stepper

I Integrate using At, |

Time integrator for (2,

Interpolate|from
| AN Q,tol, |
| | Time integrator for (2,

Q, | |
I |

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I’} at times T; + nA4t;.




Schwarz Alternating Method for Dynamic (i) &

Multiscale Coupling

Q,

| Interpolate
\A

from (), to

Il"2

Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Laboratories

Controller time stepper: defines global ATs
at which subdomains are synchronized

Controller time stepper
Time integrator for (2,

Time integrator for (2,

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I’} at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.




Schwarz Alternating Method for Dynamic (i) &

Laboratories

M U It | SCa I e CO u p | | N g Controller time stepper: defines global AT's

at which subdomains are synchronized

Controller time stepper

| Time integrator for (2,

| | Time integrator for (2,
Q, | |
| |

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I’} at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj 1.




Schwarz Alternating Method for Dynamic ) g,
Multiscale Coupling

Q,

L Ty T,
I Integrate using At, |
»
Interpolate|from
| 2N o, oy |

Step 0: Initialize i = 0 (controller time index).

Controller time stepper: defines global ATs
at which subdomains are synchronized

Controller time stepper
Time integrator for (2,

Time integrator for (2,

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I’} at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj 1.
» If unconverged, return to Step 1.




Schwarz Alternating Method for Dynamic [ ..
Mu|t| Scale Coup“n g Controller time stepper: defines global AT's

at which subdomains are synchronized

'T; p

Controller time stepper

Integrate using At; I

Time integrator for (2,

Interjpolate from
0, 6T, AN |
| Time integrator for (2,

Q, | |
I |

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I’} at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj 1.
» If unconverged, return to Step 1.
» If converged, seti = i+ 1 and return to Step 1.




Schwarz Alternating Method for Dynamic (@) .
Mu|t| Scale Coup“n g Controller time stepper: defines global AT's

at which subdomains are synchronized

Q, I Tl | TZ
Controller time stepper
I, Integrate using At; |
| — Time integrator for €2,
T, nterpolate from
0, 6T, AN |
| Time integrator for (2,
Q, | I
| [

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step 4t4, using solution in (), interpolated to I’} at times T; + nA4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, 1. Can use different integrators
» If unconverged, return to Step 1. with different time steps

» |If converged, seti = i + 1 and return to Step 1. within each domain!




Schwarz Alternating Method for Dynamic (@) &,
Multiscale Coupling: Theory

* Like for quasistatics, dynamic alternating Schwarz method converges provided
each single-domain problem is well-posed and overlap region is non-empty,
under some conditions on At.

* Well-posedness for the dynamic problem requires that action functional S[¢] =

I, I, L (@, @)dVdt be strictly convex or strictly concave, where L(¢, ) =
T(@) + V() is the Lagrangian.
» This is studied by looking at its second variation 525[(ph]

* We can show assuming a Newmark time-integration scheme that for the fully-
discrete problem:

(BAL)?
> 62S[@] can always be made positive by choosing a sufficiently small At

5%S[pn]=x [ M—K]x

» Numerical experiments reveal that At requirements for stability/accuracy
typically lead to automatic satisfaction of this bound.

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.



Implementation in Albany LCM & Sierra/SM

Numerical results shown here for dynamic Schwarz are from two codes:

Albany LCM and Sierra/Solid Mechanics (Sierra/SM)

* Albany LCM: Trilinos-based open-source* parallel, C++, multi-physics, FE code.

* Sierra Mechanics Framework: Sandia Lagrangian 3D code for FEA of solids
& structures.

Sierra/SM: quasistatics,
implicit/explicit dynamics +
loose coupling via Arpeggio

P ECHANICEY 5

4:1 J'»‘l“
ISIER KL |J

gl

* https://github.com/SNLComputation/LCM




Implementation in Albany LCM & Sierra/SM

Numerical results shown here for dynamic Schwarz are from two codes:
Albany LCM and Sierra/Solid Mechanics (Sierra/SM)

* Albany LCM: Trilinos-based open-source* parallel, C++, multi-physics, FE code. ﬂAﬂZﬂng

* Sierra Mechanics Framework: Sandia Lagrangian 3D code for FEA of solids @
& structures.

Sierra/SM: quasistatics, ,.f;,’f‘;“ ,J

implicit/explicit dynamics + L~ %
loose coupling via Arpeggio

Schwarz alternating method
was “implemented” in
Sierra/SM using Arpeggio
loose coupling framework

* https://github.com/SNLComputation/LCM



Implementation in Albany LCM & Sierra/SM

Numerical results shown here for dynamic Schwarz are from two codes:

Albany LCM and Sierra/Solid Mechanics (Sierra/SM)

* Albany LCM: Trilinos-based open-source* parallel, C++, multi-physics, FE code.

* Sierra Mechanics Framework: Sandia Lagrangian 3D code for FEA of solids
& structures.

Sierra/SM: quasistatics,
implicit/explicit dynamics +
loose coupling via Arpeggio

R L
- A

“~ f///‘l
ISIER R A 'J

Schwarz alternating method
was “implemented” in
Sierra/SM using Arpeggio
loose coupling framework

We did not have to write any code in Sierra/SM to implement Schwarz!

* https://github.com/SNLComputation/LCM




Dynamic Example #1: Elastic Wave Propagation

* Linear elastic clamped beam with Gaussian initial
condition for the z-displacement.

* Simple problem with analytical exact solution but very stringent test
for discretization methods.

* Test Schwarz with 2 subdomains: 0, = (0,0.001) X (0,0.001) X
(0,0.75),Q, = (0,0.001) x (0,0.001) x (0.25,1).

Clamped Beam Gaussian Z Problem
e | Left: Initial condition
e (blue) and final solution
(red). Wave profile is
negative of initial profile
at time T =1.0e-3.

0.01

0.008 r

0.006 |

0.004 r

0.002 1

z-disp
[l

Time-discretizations:
Newmark (implicit, explicit).

-0.008 | 1 Meshes: HEX, TET

0 0.2 0.4 0.6 0.8 1

I Z -




Elastic Wave: Diff. Integrators, Same Ats
ool . Time‘ =0 . . | 500 . : Time =0 r
0.808 Dynamic Schwarz coupling introduces no —__a
0.006 dynamic artifacts that are pervasivein [~ ™
e | [\ other coupling methods!
0.002 | | | 1 100 f
& f T
5 0 -~ e —— : 15— ——
-0.002 . -100 z-velocity
FEHAE z-displacement 1 -200 1
-0.006 | 4 -300
-0.008 - -400 ¢
-0.01 - . : : -500 - : : '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Z z

Table 1: Averaged (over times + domains) relative errors in z—displacement (blue) and z-
velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal HEX - HEX 2.79e-3 | 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2
Nonconformal HEX - HEX | 2.90e-3 | 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3
TET - HEX 2.79e-3 | 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

LM = Lumped Mass, CM = Consistent Mass




Elastic Wave: Diff. Integrators, Diff. Ats  [@) &=,

Displacement Velocity Acceleration
%107

0.010 200 3

Velocit

< 0000 \/ \/ \/ \/ E} v g
= ]
E -1
_1 -
—0.005 1 —100 1
0 0.2 0.4 0.6 0.8 1

—0.010 T ' . } —200
0.0 0.2 0.4 0.6 0.8 L0 0 -
Position Position

.0 0. 0 .0

Figures above: Plots of displacement, velocity and acceleration for the elastic
wave propagation problem using different time integrators (implicit and
explicit) and different time steps (1e-2s and 2e-7s) for each subdomain,

superimposed over the analytic single domain solution.

The analytic solution is indistinguishable from Schwarz solutions
(hidden behind the solutions for {1 (red) and ()4 (green))!




Dynamic Example #2: Tension Specimen @

. : L : 0
* Uniaxial aluminum cylindrical tensile 0

specimen with inelastic J, material
model.

* Domain decomposition into two
subdomains (right): (15 = ends,
(1, = gauge.

* Nonconformal HEX + composite
TET10 coupling via Schwarz.

* Implicit Newmark time-integration
with adaptive time-stepping
algorithm employed in both

subdomains.
» Slight imperfection introduced at Tl % o7 iy
center of gauge to force necking I SARSAE

upon pulling in vertical direction.




Tension Specimen: Expected Result
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v
wv
[
3 Neckin
@ | Ultimate tensile strength "8
 Fracturestrength _—="_ | ="\ Fracture
T Yield : |
| strength | !
' | |
Lo I I I
| | |
Necking, Fracture I'Young’s Modulus I I
X : = slope ! :
| = stress/strain : :
I | I
| | |
I | I
| I | Non-Uniform |
| Elastic Uniform Plastic | Plastic |
| | Deformation | Deformation , Deformation |
A « > ' >
| : : 4 | Elastic ' Plastic Strdnin : Strain
'L ; | | | Strain | . o
______________ ﬁ‘ v c L] -
Lo e s df e b e v v e v o s J Total Strain | I




Tension Specimen: Disp. & EQPS .

