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Motivation
➢ Climate change has been declared a “national security issue” by President Joe Biden.

➢ Global mean sea-level is rising at the rate of 3.2 mm/year and this rate is increasing, 
with the latest studies suggesting a possible increase in sea-level of 0.3-2.5 m by 2100.

❖ Due to melting of the polar ice sheets (Greenland, Antarctica).

➢ Full deglaciation*: sea level could rise up to ~65 m (Antarctica: 58 m, Greenland: 7 m) 

Total mass loss of ice sheets b/w 1992-2011 Map of North America showing 6 m SLR (NASA)

*Estimates given by Prof. Richard Alley of Penn State.
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➢ Global mean sea-level is rising at the rate of 3.2 mm/year and this rate is increasing, 
with the latest studies suggesting a possible increase in sea-level of 0.3-2.5 m by 2100.

❖ Due to melting of the polar ice sheets (Greenland, Antarctica).

➢ Full deglaciation*: sea level could rise up to ~65 m (Antarctica: 58 m, Greenland: 7 m) 

Total mass loss of ice sheets b/w 1992-2011 Map of North America showing 6 m SLR (NASA)

Modeling of ice sheet dynamics is essential for providing estimates of sea-
level rise, towards understanding the local/global effects of climate change. 

*Estimates given by Prof. Richard Alley of Penn State.
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What is an Ice Sheet Model (ISM)? 

Dynamical core (“dycore”)
Conservation of:

➢ Mass (ice thickness)
➢ Momentum (ice velocity)
➢ Energy (ice temperature)

Physical processes (“physics”) 
➢ Iceberg calving
➢ Basal sliding
➢ Etc…

Climate forcing
➢ Snowfall/melt
➢ Ocean melting/freezing
➢ Etc…
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An Earth System Model (ESM) has six modular components:

Earth System Models (ESMs)

Goal of ESM: to provide actionable 
scientific predictions of 21st century sea-

level change (including uncertainty 
bounds).

About a decade ago, existing 
land-ice models were not robust 
enough for ESM integration! 
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U.S. DOE Ice Sheet/Climate Model Efforts
Motivation:

• 2007 IPCC (Intergovernmental Panel on Climate Change) Fourth
Assessment Report declined to include estimates of future sea-
level rise from ice sheet dynamics due to the inability of ice sheet
models to mimic/explain observed dynamic behaviors.

➢ “Much work is needed to make [present-day ISMs] robust
and efficient on continental scales and to quantify
uncertainties in their projected outputs”. – IPCC AR4 (2007)
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• Predicting Ice Sheet & Climate Evolution at Extreme Scales (PISCEES): 2012-2017.

• Probabilistic Sea-Level Projections from Ice Sheet Models and ESMs (ProSPect): 2017-2022.

Aim is to develop & apply robust, accurate, scalable dynamical cores 
for ice sheet modeling on unstructured meshes, enable uncertainty 

quantification (UQ), and integrate models/tools into DOE E3SM
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• 2007 IPCC (Intergovernmental Panel on Climate Change) Fourth
Assessment Report declined to include estimates of future sea-
level rise from ice sheet dynamics due to the inability of ice sheet
models to mimic/explain observed dynamic behaviors.

➢ “Much work is needed to make [present-day ISMs] robust
and efficient on continental scales and to quantify
uncertainties in their projected outputs”. – IPCC AR4 (2007)

DOE Energy Exascale Earth System Model (E3SM):

• “Next-generation” climate model with focus of decadal-century timescale projections, 
high-spatial resolution, next generation HPC, impacts to U.S. infrastructure. 
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Stokes Ice Flow Equations
Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow) 
and is modeled quasi-statically using nonlinear incompressible Stokes equations.

ቊ
−𝛻 ∙ 𝝉 + 𝛻𝑝 = 𝜌𝒈

𝛻 ∙ 𝒖 = 0
,    in Ω

➢ Fluid velocity vector: 𝒖 = 𝑢1, 𝑢2, 𝑢3

➢ Isotropic ice pressure: 𝑝

➢ Deviatoric stress tensor: 𝝉 = 2𝜇𝝐

➢ Strain rate tensor: 𝜖ij =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

➢ Glen’s Law Viscosity*: 𝜇 =
1

2
𝐴(𝑇)−

1

𝑛
1

2
σ𝑖𝑗 𝝐𝑖𝑗

2

1

2𝑛
−
1

2

➢ Flow factor: 𝐴(𝑇) = 𝐴0𝑒
−

𝑄

𝑅𝑇

*Nye 1957; Cuffey et al., 2010.  Typically we use 𝑛 = 3.
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Highly nonlinear rheology!

Ice behaves like a very viscous non-Newtonian shear-thinning fluid (like lava flow) 
and is modeled quasi-statically using nonlinear incompressible Stokes equations.
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First Order (FO) Stokes/Blatter-Pattyn Model*

Stokes(𝒖, 𝑝) in Ω ∈ ℝ3
𝒖 ≡ (𝑢, 𝑣, 𝑤)

𝝐 𝒖 =

𝑢𝑥
1
2
(𝑢𝑦 + 𝑣𝑥)

1
2
(𝑢𝑧 + 𝑤𝑥)

1
2
(𝑢𝑦 + 𝑣𝑥)

𝑣𝑦
1
2
(𝑣𝑧 + 𝑤𝑦)

1
2
(𝑢𝑧 + 𝑤𝑥)

1
2
(𝑣𝑧 +𝑤𝑦)

𝑤𝑧

𝑝 = 𝜌𝑔 𝑠 − 𝑧 − 2𝜇(𝑢𝑥 + 𝑣𝑦)

*Pattyn, 2003; Blatter, 1995.



First Order (FO) Stokes/Blatter-Pattyn Model*

Stokes(𝒖, 𝑝) in Ω ∈ ℝ3

FO Stokes(𝑢, 𝑣) in Ω ∈ ℝ3

Hydrostatic approximation + 
scaling argument based on the fact 
that ice sheets are thin and normals

are almost vertical

𝒖 ≡ (𝑢, 𝑣, 𝑤)

𝝐 𝒖 =

𝑢𝑥
1
2
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ሶ𝝐 𝑢, 𝑣 =
2𝑢𝑥 + 𝑣𝑦
1
2
(𝑢𝑦 + 𝑣𝑥)

1
2
𝑢𝑦 + 𝑣𝑥

𝑢𝑥 + 2𝑣𝑦

1
2
𝑢𝑧

1
2
𝑣𝑧

*Pattyn, 2003; Blatter, 1995.

