
A Novel In Situ Machine Learning
Framework for Intelligent Data Capture
and Event Detection

T. M. Shead, I. K. Tezaur, W. L. Davis IV, M. L. Carlson, D. M. Dunlavy,
E. J. Parish, P. J. Blonigan, J. Tencer, F. Rizzi, and H. Kolla

Abstract We present a novel framework for automatically detecting spatial and
temporal events of interest in situ while running high performance computing (HPC)

T. M. Shead
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: tshead@sandia.gov

I. K. Tezaur
Sandia National Laboratories, Livermore, CA, USA
e-mail: ikalash@sandia.gov

W. L. Davis IV
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: wldavis@sandia.gov

M. L. Carlson
Sandia National Laboratories, Livermore, CA, USA
e-mail: maxcarl@sandia.gov

D. M. Dunlavy
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: dmdunla@sandia.gov

E. J. Parish
Sandia National Laboratories, Livermore, CA, USA
e-mail: ejparis@sandia.gov

P. J. Blonigan
Sandia National Laboratories, Livermore, CA, USA
e-mail: pblonig@sandia.gov

J. Tencer
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: jtencer@sandia.gov

F. Rizzi
NexGen Analytics, Sheridan, WY, USA
e-mail: francesco.rizzi@ng-analytics.com

H. Kolla (B)
Sandia National Laboratories, Livermore, CA, USA
e-mail: hnkolla@sandia.gov

© The Author(s) 2023
N. Swaminathan and A. Parente (eds.),Machine Learning and Its Application to Reacting
Flows, Lecture Notes in Energy 44, https://doi.org/10.1007/978-3-031-16248-0_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16248-0_3&domain=pdf
mailto:tshead@sandia.gov
mailto:ikalash@sandia.gov
mailto:wldavis@sandia.gov
mailto:maxcarl@sandia.gov
mailto:dmdunla@sandia.gov
mailto:ejparis@sandia.gov
mailto:pblonig@sandia.gov
mailto:jtencer@sandia.gov
mailto:francesco.rizzi@ng-analytics.com
mailto:hnkolla@sandia.gov
https://doi.org/10.1007/978-3-031-16248-0_3

54 T. M. Shead et al.

simulations. The new framework – composed from signature,measure, and decision
building blocks with well-defined semantics – is tailored for parallel and distributed
computing, has bounded communication and storage requirements, is generalizable
to a variety of applications, and operates in an unsupervised fashion.We demonstrate
the efficacy of our framework on several cases spanning scientific domains and
applications of event detection: optimized input/output (I/O) in computational fluid
dynamics simulations, detecting events that can lead to irreversible climate changes
in simulations of polar ice sheets, and identifying optimal space-time subregions for
projection-based model reduction. Additionally, we demonstrate the scalability of
our framework using a HPC combustion application on the Cori supercomputer at
the National Energy Research Scientific Computing Center (NERSC).

1 Introduction

Scientific investigations – whether computational, experimental or observational –
are ever expanding to include larger sets of coupled physics spanning broader ranges
of scales, and the volumes of data generated from these investigations consistently
outpace the growth of computational and data storage resources. As a consequence,
specifically in the area of HPC modeling and simulation, the process of mining sci-
entific data to glean insight is shifting from one of a posteriori to one of in situ
analysis, i.e., analysis performed simultaneously with a simulation while sharing
resources with it. Capturing events of interest to scientists in complex, high-fidelity
HPC simulations is difficult because it is rarely feasible to export the entire simula-
tion state at every timestep. Crucial stages in the development of events can be lost
between checkpoints, and ephemeral events can be missed altogether, making a pos-
teriori event detection problematic. Identifying events in situ is equally challenging,
as traditional analysis algorithms that assume global access to data require excessive
communication bandwidth.

Machine learning (ML) is being applied to scientific data for various purposes,
including establishing constitutive laws, developing mathematically and statistically
compact models of governing physics, identifying embedded patterns, dimensional-
ity reduction, parameter importance and sensitivity analysis, and uncertainty quan-
tification (UQ). In this work we focus on one specific application ofML: in situ event
detection. Specifically, we seek to develop event detection algorithms that are:

• Generalizable: deployable in a variety of different scientific computing domains
without the need for application-specific tuning;

• Unsupervised: able to operate without labeled examples defining events
of interest;

• Low Overhead: requiring minimal communication between processors;
• Online: able to make predictions with minimal retention of data from prior
timesteps.

A Novel In Situ Machine Learning Framework … 55

To motivate the main contributions of this chapter, we first provide a brief overview
of related past work.

1.1 Overview of Related Work

Event detection is related to anomaly detection, since the purpose of each is to
detect behavior that is locally different. There has been substantial previous research
on developing streaming anomaly detection algorithms for HPC simulation data.
However, many of these algorithms require significant communication between pro-
cessors. For example, Wu et al. (2014) proposed the Random Subspace Forest (RS-
Forest) algorithm in which decision trees with random splits and random thresholds
are used to construct a density estimate over the data observations in a continuous
feature space. While this algorithm is very fast for local or shared memory applica-
tions, it is not communication efficient in this context because it requires sharing the
entire RS-Forest data model across all processors. Similarly, Kernel Density Esti-
mation (KDE) has been proposed for online anomaly detection (Ahmed 2009), but
also requires significant communication between processors.

Some anomaly detectionmethods have been designed for parallel implementation
with low communication overhead. Zhao et al. (2009) proposed a parallel framework
for k-means clustering that could be adapted for anomaly detection. However, k-
means clustering requires a user-defined number of clusters k, and performance is
often strongly dependent on the selected value of this variable. Such sensitivity to
algorithm parameters is undesirable for unsupervised in situ event detection.

Application-specific event detectors have also been developed. These include
detectors to flagwhen ignition has occurred in combustion simulations (Bennett et al.
2016) and tropical cyclone trackers for climate simulations (Ullrich and Zarzycki
2016; Zhao et al. 2009). These algorithmsmake use of significant domain knowledge
and are only applicable in the specific field for which they were developed, which is
contrary to our goal of developing generalizable algorithms.

Ensemble anomaly detection techniques, such as iForest (Liu et al. 2012) and
iNNE (Bandaragoda et al. 2014), are often considered to be robust and highly gener-
alizable. Furthermore, these techniques have been shown to be compatible with data
sub-sampling. The disadvantage of thesemethods is that they require communication
to share the ensemble model between processors. For large ensembles this overhead
can be prohibitively high.

Finally, it is not clear that conventional anomaly detection algorithms are well-
suited for event detection in simulations. Because simulations often make use of
highly refined meshes to resolve complex physical phenomena, an event of interest
could occur over tens of thousands of mesh points, making it well-represented in
the data, and therefore not anomalous. Moreover, comparisons to previous timesteps
also are not straightforward, since many simulations exhibit significant drift over
time: what is unusual at one timestep might become the norm later in time.

56 T. M. Shead et al.

1.2 Contributions and Organization

We present herein a novel framework for applying ML to detect events of interest in
situ in HPC simulation data. In this context, “events of interest” can be defined as
any local dynamics in a region that differ significantly from the dynamics of other
regions or timesteps.Our framework is tailored for parallel and distributed computing
with the data typically representing a space-time domain of interest, with the spatial
domain distributed across computing resources (processors/nodes) and data along
the time dimension arriving in a streaming manner.

Consider a region handled by a single processor exhibiting behavior that differs
significantly from the regions on other processors. Such a region could be considered
interesting even if the behavior persists over multiple timesteps. An example of this
type of event could be a tropical cyclone that persists over many timesteps in a
weather simulation but is geographically localized. We refer to events of this type as
spatial events of interest. Conversely, a sudden change across all processors from one
timestep to the next could also be considered interesting. An example of this type
of event could be simultaneous ignition across an entire domain in a combustion
simulation. We refer to these as temporal events of interest.

This research presents a framework for developing in situ spatial and temporal
event detection algorithms with tightly bounded communication and storage require-
ments, composed from signature, measure, and decision building blocks with well-
defined semantics. The goal of this framework is to facilitate event detection in a
computationally scalable and efficient manner, while allowing the flexibility to com-
pose a learning workflow best suited for the scientific domain and problem at hand.
The proposed framework can be used not only to optimize I/O within an HPC simu-
lation (by flagging the locations where events of interest occur so that only a subset
of the simulation state is stored to disk), but also to detect scientifically meaning-
ful phenomena within HPC simulations and even to improve a simulation’s accu-
racy/efficiency. A detected event can be used as a trigger for mesh and/or timestep
refinement, e.g., Adaptive Mesh Refinement (AMR) (Berger and Oliger 1984).