“J ,:J ..

11937 (
Ly S D

EQPS*

2.226e+00

y-displacement

1.008e-02

xi;m

0.005

!
g

Time: 0.000000

1.47e9 11132

g

mQIIIIIIIIhIIIIIIII!IiM
8
M‘|IIIIIIIII|IIIIIIIII

-1.008e-02 0.000e+00

Average of ~3 Schwarz
iterations/time step required
for convergence to Schwarz

tolerance of le-6.

=====cci

*EQPS = Equivalent Plastic Strain



Tension Specimen: Domain Decomposition

[ 111 I
(Lt rtrrcrrr r r 1 700 1 ]

!‘- f/,r,lt
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Tension Specimen: EQPS ()

l— 2.2e+00

— 1

eqps_1

— 0.0e+00

2.2e+00
N

— 1

eqps_1

— 0.0e+00

' «"J ';J ; )

2.2e+00
N

plld. 4,1
- " L

= 4
>

o

egps_1

— 0.0e+00
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Tension Specimen: Cauchy Stress

1.0e+09

-

—0

stress_yy

—-1.0e+09

1.0e+09
N

-0

stress_yy

—-1.0e+09

1.0e+09
§

—0

stress_yy

—-1.0e+09
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Dynamic Example #3: Bolted Joint Problem

" w#_u '

Problem of practical scale. ISIERRAY)

* Schwarz solution compared to single-domain
solution on composite TET10 mesh.

* ), = bolts (Composite TET10), 2, = parts (HEX).

* Inelastic J, material model in both subdomains.
e ();: steel
e (),:steel component, aluminum (bottom) plate

BC: x-disp=0.02at T =
1.0e-3 on top of parts.

Run until T = 5.0e-4 w/ dt =
1le-5 + implicit Newmark
with analytic mass matrix
for composite tet 10s.




4.2 ‘ J/ 4 ,', firmes: 0.000000
ISIFR K (. j

Single {) 7 Schwarz



Bolted Joint Problem: EQPS i

Single Q) Schwarz



Bolted Joint Problem: Convergence Rate (&)=,

1[]':' T T T
_10°
z
S Linear convergence rate
o 1010} . .
v is observed for dynamic
i Schwarz algorithm, as for
jn}
= o] P e 1st timest=p ] the quasistatic Schwarz
e 2nd timestep
————— 10th timestep algorithm.
1000th timestep
————— last timestep
slope = -1
10 20 1 1 T
102¢ 10712 10710 107 10"

Relative error ¢

Figure above: Convergence behavior of the dynamic Schwarz
algorithm for the bolted joint problem

I ———————-——




Bolted Joint Problem: Performance L

CPU times (64 procs™)

Avg # Schwarz iters

Max # Schwarz iters

mesh of bolts)

Single Domain 3h 34m — —
Schwarz 2h 42m 3.22 4
Single Domain 17h 00m — —
(finer)
Schwarz (finer 29h 29m 3.28 4
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* On SNL ascicgpul5, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.



Bolted Joint Problem: Performance h) e,

mesh of bolts)

CPU times (64 procs™) | Avg # Schwarz iters | Max # Schwarz iters
Single Domain 3h 34m — —
Schwarz 2h 42m 3.22 4
Single Domain 17h 00m — — i 1.,. N
(finer) & 4 ERR ,,'_'
Schwarz (finer 29h 29m 3.28 4 o

* Despite its iterative nature, Schwarz can actually be faster than single domain
run for discretizations having comparable # of elements in the bolts.

* On SNL ascicgpul5, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.



Bolted Joint Problem: Performance L
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CPU times (64 procs*)

Avg # Schwarz iters

Max # Schwarz iters

mesh of bolts)

Single Domain 3h 34m — —
Schwarz 2h 42m 3.22 4
Single Domain 17h 00m — —
(finer)
Schwarz (finer 29h 29m 3.28 4

§ s/ 4N

FSIFR R 'J

* Despite its iterative nature, Schwarz can actually be faster than single domain
run for discretizations having comparable # of elements in the bolts.

» Even if the method is more computationally expensive for some
resolutions, it may be preferred for its ability to rapidly change and
evaluate a variety of engineering designs (our typical use case).

* On SNL ascicgpul5, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.



Bolted Joint Problem: Performance h) e,

CPU times (64 procs™) | Avg # Schwarz iters | Max # Schwarz iters
Single Domain 3h 34m — —
Schwarz 2h 42m 3.22 4
Single Domain 17h 00m — — > /;,a N
(finer) | : f
Schwarz (finer 29h 29m 3.28 4
mesh of bolts)

* Despite its iterative nature, Schwarz can actually be faster than single domain
run for discretizations having comparable # of elements in the bolts.

» Even if the method is more computationally expensive for some
resolutions, it may be preferred for its ability to rapidly change and
evaluate a variety of engineering designs (our typical use case).

* Dynamic Schwarz converges in between 2-4 Schwarz .
iterations per time-step despite the overlap region .
being very small for this problem. . /.

overlap region

* On SNL ascicgpul5, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.
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The Schwarz alternating method has been developed/implemented for
concurrent multiscale quasistatic & dynamic modeling in Sandia’s
Albany LCM and Sierra/SM codes.

© Coupling is concurrent (two-way).
© Ease of implementation into existing massively-parallel HPC codes.

© Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

© “Plug-and-play” framework: simplifies task of meshing complex geometries!

© Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

© Ability to use different solvers/time-integrators in different regions.

© Coupling does not introduce nonphysical artifacts.

© Theoretical convergence properties/guarantees.




Ongoing Work and Next Steps h) i,

e Continuing to apply the Schwarz alternating method to problems of interest to
production using Sierra/SM.

e Advancing the Schwarz alternating method to enable coupling of structural
elements to continuum elements.

* Developing a Schwarz-like algorithm for simulating contact to address well-
known challenges (contact constraint enforcement, multiple scales).

» Done by introducing a combination of Dirichlet and Neumann boundary
conditions into different subdomains in a non-overlapping alternating
fashion.

» See the following reference for more info:

J. Hoy, I. Tezaur, A. Mota. "The Schwarz alternating method for multiscale contact mechanics".
in Computer Science Research Institute Summer Proceedings 2021, J.D. Smith and E. Galvan,
eds., Technical Report SAND2021-0653R, Sandia National Labs, 360-378, 2021.

(https://www.sandia.gov/ccr/csri-summer-programs/2021-proceedings/)

» Journal article with D. Koliesnikova in preparation.



https://www.sandia.gov/ccr/csri-summer-programs/2021-proceedings/
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Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple
physics components.

* Most existing coupling frameworks are based on traditional
discretization methods.
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* Nonlocal integral * Meshless (SPH, MLS) multipliers) * Neural ODEs
* Classical DFT * Implicit, explicit * Partitioned (loose) coupling ¢ Projection-based ROMs, ...
* Atomistic, ... * Eulerian, Lagrangian, ... ¢ Iterative (Schwarz,

optimization)




Motivation

The past decades have seen tremendous investment in simulation
frameworks for coupled multi-scale and multi-physics problems.

* Frameworks rely on established mathematical theories to couple
physics components.

* Most existing coupling frameworks are based on traditional
discretization methods.

oD '-Cl-§
-- o] T “

Complex System Model  Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods
* PDEs, ODEs * Mesh-based (FE, FV, FD) * Monolithic (Lagrange * PINNs

* Nonlocal integral * Meshless (SPH, MLS) multipliers) * Neural ODEs

* Classical DFT * Implicit, explicit * Partitioned (loose) coupling ¢ Projection-based ROMs, ...

* Atomistic, ... * Eulerian, Lagrangian, ... ¢ Iterative (Schwarz,

optimization)
* There is currently a big push to integrate data-driven methods into modeling &
simulation toolchains.

Unfortunately, existing algorithmic and software infrastructures are ill-equipped
— to handle plug-and-play integration of non-traditional, data-driven models! E—

B e e I



National

Flexible Heterogeneous Numerical h) i,
Methods (fHNM) Project e [ M2dt

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

Principal research objective:

* Discover mathematical principles guiding the assembly of standard and data-driven
numerical models in stable, accurate and physically consistent ways.

Principal research challenges: we lack mathematical and algorithmic understanding of how to
* “Mix-and-match” standard and data-driven models from three-classes

» Class A: projection-based reduced order models (ROMs) This talk.

» Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

» Class C: flow map approximation models, i.e., dynamic model decomposition

(DMD) models
* Ensure well-posedness & physical consistency of
resulting heterogeneous models.