First Order 
Stokes (a.k.a. 

Blatter-Pattyn) 
Model

Discussion:

• Nice “elliptic” approximation to full Stokes.

• 3D model for two unknowns (𝑢, 𝑣) with nonlinear 𝜇. 

• Valid for both Greenland and Antarctica and used in 
continental scale simulations.

−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔
𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

,    in Ω

𝜇 =
1

2
𝐴(𝑇)−

1
𝑛

1

2


𝑖𝑗

ሶ𝝐𝑖𝑗
2

1
2𝑛

−
1
2

(𝑛 = 3)



Boundary Conditions

Basal boundary  Γ𝛽
)

Lateral boundary Γ𝑙

Ice sheet

Surface boundary Γ𝑠

Ice-Atmosphere Boundary:

➢ Stress-free BC: 2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = 0 on Γ𝑠

Ice-Ocean Boundary:

➢ Floating ice (a.k.a. open ocean) BC: 

Ice-Bedrock Boundary:

➢ Basal sliding BC: 2𝜇 ሶ𝝐𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0 on Γ𝛽

𝛽 = basal sliding coefficient

𝛽 = 𝛽 𝑥, 𝑦 or  𝛽 = 𝛽(𝑥, 𝑦, 𝒖, 𝑡)

Can’t be measured – must be estimated from data!

IPCC WG1 (2013): “Based on current understanding, only 
the collapse of marine-based sectors of the Antarctic ice 
sheet, if initiated, could cause [SLR by 2100] substantially 

above the likely range [of ~0.5-1 m].”

Boundary conditions have tremendous 
effect on ice sheet behavior!

2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = ൜
𝜌𝑔𝑧𝒏, if 𝑧 > 0
0, if 𝑧 ≤ 0

on Γ𝑙

Antarctica’s ice shelves shown in color



Ice Sheet Evolution
Ice velocity equations are coupled with equations for ice sheet 

evolution (thickness) and ice temperature.

𝜕𝐻

𝜕𝑡
+ 𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏,     on   Γ

𝜌𝑐
𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝒖 ∙ 𝛻𝑇 = 𝛻 ∙ 𝑘𝛻𝑇 + 2 ሶ𝝐𝝈, in    𝛺𝐻

ഥ𝒖 = vertically averaged 𝒖
ሶ𝑏 = surface mass balance 

(given accumulation-ablation function that 
accounts for e.g. accumulation due to snowfall)

Γ = horizontal extent of the ice

• Mass equation for the ice thickness 𝐻:

➢ Thickness 𝐻 determines the geometry for velocity equations.

➢ Flow factor 𝐴 in Glen’s law viscosity 𝜇 is function of 𝑇.

time 𝑡0

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)

• Energy equation for the temperature 𝑇:



Ice Sheet Evolution

• Energy equation for the temperature 𝑇:

Ice velocity equations are coupled with equations for ice sheet 
evolution (thickness) and ice temperature.

𝜕𝐻
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ഥ𝒖 = vertically averaged 𝒖
ሶ𝑏 = surface mass balance 

(given accumulation-ablation function that 
accounts for e.g. accumulation due to snowfall)

Γ = horizontal extent of the ice

• Mass equation for the ice thickness 𝐻:

➢ Thickness 𝐻 determines the geometry for velocity equations.

➢ Flow factor 𝐴 in Glen’s law viscosity 𝜇 is function of 𝑇.

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)

time 𝑡1



Ice Sheet Evolution

• Energy equation for the temperature 𝑇:

Ice velocity equations are coupled with equations for ice sheet 
evolution (thickness) and ice temperature.

𝜕𝐻

𝜕𝑡
+ 𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏,     on   Γ

𝜌𝑐
𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝒖 ∙ 𝛻𝑇 = 𝛻 ∙ 𝑘𝛻𝑇 + 2 ሶ𝝐𝝈, in    𝛺𝐻

ഥ𝒖 = vertically averaged 𝒖
ሶ𝑏 = surface mass balance 

(given accumulation-ablation function that 
accounts for e.g. accumulation due to snowfall)

Γ = horizontal extent of the ice

• Mass equation for the ice thickness 𝐻:

➢ Thickness 𝐻 determines the geometry for velocity equations.

➢ Flow factor 𝐴 in Glen’s law viscosity 𝜇 is function of 𝑇.

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)

time 𝑡2
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Our Codes

Momentum Balance: First-Order Stokes PDEs

൞
−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

,    in Ω

with Glen’s law viscosity 𝜇 =
1

2
𝐴(𝑇)−

1

3
1

2
σ𝑖𝑗 ሶ𝝐𝑖𝑗

2
−
2

3
. 

Conservation of Mass: thickness evolution PDE 

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

Energy Balance: temperature advection-diffusion PDE

Albany Land-Ice (ALI)

*https://github.com/SNLComputation/Albany.

Codes:

=multi-physics 
PDE code*

Model for Prediction 
Across Scales

MALI = MPAS + ALI

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈
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Conservation of Mass: thickness evolution PDE 

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

Energy Balance: temperature advection-diffusion PDE

Albany Land-Ice (ALI)

*https://github.com/SNLComputation/Albany.

Codes:

=multi-physics 
PDE code*

Model for Prediction 
Across Scales

MALI = MPAS + ALI

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

Velocity solve is 
most expensive!

This talk will focus on the velocity solve.



Albany Land-Ice (ALI) FO Stokes Solver

Land Ice Equation
Set (ALI) 

Other 
Equation Sets

The Albany Land-Ice First Order Stokes 
solver is implemented in a Sandia open-
source parallel C++ multi-physics finite 

element code known as… • Discretizations/meshes
• Solver libraries 
• Preconditioners
• Automatic differentiation
• Performance portable kernels
• Many others!

• Parameter estimation
• Uncertainty 

quantification
• Optimization
• Bayesian inference

“Agile Components”

Trilinos: https://github.com/trilinos/Trilinos
Dakota: https://dakota.sandia.gov/

Albany: 
https://github.com/SNL
Computation/Albany

https://github.com/trilinos/Trilinos
https://dakota.sandia.gov/
https://github.com/SNLComputation/Albany


Model for Prediction Across Scales (MPAS)

Model for Prediction Across Scales (MPAS):
climate modeling framework built around 

SCVT* meshes (LANL + NCAR collaboration)

*SCVT = Spherical Centroidal Voronoi Tesselations

1 Ringler et al., 2013; 2 Turner et al. (in prep); 3 Hoffman et al. (in prep)

• Ocean1, sea ice2, and land 

ice3 dynamical cores

• Built using shared 

software framework

• New capabilities added to 

one core benefit all others



MPAS + ALI Coupling (MALI)

Albany Land-
Ice (C++)

velocity solve

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 

coupling to DOE-ESM

LandIce_
model

output file
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C++/Fortran 
Interface, Mesh 

Conversion

“Loose” sequential/staggered coupling between 𝒖 and (𝑇, 𝐻).