The remainder of this chapter is organized as follows. The specific components of
the proposed event detection framework are detailed in Sect. 2. In Sect. 3 we present
results from three use cases that demonstrate the versatility and composability of the
framework. The use cases span different scientific domains and different applications
of event detection: optimized I/O influidflowsimulations (Sect. 3.1), detecting events
that are scientifically interesting in ice sheet simulations (Sect. 3.2), and identifying
optimal space-time sub-regions for projection-based model reduction (Sect. 3.3).
Section 3.4 presents results, using an exemplar turbulent combustion simulation,
that demonstrate the scalability and computational efficiency of the framework when
deployed in parallel computing simulations. Finally, conclusions are provided in
Sect. 4.

A Novel In Situ Machine Learning Framework … 57

2 Approach

Our framework for event detection is as follows. First, we assume a simulation
domain with any number of dimensions. We further assume that the domain is
divided into a set of P analysis partitions, where each analysis partition pi = 0,,
P − 1 is a spatially-contiguous subset of mesh points of the simulation domain. Each
partition is always associated with a single processor so that analysis partitions never
straddle processor boundaries or migrate from one processor to another throughout
the simulation. Thus, a single processor will be responsible for one-to-many analy-
sis partitions, with the size and number of partitions chosen based on the problem
domain (Fig. 1).

Next, we execute the following workflow at each timestep of the running simula-
tion. For each analysis partition pi we compute a signature si , a fixed-length vector
representing the simulation state within that partitionwhere |si | � |pi | (Fig. 2). Con-
ceptually, signatures are compressed, low-dimensional representations of an analysis
partition’s content, and our intent is that the signature should contain crucial aspects

Analysis PartitionsProcessor PartitionsSimulation Domain

Fig. 1 Example simulation domain (gray), split across processors (green), and divided into analysis
partitions (blue)

Signatures

⟹

Analysis Partitions

Fig. 2 Each analysis partition is represented by a low-dimensional signature

58 T. M. Shead et al.

Table 1 Signature functions

Signature Description

fieda Vector of feature importance values described in Ling et al. (2017)

fmm Vector based on the Feature Moment Metric algorithm in Konduri et al. (2018)

mean Vector of mean values for each simulation feature

minimax Vector of minimum and maximum values for each simulation feature

quartile Vector of quartile boundaries for each simulation feature (a generalization of
minimax)

svd Vector of singular values computed using an SVD on the flattened partition state
matrix

Spatial Comparison Temporal Comparison

Fig. 3 Signatures can be compared all-to-all across analysis partitions to identify spatial events
(left), and current signatures can be compared to previous signatures within partitions to identify
temporal events (right)

of the state of the simulation within that partition, stored in such a way that changes
across space or time can be detected by subsequent analysis of that representation.

As an example, for a simulation with state variables F ∈ R
n , a signature could be

vector of size 2|F | containing the minimum and maximum value for each variable
f ∈ F within the partition. Of course, this is only one possible signature type among
many (we call this type minimax); we provide the subset of signature functions used
in our experiments in Table 1. Note that, because analysis partitions are always asso-
ciated with a single processor, computing signatures can be a purely local operation.
Further, because signatures are a small, fixed size relative to the partitions they rep-
resent, they can be broadcast to other processors for spatial (partition-to-partition)
comparisons and stored between timesteps for temporal (timestep-to-timestep) com-
parisons (Fig. 3). The user can choose, based on domain knowledge and the problem
specifics, the set of features used to compute signatures. This set could consist of
all of the state variables, a subset, derived variables, or any combination thereof; the
only requirement is that the same set of features be used across all analysis partitions.

Given a set of signatures, we can compute spatial or temporalmeasures to identify
events. Measures are functions applied to signatures that detect changes across space

A Novel In Situ Machine Learning Framework … 59

Table 2 Spatial measures

Measure Description

dbscan Uses DBSCAN (Ester et al. 1996) to flag outlier signatures as events

m1 M1 metric described in Ling et al. (2017)

m1-hellinger Modified version of the Hellinger distance used as a spatial metric,
described in Konduri et al. (2018)

msd Compares the distance between one signature and the mean signature for
all partitions

sigscal Normalizes the signature matrix using the product of the inverse of each
signature and measures the ability of each signature to drive values in the
product to zero

Table 3 Temporal measures

Measure Description

changefreq Counts the number of changes (dramatic increases or decreases across any
two timesteps within a temporal window)

maxchange Uses the maximum change across any timesteps within the current
temporal window

mse Based on mean squared error between the current temporal block
(S × Twindow matrix) and previous temporal block

psd Estimates power spectral density (power spectrum) for each feature within
the temporal block (S × Twindow matrix) using Welch’s method (Welch
1967)

svd Ratio of the largest non-zero singular value to the smallest non-zero
singular value

or time. Spatial measures compare signatures across analysis partitions to identify
spatial events; typically, they compare the signature for a given partition to every other
partition’s signature, which requires communication. Temporal measures compare
an analysis partition’s current signature to its past signatures and are thus completely
local, requiring only storage of a finite number of signatures from previous timesteps.
In both cases, the output of the measure is a per-analysis-partition continuous scalar
value indicating how interesting the partition’s state is at the current timestep. We
list representative spatial and temporal measures implemented for our experiments
in Tables 2 and 3, respectively.

Finally, we use decision functions to convert continuous per-analysis-partition
measures into boolean values to indicate whether the partitions should be flagged as
containing events of interest for the current timestep. Decision functions are purely
local, requiring no communication. Table 4 describes the decision functions that we
used in our experiments.

We refer to a combination of signature, measure, and decision functions as an
algorithm for in situ event detection; because we have many instances of each type,
and they can be combined almost without exception, there are many possible algo-

60 T. M. Shead et al.

Table 4 Decision functions

Decision Description

threshold Flag a partition when its measure exceeds a fixed threshold

percentile Flag a partition when its measure exceeds the nth percentile of the
measure for all partitions

memory Decision modifier which continues to flag a partition for a fixed number of
timesteps after another decision function has flagged it

rithms that can be created with just a few components (and the set of components
continues to grow as we explore new ideas). The few incompatibilities tend to be
driven by the expected inputs for a component. For example, it makes little sense
to combine the dbscan measure with the percentile decision, since the former only
produces binary values as output, and the latter is only useful with a continuous
distribution as input.

3 Results

In this section we demonstrate our methodology on three important use cases
for in situ machine learning: data capture for optimizing I/O (Sect. 3.1), detection
of interesting physical events (Sect. 3.2), and facilitating reduced order model con-
struction (Sect. 3.3). The use cases represent different scientific domains, but have
similarities with reacting flows: Sect. 3.1 pertains to low speed non-reacting tur-
bulent flows with passive tracers; Sect. 3.2 pertains to an incompressible fluid flow
(glacier ice) solved using Stokes flow equations; Sect. 3.3 pertains to supersonic flow
with shock. The purpose behind choosing such different use cases is to illustrate the
generality of our detection algorithms.

3.1 Data Capture for Optimal I/O: Mantaflow Experiments

In our initial round of experiments, our focus is on testing the utility of our framework,
and quantifying whether it could be used for meaningful reductions in I/O. We
begin by creating a reference implementation using Python (2022), Numpy (Walt
et al. 2011), Scipy (Jones et al. 2001) and Scikit-Learn (Pedregosa et al. 2011). To
simplify development and support rapid iteration, these experiments use Mantaflow
(Thuerey and Pfaff 2018) – an open source library targeting fluid simulation research
in computer graphics andmachine learning – for the simulation.Despite being a serial
code,Mantaflow’s Python scene definition interfacemakes it ideal for integration and
rapid testing with our algorithms. All of our Mantaflow experiments are conducted
using two-dimensional (2D) simulations for speed and ease of visualization.

A Novel In Situ Machine Learning Framework … 61

Fig. 4 Density field visualization from the small plumes Mantaflow simulation at one timestep.
Darker colors signify higher density

To run the simulations, we created a driver script that loads an experiment defi-
nition file specifying the simulation setup, analysis partitions, simulation features to
use for signature generation, as well as the signature, measure and decision functions
to use for the analysis. Because the driver script also provides the simulation outer
loop, it is trivial to run our analysis code alongside the simulation in situ.

We designed several Mantaflow simulations to test our event detection approach
at different scales; for this chapter, we focus on our small plumes simulation, which
has four state variables (density, pressure, x-velocity and y-velocity) and features
three steady turbulent plumes of buoyant fluid using a 64 × 256 grid and running for
300 timesteps (Fig. 4).