* Solve such heterogeneous models efficiently.
Three coupling methods: This talk.
* Alternating Schwarz-based coupling
* Optimization-based coupling
e Coupling via generalized mortar methods

Q4 I3
ML Model
(Physics 2)

I,

Overlap

High-fidelity
-1~ mesh-free
model
(Physics 3)

High-fidelity
FEM model
(Physics 2)




Projection-Based Model Order Reduction @i
via the POD/Galerkin I\/Iethod

Full Order Model (FOM): M + fint(X) = foxt

1. Acquisition Number of 3. Projection-Based Reduction
- time steps
F 4 x(t)=x(t)=® x(r)
e T— = 3 Reduce the
5] (2
- El I:> 53 number of
| { | B £s unknowns
’ 2
v
Solve ODE at different Perform
: : Save solution data (DTM(D— + @7 dx) =D
design points Galerkin fmt( X) = fext
projection
2. Learning
Hyper-reduce fin(@R) =~ A fint (PX)
i+ . int ~ int
Proper Orthogonal Decomposition (POD): nonlinear
munll &
= =@ v X v’ ék
Hyper-reduction/sample mesh

ROM = Projection-Based Reduced Order Model. HROM = Hyper-Reduced ROM




Schwarz Extensions to FOM-ROM and ) s
ROM-ROM Couplings

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices ip;,
 Method | in [Gunzburger et al. 2007] is employed
u(t) ~ u+ du(t), v(t) >+ d(t), a(t)~a+ da(t)
» POD modes made to satisfy homogeneous DBCs: @(ipi.,:) =0

Choice of domain decomposition

* Error-based indicators that help decide in what region of the domain a ROM can be viable
should drive domain decomposition (future work) [Bergmann et al. 2018]

Snapshot collection and reduced basis construction

* Ideally, generate snapshots/reduced bases separately in each subdomain (Q; [Hoang et al.
2021, Smetana et al., 2022]

* POD results presented herein use snapshots obtained via FOM-FOM coupling on ) = U; ;

For nonlinear problems, hyper-reduction needs to preserve Hamiltonian structure

* We employ Energy-Conserving Sampling & Weighting Method (ECSW) [Farhat et al. 2015]
* Investigating structure-preserving coupling is near-term future work.
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Numerical Example: 1D Dynamic Wave @

Laboratories

Propagation Problem l
* 1D beam geometry Q) = (0,1), clamped at both ends, with os|
Gaussian initial condition discretized using FEM + 07} 2 Subdomains, 2,

——— 2 Subdomains, 2,

Newmark-f3

* Simple problem but very stringent test for discretization/

coupling methods. .l Figure: POD energy
el . . ' decay for nonlinear
* Two constitutive models considered: 02 Henky problem
» Linear elastic (problem has exact analytical solution) 1 161#P0D d {M)u'az 10°
» Nonlinear hyperelastic Henky This talk.

* ROMs results are reproductive and predictive, and are based on the POD/Galerkin
method, with POD calculated from FOM-FOM coupled model.

» 50 POD modes capture ~100% snapshot energy for linear variant of this problem.
» 536 POD modes capture ~100% snapshot energy for Henky variant of this problem.

* Hyper-reduced ROMs (HROMs) perform hyper-reduction using ECSW [Farhat et al., 2015]

» Ensures that Lagrangian structure of problem is preserved in HROM.
Couplings tested: overlapping) non-overlapping,|FOM-FOM, FOM-ROM, ROM-ROM, FOM-
HROM, HROM-HROM, implicit-explicit,{implicit-implicit} explicit-explicit. This talk.
I —————




Numerical Example: 1D Dynamic Wave (s
Propagation Problem e

* Two variants of problem, with different initial conditions (ICs):

» Symmetric Gaussian IC (top right) T T B @8 04 W 04 ki Ok 0
» Rounded Square IC (bottom right) '
* Non-overlapping domain decomposition (DD) of ) = (); U

Q,, where Q; = [0, 0.6] and Q, = [0.6, 1.0] s |
> DD based on heuristics: during time-interval considered - % i
(0 <t <1 x 103), sharper gradient forms in Q,, a e w w @ e
suggesting FOM or larger ROM is needed there. Figure above: Symmetric Gaussian IC

o Reproductive problem: Figure below: Rounded Square IC

» Displacement snapshots collected using FOM-FOM non:-

overlapping coupling with Symmetric Gaussian IC 1 r '/' i ]
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM 2 |
run with Symmetric Gaussian IC s0 peioct Segpshor 1oL e =282
* Predictive problem: | | ‘ﬁ‘ |
» Snapshots same as for reproductive problem. i ecalarton seopiliv it e s in0n
» FOM-ROM, FOM-HROM, ROM-ROM and HROM-HROM of o pmma I
run with Rounded Square IC N e = & !
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Sandia

[ ]
[ ] .
Example: Reproductive Results (i),
* Laboratories
. CPU Emse(ty)/ Emse(01)/ Emse(ar)/ .
Model M1 /M Ne1/Ne . . . - N:
oae 1/ M 1/Ney2 time (s) Emse () Emse(v2) Euselaz) 5

FOM —/— —/— 1.871 x 10° —/— —/— —/— —

ROM 60,/ — - 1.398 x 10° | 1.659 x 10~ /— 1.037 x 10~ ° 4.681 x 10~ /— —

HROM 60/ — 1655/ — 5.878 x 107 | 1.730 x 10~ " /— | 1.063 x 10~ '/— | 4.741 x 107" /— —

ROM 200/ — —/— 1.448 x 10° | 2.287 x 10° */— | 4.038 x 10 °/— | 4.542 x 10"~ /— —

HROM 200/ — 428/ — 9.229 % 10~ | 8.396 x 10° " /— | 8.947 x 10" °/— | 7.462 x 10"~ /— — Green
FOM-FOM —/— - 2.345 x 10° | — — — 24,630 .
FOM-ROM —/80 iy 2.341 x 10° 2171 x 10 ¢/ 3.884 x 105/ 2.082 x 102/ 25,227 shading

1.253 x 10~° 2.401 x 10~ 2.805 x 1072 hichlights
FOM-HROM — /80 —/130 2.085 x 10° 2.022 x 10~ %/ 1.723e x 1073/ | 7.421 x 1073/ 29,678 ghlig
5.734 x 104 5.776 x 1073 3.791 x 102 most
N _ B e 3 4.754 x 10~ 2/ 1.835 x 10719/ 5.550 x 1077/ .
FOM-ROM /200 / 2.449 > 10 7.357 x 10~ 11 4.027 x 10~? 1.401 x 10~7 24,630 competitive
. _ B B 3 1.421 x 1077/ 1.724 x 10~ %/ 9.567 x 10~ 1/
FOM-HROM /200 /252 2.352 x 10 4563 x 10-4 5943 % 10-3 64 % 10-2 27,156 coupled
4.861 x 10~/ 1.219 x 107/ 1.586 x 10~/ models
ROM-ROM 200/80 —/- ) 3 27,810
/ / 2.778 x 10 3.093 x 10°° 4.177 x 10~ 3.936 x 1077 '
HROM-HROM | 200/80 315/130 1.769 x 10° 3.410 x 1077/ 4.110 x 10~ %/ 2.485 x 107/ 29,860
6.662 x 10 * 6.432 x 10~ 4.307 x 10~ °
2.580 x 10”7/ 6.226 x 10”7/ 9.470 x 10~ °
ROM-ROM 300/80 —/- ) 3 25,059
/ / 2.646 > 10 1.292 x 1077 2.483 x 1074 2.906 x 107 '
HROM-HROM | 300/80 405/130 1.938 x 10° 6.960 x 10~ ° 6.328 x 10~ 3.137 x 10~ " 29,896
7.230 x 107* 7.403 x 1073 4.960 x 10~?

» More Schwarz iters required when coupling less accurate models

> Larger 300/80 mode ROM-ROM takes less time than smaller 200/80 mode ROM-ROM
FOM-HROM & HROM-HROM couplings outperform FOM-FOM coupling in CPU time by 12.5-32.6%

All couplings involving ROMs/HROM s are at least as accurate as single-domain ROMs/HROMs
I —————

All coupled models evaluated converged on average in <3 Schwarz iterations per time-step
FOM-ROM coupling has same total # Schwarz iters (Ng) as FOM-FOM coupling
Other couplings require more Schwarz iters than FOM-FOM coupling to converge




Numerical Example: Reproductive Results @)

Laboratories

W T I
* [
y ) * Single-domain ROM and
x o .
10% : X HROM are most efficient
| L
¢ O
5 . | * Couplings involving
—, 107 F |
2 | ROMs and HROMs
° | enable one to achieve
£ 00 FOM | smaller errors
E O ROM |
*  HROM I
. | .
ol o oo | | = Benefits of hyper-
X FOM-HROM I O reduction are limited on
o ROM-ROM I 1
*  HROM-HROM | ' 1D problem
1[}-‘12 1 1 ] I 1
500 1000 1500 2000 2500 3000
CPU time (s)



Numerical Example: Reproductive Results )&,

10 X 10 | | cllisplacerlnent, snapshot 1|, time = P | |
5 = —
0 o SO —————
5 i
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure left: FOM (green) — HROM (cyan) coupling
velocity, snapshot 1, time = 0 compared with single-domain FOM solution (blue).
10k ' ' ' ' ' ' ' ] HROM has 200 modes.
O — — - — = - = = = = = =
10 4 Figure below: ECSW algorithm samples 253/400
-20 - elements
-30 | | I I I I I I I =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5 «108 acceleration, snapshot 1, time =0
F T T T T T T T =
4 - N 0 50 100 150 200 250 300 350 400
2 _ nz =253
0 —— g% g ) S ——
21 i
-4 1 | | | | | | | |