• Making this coupling tighter by moving thickness and temperature 
evolution to Albany is WIP.
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Finite Element Discretization

• Can handle well the boundary conditions arising in land ice modeling.

• Allow the use of unstructured meshes to concentrate the computational power 
where it is needed.

Greenland mesh from ALI refined 
based on gradient of surface 

velocity



Meshes

• ALI runs employ dual of hexagonal mesh from MPAS extruded to tetrahedra 
for the velocity solve in Albany.

• Meshes are structured (extruded) in the vertical dimension.

• Ice sheets are thin (thickness up to 4 km, horizontal extension of thousands 
km), meaning we typically have elements with bad aspect ratios.

MALI uses dual 
of hexagonal 

mesh extruded 
to tetrahedra.

Variable resolution 
triangular mesh extruded to 

a (thin) tetrahedral mesh.
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Nonlinear Solver for Discretized Problem
• Picard iterations have been method of choice in ice sheet modeling



Nonlinear Solver for Discretized Problem
• Picard iterations have been method of choice in ice sheet modeling

• ALI employs Newton’s method with several advancements:



Nonlinear Solver for Discretized Problem
• Picard iterations have been method of choice in ice sheet modeling

• ALI employs Newton’s method with several advancements:

➢ Automatic differentiation (AD) Jacobian – gives you exact 
derivatives/Jacobians without deriving/hand-coding them!

*Tezaur et al. 2015.

❖ Derivatives: DFad<double>

❖ Hessians: DFad<SFad<double,N>>

❖ Stochastic Galerkin resid: PCE<double>

❖ Stochastic Galerkin Jac: 
DFad<PCE<double>

❖ Sensitivities: DFad<double>

Operation Overloaded AD impl

𝑐 = 𝑎 ± 𝑏 ሶ𝑐 = ሶ𝑎 ± ሶ𝑏

𝑐 = 𝑎𝑏 ሶ𝑐 = 𝑎 ሶ𝑏 + ሶ𝑎𝑏

𝑐 = 𝑎/𝑏 ሶ𝑐 = ( ሶ𝑎 − 𝑐 ሶ𝑏)/𝑏

𝑐 = 𝑎𝑟 ሶ𝑐 = 𝑟𝑎𝑟−1 ሶ𝑎

double DFad<double>

No finite difference truncation error!

Libraries (Sacado) provides new scalar types 
that overload the math operators to 

propagate embedded quantities via chain rule



• Picard iterations have been method of choice in ice sheet modeling

• ALI employs Newton’s method with several advancements:

➢ Automatic differentiation (AD) Jacobian – gives you exact 
derivatives/Jacobians without deriving/hand-coding them!

➢ Homotopy continuation* to deal with “singular” viscosity.

*Tezaur et al. 2015.

Nonlinear Solver for Discretized Problem



• Picard iterations have been method of choice in ice sheet modeling

• ALI employs Newton’s method with several advancements:

➢ Automatic differentiation (AD) Jacobian – gives you exact 
derivatives/Jacobians without deriving/hand-coding them!
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*Tezaur et al. 2015.

Undefined for 𝒖=const!

Nonlinear Solver for Discretized Problem
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• Picard iterations have been method of choice in ice sheet modeling

• ALI employs Newton’s method with several advancements:

➢ Automatic differentiation (AD) Jacobian – gives you exact 
derivatives/Jacobians without deriving/hand-coding them!

➢ Homotopy continuation* to deal with “singular” viscosity.

Glen’s Law Viscosity: 

𝛾 = regularization 
parameter (𝑂(1e-10))

*Tezaur et al. 2015.
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• Picard iterations have been method of choice in ice sheet modeling

• ALI employs Newton’s method with several advancements:

➢ Automatic differentiation (AD) Jacobian – gives you exact 
derivatives/Jacobians without deriving/hand-coding them!

➢ Homotopy continuation* to deal with “singular” viscosity.

γ=10-1.0

γ=10-2.5
γ=10-6.0 γ=10-10

γ=10-10

γ=10-10

Glen’s Law Viscosity: 

𝛾 = regularization 
parameter

*Tezaur et al. 2015.

Improved robustness and faster nonlinear convergence 
by doing a homotopy continuation w.r.t. 𝛾

Nonlinear Solver for Discretized Problem
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Visualization of AMG preconditioner2, 
which takes advantage of layered 

nature of 3D mesh.

1 Algebraic Multi-Grid.  2 Tuminaro et al. 2016. 3 Heinlein et al. 2020.  4 Generalized-Dryja-Smith-Widlund.  

From Nonlinear Solvers to Linear Solvers
• Krylov iterative linear solvers are employed – CG or GMRES.

➢ FO Stokes equations are symmetric.

• Grid partitioning is done on 2D base grid for best linear solver 
performance (recall that mesh is layered).

• Bad aspect ratios, floating ice, and island/ice hinges can 
wreak havoc on linear solver!
➢ Specialized solvers/preconditioners have been 

developed in Trilinos to deal w/ these issues.

❖ AMG1 preconditioner w/ semi-coarsening2.

❖ Fast and Robust Overlapping Schwarz (FROSch) 
preconditioner3 w/ GDSW4 coarse spaces

➢ Graph-based algorithms for removing islands/ice                   
hinges are being developed2.

Example parallel 
decomposition of Greenland 

geometry.



Visualization of AMG preconditioner2, 
which takes advantage of layered 

nature of 3D mesh.

1 Algebraic Multi-Grid.  2 Tuminaro et al. 2016. 3 Heinlein et al. 2020.  4 Generalized-Dryja-Smith-Widlund.  

From Nonlinear Solvers to Linear Solvers
• Krylov iterative linear solvers are employed – CG or GMRES.

➢ FO Stokes equations are symmetric.

• Grid partitioning is done on 2D base grid for best linear solver 
performance (recall that mesh is layered).