Since the goal for our I/O use case is to minimize the amount of data saved to
disk while simultaneously maximizing the number of events captured, a fundamental
challenge is defining a sensible ground truth: for any given simulation, there is no
well-definedway to specifywhich parts of the simulation should be considered events
of interest (and thus flagged by our framework for subsequent storage to disk). To
address this, we opted to create our own explicit ground truth by injecting random
“depth charge” anomalies into the simulation. To do so, we generate a random value
for each simulation cell at each timestep. At any cell where the random value exceeds
a threshold, the simulation density is increased by a substantial amount, and the cell is
marked as anomalous using an additional simulation state variable. Thus, the depth
charge anomalies occur at random timesteps and locations within the simulation
domain, and the anomalies state variable keeps track ofwhere they occur (Fig. 5). The

Fig. 5 Per-cell ground truth for the small plumes simulation, at the same timestep as Fig. 4. The
dark cells are anomalies, intentionally introduced by our “depth charges”

62 T. M. Shead et al.

overall impact is to introduce physically-implausible aberrations into the simulation
which surely qualify as events worthy of detection. Having created the anomalies
ourselves, we can then evaluate the algorithm’s ability to flag them as events of
interest. Note that, evenwith our explicitly injected anomalies, there is still ambiguity
surrounding the question of which cells/partitions should be flagged as events: while
the sudden onset of an anomaly is obviously an event worth noting, the threshold
at which it should cease to be anomalous as it disperses is still arbitrary. Despite
these shortcomings, our “depth charges” provide a quantitative way to compare
performance among different algorithms tested using the framework.

The behavior of our driver script is as follows. First, at each timestep, we use
the Mantaflow API to run the solver for that step. Next, we extract the simulation
state (density, pressure, velocities and anomaly ground truth) and save the raw data
to disk. We then divide the simulation grid into 8 × 8 analysis partitions, since our
framework requiresmultiple analysis partitions evenwhen there is a single processor,
as is the case for the serialMantaflow simulations. Next, we compute the per-partition
signatures. To support computing temporal measures and because the Mantaflow
simulations are so small, we store every signature computed at every timestep, though
we assume in practice that an HPC simulation would retain a smaller number of the
most recent signatures. The set of per-analysis-partition signatures are then passed to
the measure function to generate per-partition measures. Since the measure function
has access to the signatures for every partition and every timestep, it can calculate a
measure based on a comparison of signatures across every analysis partition (a spatial
measure), a comparison of signatures across time for a single partition (a temporal
measure), or a hybrid of the two. Because ourMantaflow experiments run on a single
process, no communication is necessary, unlike the HPC experiments described in
Sect. 3.4. We save the measures computed for each partition to disk for subsequent
visualization. Finally, the measure values are passed to the decision function to be
flagged as events or not, and those decisions are written to disk.

Once the simulation is complete, we convert the simulation features, anomalies,
measures and decisions stored on disk to color-mapped images, generating movies
using the open source Imagecat (2022) library for compositing and Ffmpeg (2019)
for encoding. The simulation movies provide a qualitative way to evaluate algorithm
behaviors (Fig. 6).

For quantitative comparisons, we used the decision data to generate several met-
rics, including: (1) the percentage of simulation domain cells that are flagged as
events by our framework, both per-timestep and for the simulation as a whole, and
(2) the percentage of ground truth anomalous cells that are contained within parti-
tions flagged as events, per-timestep and for the simulation as a whole. We refer to
this latter metric as “recall”.

Our early experiments were focused on identifying useful combinations of
signature-measure-decision building blocks and developing intuition around their
strengths and weaknesses. In this preliminary exploration, the percentage of simula-
tion cells flagged as events ranges from 4.3% (excellent, a twenty-fold decrease in
storage requirements) to 75% (likely not worth the effort), while our recall metric
ranges from 35.4% (good) to 99.8% (excellent). One combination that produces con-

A Novel In Situ Machine Learning Framework … 63

Fig. 6 Sample frame from a Mantaflow experiment movie: simulation state (a)–(d), per-analysis-
partition measure (e) and decisions (j), simulation state masked by decisions (f)–(i)

sistently good results for a wide range of parameters used is the quartile signature,
dbscan spatial measure with Euclidean distance, and threshold decision function.
Figure 7 plots the total percentage of flagged analysis partitions (lower is better)
versus the anomaly recall (higher is better) for a set of experiments using this com-
bination. The result is intentionally evocative of a receiver operating characteristic
curve, emphasizing the trade-offs inherent in our desire to maximize the number of
detected events while minimizing the total number of analysis partitions flagged for
storage to disk.

The dbscan measure used in these experiments has two main parameters: ε, the
threshold distance below which two signatures are considered “neighbors”; and Np,
the minimum number of neighboring signatures required to form a “neighborhood.”
Once all of the neighborhoods in a collection of signatures are identified, any signa-
tures not in a neighborhood are, by definition, flagged as interesting events.

We tested combinations of ε and Np using grid search, varying ε values between
0.1 and 1.0 and Np values between 1% and 50% of the total number of analysis
partitions. At very low values of ε, we rapidly achieved high recall, approaching
100%. Values over 0.3 led to a rapid reduction in recall, dropping to around 8% for
an ε of 1.0. Varying Np had much less effect, with most values below 40% having
little effect on recall. We are encouraged that many parameter combinations produce
results near the knee of the curve in Fig. 7, indicating that the algorithm is robust for
a wide range of reasonable DBSCAN parameters. We chose ε = 0.2 and Np = 2%
as the best parameters for this data, with results shown in Fig. 8.

64 T. M. Shead et al.

0.0 0.2 0.5 0.8

Flagged partitions (%)

0.
0

0.
5

1.
0

A
n

o
m

al
y

re
ca

ll
(%

)

Fig. 7 Flagged analysis partitions versus anomaly recall for the quartile-dbscanMantaflow exper-
iments

0 100 200 300

Timestep

0
50

10
0

Total flagged partitions: 12.1%

0 100 200 300

Timestep

0
10

20
30

Total Anomalous cells: 1253 Recall: 98.3%

F
la

g
g

ed
 p

ar
ti

ti
o

n
s

(%
)

A
n

o
m

al
o

u
s

ce
lls

 (
%

)

Fig. 8 Flagged analysis partitions (top) versus recall (bottom) forquartile-dbscanMantaflowexper-
iment with ε = 0.2 and Np = 2%

A Novel In Situ Machine Learning Framework … 65

0 100 200 300

Timestep

0
50

10
0

Total checkpoint partitions: 10.0%

0 100 200 300

Timestep

0
10

20
30

Total anomalous cells: 1253 Recall: 10.0%

C
h

ec
kp

o
in

t
p

ar
ti

ti
o

n
s

(%
)

A
n

o
m

al
o

u
s

ce
lls

 (
%

)

Fig. 9 Saved analysis partitions (top) versus recall (bottom) for a simulation saving a checkpoint
at every tenth timestep for the Mantaflow experiment

In this case, an experimenter using the quartile-dbscan algorithm to decide which
analysis partitions should be saved to disk would end up capturing 98.3% of the
anomalies, while storing just 12.1% of the data. This is especially striking when we
compare it to typical uniform temporal check-pointing of HPC simulation data: the
experimenter who simply saves the entire simulation state at every tenth timestep as
in Fig. 9 would use roughly the same amount of disk space (10% vs. 12.1%), while
only capturing 10% of the interesting events!

We performed temporal anomaly detection experiments using similar techniques.
One comparable result used theminimax signature, themaxchangemeasure, and the
threshold decision function, producing a recall of 96.3% while flagging only 24% of
the data.

66 T. M. Shead et al.

3.2 Detecting Physical Phenomena: Marine Ice Sheet
Instability (MISI)

While the in situ event detection framework described herein was originally devel-
oped for the purpose of optimizing HPC simulation output, the proposed approach
can also be used to detect physical phenomena present in HPC simulation data to
further our understanding of the underlying physical processes. Here, we describe
a specific instance of this use case, in which our framework facilitates the study of
the hypothesized Marine Ice Sheet Instability (MISI) using simulation data from the
MPAS-Albany Land Ice (MALI) model (Hoffman et al. 2018), the land ice com-
ponent of the U.S. Department of Energy’s Energy Exascale Earth System Model
(E3SM) (Leung et al. 2020).

The Marine Ice Sheet Instability, first introduced in the 1970s (Weertman et al.
1974; Thomas and Bentley 1978), hypothesizes that ice sheets grounded below sea-
level may destabilize in a runaway fashion once the grounding line, the boundary
between where the ice sheet is grounded and floating, reaches a point where the
bedrock has a reverse slope gradient (Fig. 10) (Bamber et al. 2009). Once the bedrock
beneath the grounding line is reverse sloping (i.e., it becomes deeper moving inland),
ice thickness at the grounding line increases, leading to faster ice flow and greater ice
flux divergence. As the flux at the grounding line increases, thinning at and upstream
of the grounding line increases, causing the boundary between floating and grounded
ice to move further inland. The result is a self-reinforcing mechanism that can cause
rapid and irreversible ice sheet retreat and rapid sea level rise (Robel et al. 2019;
Joughin and Alley 2019). Since the grounding line is often stabilized by the presence
of an ice shelf (an extended region of floating ice that is dynamically connected to the
grounded ice upstream of it), which has the effect of buttressing the ice and limiting
ice flux at the grounding line, MISI is often triggered by the thinning or loss of ice
shelves (Pattyn andMorlighem 2020). Satellite and modeling evidence suggests that
MISI is underway in parts of the West (e.g., the Thwaites and Pine Island glacier)
and East (e.g., the Totten glacier) Antarctic Ice Sheet (Robel et al. 2019; Joughin

Fig. 10 Marine Ice Sheet Instability triggered by an unstable grounding line retreat on retrograde
bedrock slope. Figure adapted from Pattyn and Morlighem (2020)

A Novel In Situ Machine Learning Framework … 67

and Alley 2019; Gardner et al. 2018; Young et al. 2011). While it is theoretically
possible to identify locations prone to MISI by combining bedrock elevation data
with information on retrograde bedrock slopes, this approach is not feasible since
bedrock elevation data are limited. Moreover, the retrograde bed slope alone is likely
not a sufficient proxy for MISI, as it does not take into account important features
relevant to MISI, e.g., ice flow speed and ice flux.