1 . 1 1 Sandia
umerical cXxampie: Freadictive ResSults P | Natonal
e Laboratories
|
CPU Ense(iy)/ Emse(D1)/ Ense(@r)/ 0t f |
Model . Nﬂ Ne MSE ,..1 MSE ml MSE ,..1 N IR
ode time (s) A/Ne.2 Enmse(ta) Emse(D2) Euse(asz) s P
|
FOM 1.288 x10° —/— -/= -/= -/= - 107 1
ROM 1.358 x10° —/— 3.451x10~°/— | 6.750 x 10~ 7/— | 3.021 x 10~ /— - _ ;
HROM 9.759 x 107 614/ — 3.463 x 107 /— | 6.750 x 10~ */— | 3.021 x 10~ /— - =3 !
@ 6 L
FOM-FOM | 2.133 x 10° —/— —/- —/— —/- 23,280 . 107 ol
FOM-ROM 2.084 x 10° — = 1.907 x 1075/ 1.461 x 109/ 3.973 x 1077/ 23,288 9 !
1.170 x 10~° 9.882 x 10°° 1.757 x 102 g : FOM
1.967 x10~ 7 4.986 x 10~° 2.768 x 10~ 2 < 107 1| © ROM
FOM-HROM . 3 —/2 2 | * HROM
OM-HRO 2219 % 10 /253 1.720 x 10° 4185 x10 2 2.388 x 10 7o | |-~~~ FomFom
] 3 - 5.592 x 10~/ 1.575 x 10~ 2/ 9.197 x 10”2/ ol | O Fom-RoM )
ROM-ROM 2:502 % 10 / 4.346 x 10~2 1.001 x 102 5.304 x 10-2 | 26,220 10 |5 RonaROM
i3 4.802 x 1073 8.500 x 1072 3.744 x 1071 ''| % HROM-HROM
HROM-HROM | 2.200x10 405/253 1.960 x 103 4.630 x 102 2.580 x10- 1 | 20067 102 ‘ ‘ - ‘
500 1000 1500 2000 2500 3000
CPU time (s)

* Predictive accuracy/robustness can be improved by coupling ROM or HROM to FOM
> FOM-ROM coupling is remarkably accurate, achieving displacement error O(1 x 1078)

» FOM-HROM and ROM-ROM couplings are more accurate than single-domain ROMs
» HROM-HROM on par with single-domain HROM in terms of accuracy

* Wall-clock times of coupled models can be improved

» FOM-HROM, ROM-ROM and HROM-HROM models are slower than FOM-FOM model as
more Schwarz iterations required to achieve convergence

» Hyper-reduction samples ~60% of total mesh points
¢ Greater gains from hyper-reduction anticipated for 2D/3D problems



Numerical Example: Predictive Results ) i

x 107 | | ‘ Displac‘:ement ‘ | | |
o ——\ / ] D’———\ S
-200 o4 r\lte—lo‘c;t_y i 720 - 051 Veloclty OiB DiQ -
I .J\/WW\/LVMMWWW o ‘\/\\,_ ———— / | S et -
R
2i< I I b Zi I fl f | | I
0 e o—_ A /\Jlf-------vf ‘rq S U
720_ \[ DIB DIQ ] 720_ 0?1 DIZ 0‘3 U 0‘4 0‘5 D.‘S LI OIT OIB DIQ ]
Predictive single-domain ROM (M, = 300) Predictive FOM-HROM (M= 200)
solution at final time solution at final time
— Single-domain FOM solution ~ — Solution in ()4 — Solution in £,

* Predictive single-domain ROM solution exhibits spurious oscillations in velocity
and acceleration

* Predictive FOM-HROM solution is smooth and oscillation-free
» Highlights coupling method’s ability to improve ROM predictive accuracy
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%1073 Displacement %107 Displacement
1 C T T T T T ] 1 C T T T T T ]
05 / \ B 05 / B
0 [
05 - B 05 - B
1 1 I I 1 I I 1 I I 7 1 1 I I 1 I I 1 I I 7
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Velocity Velocity
20 F T T T T ] 20 F T T T T ]
0 0
20 - - 20 - -
40 L 1 L L 1 L L 1 L L i 40 L 1 L L 1 L L 1 L L i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
«10% Acceleration «10% Acceleration
4 - T T T T T 3 4 F T T T q T 3
2+ E 2+ ‘\ E
0 0 e
2L 4 2+ -
-4 1 | | 1 | | 1 | | 7 -4 1 | | 1 | 1 | | 7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Predictive single-domain ROM (M; = 300) Predictive FOM-HROM (M,= 200)
— Single-domain FOM solution — Solution in 4 — Solution in £,
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Ongoing & Future Work rh) i,

Ongoing Work
* Extension to multi-material problems (method works; results not shown herein).

* Development of additive Schwarz variant, which has more potential for parallelization and
speed-ups (preliminary FOM-FOM results show promise).

* Extension of method to multi-D through newly-developed Python code, pressio-demoapps*
library and/or 3D solid mechanics Julia code?. In
LORD

» Multi-D implementation requires transfer operators for transmission BCs
* Journal publication on results presented here + 2D/3D results.
» Alternating Schwarz-based coupling of Physics-Informed Neural Networks (PINNs)

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

Next Steps

* Development of smart DD approaches based on error indicators, to determine optimal
placement of ROM and FOM (including on-the-fly ROM-FOM switching).

* Analysis of method’s convergence properties for non-overlapping and ROM/HROM
coupling cases.

* Extension of coupling approach to POD modes built from snapshots on independently-
simulated subdomains.

o . . : : 2
* Application to other problems, including multi-physics problems. f M dt
e Structure-preservation within ROMs and couplings involving ROMs

s, 2 https://github.com/Ixmota/norma


https://github.com/Pressio/pressio-demoapps
https://github.com/lxmota/norma
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e Sandia is a multidisciplinary national lab and Federally Funded Research &
Development Center (FFRDC).

e Contractor for U.S. DOE’s National Nuclear Security Administration (NNSA). |
* Two main sites: Albuguerque, NM and Livermore, CA




Careers at Sandia National Labs ) e

Students: please consider Sandia and other national labs as a
potential employer for summer internships and when you graduate!

e Sandiais a great place to work!
» Lots of interesting problems that require fundamental research in applied
math/computational science and impact mission-critical applications.

» Great work/life balance. W T - N

* Opportunities at/with Sandia:
» Interns (summer, year-round)

» Post docs

» Several prestigious post doctoral
fellowships (von Neumann, Truman, Hruby,
Data Science)

» Staff

Please see: www.sandia.gov/careers for info
about current opportunities.



http://www.sandia.gov/careers

Careers at Sandia National Labs ) S

Laboratories
Intern- Scientific Machine Learning Technical Graduate Summer Left: current posti ngs from
Job I oosezr www.sandia.gov/careers
Location Albuguerque, NM
Department Scientific Machine Learning fO r SU mmer 2023 .
Job Family Student Summer interns are hired
Posted Date 11/30/2022 by early March
Intern - Computer Science Research Institute (CSRI) - R&D Graduate Summer
Job ID 685380
Location Multiple ' I am hiring interns to help
Department Scalable Algorithms e _ _
Job Family Student W'th ROM R.OM/ROM
Posted Date 12/14/2022 FOM coupllng work!
Intern - Computer Science Research Institute (CSRI) - R&D Undergraduate Summer . .
Job ID 685381 If interested, email me
Location Multiple (ikalash@sandia.gov)
Department Scalable Algorithms
Job Family Student and apply tO the CSRI
Posted Date 12/01/2022 Internship Posting (left).
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Appendix. Four Variants® of Schwarz

22 — K@, 2l
20 2 4 Azl
until HAw“)H/Hw(”H < Cmachine
10:  y@ « z%)

e PN\RY @525 25))

1: zg) <~ Xg) in Q, zgl) — x(Xél)) on dp, m/(sl) “— Xl(,l) onTy
2: wg) — Xg) in Qg, z,(,z) — x(X,§2)) on 9, z?) — X[(f) onTIg
3: repeat

4 gy zg)

5 wg) « Pzl + Qual? + G12:cg2)

6: repeat

7

8:

9:

i; :Es;:— Pz + Qual) + GZlmfgl)

13: 2a) « K@ @2 2P N\RD @32 2)
14: (2) — m(2) + Aw(z)

5 el 11522 /12 < emasine

2 2 1/2
16 wnt [((1y® - 2P i/121)° + (19 - =@ 1/11)°]