• Bad aspect ratios, floating ice, and island/ice hinges can 
wreak havoc on linear solver!
➢ Specialized solvers/preconditioners have been 

developed in Trilinos to deal w/ these issues.

❖ AMG1 preconditioner w/ semi-coarsening2.

❖ Fast and Robust Overlapping Schwarz (FROSch) 
preconditioner3 w/ GDSW4 coarse spaces

➢ Graph-based algorithms for removing islands/ice                   
hinges are being developed2.

Example parallel 
decomposition of Greenland 

geometry.

Deep dive



How Does Multi-Grid Work?
Basic idea: accelerate convergence of an iterative method on a given 

grid by solving a series of (cheaper) problems on coarser grids.

Solve 𝑨1𝒖1 = 𝒇1 directly.

Smooth 𝑨3𝒖3 = 𝒇3. Set 𝒇2 = 𝑹2𝒓3.

Smooth 𝑨2𝒖2 = 𝑓2. Set 𝒇1 = 𝑹1𝒓2. Set 𝒖2 = 𝒖2 + 𝑷1𝒖1.  Smooth 𝑨2𝒖2 = 𝒇2. 

Set 𝒖3 = 𝒖3 + 𝑷2𝒖2.  Smooth 𝑨3𝒖3 = 𝒇3. 

Solve 𝑨3𝒖3 = 𝒇3

𝑷2 𝑹2

𝑷1 𝑹1

• Create set of coarse approximations.

• Apply restriction operator 𝑹𝑖 to interpolate 
from fine to coarse grid. 

• Solve problem on coarse grid.

• Apply prolongation operator 𝑷𝑖 to get back 
to original (fine) grid.

• Smoothers are applied throughout procedure
to reduce short wavelength errors. 



Scalable Algebraic Multi-Grid (AMG) 
Preconditioners

Bad aspect ratios (𝑑𝒙 ≫ 𝑑𝑧) ruin 
classical AMG convergence rates!
• relatively small horizontal 

coupling terms, hard to 
smooth horizontal errors

 Solvers (AMG and ILU) must 
take aspect ratios into account!

We developed a new AMG 
solver based on aggressive 

semi-coarsening (available in 
ML/MueLu packages of Trilinos)

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

See (Tezaur et al., 2015),
(Tuminaro et al., 2016).



Greenland Controlled Weak Scalability Study

• Weak scaling study with fixed 
dataset, 4 mesh bisections.

• ~70-80K dofs/core.

• Conjugate Gradient (CG)
iterative method for linear solves 
(faster convergence than 
GMRES).

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner! 

4 cores
334K dofs

8 km Greenland, 
5 vertical layers

× 84

scale up

16,384 cores
1.12B dofs(!)

0.5 km Greenland, 
80 vertical layers



Greenland Controlled Weak Scalability Study

• Weak scaling study with fixed 
dataset, 4 mesh bisections.

• ~70-80K dofs/core.

• Conjugate Gradient (CG)
iterative method for linear solves 
(faster convergence than 
GMRES).

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner! 

4 cores
334K dofs

8 km Greenland, 
5 vertical layers

× 84

scale up

16,384 cores
1.12B dofs(!)

0.5 km Greenland, 
80 vertical layers

New AMG preconditioner 
preconditioner ILU preconditioner



Weak scalability: Antarctica

• Weak scaling study: 2.5M → 1.1B dofs, 16 → 8192 cores

• Initialized with realistic basal friction and temperature field from BEDMAP2.

• Iterative linear solver: GMRES.

• Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening.

# cores

ti
m

e 
(s

ec
)

ILU solver does not converge
for finest mesh resolution!

Thin floating ice: ILU will not 
work well! Green’s function 
~ constant in thin direction*

Thin grounded ice: 
ILU can work well w/ 

proper ordering

See (Tuminaro et al., SISC, 2016).

* 𝑨−1 will have large number of non-zeroes, so approximate inverse ILU preconditioner is ineffective.

Antarctica is fundamentally different than Greenland: 
AIS contains large ice shelves (floating extensions of land ice). 
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• Kokkos**: open-source C++ library that provides performance portability across 
diverse devises with different memory models.

➢ A programming model as much as a software library.

➢ Provides automatic access to OpenMP, CUDA, Pthreads, ...

➢ Templated meta-programming: parallel_for, parallel_reduce (templated on 
an execution space).

➢ Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality).

Performance-Portability via Kokkos

• Finite element assembly in Albany Land-Ice has been rewritten using Kokkos functors.

• Performance portability for linear solvers is an ongoing research topic within Trilinos.

We need to be able to run Albany Land-Ice on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, GPUs, Intel Xeon Phi, etc.).

MPI (inter-node parallelism) + X* (intra-node parallelism)

*X = OpenMP, CUDA, etc.  **https://github.com/kokkos/kokkos

With Kokkos, you write an algorithm once, and just change a template parameter 
to get the optimal data layout for your hardware (e.g., (i,j,k) vs. (k,i,j)).



Kokkos-ification of Finite Element Assembly 
(FEA)

ExecutionSpace parameter 
tailors code for device (e.g., 

OpenMP, CUDA, etc.)

MPI-only FEA MPI+X  FEA



Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)] 
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)]

Summit (OLCF): 4600 nodes [2 P9 (22 cores) + V100 (6 GPUs)]

Future targets: Aurora Intel GPU (ALCF), Frontier AMD GPU (OLCF)

Targeted Computer Architectures/Results
Performance-portability of FEA in ALI has been 

tested across multiple architectures: Intel Sandy 
Bridge, Intel Skylake, IBM POWER8, IBM POWER9, 
Keplar/Pascal/Volta/Ampere GPUs, KNL Xeon Phi

MPI+X strong-scaling

Antarctica 
performance 
monitoring*

* Developed by Kyle Shan, an ICME Alumnus, under the ICME Xplore Program (CME 291), Winter 2020.
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“Spin-up” approach: initialize model with (imperfect/unknown) present state and integrate 
forward until states consistent with observations are reached.

➢ Can require a lot of CPU time (“spin-up time”): long timescale adjustments to past 
BC forcing requires a model “spin-up” of order 104-105 years*.

➢ “Spun-up” initial conditions can result in “shocks”, which initiate large transients that 
can derail dynamic ice simulations*.

Inversion for Ice Sheet Initialization

Available data/measurements:
➢ Ice extent and surface topography.
➢ Surface velocity.
➢ Surface mass balance (SMB).
➢ Ice thickness 𝐻 (sparse measurements).