Our approach herein is to investigate the utility of our event detection frame-
work in identifying the onset of MISI. Accordingly, we applied our event detection
algorithms to two simulations datasets: (1) an idealized Antarctic BUttressingModel
Intercomparison Project simulation (ABUMIP) (Sun et al. 2020), and (2) a predictive
simulation of the Antarctic Ice Sheet with realistic climate forcing (Seroussi et al.
2020). Following the naming convention introduced in Sun et al. (2020) and Seroussi
et al. (2020), respectively, we refer to these datasets as abuk and exp05, respec-
tively. Both simulations start with a realistic present-day initial condition obtained
by performing an adjoint-based optimization using the MALI model (Perego et al.
2014). They then simulate ice flow over Antarctica on a variable-resolution three-
dimensional (3D) tetrahedral grid. The output from these simulations is subsequently
mapped onto a 2D structured quadrilateral grid having a uniform resolution of 8km
(Fig. 11), for the purposes of analysis and comparison to other land ice models
(Seroussi et al. 2020). In the abuk experiment, Antarctica’s ice shelves are removed
instantaneously, and we perform a simulation in which the formation of new floating
ice is prevented and no change in external atmospheric or oceanic forcing is applied.
Although unrealistic, this scenario provides an extremeupper bound on sea-level con-
tributions from Antarctica, and exhibits the full potential of MISI (Sun et al. 2020).
As such, the abuk dataset is ideal for “calibrating” (i.e., determining a reasonable
set of features and analysis partition sizes) and “validating” (i.e., ensuring that rea-
sonable analysis partitions are flagged as interesting) our event detection framework
before applying it to the more realistic exp05 scenario. The second experiment,
exp05, is a standard test case in the ISMIP6 (Ice Sheet Model Intercomparison
Project 6) experiments (Seroussi et al. 2020), and is meant to be a realistic predictive
simulation of the Antarctic Ice Sheet state with atmospheric and oceanic forcing1

under the RCP8.5 (Representative Concentration Pathway 8.5) (IPCC 2021) radia-
tive forcing emissions scenario, which corresponds to the likely outcome if society
does not make concerted efforts to cut greenhouse emissions during the remainder
of the twenty-first century (Edwards et al. 2021). For initial prototyping, our event
detection algorithms are applied to the datasets a posteriori; integration of these
algorithms into the MALI code for true in situ analyses will be the subject of future
work. For the abuk dataset, there are 51 solution snapshots, corresponding to a 500
year simulation, with data saved every 10 years; for exp05, there are 86 solution
snapshots, corresponding to an 85 year simulation, with data saved every year.

Prior to presenting our main results, we discuss some nuances pertaining to the
generation of analysis partitions for the land ice datasets considered herein. For both
the abuk and exp05 datasets, the underlying computational domain onto which the

1 For details regarding these forcings, the reader is referred to Table 2 of Seroussi et al. (2020).

68 T. M. Shead et al.

Fig. 11 “Full” 6088km× 6088km domain for the exp05 dataset, with active cells shown in blue.
Left panel shows a close-up of the Antarctic peninsula and the structured 8km quadrilateral mesh
with which the problem is discretized

MALI output is mapped is a 6088km × 6088km square grid, discretized using 761
quadrilateral elements in each coordinate direction (Fig. 11). To determine which
cells within this computational domain are “active” (ice-covered), a time-dependent
mask derived from the ice thickness was computed at each timestep based on an
ice thickness criterion: only cells in which the ice thickness is greater than 10m are
deemed “active” in each timestep. An important feature of masks derived in this
way is that the masks, and hence the geometries on which the simulation proceeds,
change in time: before solving for the ice sheet state at each time-step, inactive cells
are removed from the mesh on which the simulation proceeds. While it would be
possible to uniformly partition the “full” 761×761 element grid into P analysis
partitions to use for our event detection workflow, such an approach would lead to an
imbalanced set of partitions, in which many partitions would have few (or even zero)
elements. Using an analysis partition set of this type could bias the event detection,
especially when statistics-based signatures are employed. One approach to avoid this
problem is to partition only the active grid, but this second approach also has several
downsides: (1) its computational cost would likely preclude in situ analyses, and (2)
with analysis partitions that change in time, it is not clear how to track temporal
events using this methodology. To avoid these issues, we adopted a third approach,
in which we created a mask (termed the “analysis partitioning mask”) that was only
slightly larger than the maximum ice extent across all simulation times for a given
dataset, and created a single partition of the geometry defined by this mask prior to
performing event detection. In the present study, we consider two types of analysis
partitioning masks:

A Novel In Situ Machine Learning Framework … 69

Fig. 12 Illustration of 500 analysis partitions (top panel) obtained using k-means clustering, and
cell-counts for each analysis partition (bottom panel) for an active mesh with buffer (a) and the
union of active meshes (b) analysis partitioning mask. The latter analysis partitioning mask was
used for the abuk experiment, and the former was used for the exp05 experiment. Different colors
in the top panel represent distinct partitions

• Active mesh with buffer: a mask in which a buffer region is included around the
maximum footprint of the underlying Antarctic geometry (Fig. 12a) is created;

• Union of active meshes: a mask is created by performing a union of the active cells
across all simulation times (Fig. 12b).

Each approach to analysis partitioningmask creationhas its pros and cons.The former
approach is amenable to in situ analyses, but is likely to give rise to some analysis
partitions with little to no elements. The latter approach minimizes the likelihood of
empty/imbalanced analysis partitions, but would not be possible to generate in situ.
Our preliminary numerical results, described below, suggest that both approaches to
creating the analysis partitioning mask produce reasonable results for the datasets
considered.

70 T. M. Shead et al.

Having settled on an approach for dealing with the temporal variability of the
activemesh in our land ice datasets, we nowdiscuss the choice of partitioning scheme
for generating the analysis partitions required by our event detection algorithm. We
explored the use of several partitioning algorithms, including space-filling curve
partitioning (e.g., Hilbert, Morton) (Sasidharan et al. 2015), quad-tree partitioning
(Ansar et al. 2019), and k-means clustering (Hartigan and Wong 1979). Of these
three approaches, k-means clustering produced themost balanced analysis partitions,
shown in Fig. 12. These partitions are balanced in the sense that each partition has
roughly the same number of cells, with the partition size appearing to be normally
distributed around the target number of cells per partition.Our results belowutilize the
k-means partitioning algorithm implemented within Scikit-Learn (Pedregosa et al.
2011), seeded with a random initialization. The reader can observe by examining the
bottom panel of Fig. 12 that this partitioning scheme produces a partitioning with
fairly balanced cell counts per analysis partition. Applying the space-filling curve
and quad-tree partitioning approaches to our datasets in contrast gives rise to partition
sizes ranging from a single cell to the maximum number of cells/partition requested
(partitions not shown). As mentioned earlier, having analysis partitions of widely
disparate sizes is particularly problematic for statistics-based signatures within our
framework, since these signatures are highly dependent on the number of cells per
partition.

As discussed in Sun et al. (2020) and Seroussi et al. (2020), the abuk and exp05
datasets contain a number of fields that can be used as features in our event detection
workflow. In the preliminary study presented here, we considered the following four
solution fields as features, denoted by Fi for i = 1, . . . , 4:

• F1: the ice sheet thickness,
• F2: the norm of the ice velocity at the ice surface,
• F3: the norm of the ice velocity at the ice base,
• F4: the norm of the ice velocity averaged over the vertical extent of the ice.

The ice sheet thickness is selected as a feature because it is a function of the bedrock
geometry/topography; the ice velocity fields are used as features as fast-moving ice
may correlate with the presence of MISI. In addition to employing the raw solution
fields Fi in our analysis, we also considered logarithms of these fields, denoted by
log(Fi). We employed the quartile signature (Table 1), the dbscan measure with
parameters ε = 0.3 and Np = 5% (Ester et al. 1996) (see Table 2 and Sect. 3.1 for
a discussion of this measure and parameters) and the threshold decision (Table 4).
In this initial proof-of-concept study, only spatial events of interest were considered.
The threshold decision flagged partitions with a measure less than zero. The k-
means clustering algorithm was used to generate 14,000 partitions, each having
approximately 16 cells, for both the abuk and exp05 experiments. For the abuk
dataset, we partitioned the active mesh with a buffer region around it (Fig. 12a),
whereas for the exp05 dataset, we partitioned an active mesh consisting of the
union of all active meshes during the simulation (Fig. 12b).