< €machine

b initialize for €1

D initialize for Qo

> Schwarz loop

> for convergence check

> project from Q2 to I'y
> Newton loop for Q1
> linear system

> tight tolerance
> for convergence check

> project from Q2 to 'y
> Newton loop for 2o
> linear system

> tight tolerance

D> tight tolerance

Sandia
I'll National
Laboratories

X(l) in Qq, z( — X(Xél)) on 9, w/(sl) — Xgl) onT;
B ) Xg) in Qg, ,(J — X(Xlgz)) on 92, z/(sz) — Xéz) onTs
: repeat
2/(51) “— Pmmg) + Q122§2) + G12222)

1: z:

2 af

3

4:

50 Az K @S2 20N\RY @f);
6:

7

8:

9:

gl);z(;))
mg) «— wg) + Awg)

2 Pnal) + Qual) + Gzlwg)
22® « ~KD@D;2®;2@)\RD @D;2; )
zg) — w(z) + Az(z)

911/2
10: until [(I\Aw(l’ll/\lm“)l\) (||Aw<”\|/||z<”||)] < Cmacine

> initialize for €y
D> initialize for Qg
> Newton-Schwarz loop
> project from 22 to I'y

> linear system

> project from 24 to I'y

> linear system

D> tight tolerance

Full Schwarz

1: mg) — XE;) in 4, mgl) — x(X,El))nn B, mf;) — Xélj onT
2: g) — Xg) in Qa, zg'z) — x(xf’)on 822, :r:éz) — Xﬁ(,zl onT'y
3: repeat
4: Yy ﬂ:g)
5 . Pma‘, + Qmmm + Glgwf)
6: repeat

1 1 1 1 1 1 1 1
T Am Y K( j(m( X g );mé))\Rg)(mg);mi );mfﬂ))
8: (l’ — :cm + Aw“’

9 until ||A:r. H/II:u H(e

100 y@ m(B)

11: mf;) — P21mg) + Q21m,(51) + Gzlng

12: repeat

13: Am(z —-K @ (m 2, mb e (2))\R. 2)(nz:(2 !Ez);m};))
14: (2) ( + Am(z)

15 until \|Aa;(2)||/|\a:m|| <e

165 wn [ (1 = 2P 1/121)” + (1 - <

a1/2
iieg)’]

< €machine

1> initialize for €2

&> initialize for Qo
& Schwarz loop
&> for convergence check

& project from 22 to I'y
& Newton loop for £21
1> linear system

© loose tolerance, e.g. € € [1074,1071]
© for convergence check

> project from €2y to I'y
& Newton loop for {22

&> solve linear system

b loose tolerance, e.g. ¢ € [1074,1071]

&> tight tolerance

Modified Schwarz

15 wg) — X‘(;) in Qq, z(l) +— x(X(l)) on 9,
2 wg) & Xg) in Qg, @, ( L )((X(“‘7> ) on 2,

3: repeat

M {Aw%)} . (ng,; +K§)Hy KHy, >\ {_
sz K H, K+ KQH») |-

54 wg) — zg) + Azg)

6: wg) — m(2) o Aw(z)

271/2
7: until [(lmm‘”n/um(”n) (\Aw“)u/nm‘;’u)] it

RrRM
Riq?)

)

D> initialize for €
> initialize for Qg
> Newton-Schwarz loop

> linear system

> tight tolerance

Inexact Schwarz

Monolithic Schwarz

-
CMAME 319 (2017), 19-51.

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics",




Appendix. Four Variants™ of Schwarz rh) peim

Modified and Monolithic Schwarz variants
create and solve a block system.

1: ( ) <—X“) inQy,x (l) (—x(X(”)una‘pﬂhmﬁl) X(l) onI'y © initialize for {2y
2: ) X 2) in Qa, @ (2) — x(X(z]) on B¢Qg, @) X(Z) onT'y t> initialize for Qo
¥ mpm > Schwarz 10op el « XPino, e « x(XP) on 801,28 « XD onT > initialize for
4 Yy a:g) ©> for convergence check (2) 1n 2%, ( X ?2) on Gl /(32) 52) onli Initiatize for 351
5. ‘l’g - mem) + megﬁl + Gl?wg) b project from Q2 to 'y 2: zB — X537 inQg, " x(X,") on 9o, Ty )(}9 onTs b initialize for Qo
6; repeat > Newton loop for £ 3 mpea(tl) @ @ @ > Newton-Schwarz loop
7 Am K(l (m(lj miil))\Rg)(mg)3mil)? mél)) & linear system 4 Ty’ Pozp’ + Quwy,’ +Giaxy > project from Qg to 'y
3: (1) — w(l) + Awm 5: Azg) — —Ksl)g(zg);zél); zg))\RS)(zg);zgl);zg)) > linear system
9 until ||A:l:(1)\|/Ha:(1) | € €machine o tight tolerance 6 wg) — wg) + Awg)
10: Y@ mg‘) > for convergence check 7 2 Pglzg) + an(l) + Gzlwg) > project from Q4 to 'y
1 2« Pyl + Qual + Gual) & project from §2; to I'y 8 se? e K@D 2®;a®)\RP @2;2?;2?) > linear system
12: repeat > Newton loop for Q2 o @) @ A (2)
13: Am(;) — —K(ZJ( (2);m§2);mézj)\ﬂf](mg);méz);mg)) 1> linear system Tp < Tp +AOTE 172
14: 22 22 4 nx® 10: until [(HAz(l)H/Hm(l)H) (||Am(2)\|/||z(2)||) ] < €machine > tight tolerance
15: until HAG:(:)”/HG:(:)” < €machine © tight tolerance
27172
16: until [(Hy D —aPiPl)’ + (v - =21/ } < Comachine b tight tolerance
Full Schwarz Modified Schwarz
12« X3 in 01,2l x(X{) ondp, 2 X onTy b initialize for 1
2 w(,f) — Xf;) in Qg, w,(,z) — x(X,EZ)) on dp s, z;f) — Xff) onTly > initialize for Q2
3: repeat > Schwarz loop
4; y(l) — zg) > for convergence check 1 2 XD ino (1) x® 9,9 initialize for
H W P m(2)+Q 2(2)+G z® > project from Q2 to I' PPp Tl Ly “x b B iy > mitiaize for
5 @y« Pozg 12 1284 proj 21071 2 22« XPin 0y, 2  x(XP) on 8502, > initialize for Q2
6: repeat > Newton loop for 1 "B B b b
7 Az K(l) (1) (1) (1) R(l) (1) 2. z® i 3: repeat > Newton-Schwarz loop
Ty’ — s@®g Ty N (xg’;zy iy ) > linear system Aaz(l) KO + K(l)H11 K(I)le —R(l)
(1) (1) (1) 4: AB AB AB > linear system
8 —xp’ +Azy A 2) K(z)H K(z) K(2)H R 2)
) —4 q9-1 5 gtz A+ B2 i’y
9 until HA:E I/llep’l] < e > loose tolerance, e.g. € € [1074,1071] 5 (1) (1) | Ag®
3 —
10: Y@ zg) © for convergence check 6 ( 2(2) Az(z)
11: mg) — Pglmg) +Q21m§1) + Gglmg) > project from Q to I'y : &g Ep AT 011/2
12 repeat e R, > Newton loop for 22 7: until [(||Aw<”|\/um“)n) (la=@1/1=$1) ] < Cmachine b tight tolerance
13: Az;) +— —K‘g}a(z%);z x ))\R( )(z( ), ,(7 );zg )) D> solve linear system
14: 2P 2P+ ral
15:  until ||A:z:(2)||/||:z:(2)|| <e > loose tolerance, e.g. € € [10~4,1071]
9 271/2
16: until [(uy@) —2@1/MeN) + (ly® - =111 ] < Cnuchine b tight tolerance
Inexact Schwarz Monolithic Schwarz

I ———————-——
*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.




Appendix. Four Variants® of Schwarz

Most performant method: monotonic convergence,
theoretical convergence guarantee.