Sources of data: satellite 
infrarometry, radar, 

altimetry, etc.

• matches observations (e.g. surface velocity, temperature).

• matches present-day geometry (elevation, thickness).

• is in “equilibrium” with climate forcings (SMB).

Goal: find ice sheet initial state that:

Fields to be estimated:
➢ Basal friction 𝛽, ice thickness 𝐻

* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion

First-Order Stokes PDE-Constrained optimization 
problem for initial condition*:

minimize 𝛽,𝐻 𝑚 𝒖,𝐻

s.t. FO Stokes PDEs

* Perego, Stadler, Price, JGR, 2014.
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surface velocity mismatch

SMB mismatch

thickness mismatch

regularization terms

surface velocity mismatch

𝑼: computed depth averaged velocity

𝐻: ice thickness

𝛽: basal sliding friction coefficient

𝜏𝑠: surface mass balance (SMB)

ℛ(𝒖,𝐻): regularization term

𝜎: standard deviation (weight of uncertanties)

Modeling Assumptions: ice described by FO Stokes equations; ice close to mechanical equilibrium.



Deterministic Inversion
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Deterministic Inversion

First-Order Stokes PDE-Constrained optimization 
problem for initial condition*:

minimize 𝛽,𝐻 𝑚 𝒖,𝐻

s.t. FO Stokes PDEs

* Perego, Stadler, Price, JGR, 2014.
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Solving FO Stokes PDE-constrained optimization problem for initial 
condition significantly reduces non-physical model transients!

𝑼: computed depth averaged velocity

𝐻: ice thickness

𝛽: basal sliding friction coefficient

𝜏𝑠: surface mass balance (SMB)

ℛ(𝒖,𝐻): regularization term

𝜎: standard deviation (weight of uncertanties)

Modeling Assumptions: ice described by FO Stokes equations; ice close to mechanical equilibrium.



Deterministic Inversion Algorithm & Software

Algorithm Software

Finite Element Method discretization Albany

Quasi-Newton optimization (L-BFGS) ROL

Nonlinear solver (Newton) NOX

Krylov linear solvers Belos+Ifpack2/Muelu

• Some details:

• Regularization: Tikhonov.

• Total derivatives of objective functional 𝑚 𝒖,𝐻 computed using adjoints
and automatic differentiation (Sacado package of Trilinos).

• Gradient-based optimization: limited memory BFGS initialized with Hessian 
of regularization terms (ROL) with backtrack linesearch.

First-Order Stokes PDE-Constrained optimization 
problem for initial condition*:

minimize 𝛽,𝐻 𝑚 𝒖,𝐻

s.t. FO Stokes PDEs

Solved via embedded adjoint-based 
PDE-constrained optimization 
algorithm in Albany Land-Ice.

* Perego, Stadler, Price, JGR, 2014.

Approach efficiently computes gradients of 
𝑚 𝒖,𝐻 by solving linear adjoint PDEs.



Deterministic Inversion: 1km Greenland 
Initial Condition*

|𝒖| observed |𝒖| computed Error in |𝒖| computed

* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion: Common vs.           
Novel Approach*

SMB (m/yr) needed for equilibrium
SMB (m/yr) from climate model 
(Ettema et al. 2009, RACMO2/GR)

* Perego, Stadler, Price, JGR, 2014.



High-Resolution Antarctica Optimal 
Initial Condition

Optimized surface speed for variable-resolution 
Antarctic ice sheet initial condition. Mesh resolution 

varies from ~40 km in slow moving EAIS interior to 
~1.5 km in regions with ice shelves, ice streams, and 

below-sea level bedrock elevation.

Antarctic ice sheet inversion 
performed on O(1M) parameters!



Velocity-Temperature Coupling
• MALI default coupling between FO Stokes and temperature is sequential

• We are working towards fully-coupled flow + temperature model

➢ Enables computation of self-consistent ice sheet initial state (with ice temperature).

• Current implementation in Albany Land-Ice: steady-state enthalpy equation coupled 
monolithically with FO Stokes equations

Enthalpy equation:  𝒖 ∙ 𝛻ℎ + 𝛻 ∙ 𝒒 = 𝜏: ሶ𝝐
ℎ = enthalpy
𝜏 = dissipation heat
𝒒 = total heat flux

• Challenges include strong nonlinearity of basal BC due to phase changes and robust solvers.

Enthalpy/melting     
graph at bed

Strategy: approximate 
enthalpy/melting graph at bed by 

smooth function, perform 
parameter continuation to 

smoothly transition from cold to 
temperate ice (left).

Developing robust linear solvers 
for coupled velocity-temperature 

equations is WIP.



modeled
ice temperature 

Simultaneous Velocity-Temperature 
Initialization (Inversion)

First-Order Stokes PDE-Constrained optimization 
problem for initial condition:

minimize 𝛽,𝐻 𝑚 𝒖,𝐻

s.t. FO Stokes PDEs + Enthalpy PDE

• With an implicit steady-state coupled  
temperature-velocity model, one can 
obtain self-consistent state in one shot.

• Initialization capability is unmatched by 
other land-ice codes: 

➢ Typically ~10K years are needed to 
equilibrate ice temperature

➢ Our solver robustly computes the 
steady-state temperature coupled 
w/ velocity at every iteration of the 
optimization

T [K]

Left: Computed basal temperature 
Right: Thawed/frozen map from MacGregor et al., JGR, 2016
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Uncertainty Quantification*

𝛽, 𝐻 PDFs 
(from Bayesian 

inference)

SLR(𝑡) for 
ensemble of 

forward runs with 
𝛽, 𝐻 sampled 
from its PDF 

PDF of SLR

Goal: obtain PDF of initial condition using 
Bayesian inference and propagate this PDF 
through model to get PDF of total ice mass 

loss/gain during 21st century

Stage 1:
Estimate ice sheet initial 
condition (MAP point).

Stage 2:
Update prior uncertainty in ice 

sheet initial condition 
using observational data
and steady state model

Stage 3:
Propagate uncertain initial 

condition through ice-sheet 
evolution model

UQ Workflow

Deterministic 
inversion

Bayesian 
calibration

Forward 
propagation

* Jakeman et al. (in prep), 2021.



Uncertainty Quantification*

𝛽, 𝐻 PDFs 
(from Bayesian 

inference)

SLR(𝑡) for 
ensemble of 

forward runs with 
𝛽, 𝐻 sampled 
from its PDF 

PDF of SLR

Goal: obtain PDF of initial condition using 
Bayesian inference and propagate this PDF 
through model to get PDF of total ice mass 

loss/gain during 21st century

Stage 1:
Estimate ice sheet initial 
condition (MAP point).