Our main results are shown below, in Figs. 13, 14, 15 and 16, which plot the
interesting analysis partitions in green, overlaying the ice thickness field feature used

A Novel In Situ Machine Learning Framework … 71

Fig. 13 Event detection results for abuk experiment with the four raw fieldsFi for i = 1, . . . , 4 as
features.Analysis partitions identified as interesting are plotted in green, overlaying the ice thickness
field for several years. Our results show that ice contained within analysis partitions identified as
interesting in one timestep will in general melt (become inactive) in the following timestep

in the analysis. We emphasize that these results are preliminary and intended only
to demonstrate the potential usefulness of the proposed framework in data-driven
studies of land ice; scientific studies using our event detection framework will be the
subject of future research.

3.2.1 Results for the abuk Experiment

We first apply our event detection framework to the abuk dataset, as this dataset is
most likely to contain evidence of MISI. Figure 13 shows snapshots of the solution
for the abuk dataset at several times, with a close-up in the vicinity of the Pine
Island and Thwaites glaciers. Analysis partitions identified as interesting using our
algorithm when employing the full set of fields {Fi } for i = 1, . . . , 4 as features
are plotted in green, overlaying the ice thickness field for several years. The reader
can observe by inspecting this figure that cells comprising the analysis partitions

72 T. M. Shead et al.

Fig. 14 Event detection results for the abuk experiment withF1 and log(F4) as features. Analysis
partitions identified as interesting are plotted in green, overlaying the ice thickness field for year 33

Fig. 15 Event detection results for exp05 experiment with the four raw fields Fi for i = 1, . . . , 4
as features. Analysis partitions identified as interesting are plotted in green, overlaying the ice
thickness field for year 33. The grounding line is shown with a black contour. Our event detection
framework identifies the fastest moving areas along Antarctica’s coast (ice shelves, outlet glaciers),
where MISI is more likely to initiate

A Novel In Situ Machine Learning Framework … 73

Fig. 16 Event detection results for theexp05 experimentwithF1 and log(F4) as features.Analysis
partitions identified as interesting are plotted in green, overlaying the ice thickness field for year
33. The grounding line is shown with a black contour

identified as interesting in one timestep subsequently become inactive (based on
previously-described activemask criterion) in the following timestep. In other words,
the ice that is flagged by our algorithm melts shortly after it is flagged, a behavior
consistent with MISI.

Next, we perform event detection using a reduced set of features, namely F1 and
log(F4). Figure 14 plots the anomalies identified by our framework in year 33 of the
simulation, again in green and overlaying the norm of the ice thickness field. It is
interesting to observe that significantly more interesting partitions are identified with
the new set of features. This is not surprising, as applying a logarithm transform of an
analysis feature when using the dbscanmeasure has the effect of emphasizing small
differences in small-magnitude values. An additional noteworthy observation is that,
with the new set of features, not all of the interesting analysis partitions identified by
our algorithm are at or near the grounding line. In particular, several of the flagged
locations are located a large distance inland. These locations appear to be regions
where the ice retreats the fastest, and should be inspected further in search of MISI.

74 T. M. Shead et al.

3.2.2 Results for the exp05 Experiment

Having obtained plausible results for the abuk experiment, we now turn our atten-
tion to the more realistic exp05 case. Figure 15 plots results for the exp05 dataset
corresponding to year 33 in the simulation, with analysis partitions identified as inter-
esting plotted in green and the grounding line (the boundary between where the ice
sheet is grounded and floating) plotted with a black contour. From this figure, one
can see that our event detection framework identifies the fastest moving areas along
Antarctica’s coast (the ice shelves and outlet glaciers) as events. These are locations
where MISI is more likely to originate. In particular, the following glaciers are iden-
tified as containing events of interest: Pine Island, Thwaites, Totten, Byrd, Recovery
and Lambert (see Fig. 15). Observational evidence suggests MISI is underway at
Thwaites, Pine Island and Totten glaciers (Robel et al. 2019; Joughin and Alley
2019; Gardner et al. 2018; Young et al. 2011). The other regions identified as inter-
esting by our framework are worth taking a closer look at – in bothmodel simulations
and observational datasets – in search of MISI (Hoffman et al. 2022).

The most intriguing result is shown in Fig. 16, which plots the interesting analysis
partitions for the exp05 dataset with the new set of features, again in green. The
reader can observe that our algorithm flags several regions located inland relative to
the grounding line (shown by a black contour). Additionally, the analysis partitions
identified as interesting on and near Antarctica’s ice shelves closely match the loca-
tions that have a significant impact on grounding line flux identified by Reese et al.
(2018). While a more rigorous study is required for validating this result, the fact
that there is corroboration with previously published results appears promising. A
more rigorous investigation, towards understanding the physical mechanisms driving
the events identified by our framework, will be the subject of future work. Future
work will also explore the use of alternate features in the event detection workflow
(including lateral buttressing in shear zones, basal friction, and flux fields, such as the
ice velocity flux divergence), as well as alternate signatures and measures, includ-
ing temporal measures (Table 3). We additionally plan to apply our methodology to
higher-resolution datasets (e.g., 3D unstructured datasets produced by running the
MALImodel/code (Hoffman et al. 2018)) and to land ice datasets expected to exhibit
stochastic behavior, e.g., simulations that include parameterizations of physical pro-
cesses for ice calving and subglacial hydrology.

Finally, it is worth remarking that interesting events or anomalous behaviors iden-
tified in land ice simulations using the proposed framework could be relevant for
scientists even if they are not an indication of MISI. In this context, an analysis
partition flagged by our framework could be indicative of something incorrect in the
data or underlying land ice model (e.g., a software flaw or missing physics), or of
interesting physical phenomena other than MISI.

A Novel In Situ Machine Learning Framework … 75

3.3 Reduced Order Modeling: Sample Mesh Generation
for Hyper-Reduction

Tohighlight the breadth of application spaces that can benefit from the proposed event
detection algorithms, we discuss a fundamentally new use case for our framework
within the field of projection-based model reduction.

Projection-based reduced order modeling is a promising strategy for reducing the
computational cost of high-fidelity HPC simulations, which are often too expen-
sive for use in a design or analysis setting (e.g., optimization, UQ). Reduced order
models (ROMs) have two key features: they are constructed to retain the essential
physics and dynamics of their corresponding full order models (FOMs) and they
incur a substantially lower (in some cases by orders of magnitude) computational
cost. In projection-basedmodel reduction, the state variables are approximatedwithin
a low-dimensional subspace, which is typically obtained offline by first applying data
compression on a set of snapshots collected from a high-fidelity simulation or phys-
ical experiment. A typical projection-based ROM workflow consists of three steps,
depicted in Fig. 17 and described succinctly below. In this figure, and the discussion
that follows, it is assumed that the FOM is given by the following nonlinear ordinary
differential equation (ODE):

dw
dt

= f (w; t,μ), (1)

where w denotes the solution vector t denotes time, μ is a vector of parameters
Note that (1) is very generic: an ODE of the form (1) is obtained, for example, by
semi-discretizing the partial differential equations (PDEs) defining the FOM in space
using a numerical method, such as the finite element or the finite volume method.

Fig. 17 Illustration of a projection-based model reduction workflow using the POD/LSPGmethod
with hyper-reduction of a full-order model given by the ODE dw

dt = f (w; t,μ). In this figure, (·)
denotes “function of” rather than multiplication. The matrices and vectors appearing in this figure
have the following dimensions:X ∈ R

N×K ;� ∈ R
N×M ;w, w̃, f , rn ∈ R

N ; ŵv̂ ∈ R
M ;A ∈ R

q×N ;
μ ∈ R

L , where L ∈ N is the number of parameters

76 T. M. Shead et al.

Step 1. Acquisition of high-fidelity snapshot data.Thefirst step in a typical projection-
based model reduction workflow is the acquisition of a set of K instantaneous snap-
shots of a numerical solution field. Typically snapshots are collected for K values of
a parameter of interest (see Fig. 17), at K different times, or both.

Step 2. Learning a reduced basis. Given an ensemble of high-fidelity snapshots
denoted by {wn}Kn=1, the next step is the calculation of a basis of reduced dimension
M � N , where N denotes the number of degrees of freedom (dofs) in the FOM.
There are numerous approaches in the literature for computing a low-dimensional
subspace, butwe restrict the discussion here to the ProperOrthogonalDecomposition
(POD)method (Sirovich 1987;Holmes et al. 1996) for calculating reduced bases, due
to its simplicity and prevalence in practice. Mathematically, POD is closely related to
Principal Component Analysis (PCA), and seeks an M-dimensional subspace (with
M � K) spanned by a set of modes {φi }Mi=1 such that the difference between the
snapshot ensemble {wn}Kn=1 and the projection of this ensemble onto the reduced sub-
space is minimized on average. It is a well-known result that the solution to the POD
optimization problem reduces to a singular value decomposition problem involving
the snapshot matrix X, as shown in Fig. 17; specifically, the modes {φi }Mi=1 are the
M left singular vectors corresponding to the M largest singular values of X. The
interested reader is referred to Holmes et al. (1996), Kunisch and Volkwein (2002),
Rathinam and Petzold (2003) for details.