Sandia
|I'| National
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1: zg) — Xg) in Qp, zgl) — x(Xél)) on dp, mg) — Xl(,l) onTy i initialize for 1
2: wg) — Xg) in Qg, w,(,z) — x(X,§2)) on 9, z?) — X[(f) onTIg > initialize for Qg
3¢ repoat I o Schwarz loop 12D« XV in0y, 2P (XD on o021, 2 « X onT > initialize for
4 gy zy > for convergence check : g) (32) b '(32) X ?2) PRl /(32) 52) L L
5. :1:;51) - Pmmg) +Q12w§2) +G12mgz) > project from 3 to T'y 2wy« X' inQo, xp” — x(X, )onB‘FQz,zﬂ (—Xﬂ onTs D initialize for Qg
6:  repeat > Newton loop for 1 3 mpea(tl) @ - @ > Newton-Schwarz loop
7 Awg) - —Kﬁg(wg); z(bl);wl(gl))\R%)(zg); wl(,l); wg)) > linear system 4: Ty’ « Poxy’ + Qu2x,” + G’lgzﬁ > project from 23 to I'y
8 2D 20 4 pzd 50 Az K@Yz a20N\RD @) 20 2() > linear system
9. until HAwg)H/Hzg)H < €machine > tight tolerance 6: :cg) “— wg) + Awg)
10: Y@z > for convergence check 7: z/(gz) «— lezg) + angl) + Gzlwg) > project from Q3 to T’
2 .
1 2y « Ppa) + Qual) + Guzl) > project from 25 to I 8 sl —K@ @2 2P\ @32 2?) > linear system
12: repeat > Newton loop for Q2 o: @) @ | Ap®
13: Azg) — —Kfj)a(a:g);:t?); :l:(;))\Rff)(:z:g);zg?);wgz)) D linear system . Tp <@g+ AT ) 172
14: mg) — m(‘g) + Amg) 10: until [(HAzg)H/ng)H) + (llAmg)H/Hzg)ll) ] < €machine > tight tolerance
15:  until HAzg)II/IIzg)H < €machine > tight tolerance
) 1) 2 @ @2
16: until [(ny“) —2P=PN) + (ly® - =2 1/1=$1) } < Cmchine b tight tolerance
Full Schwarz Modified Schwarz
1: wg> — XJ(BI) in Q1, w,gl) — x(Xél)) on 9, :t;,l) — X‘(gl) onI'; b initialize for 1
2 w(,f) — Xf;) in Qg, w,(,z) — x(X,EZ)) on dp s, z;f) — Xff) onTly > initialize for Q2
3: repeat > Schwarz loop
4; y(l) ) > for convergence check (1) (1) . (1) (1) P
® B @ @ @ ; Layg’ « Xp'in,x « x(X, ") ondp, > initialize for £,
5 Ty’ « Poxy’ + Quexy” + Grawy > project from 25 to I'y 222  XPinqy @ x(X;z)) on 9z, > initialize for 2
6 repeat > Newton loop for 1 3 B ¢ B b N Sch 1
7 Ar®  _KD 20, 20, 20O\ RO 1), L 1), L 1) li s reped B NeWIO e wWarZ 1009
Ty’ ap(@p’iTy N NR, (Z’; @, iy ) > linear system ) K(l) +K(1)H K(l)H (1)
) 0 ) 4 A”p = [ AR T ApS Api 12 \ ‘Ré > linear system
8 Tp —xp’ +Awy : Axt? K H, K+ K H, ~RY 4
AL /11 4 191 B AB Aapt8ag A
9 until [[Azy’||/[|leg’|| < € > loose tolerance, e.g. € € [1074,1071] (1) (1) 1)
(2) (2) 5: xp’ +xp’ +Azy
10: Yz © for convergence check 6 2) @ | Ag®
11: mg) — Pglmg) +Q21m§1) + Gglmg) > project from 21 to I'y ¥ ®p Ty + ATy 3 11/
12 repeat oo ) e . 2 ) > Newton loop for (2 7: until [(uAm‘;)n/nmg)u) + (e 1/1=$1) ] < ichion > tight tolerance
13: Azg) +— —K‘gé(z%);zg );wﬁi ))\RE“)(zga);a:,(7 );zfg )) D> solve linear system
14: mg) — mg) + Azg)
15:  until ||A:z:(§)||/||w(§)|| <e > loose tolerance, e.g. € € [1074,107!]
N 211/2
16: until [(uy@) —2@1/MeN) + (ly® - =111 ] < Cmctine b tight tolerance

Inexact Schwarz Monolithic Schwarz

I ———————-——
*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51. 94




Appendix. Full Schwarz Method rh) b

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, each converged to a tight tolerance (€,,4chine)-

1: mg) — Xg) in Qq, wgl) “— x(Xél)) on 9, :x:él) “— X!(Bl) onI'; > initialize for €2,
2: :r,g) — Xg) in Qo, :Bt()z) — x(Xéz)) on 9,2, :x:g) — X!(Bz) onT'g B> initialize for (2o
3: repeat > Schwarz loop
4. y(l) — mg) > for convergence check
5: mél) — Plga:g) + lezcl(f) + Glzmg) > project from Q2 to I'y
6: repeat > Newton loop for €21
7. Amg) < —K&lé(mg); mgl);mg))\Rg)(mg); wgl); wgl)) > linear system
8: mg) - mg) + Amg)

9: until ||A:c§31)|| / ||:c§91)|| < €machine B> tight tolerance
10: y(2) — :c(g) > for convergence check
11: :Bfgz) — Pglwg) -+ lewgl) -+ Gglwg) > project from £2; to I'2
12: repeat > Newton loop for €22
13: Amg) — —Kfﬁ (mg); wgz) ; mg))\Rff) (mg); :1:1()2) ; mg)) > linear system
14: mg) — mg) + A:cg)

15: until ||A:cg) |/ ||:cg)|| < €machine > tight tolerance
W1 1112 @1 me@ ]
t6: wntit | 1y — 111+ (Il —@WeP1)° | < et > tight tolerance




Appendix. Inexact Schwarz Method rh) b

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, with Newton step converged to a loose tolerance.

1: mg) — X}(Bl) in 21, :cgl) — x(Xél)) on O 21, :cfal) — Xél) onI'y > initialize for 21
2: mg) Y Xg) in Qo, mgz) — x(Xéz)) on Oy, :cg) — Xéz) on I’ > initialize for Qo
3: repeat > Schwarz loop
4: y(l) — :I:g) > for convergence check
5 :cfgl) +— P1233(,3) + Q12m§,2) + Glzwg) > project from §25 to I';
6: repeat > Newton loop for 21
7: Amg) — —K‘(A%(a:g); mgl);wgl))\Rg)(mg); :cgl); zcgl)) > linear system
8 mg) — mJ(Bl) + /_\.mg)

9 until ||Amg)||/||mg)|| <e > loose tolerance, e.g. € € [1074,107}]
10: y(2) — :cg) > for convergence check
11: :13232) — Pglwg) e lewgl) R Gglw‘(gl) > project from €2 to I'g
12: repeat > Newton loop for 22
13: /_\.mg) — —Kf% (mg); mgz); wfgz))\Rf)(wg); mgz); wgz)) > solve linear system
14: :cg) — :c(,f) + Amg)

15:  until ||Awg)||/||wg) || <e b loose tolerance, e.g. € € [1074,107}]
D1/101) @ 1521\ 2]"
16: until [(ny(l) —2PN/MeR1) "+ (Ily® -2 1/12$)) } < Camachine > tight tolerance




Appendix. Monolithic Schwarz Method ([@.

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

1 mg) “— X](Bl) in Q1, :cl()l) < x(XlSl)) on 9§21, > initialize for 21

2 mg) — Xl(;) in Qo, ml()z) - x(XlEz)) on (2, > initialize for Qo

3: repeat > Newton-Schwarz loop
Azl KO + KVH), KU H;, ~RW .

4: 5) < AB (2) AB (2) Ap (2) \ é) > linear SyStCm
AwB KABH21 KAB+KAﬂH22 _RA

3 wg) +— wg) + Awg)

6: mg) — wg) - Amg)

7: until [(nAwg)n/an’u) + (l2e@11/1= 1)) ] < Comatine > tight tolerance

Advantages:

* By-passes Schwarz loop.

Disadvantages:
* Off-diagonal coupling terms — block linear solver is needed.



Appendix. Modified Schwarz Method ) e

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

1: :cg) < Xg) in 1, :cgl) - x(XE()l)) on 921, a:fgl) — Xél) on Iy > initialize for 27
2: :cg) - Xg) in O, :cgz) - x(XE(f)) on Oy €2, :13532) — Xff) on I’y b initialize for (2o
3: repeat > Newton-Schwarz loop
4: mg) — Plga:g) + lea:f) + Glzwg) > project from 9 to I'y
5: Amg) < —KEL);. (:cg); :cgl); :cg))\RS)(a:g); a:gl); :cg)) > linear system
6: mg) < mg) ot Amg)

7. SBE;Z) — lemg) -+ lemgl) -+ G21:1:f31) > project from €21 to I'p
8: Amg) < —Kf% (:cg); :cgz); :cg))\REf)(a:g); a:z()z); 33532)) > linear system
9: wg) < wg) + Awg)

10: until [(HAQ:S)H/Ha:g)H) + (||A:cg)||/||mg)||) ] < €machine > tight tolerance

Advantages: ) . .
& Least-intrusive variant: by-passes Schwarz

* By-passes Schwarz loop. iteration, no need for block solver.
* No diagonal coupling (conventional linear

solver can be used in each subdomain).
I ———————-——
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Appendix. Foulk’s Singular Bar ) Som

o 1D proof of concept problem:

e 1D bar with area proportional to square root of length.
« Strong singularity on left end of bar.

o Simple hyperelestic material model with no damage.

: : I
« MATLAB implementation. TMAML#CAB

u(0) = 0 A(X) = Ap\/X/L w(L) = A
7

L
o Problem goals:

o Explore viability of 4 variants of the Schwarz alternating method.
o Test convergence and compare with literature (Evans, 1986).
« Expect faster convergence in fewer iterations with increased overlap.