Stage 2:
Update prior uncertainty in ice 

sheet initial condition 
using observational data
and steady state model

Stage 3:
Propagate uncertain initial 

condition through ice-sheet 
evolution model

UQ Workflow

Deterministic 
inversion

Bayesian 
calibration

Forward 
propagation

Very challenging! Lots of obstacles, e.g., curse of dimensionality.

* Jakeman et al. (in prep), 2021.
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Model Validation
Our model has been validated* using data from two satellites: ICESat, GRACE.

Surface elevation predictions (states) 
agree pretty well with GLAS (Geoscience 
Laser Altimeter System) aboard ICESat: 

mean differences are <1 m

ICESat1 [states] 2003 – 2009

GRACE [trends] 2002 – 201? (ongoing)

Forcings**:

➢ SMB-only: Mass change computed by solving an ISM 
forced w/ RACMO SMB (2003-2012)

➢ SMB+FF: Mass change computed as in SMB-only with 
additional flux term on significant ice streams

➢ RACMO: mass change computed directly from SMB 
without using an ice sheet model

* S. Price et al. GMD (2017).  **van Angelen et al. (Surv. Geophys., 2013), Enderlin et al. GRL (2014)



ABUMIP*-Antarctica Experiment

* Antarctic BUttressing Model Intercomparison Project

Basic idea: instantaneously remove all ice shelves and see what happens in the 
next 200 years, preventing any floating ice from ever forming again 

→ Provides an extreme upper bound on SLR contributions from Antarctica

~32M unknowns 
solved for on 

6400 procs, with 
average model 
throughput of 

~120 simulated 
yrs/wall clock 

day.

Courtesy of M. 
Hoffman, S. Price, T. 
Zhang. N. Woods, J. 

Patchet (LANL)
Movie Above: 200 year MALI Antarctic ice sheet simulation 

after instantaneous removal of all floating ice shelves



ABUMIP*-Antarctica Experiment

~32M unknowns 
solved for on 

6400 procs, with 
average model 
throughput of 

~120 simulated 
yrs/wall clock 

day.

Courtesy of M. 
Hoffman, S. Price, T. 
Zhang. N. Woods, J. 

Patchet (LANL)
Figure Above: Antarctic ice sheet simulation after 

instantaneous removal of all floating ice shelves at year 200

Basic idea: instantaneously remove all ice shelves and see what happens in the 
next 200 years, preventing any floating ice from ever forming again 

→ Provides an extreme upper bound on SLR contributions from Antarctica

* Antarctic BUttressing Model Intercomparison Project



LARMIP*-Antarctica Experiment
Similar to control run (forced with historical observations) in most parts of Antarctica, but 

includes warmer ocean water flowing into the cavity beneath the Filchner-Ronne Ice Shelf
→ provides example of ice sheet’s response to aggressive melting and thinning

* Linear Antarctic Response Model Intercomparison Project

https://www.youtube.com/watch?v=Wt0TvNjYsOs&feature=youtu.be

https://www.youtube.com/watch?v=Wt0TvNjYsOs&feature=youtu.be


Simulations: Ice Sheets & SLR under ISMIP6*

* Linear Antarctic Response Model Intercomparison Project

Future Antarctica sea level 
contribution under rapid ice 

shelf melting (top left) and ice 
shelf collapse (bottom right). 

PDF of future sea-level rise from 
all land ice from emulation of 
ISMIP6 and GlacierMIP model 

projections (upper right).

~20% of ice sheet contributions 
from DOE-developed models 

Most other models are 2D, ad 
hoc hybrids, or are run at 

relatively coarse resolution

Edwards et al. (Nature, in press)Levermann et al. (Earth Sys. Dyn., 2020)

Sun et al. (J. Glaciol., 2020)

* Ice Sheet Model Intercomparison Project



MALI Thwaites Glacier Simulation 

• Movie shows Thwaites Glacier retreat 
simulation under parameterized 
submarine melting.

• 250 year regional simulation with 
“present day” initial condition.

• Investigate importance of CDW* depth 
changes due to climate variability.  

• When climate variability in sub-shelf 
forcing is accounted for, we get a 
distribution of possible SLR curves.

Hoffman et al., 2019

* CDW = Circumpolar Deep Water.



MALI & E3SM Coupling

• Global, coupled E3SM simulation 
with sub-ice shelf circulation + pre-
industrial forcing + static ice shelves 
(illustration/spin-up over ~7 yrs).

• RRS30to10km mesh (eddy 
permitting).

Top: sea-surface salinity    

Right: ocean bottom temperature Ocean Bottom Temperature

Sea Surface Salinity

MALI is (partially) coupled to E3SM and 
currently supports static ice shelves and 
fixed grounding lines (enabling dynamic 

ice shelves is WIP).
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Ongoing & Future Work

1) Ice sheet and ocean model physics critical for accurate projections of sea-
level change (e.g., subglacial hydrology, damage evolution + fracture + 
calving)

2) Ice sheet, ocean, and ESM coupling critical for accurate projections of sea-
level change

3) Ice sheet model initialization and optimization methods needed for 
realistic coupling of ISMs and ESMs 

4) Frameworks for quantifying parametric and structural ice sheet model 
uncertainties

5)    Performance portability on new, heterogeneous HPC architectures

New developments will be targeted at standalone and 
coupled simulations of sea-level rise from ice sheets

Probabilistic Sea-Level Projections from Ice Sheet and Earth System 
Models (ProSPect) is a new 5 year (2017-2022) SciDAC project on:



Summary
• Actionable projections of climate change and sea-level rise impacts are 

important worldwide!

• A mature ice-sheet modeling capability (high-fidelity, high-performance) was 
developed as a part of the PISCEES & ProSPect SciDAC projects.  This talk 
described the following aspects of creating this capability:

• Equations, algorithms, software used in ice sheet modeling.

• The development of a finite element land ice solver known as Albany 
Land-Ice written using the libraries of the Trilinos libraries. 

• Coupling of Albany Land-Ice to MPAS LI codes for transient simulations of 
ice sheet evolution. 

• Some advanced concepts in ice sheet modeling: ice sheet initialization/ 
inversion.

• Related capabilities on the E3SM side are rapidly maturing.