Step 3. Projection-based reduction. The final step is the actual reduction, obtained
by projecting the equations defining the FOM onto the reduced basis, denoted by
� := [φ1, . . . ,φM] ∈ R

N×M . Common projection methods are Galerkin projection
and Least-Squares Petrov-Galerkin (LSPG) projection; herein, we focus on the latter
approach, as it has been shown to exhibit better stability properties, especially for
fluid systems (Carlberg et al. 2017). This approach operates on a FOM that has been
fully discretized in both space and time, which can be written as:

rn(wn;μ) = 0, (2)

where r denotes the residual, and the super-script n denotes the time index, with
n = 1, . . . , NT , so that wn := w(tn), where tn is the nth timestep within a simulation
based on (2). The high-fidelity solutionw(t) is approximated as a linear combination
of the reduced basis modes:

w(t) ≈ wM(t) = �ŵ(t), (3)

where ŵ(t) ∈ R
M , with M � N . Given this definition, in the LSPG approach, solv-

ing for theROMsolution amounts to solving the following least-squares optimization
problem:

ŵn = arg min
y∈RM

||rn(� y;μ)||22, (4)

A Novel In Situ Machine Learning Framework … 77

for n = 1, . . . , NT and ŵn := ŵ(tn). Equation (4) can be solved using the Gauss-
Newton approach following the method of Carlberg et al. (2013). Unfortunately, the
approach described thus far is inefficient for nonlinear problems, as the solution of
the ROM problem (4) requires algebraic operations that scale with N , the dimen-
sion of the original FOM. This problem can be circumvented through the use of
hyper-reduction, the basic idea of which is to compute the residual at some small
number of points q with q � N , encapsulated in a “sampling matrix” A computed
as a pre-processing step of the model reduction procedure using available snapshot
data. The set of q points is typically referred to as the “sample mesh”, and a variety
of quasi-optimal approaches aimed to minimize the representation error of a given
nonlinear function appearing in the FOM residual exist—examples include the (dis-
crete) empirical interpolation method (D)EIM (Barrault et al. 2004; Chaturantabut
and Sorensen 2010), “best points” interpolation (Nguyen et al. 2008; Nguyen and
Peraire 2008), collocation (LeGresley 2006), gappy POD (Everson and Sirovich
1995), and p–sampling (Drmac and Gugercin 2016). These approaches approximate
the solution to theNP-hard optimization problem ofminimizing the representation of
a nonlinear residual using different greedy approaches. Typically, as one may expect
based on intuition, the sample mesh points returned by these algorithms are clustered
in regions where the simulated solution exhibits “interesting” behavior/features, e.g.,
shocks, vortices, etc. (see e.g., Fig. 18). With the introduction of hyper-reduction,
the LSPG optimization problem takes the form

ŵn = arg min
v∈RM

||Arn(� y;μ)||22. (5)

As illustrated in Fig. 17, the matrix A ∈ R
q×N is sparse, and has the effect of “sub-

selecting” the residual r at some small number of points q, corresponding to the
non-zero columns of A.

Current state-of-the-art methods employ a single static sample mesh computed
offline, and use the same sample mesh for hyper-reduction for all the timesteps at
which the ROM solution is computed. It has been observed that, for certain appli-
cations, sample meshes computed using standard hyper-reduction methods (gappy
POD (Everson and Sirovich 1995), p–sampling (Drmac and Gugercin 2016)) are
inadequate; in particular, they yield ROMs that are less accurate than ROMs con-
structedwith a random samplemesh that knows nothing about the problem dynamics
(Blonigan et al. 2021).

We hypothesize herein that it may be possible to improve the accuracy of hyper-
reduced ROMs through the creation of a set of evolving sample meshes, calculated
using the unique features present in the solution at each time, orwithin timewindows.
The parallel to AMR (Berger and Oliger 1984) should be clear. To explore this idea,
we perform a preliminary study in which we use our event detection framework to
calculate dynamically-changing sample meshes, with readily-available snapshots of
the FOM solution and the solution residual as features. In this approach, we use the
analysis partitions flagged as anomalous to define the sample mesh points.

78 T. M. Shead et al.

Fig. 18 Computational domain (top) and representative sample mesh points shown in red (bottom)
for the 2D open cavity geometry. The sample mesh was obtained using the p–sampling approach
(Drmac and Gugercin 2016)

Below, we present and describe some preliminary results exploring the viability
of our proposed approach to dynamic sample mesh generation in the context of a
problem involving a 2Dviscous compressible flowwith aReynolds number of 10,000
over an open cavity geometry, pictured in Fig. 18. To generate a FOM of the form
(2), the governing compressible Navier-Stokes equations are discretized in space
using a third order Discontinuous Galerkin (DG) method with 600 × 240 elements
in the streamwise and wall-normal direction, respectively, and in time with a Crank-
Nicolson time-stepper having a timestep of 5 × 10−3. The mesh for this geometry is
obtained by discretizing a rectangular region with a uniform 600 × 240 mesh, and
transforming it to fit the cavity geometry of interest. More details pertaining to the
high-fidelity discretization can be found in Parish and Carlberg (2021) and are not
repeated here for the sake of brevity. The free-stream Mach number is unity, which
causes a shock to form in the problem solution (see Fig. 19, top row). A POD basis is
constructed from 1000 snapshots of the high-fidelity solution. These same snapshots
are employed to calculate a sample mesh having 1000 points using the p–sampling
approach. This sample mesh is shown in Fig. 18.

The objective of the present section is to explore the viability of constructing
dynamic sample meshes using our event detection framework. The natural choice of
features to use for this task are the solution (Fig. 19, top row) and the solution residual
(Fig. 19, second row). The former is a vector of the four primary conserved variables,
ρ, ρu, ρv and ρe, where ρ is the fluid density, u and v are the fluid velocities, and e

A Novel In Situ Machine Learning Framework … 79

(a) Snapshot 100 (b) Snapshot 500 Snapshot 928

Fig. 19 Plots of the density solution (top row), the density residual (second row) and dynamic
sample meshes calculated using our event detection framework (rows 3–5) for the 2D compressible
cavity flow problem at the times of snapshots 100 (a), 500 (b) and 928 (c). In rows 3–5, sample
mesh points are shown in yellow. The sample meshes in rows 4 and 5 are obtained by randomly
selecting one-fourth and one-sixteenth of the points, respectively, within each interesting analysis
partition shown in the third row

80 T. M. Shead et al.

is the fluid energy; the latter is the residual of the governing PDEs for each of these
variables, which contains the nonlinear terms in the governing partial differential
equations, the compressible Navier-Stokes equations. For the purpose of the event
detection, we partition our geometry into 150 × 60 analysis partitions, each having
4 × 4 cells. In this preliminary study, we consider the quartile signature (Table 1), the
dbscan measure (Table 2) with ε = 0.3 and Np = 1% (Table 2) and the threshold
decision with a threshold of 0.5 (Table 4). The sample meshes returned by this
approach are plotted in Fig. 19. Row 3 of this figure shows in yellow the interesting
partitions, which define a dynamic sample mesh, identified by our event detection
framework at the time of snapshots 100, 500, and 928, respectively. The reader can
observe that the dynamic sample meshes are changing in time. Additionally, the
sample mesh points are in general concentrated within the cavity and in the vicinity
of the shock that is seen in the density solutions (Fig. 19, top row).

The reader can observe by comparing the third row of Fig. 19 with Fig. 18 that the
sample meshes identified by our event detection framework are qualitatively similar
to the static sample mesh obtained using the p–sampling algorithm. In an effort to
measure the quality of the dynamic sample meshes calculated using our framework,
we calculate the following quantity given a sample mesh represented by the matrix
A:

ε := ||w − ws ||2
||w||2 , (6)

where ws := �ŵs and

ŵs = arg min
ŵ∈RM

||AX − A�x̂||22. (7)

In this context, xs is the optimal state one can reconstruct given knowledge of only
the FOM state and the sample mesh. The quantity (6) has the advantage that it is
computable offline (without running the full model reduction workflow).