Appendix. Singular Bar and Schwarz Variariss:
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Appendix. Multiscale Modeling of 7
Localization

Laboratories

Region of localization (fracture)

Region of |
localization
(necking) |

— '

Strain localization can cause localized necking (left)
and ultimately fracture (above).

Goals:

* Connect physical length scales to engineering scale
models.

* Investigate importance of microstructural detail.

» Develop bridging technologies for spatial multiscale/
multiphysics.
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Appendix. Parallelization via DTK: Weak @)=
Scaling on Cubes Problem

10*
©
e
= 103"
e
@]
|_
2
10 ‘
10° 10t 102

Number of Processors

1 Processor,
2.5*%103 DOF / proc

8 Processors,
2.1*103 DOF / proc

64 Processors,
1.9*103 DOF / proc
I ———————-——
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la DTK: Strong @

10N Vid

Appendix. Parallelizat

Scaling on Cubes Problem
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Appendix. Notched Cylinder: HEX-HEX Coupling

(b) 22

(@)
us relative error
Absolute residual tolerance 9 Qo
1.0 x 10~* 7.60 x 1072 3.20x 1073
1.0 x 1078 3.10 x 107° 1.71 x 107°
1.0 x 10712 1.34 x 1072 5.10 x 1071°
1.0 x 10~ 14 1.23 x 10711 4.69 x 1012
2.5 x 10716 1.14 x 10~ 8.37 x 10~ 4

6.400e-03
0.006

[

T

o
o
)
o

0.003

(R RRRRRARRRRRRARR

0.002

0.000e+00
(©) Sher




Appendix. Notched Cylinder: Nonconformal
HEX - HEX Coupling

(a) €21 and Q9 (b) Qr mesh (¢) 2er solution

u3
6.400e-03
E0.00é

-

—0.005

=0.003

Eo.ooz
0.000e+00




Appendix. Notched Cylinder: Nonconformal
HEX - HEX Coupling

1.446e-05

E].Ze-s
e 966
”fé E
;,‘1;‘ —gée-é
: 3e-6
0.000e+00
(a) 1
ug relative error
Absolute residual tolerance 04 Qs
1.0 x 1078 1.31 x 1072 4.45 x 1074
1.0 x 10712 1.30 x 1072 4.43 x 107*
1.0 x 10~14 1.30 x 1072 4.43 x 1074

2.5 x 10716 1.30 x 1073 4.43 x 1074




Appendix. Rubiks Cube Problem rh) b

Work by J. Foulk, D. Littlewood,
C. Battaile, H. Lim

. _ Two distinct bodies, the component
anisotropic

.. | scale and the microstructural scale,
crystal elasticity _ . .
are coupled iteratively with

isotropic alternating Schwarz
elasticity

distinct
models

overlap

component

concurrent
scale

coupling

plotting axial

stress microstructural

scale
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Appendix. Tensile Bar

Cauchy Stress 11
125.0

l 92.5

60.0

50 A

Embed microstructure in
ASTM tensile geometry




Appendix. Tensile Bar: Meso-Macroscale) s

Laboratories

Coupling
Mesoscale

SPARKS-generated
microstructure (F. Abdeljawad)

Macroscale

4+

cubic elastic constant : C';; = 204.6 GPa
cubic elastic constant : C1o = 137.7 GPa
cubic elastic constant : Cyy = 126.2 GPa

® | oad microstructural ensembles in uniaxial stress
" Fit flow curves with a macroscale J, plasticity model

reference shear rate : 99 = 1.0 1/s 350
rate sensitivity factor : m = 20 T T Y Y XY
hardening rate parameter : go = 2.0 x 10% 1/s 300}

initial hardness : go = 90 MPa Young’s modulus : £ = 195.0 GPa

saturation hardness : g5 = 202 MPa °§ 250} Poission’s ratio : v = 0.3 -
saturation exponent : w = 0.01 g yield stress : o9 = 144 MPa

Fix microstructure, investigate ensembles Z 200} hardening modulus : H = 300 MPa
= saturation modulus : S = 170 MPa

151 axial vectors
from 3 of the 10
ensembles of
random rotations
(blue, green, red)

150 saturation exponent : a = 190 |

e e 10 CPensembles
— J2fit

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
(()).000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
equivalent plastic strain(mm/mm)

oy =00+ He, +5(1 —e “?)




Appendix. Tensile Bar: Results

Reduction in cross-sectional
area over time

0.01005

0.01000

mmg]

—0.00995

Area

0.00990

0-0098% 75 ~0.05 0.00 0.05

Location [mm]
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Appendix. Schwarz Alternating Method ()&
for Dynamics

= |n the literature the Schwarz method is applied to dynamics by using space-time
discretizations.

= This was deemed unfeasible given the design of our current codes and size of

simulations. _
Time

*
I* (2
Ql: 2>

—o—a

" —o—0—&  J

Y (/ \.)
T2

—o—o—05—0—0—5 O—> Space
-~

h1 h2

Overlapping non-matching meshes and time steps in dynamics.
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Appendix. A Schwarz-like Time Integrator @ &=
=  We developed an extension of Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.
= Can use different integrators with different time steps within each domain.

= 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

Controller time stepper
[ I |
Time integrator for (2,

Time integrator for (2,




Schwarz Alternating Method for Dynamic (i) &

Laboratories

Multiscale Coupling: Theory

Our dynamic alternating
Schwarz algorithm can be
interpreted as applying the
traditional Schwarz alternating
iterations in space-time
between (); X I, and Q, X [},

This interpretation does not
require the method to be
implemented using a space-
time framework.

FgXIk F1XIk

> X




Appendix. Sierra/SM: Dynamic Schwarz Coupling S

schwarz_tension

material aluminum
= 2700.0
parameters for model fefp
= 70.0e+09
= 0.36
= 250.0e+06
= linear
= 0.7e+09

function applied_disp_top_ramp
= analytic

function applied_disp_bottom_ramp
= analytic

total lagrange section gauge_formulation
= logarithmic_mapping
=3
= on
= element_probe

total lagrange section ends_formulation
= logarithmic_mapping
=3
= on
= element_probe

finite element model gauge_mesh
= gauge.g
= exodusII
parameters for block gauge
= aluminum
= fefp
= gauge_formulation

finite element model ends_mesh
= ends.g
= exodusII
parameters for block ends
= aluminum
= fefp
= ends_formulation

National
Laboratories

tension.i

procedure schwarz_procedure

solution control description schwarz_loop
use system main
system main
transient schwarz_solve
nonlinear schwarz_iteration
advance ends_region
transfer from_ends_to_gauge
advance gauge_region
transfer from_gauge_to_ends
nonlinear schwarz_iteration
transient schwarz_solve
system main
parameters for transient schwarz_solve
= 1.0
parameters for adagio region ends_region
= 0.01

parameters for adagio region gauge_region
= 0.01

parameters for nonlinear schwarz_iteration
converged when

solution control description schwarz_loop

transfer from_ends_to_gauge
interpolate volume nodes from ends_region to gauge_region
send block ends to schwarz_upper_transition schwarz_lower_transition
send field displacement state new to schwarz_disp state none
send field velocity state new to velocity state new
send field acceleration state new to acceleration state new

transfer from_gauge_to_ends
interpolate volume nodes from gauge_region to ends_region
send block gauge to schwarz_upper_gauge schwarz_lower_gauge
send field displacement state new to schwarz_disp state none
send field velocity state new to velocity state new
send field acceleration state new to acceleration state new

procedure schwarz_procedure

feti equation solver feti

schwarz_tension
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Appendix. Sierra/SM: Dynamic Schwarz Coupling S
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ends.i

at time 9,
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schwarz_funcs.i

expression variable: = nodal schwarz_disp(x)

function schwarz_disp_y user variable schwarz_disp
= analytic = node vector
expression variable: = nodal schwarz_disp(y)

user output
function schwarz_disp_z compute nodal delta_x function delta_x
= analytic compute nodal delta_y function delta_y
expression variable: = nodal schwarz_disp(z) compute nodal delta_z function delta_z
compute global delta_x_norm 12norm of nodal delta_x
compute global delta_y_norm 12norm of nodal delta_y
compute global delta_z_norm 12norm of nodal delta_z
. compute global curr_x_norm 12norm of nodal coordinates(x)
et ton ot compute global curr_y_norm 12norm of nodal coordinates(y)
:‘n;,ﬁa?;‘,ylz’m?v SChwa rz_va rS'I compute global curr_z_norm 12norm of nodal coordinates(z)
expression variable: = nodal coordinates(x) compute global schwarz_norm function schwarz_norm
compute at every step

function y_prev
= analytic user output

expression variable: = nodal coordinates(y) compute nodal x_prev function x_prev
compute nodal y_prev function y_prev
compute nodal z_prev function z_prev
function z_prev compute at every step
= analytic
expression variable: nodal coordinates(z)

function delta_x
= analytic
expression variable: nodal coordinates(x)
expression variable: = nodal x_prev
- solver

cg

function delta_y

= analytic
expression variable: nodal coordinates(y)
expression variable: = nodal y_prev

i gt solver.i

analytic
expression variable: = nodal coordinates(z)
expression variable: = nodal z_prev
full tangent preconditioner
= no_check
function schwarz = feti
= analytic
expression variable: global curr_x_norm
expression variable: global curr_y_norm
expression variable: global curr_z_norm
expression variable: = global delta_x_norm cg
expression variable: = global delta_
expression variable: = global delta_z_norm solver
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Appendix. Dynamic Singular Bar

= |nelasticity masks problems by introducing energy dissipation.