• Ongoing projects are focusing on the remaining work (physics, coupling, 
uncertainty quantification frameworks) necessary to provide SLR projections 
and uncertainties.
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Reflections on Stanford/ICME 
ICME Ph.D. student from 2006-2011 

➢ Ph.D. advisor: Prof. Charbel Farhat 

➢ Ph.D. thesis: “The Discontinuous Enrichment Method for Multi-Scale Transport 
Problems”

Concurrently year-round technical intern in the    
fffAerosciences Department Sandia NM (2007-2011)

➢ Spent 4 summers (2007-2010) at Sandia 

➢ Project distinct from Ph.D. thesis work (projection-
based model reduction for compressible flows)



Reflections on Stanford/ICME

Stanford/ICME gave me the theoretical and computational tools to be able 
to approach a wide range of practical science/engineering problems!

Model Order Reduction of 
Captive-Carry and Re-Entry 

Environments

Ice Sheet and Climate Modeling

Shock Multi-Physics for Z-
Machine Implosion and 

Advanced Armor Simulations 

Multi-Scale Methods for System/ 
Component Failure Analyses



Reflections on Stanford/ICME
Stanford courses I took relevant to current R&D: 

➢ CME 302: Numerical Linear Algebra (Prof. Gene Golub) 
➢ MATH 220A: Partial Differential Equations
➢ CME 304: Numerical Optimization (Prof. Walter Murray)
➢ CME 306: Numerical Solution to PDEs (Prof. Ron Fedkiw) 
➢ CME 211: Software Development for Science & Engineers (Prof. James Lambers)
➢ ME 335A/B: Finite Element Analysis (Prof. Peter Pinsky)
➢ CME 325: Numerical Approx of PDEs (Prof. Gunilla Kreiss) 
➢ AA 214: Numerical Methods in Fluid Mechanics (Prof. Thomas Pulliam)
➢ CME 335: Advanced Topic in Numerical Linear Algebra 
➢ CME 358: FEM for Fluid Mechanics (Prof. Jean-Frederic Gerbeau)
➢ ME 408: Spectral Methods (Prof. Parviz Moin)
➢ CME 345: Model Reduction (David Amsallem) 
➢ CME 327: Numerical Methods for Stiff Problems (Prof. Phillipp Birken)
➢ CME 213: Intro to Parallel Computing (Prof. Eric Darve) 

Courses I wish I had taken: 

➢ Courses on software engineering for large HPC codes
➢ Courses on next-gen architectures/GPU programming (GPUs were just starting to take off in 2011)! 
➢ Course on more advanced optimization topics, e.g., adjoint-based optimization
➢ Courses in UQ
➢ Courses in machine-learning/AI (ML had not yet taken off in 2011!).



Careers at Sandia 
Students: please consider Sandia and other national labs as a 

potential employer for summer internships and when you graduate! 

• Sandia is a multidisciplinary national lab and Federally Funded Research & 
Development Center (FFRDC).

• Contractor for U.S. DOE’s National Nuclear Security Administration (NNSA).

• Two main sites: Albuquerque, NM and Livermore, CA



Careers at Sandia 
Students: please consider Sandia and other national labs as a 

potential employer for summer internships and when you graduate! 

• Sandia is a great place to work! 

➢ Lots of interesting problems that require fundamental research in applied 
math/computational science and impact mission-critical applications.

➢ Great work/life balance.

• Opportunities at/with Sandia: 

➢ Interns (including PSAAP)

➢ XPlore (CME 291) projects*

➢ Post docs

➢ Several prestigious post doctoral 
fellowships (von Neumann, Truman, Hruby)

➢ Staff 

Please see: www.sandia.gov/careers for info 
about current opportunities.

* Spring 2021 XPlore project: “Automated param. tuning for ice sheet sims. on HPC systems using offline and real-time data”. 

http://www.sandia.gov/careers
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Motivation
Department of Energy (DOE) interests in climate change and sea-level rise:

• “Addressing the effects of climate change is a top priority of the DOE.”*

• DOE report on energy sector vulnerabilities: “… higher risks to energy 
infrastructure located along the coasts thanks to sea level rise, the 
increasing intensity of storms, and higher storm surge and flooding.”**

*http://energy.gov/science-innovation/climate-change  
**http://energy.gov/articles/climate-change-effects-our-energy



A Hierarchy of Ice Sheet Models

http://www.antarcticglaciers.org/glaciers-and-climate/numerical-ice-sheet-models/hierarchy-ice-
sheet-models-introduction/

Full Stokes Flow Model 
continental or regional simulations

Higher-Order Models
e.g. First Order Stokes/Blatter-Pattyn Model

continental or regional simulations

Hybrid Models
e.g. SIA+SSA, SIA+FS, SS+FS

regional simulations of ice sheet/shelf/stream

Zero-th Order Models
Shallow Ice Approximation (SIA) 

Shallow Shelf Approximation (SSA)
regional of ice streams or shelves
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A Hierarchy of Ice Sheet Models (ISMs)

Model Name Terms Kept Comments Validity

Stokes All 3D model for (𝒖, 𝑝) continental scale

First-Order 
Stokes/Blatter-Pattyn1

𝑂(𝛿) 3D model for 
(𝑢1, 𝑢2)

continental scale

L1L1, L1L22 𝑂(𝛿) Depth integrated, 
2D models for 

(𝑢1, 𝑢2)

Antarctica

Shallow Ice (SIA)3 𝑂(1) Depth integrated, 
2D model for 
(𝑢1, 𝑢2)

grounded ice with 
frozen bed

Shallow Shelf (SSA)4 𝑂(1) Closed form for 𝑢1 shelves or fast sliding 
grounded ice
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1Blatter, 1995; Pattyn, 2003. 2Schoof and Hindmarsh, 2010. 3Hutter, 1983. 4Morland, 1987.
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Model Name Terms Kept Comments Validity

Stokes All 3D model for (𝒖, 𝑝) continental scale

First-Order 
Stokes/Blatter-Pattyn1

𝑂(𝛿) 3D model for 
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1Blatter, 1995; Pattyn, 2003. 2Schoof and Hindmarsh, 2010. 3Hutter, 1983. 4Morland, 1987.

• Stokes flow model is “gold standard” but expensive.