Figure 20a plots the quantity ε from (6) for the fluid density solution as a function
of time for the dynamic samplemeshes obtained using our approach and for the static
sample mesh obtained using p–sampling. As noted earlier, this comparison is not
entirely consistent, since our dynamic sample meshes contain far more points than
the static sample mesh we are comparing to (see Fig. 20b). A very simple strategy
for reducing the sizes of our dynamic samples is to randomly drop a fixed fraction
of the sample mesh points within each analysis partition flagged by our approach.
Figure 19 shows the resulting sample meshes when one-quarter (fourth row) and
one-sixteenth (fifth row) of the sample mesh points are kept within each interesting
analysis partition. By randomly selecting just one sample mesh point within each
interesting analysis partition (which corresponds to the one-sixteenth sub-sampling
shown inFig. 19, the fifth row), it is possible to reduce the sizes of our dynamic sample
meshes to be on the order of the static sample mesh obtained through p–sampling
(Fig. 20b). Remarkably, as the reader can see from examining Fig. 20a, reducing the
number of sample mesh points in this way does not increase the error (6). While the

A Novel In Situ Machine Learning Framework … 81

(a) Density error (b) Sample mesh size

Fig. 20 Comparison of errors ε in the density solution and the sample mesh size as a function of
time for the cavity flow problem for sample meshes calculated using our event detection framework
versus p–sampling

fact that the error (6) for the dynamic samplemeshes obtained using our approach are
roughly comparable to the errors of the p–sampling samplemeshmay seem negative,
it is actually encouraging, given that our approach is unsupervised and not based on an
underlying optimization problem. Future work will focus on improving the sample
meshes calculated using our approach, e.g., by bringing in ideas from traditional
sample mesh approaches, which are based on minimizing the approximation error
on a given sample mesh. Additionally, we plan to deploy our approach on test cases
with more sophisticated dynamics, for which a dynamic sample mesh procedure will
likely yield a greater benefit (e.g., problems with moving shocks). Future work will
also include the design of signature-measure pairs that can guarantee that a given
number of analysis partitions are selected at any given timestep; in order to achieve
this, it is necessary to use a non-boolean measure.

3.4 HPC Experiments

As discussed in Sect. 1, an important requirement for an in situ event detection
framework is that it be scalable and communication-minimizing. In this section, we
verify the scalability of our framework in anHPC application utilizingMPI (Message
Passing Interface Forum 1994) for coordinating the parallel communication and
computation. In order to perform this study, we embedded a Python interpreter in
the S3D combustion simulation code (Chen et al. 2009) which is written in Fortran
90. References to the raw data from the Fortran side were passed to the Python
framework at each timestep, without duplication. The mpi4py package (Dalcín et al.
2005) was used to access the MPI environment from Python and perform collective
communication between processors.

82 T. M. Shead et al.

We ran our experiment using the Cori Cray XC40 machine at NERSC. The
simulation represented conditions of a homogeneous charge compression ignition
(HCCI) combustion of ethanol-air mixture at conditions typical of internal combus-
tion engines. The mixture undergoes compression heating and auto-ignition kernels
appear locally in small pockets, as shown in Fig. 21, that lead to the eventual com-
bustion of the entire mixture. The goal for an event detection algorithm in this case
is to identify the partitions where the auto-ignition kernels appear.

We decomposed the 2D simulation domain into 1024 partitions, with one partition
per MPI rank, and processed 626 snapshots with 3136 grid points per partition and
33 features at each grid point. The event detection involved the following steps:

• global min-max pre-processing utilizing two MPI all-reduces, one each for the
per-feature global min and max, over a vector of a size equal to the number of
features.

• mean signature on the data locally on each partition (no MPI communication
involved).

• msd measure, which involves computing a global mean of signatures and requires
an MPI all-reduce of a vector of size equal to the number of features.

In a previous work (Konduri et al. 2018), we used this simulation as a motivation for
designing a new signature – feature moment metric (fmm) – which represents the
distribution of a given joint statistical moment (e.g., Kurtosis) across all the features.
Here our focus is only on demonstrating the parallel performance of the framework
and hence we use the simpler mean signature.

The execution times for the solver and the event detection components were
recorded for the simulation. The solver execution time was 0.126s for every sim-
ulation timestep. The event detection execution time ranged from a minimum of
0.012s per timestep to a maximum of 2.28 s, with an average of 0.2 s. Because the

Fig. 21 Contour plot of heat
release rate (J/m3/s) at an
early instant of the HCCI
combustion simulation. A
12 × 12 partitioning of the
domain is shown with white
lines, and auto-ignition
kernels are denoted by
regions of high (red) heat
release rate

A Novel In Situ Machine Learning Framework … 83

workflow was identical from one timestep to the next, the large variation in the times
can be attributed to system noise. While not negligible, the average event detection
time was on the same order of magnitude as the solver, and thus within the realm of
practicality, depending on the application. Encouragingly, the minimum time was an
order of magnitude smaller than simulation time, suggesting that – under conditions
free of system noise – the event detection could be performed in a fraction of the
simulation time.

Note too that we used Python in situ to run this experiment for expediency, and
that the analysis time could be drastically reduced by porting our framework to
compiled code. Finally, analysis overhead could be further reduced for large-scale
applications by reducing the number of event detection checks. Performing the event
detection at, for instance, every N th timestep would be an effective compromise
between traditional check-pointing and fine-grained event detection, reducing the
event detection load to a negligible portion of the runtime.

4 Conclusion

This work represents a first step in the development of event detection algorithms
that can automatically identify events of interest in situ. Specifically, we presented a
signatures-measures-decisions framework for the development of in situ HPC event
detection algorithms. This framework is a useful decomposition that supports gen-
eralizability, unsupervised detection, low communication requirements and online
processing. We have developed components under this framework which enable the
use of standard event detection algorithms under the aforementioned constraints, in
addition to entirely new combinations. We illustrated how example algorithms made
from these components can optimize I/O while running an HPC simulation, leading
to the capture of many more interesting events than typical uniform check-pointing.
We highlighted two additional use cases for the proposed framework: detecting inter-
esting events in HPC simulations (the Marine Ice Sheet Instability in land ice data),
and identifying optimal space-time subregions for the hyper-reduction step of a typi-
cal projection-based model reduction workflow. Finally, we demonstrated, in a study
using HPC and MPI, that in situ event detection overhead can be on the order of
magnitude of the simulation, and performance can be improved further with minor
adjustments.

This work enables future research in several areas, such as the question of what
should constitute an “interesting” event for a given simulation, or, ideally, how
to define “interesting” for any given simulation. Apart from detecting events the
proposed approaches can also identify numerical anomalies, which can help with
debugging and interpretation of simulation results. In addition, it is possible that this
framework can be used to classify events either in situ or as a post-processing tech-
nique by analyzing the signatures themselves; the signatures distill information from
a large number of samples and are less expensive to analyze. Finally, we hope that
experiments done using this framework will inspire HPC simulation code developers

84 T. M. Shead et al.

to incorporate these capabilities into native code, allowing for even more efficient
in situ event detection.

Acknowledgements This work was funded through U.S. Department of Energy Advanced Sci-
entific Computing Research (ASCR) grant FWP #18019471. Sandia National Laboratories is a
multi-mission laboratory managed and operated by National Technology and Engineering Solu-
tions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’sNationalNuclear SecurityAdministration under contractDE-NA-0003525.
The views expressed in the article do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

The authors gratefully acknowledge Dr. Stephen Price, Dr. Matt Hoffman and Dr. Mauro Perego
for providing the MALI simulation data analyzed in Sect. 3.2, for engaging in many fruitful dis-
cussions regarding the physics of the Marine Ice Sheet Instability (MISI), and for assisting with the
interpretation of our results within the context of MISI.

References

Ahmed T (2009) Online anomaly detection using KDE. In: IEEE global telecommunications con-
ference, pp 1–8

Ansar S, Hussain M, Mazhar S, Manzoor T, Siddiqui K, Abid M, Jamal H (2019) Mesh partitioning
and efficient equation solving techniques by distributed finite element methods: a survey. Arch
Comput Meth Eng 26:1–16

Bamber J, Riva R, Vermeersen B, LeBrocq A (2009) Reassessment of the potential sea-level rise
from a collapse of the West Antarctic Ice Sheet. Science 324(5929):901–903

Bandaragoda TR, Ting KM, Albrecht D, Liu FT, Wells JR (2014) Efficient anomaly detection by
isolation using nearest neighbour ensemble. In: IEEE international conference on data mining,
pp 698–705

Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: appli-
cation to efficient reduced-basis discretization of partial differential equations. Comptes Rendus
Mathematique 339(9):667–672

Bennett JC, Bhagatwala A, Chen JH, Pinar A, Salloum M, Seshadhri C (2016) Trigger detection
for adaptive scientific workflows using percentile sampling. SIAM J Sci Comp 38:240–260

Berger MJ, Oliger J (1984) Adaptive mesh refinement for hyperbolic partial differential equations.
J Comput Phys 53(3):484–512

Blonigan PJ, Rizzi F, Howard M, Fike JA, Carlberg KT (2021) Model reduction for steady hyper-
sonic aerodynamics via conservative manifold least-squares petrov-galerkin projection. AIAA J
59(4):1296–1312