= Schwarz does not introduce numerical artifacts.

Sandia
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= Can couple domains with different time integration schemes (Explicit-Implicit below).
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Appendix. Elastic Wave: Energy Conservation

Clamped Gaussian Z Problem Total Energy

2.2149
2, dominant

- — — — 2, dominant
5 22149 { Single ©
x |
g .
D 22149t
> | .
= : Total energy is conserved
A 2.2149 - . .
3 | and matches single-domain
3 ' total energy.
3 2.2149 | gy
i
3 .
222149 ¢

2.2148 :

0 0.5 1 1.5

Time .an-3

* For clamped beam problem, total energy (TE = 0.5x” Kx + 0.5x7 Mx) should be conserved.

* Total energy is calculated in 2 ways: with most of contribution from , and from ;.




Appendix: Some Schwarz Performance Data %.

Max / Avg # Schwarz iterations during run

lia

72

Impl-impl | Impl-impl Impl-impl Impl-impl | Expl-impl | Expl-impl
dt=1e-6, dt=1e-7, dt=1e-7, dt=1e-7, dt=1e-7 dt=1e-8
Schwarz Schwarz Schwarz Schwarz Schwarz | Schwarz
tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6
Hex-Hex 3/2.23 3/2.08 4/2.83 2/20
Tet-Hex 2/20
Nonconformal 2/20 3/2.36 2/20 2/1.54
Hex-Hex




Appendix: Some Schwarz Performance Data %.

Max / Avg # Schwarz iterations during run

lia

72

Impl-impl | Impl-impl Impl-impl Impl-impl | Expl-impl | Expl-impl
dt=1e-6, dt=1e-7, dt=1e-7, dt=1e-7, dt=1e-7 dt=1e-8
Schwarz Schwarz Schwarz Schwarz Schwarz | Schwarz
tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6
Hex-Hex 3/2.23 3/2.08 4/2.83 2/20
Tet-Hex 2/20
Nonconformal 2/20 3/2.36 2/20 2/1.54
Hex-Hex

As Schwarz tolerance is tightened, number of
Schwarz iterations goes up (as expected)
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Appendix: Some Schwarz Performance Data %.

72

Max / Avg # Schwarz iterations during run

Impl-impl | Impl-impl Impl-impl Impl-impl | Expl-impl | Expl-impl
dt=1e-6, dt=1e-7, dt=1e-7, dt=1e-7, dt=1e-7 dt=1e-8
Schwarz Schwarz Schwarz Schwarz Schwarz | Schwarz
tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6
Hex-Hex 3/2.23 3/2.08 4/2.83 2/20
Tet-Hex 2/20
Nonconformal 2/20 3/2.36 2/20 2/1.54
Hex-Hex

Left: time vs. # Schwarz iterations
(per time step) — behavior is as

2 expected given nature of

solution/domain decomposition

# Schwarz iters
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time step #
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Appendix: Some Schwarz Performance Data %.
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Schwarz Schwarz Schwarz Schwarz Schwarz | Schwarz
tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6

Hex-Hex 3/2.23 3/2.08 4/2.83 2/2.0
Tet-Hex 2/2.0
Nonconformal 2/20 3/2.36 2/20 2/1.54
Hex-Hex
! ) 103 ﬁmg= 0
3.5 0.8 |"J I'
0.6 ;I |
w3 0.4 .r
'E 0.2} J."I n
E 2.5 -.E. .
i 5 : 0.2
0.4
1.5 -0.6 Exact
T e
1 : : : : -1 . : : :
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

time step # z




Appendix: Some Schwarz Performance Data

# Schwarz iters

lia
anal

ratories
Max / Avg # Schwarz iterations during run | lbﬂng
Impl-impl | Impl-impl Impl-impl Impl-impl | Expl-impl | Expl-impl
dt=1e-6, dt=1e-7, dt=1e-7, dt=1e-7, dt=1e-7 dt=1e-8
Schwarz Schwarz Schwarz Schwarz Schwarz | Schwarz
tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6
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Appendix: Some Schwarz Performance Data
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# Schwarz iters

Max / Avg # Schwarz iterations during run

Impl-impl | Impl-impl Impl-impl Impl-impl | Expl-impl | Expl-impl
dt=1e-6, dt=1e-7, dt=1e-7, dt=1e-7, dt=1e-7 dt=1e-8
Schwarz Schwarz Schwarz Schwarz Schwarz | Schwarz
tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6
Hex-Hex 3/2.23 3/2.08 4/2.83 2/20
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tol=1e-6 tol=1e-6 tol=1e-10 tol=1e-15 tol=1e-6 | tol=1e-6
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Appendix. Elastic Wave Propagation thj
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Some Performance Results
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Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The

method does not converge for 0% overlap. If the overlap is 100% then the single-domain
solution is recovered for each of the subdomains.

Right figure shows linear convergence rate of dynamic Schwarz implementation (for small
overlap fraction of 0.2%).
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Appendix. Torsion Problem rh) g

* Nonlinear elastic bar (Neohookean material model)
subjected to a high degree of torsion.

* The domainis @ = (—0.025,0.025) X
(—0.025,0.025) x (—0.5,0.5).

e We evaluate dynamic Schwarz with 2 subdomains:
= (—0.025,0.025) x (—0.025,0.025) X
(—0.5,0.25),Q, = (—0.025,0.025) X
(—0.025,0.025) x (—0.25,0.5).

* Time-discretizations: Newmark (implicit, explicit)
with same At.

* Meshes: HEX, Composite TET10.




Appendix. Torsion: HEX - HEX Coupling  [.

* Each subdomain discretized using uniform HEX mesh with Ax; =
0.01, and advanced in time using implicit Newmark-Beta scheme
with At =1e-6.

e Results compared to single-domain solution on mesh conformal with
Schwarz domain meshes.

Displacement relative errors at final time (T=0.002) ol relenior

—1.8463e-13

=1.2308e-13

—6.1642e-14
E950281L’3
Velocity relative errors at final time (T=0.002) velrelogr

B e E
: £4.66246-12

1 L

=3.1082e-12

" smrens womeans
sanast »# "1 .5541e-12

‘QO Siiisessmasusaasus sty | E
1.23¢66-14

Schwarz and single-domain results
agree to almost machine-precision!




Appendix. Torsion: HEX - CTET10 Coupling(h) .

Qref

* Coupling of Composite TET10 elements + explicit Newmark with
consistent mass in 1, with HEX elements + implicit Newmark in ().

e Reference solution is computed on fine hex mesh + implicit
Newmark Qpqf

Relative error <1% and
does not grow in time!

No dynamic
artifacts!
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Appendix. Bolted Joint Problem: Performance

# Schwarz iters

—&— Schwarz w/ coarser bolts (27}
—— Schwarz w/ finer bolts (025)

0 1 2 3 E! 5 B 7
time (sec) w1074

e Schwarz tolerance = 1e-6

* Dynamic Schwarz converges in between 2-4 Schwarz iterations per time-step
despite the overlap region being very small for this problem.

* On SNL ascicgpul5, 16, 17 machines (Intel Skylake CPU processor).



Appendix. Numerical Example: 1D ) e,

Dynamic Wave Propagation Problem
e Alternating Dirichlet-Neumann Schwarz BCs with no ' Min # Max # Total #

Schwarz Schwarz | Schwarz

relaxation (6 = 1) on Schwarz boundary T’

Iters Iters Iters

(. p(n+1) P

Div P + pB(t;)) =0,inQ, 1.10 3 9 59,258
1M =y, on 90, \T 1.00 1 4 24,630
| o = A on T o >P 2, 0.99 1 5 35,384
f (i) \ 0.95 3 6 45,302

Div P +pB(t;)) =0,in(Q

‘;’Hf) PB(t:) N 2% At 0.90 3 8 56,114

19, =X, on dQ,\TI'

kPgnﬂ)n = pJ"*n, on T Apyr =00 + (1 —6)4,0n T,forn=1

» A parameter sweep study revealed 8 = 1 gave best performance (min # Schwarz iters)
« All couplings were implicit-implicit with At; = At, = AT = 1077 and Ax; = Ax, = 1073
» Time-step and spatial resolution chosen to be small enough to resolve propagating wave

* All reproductive and predictive cases run on the same RHEL8 and RHEL7 machines.
* Model accuracy evaluated w.r.t. analogous FOM-FOM coupling via mean square error (MSE):

\/zizl 7 — |2

Emse () =
/ s
n=1 ||u?||§