CarlbergK, Farhat C, Cortial J, AmsallemD (2013) The gnatmethod for nonlinearmodel reduction:
effective implementation and application to computational fluid dynamics and turbulent flows. J
Comput Phys 242:623–647

Carlberg K, Barone M, Antil H (2017) Galerkin v. least-squares petrov–galerkin projection in
nonlinear model reduction. J Comput Phys 330:693–734

Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpola-
tion. SIAM J Sci Comp 32(5):2737–2764

Chen JH, Choudhary A, Supinski BD, DeVries M, Hawkes ER, Klasky S, Liao W-K, Ma K-L,
Crummey JM, Podhorszki N et al (2009) Terascale direct numerical simulations of turbulent
combustion using S3D. Comp Sci Discov 2(1):015001

Dalcín L, Paz R, Storti M (2005) Mpi for python. J Par Distri Comp 65(9):1108–1115

A Novel In Situ Machine Learning Framework … 85

Drmac Zl, Gugercin S (2016) A new selection operator for the discrete empirical interpolation
method—improved a priori error bound and extensions. SIAM J Sci Comp 38(2):A631–A648

Edwards TL, Nowicki S, Marzeion B et al (2021) Projected land ice contributions to twenty-first-
century sea level rise. Nature 593:74–82

Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the second international conference on
knowledge discovery and data mining. AAAI Press, pp 226–231

Everson R, Sirovich L (1995) Karhunen-loève procedure for gappy data. J Opt Soc Am A
12(8):1657–1664

Ffmpeg (2019) Online; accessed 2019-09-18. https://ffmpeg.org
Gardner AS, Moholdt G, Scambos T, Fahnstock M, Ligtenberg S, van den Broeke M, Nilsson J
(2018) IncreasedWest Antarctic and unchanged East Antarctic ice discharge over the last 7 years.
The Cryosphere 12(2):521–547

Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-Means clustering algorithm. App Stat
28(1):100–108

Hoffman M (2022) Personal correspondance
Hoffman MJ, Perego M, Price SF, Lipscomb WH, Zhang T, Jacobsen D, Tezaur I, Salinger AG,
Tuminaro R, Bertagna L (2018) Mpas-albany land ice (mali): a variable-resolution ice sheet
model for earth system modeling using voronoi grids. Geosci Model Develop 11(9):3747–3780

Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and
symmetry. Cambridge University Press

Imagecat (2022) Online; accessed 2022-01-11. https://imagecat.readthedocs.io
IPCC (2021) Representative Concentration Pathways (RCPs). https://sedac.ciesin.columbia.edu/
ddc/ar5_scenario_process/RCPs.html

Jones E, Oliphant T, Peterson P et al (2001) SciPy: Open source scientific tools for Python –. Online;
accessed 2019-09-18. http://www.scipy.org

Joughin I, Alley R (2019) Stability of the West Antarctic ice sheet in a warming world. Nature
4:506–513

Konduri A, Kolla H, Kegelmeyer WP, Shead TM, Ling J, Davis WL (2018) Anomaly detection in
scientific data using joint statistical moments. J Comput Phys 387:522–538

Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition for a general equation
in fluid dynamics. SIAM J Num Anal 40(2):492–515

LeGresley P (2006) Application of proper orthogonal decomposition (POD) to design decomposi-
tion methods. PhD thesis, Stanford University

Leung LR, Bader DC, Taylor MA, McCoy RB (2020) An introduction to the e3sm spe-
cial collection: goals, science drivers, development, and analysis. J Adv Model Earth Sys
12(11):e2019MS001821

Ling J, Kegelmeyer WP, Aditya K, Kolla H, Reed KA, Shead TM, Davis WL (2017) Using feature
importancemetrics to detect events of interest in scientific computing applications. In: 2017 IEEE
7th symposium on large data analysis and visualization (LDAV). IEEE, pp 55–63

Liu FT, Ting KM, Zhou ZH (2012) Isolation-based anomaly detection. ACM Trans Knowl Disc
Data 6:1–39

Message Passing Interface Forum (1994) Mpi: a message-passing interface standard. Technical
report, University of Tennessee, USA

Nguyen NC, Peraire J (2008) An efficient reduced-order modeling approach for non-linear
parametrized partial differential equations. Int J Num Meth Eng 76(1):27–55

Nguyen N, Patera A, Peraire J (2008) A ‘best points’ interpolation method for efficient approxima-
tion of parametrized functions. Int J Num Meth Eng 73:521–543

Parish EJ, Carlberg KT (2021) Windowed least-squares model reduction for dynamical systems. J
Comput Phys 426:109939

Pattyn F, Morlighem M (2020) The uncertain future of the antarctic ice sheet. Science
367(6484):1331–1335

https://ffmpeg.org
https://imagecat.readthedocs.io
https://sedac.ciesin.columbia.edu/ddc/ar5_scenario_process/RCPs.html
https://sedac.ciesin.columbia.edu/ddc/ar5_scenario_process/RCPs.html
http://www.scipy.org

86 T. M. Shead et al.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Perego M, Price S, Stadler G (2014) Optimal initial conditions for coupling ice sheet models to
earth system models. J Geophys Res, Earth Surface 119(9):1894–1917

Python. Online; accessed 2019-09-18. https://www.python.org
RathinamM, Petzold L (2003) A new look at proper orthogonal decomposition. SIAM J NumAnal
41(5):1893–1925

Reese R, Gudmundsson G, Levermann A,Winkelmann R (2018) The far reach of ice-shelf thinning
in Antarctica. Nat Clim Change 8:53–57

Robel AA, Seroussi H, Roe GH (2019) Marine ice sheet instability amplifies and skews uncertainty
in projections of future sea-level rise. Proc Natl Acad Sci 116(30):14887–14892

Sasidharan A, Dennis JM, Snir M (2015) A general space-filling curve algorithm for partitioning
2d meshes. In: 2015 IEEE 17th international conference on high performance computing and
communications, 2015 ieee 7th international symposium on cyberspace safety and security, and
2015 ieee 12th international conference on embedded software and systems, pp 875–879

Seroussi H, Nowicki S, Payne AJ, Goelzer H, Lipscomb WH, Abe-Ouchi A, Agosta C, Albrecht
T, Asay-Davis X, Barthel A, Calov R, Cullather R, Dumas C, Galton-Fenzi BK, Gladstone R,
Golledge NR, Gregory JM, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huybrechts P,
Jourdain NC, Kleiner T, Larour E, Leguy GR, Lowry DP, Little CM, Morlighem M, Pattyn F,
Pelle T, Price SF, Quiquet A, Reese R, Schlegel N-J, Shepherd A, Simon E, Smith RS, Straneo F,
Sun S, Trusel LD, Van Breedam J, van de Wal RSW, Winkelmann R, Zhao C, Zhang T, Zwinger
T (2020) ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over
the 21st century. The Cryosphere 14:3033–3070

Sirovich L (1987) Turbulence and the dynamics of coherent structures, Part III: dynamics and
scaling. Q Appl Math 45(3):583–590

Sun S, Pattyn F, Simon EG,Albrecht T, Cornford S, Calov R, Dumas C, Gillet-Chaulet F, Goelzer H,
Golledge NR et al (2020) Antarctic ice sheet response to sudden and sustained ice-shelf collapse
(ABUMIP). J Glaciol 66(260):891–904

Thomas RH, Bentley CR (1978) A model for holocene retreat of the west antarctic ice sheet. Quat
Res 10(2):150–170

Thuerey N, Pfaff T (2018) MantaFlow. Online; accessed 2019-09-18. http://mantaflow.com
Ullrich PA,ZarzyckiCM(2016) Tempestextremes v1.0: a framework for scale-insensitive pointwise
feature tracking on unstructured grids. In: Geoscientific model development discussion

Walt SVD, Colbert SC, Varoquaux G (2011) The numpy array: a structure for efficient numerical
computation. Comp Sci Eng 13(2):22

Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J Glaciol 13(67):3–11
Welch P (1967) The use of fast fourier transform for the estimation of power spectra: a method
based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust
15(2):70–73

Wu K, Zhang K, Fan W, Edwards A, Philip SY (2014) Rs-forest: a rapid density estimator for
streaming anomaly detection. In: IEEE international conference on data mining, pp 600–609

Young D, Wright A, Roberts J, Warner R, Young N, Greenbaum J, Schroeder D, Holt J, Sugden
D, Blankenship D, vanOmmen T, Siegert M (2011) A dynamic early East Antarctic Ice Sheet
suggested by ice-covered fjord landscapes. Nature 474:72–75

Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, interan-
nual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–
6678

https://www.python.org
http://mantaflow.com

A Novel In Situ Machine Learning Framework … 87

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection
	1 Introduction
	1.1 Overview of Related Work
	1.2 Contributions and Organization

	2 Approach
	3 Results
	3.1 Data Capture for Optimal I/O: Mantaflow Experiments
	3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI)
	3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction
	3.4 HPC Experiments

	4 Conclusion
	References