A Hierarchy of Ice Sheet Models (ISMs)
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Model Name Terms Kept Comments Validity

Stokes All 3D model for (𝒖, 𝑝) continental scale

First-Order 
Stokes/Blatter-Pattyn1

𝑂(𝛿) 3D model for 
(𝑢1, 𝑢2)

continental scale

L1L1, L1L22 𝑂(𝛿) Depth integrated, 
2D models for 

(𝑢1, 𝑢2)

Antarctica

Shallow Ice (SIA)3 𝑂(1) Depth integrated, 
2D model for 
(𝑢1, 𝑢2)

grounded ice with 
frozen bed

Shallow Shelf (SSA)4 𝑂(1) Closed form for 𝑢1 shelves or fast sliding 
grounded ice

• Stokes flow model is “gold standard” but expensive.

• Simplified models are derived from full Stokes model and take advantage of the fact 
that ice sheets are thin: 𝛿 ≪ 1.



Shallow Shelf and Shallow Ice Approximation

FO Stokes(𝑢, 𝑣) in Ω ∈ ℝ3

SIA(𝑢, 𝑣) in Ω ∈ ℝ3 SSA(𝑢, 𝑣) in Σ ∈ ℝ2

Ice regime:
grounded ice with 

frozen bed

Ice regime:
shelves or fast sliding 

grounded ice

𝝐 𝒖 =
0
0
0

0
0
0

0.5𝑢𝑧
0.5𝑣𝑧
𝑤𝑧

𝑝 = 𝜌𝑔 𝑠 − 𝑧

𝝐 𝒖 =
𝑢𝑥

0.5 (𝑢𝑦 + 𝑣𝑥)

0

0.5 (𝑢𝑦 + 𝑣𝑥)
𝑣𝑦
0

0
0
𝑤𝑧

𝑝 = 𝜌𝑔 𝑠 − 𝑧 − 2𝜇(𝑢𝑥 + 𝑣𝑦)

Discussion:

• Neither SIA nor SSA applies at continental scale.
• SIA and SSA are referred to as “zero-th order” models
• Both models have two unknowns (𝑢, 𝑣).
• SSA is 2D model obtained by vertically integrating the equations.

Shallow Ice 
Approximation

Shallow Shelf 
Approximation



ISM Computation Cost in ESM

DOE Energy Exascale Earth System 
Model (E3SM)

grid size component horizontal vertical

25km ATM/LND 0.8M 72

18-6km OCN/ICE 3.7M 80

2-20km AIS ISM 1.6M 10

➢ ISM throughput: 1 SYPD 
(simulated year per wallclock day)

➢ ISM cost: 4M core-hours per 
simulated year
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Numerical & Computational Challenges

• Mesh adaptivity close to the grounding line.

• FO Stokes equations are highly nonlinear.

• Large, thin geometries (thickness up to 4km, horizontal extension 1000s of kms).
• Gives rise to meshes with bad aspect ratios and poorly conditioned linear 

systems.

• Boundary conditions pose challenges to solvers.

• Porting of software to new architectures (hybrid systems, GPUs, etc.).

• Initialization/estimation of unknown parameters (basal friction, thickness, etc.).

• Uncertainty quantification.
• Curse of dimensionality!

• Thickness evolution (ice advancement/retreat)
• Sequential coupling with FO Stokes equations gives rise to very small time-

steps by CFL condition!
• Phase changes (temperature equation).

• Coupling to climate components.



Mesh Adaptivity

• In collaboration with Rensselaer Polytechnical Institute (M. Shephard, C. Smith, B. Granzow): 
added mesh adaptation capabilities (PAALS) to Albany.

PAALS provides: 

• Fully-coupled, in-memory adaptation and solution transfer services.

• Parallel mesh infrastructure and services via PUMI (Parallel Unstructured Mesh 
Infrastructure): an efficient, distributed mesh data structure that supports adaptivity.

• Predictive dynamic load balancing via ParMetis/Zoltan + ParMA.

• SPR**-based generalized error estimation of velocity gradient drives adaptation.

• Performance portability to GPUs via Kokkos.

Ryder glacier (north coast)
Left: before mesh adaptation; Right: after mesh adaptation

**Super-convergent Patch Recovery: technique for estimating 𝛻𝒖 using quadratic approximation within a patch of elements.

*SCOREC = Scientific Computation Research 
Center at RPI: https://github.com/SCOREC

PAALS = Parallel Albany Adaptive Loop with SCOREC*



Mesh Convergence Studies

Stage 1: solution verification on 2D MMS 
problems we derived.

Stage 2: code-to-code comparisons on canonical 
ice sheet problems.

Stage 3: full 3D mesh convergence study on 
Greenland w.r.t. reference solution. 

Are the Greenland problems resolved?  
Is theoretical convergence rate achieved? 

ALI LifeV



Mesh Partitioning & Vertical Refinement

Mesh convergence studies led to some useful practical recommendations
(for ice sheet modelers and geo-scientists)!

• Partitioning matters: good solver performance obtained with 2D 
partition of mesh (all elements with same 𝑥, 𝑦 coordinates on same 
processor - right). 

• Number of vertical layers matters: more gained in refining # vertical 
layers than horizontal resolution (below – relative errors for 
Greenland).

Horiz. res.\vert. layers 5 10 20 40 80

8km 2.0e-1

4km 9.0e-2 7.8e-2

2km 4.6e-2 2.4e-2 2.3e-2

1km 3.8e-2 8.9e-3 5.5e-3 5.1e-3

500m 3.7e-2 6.7e-3 1.7e-3 3.9e-4 8.1e-5

Vertical refinement 
to 20 layers 

recommended for 
1km resolution over 

horizontal 
refinement.



Importance of Node Ordering & 
Mesh Partitioning

Our studies revealed that node ordering and mesh
partitioning matters for linear solver performance, 

especially for the ILU preconditioner!

• It is essential that incomplete factorization accurately 
captures vertical coupling, which is dominant due to 
anisotropic mesh.

• This is accomplished by: 

• Ensuring all points along a vertically extruded grid 
line reside within a single processor (“2D mesh 
partitioning”; top right).

• Ordering the equations such that grid layer 𝑘’s 
nodes are ordered before all dofs associated with 
grid layer 𝑘 + 1 (“row-wise ordering”; bottom 
right). 0

6
⋯ ⋯⋯1
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Improved Linear Solver Performance 
through Hinge Removal

Islands and certain hinged 
peninsulas lead to solver failures

• We have developed an algorithm to detect/remove problematic 
hinged peninsulas & islands based on coloring and repeated use 
of connected component algorithms (Tuminaro et al., 2016).

• Solves are ~2x faster with hinges removed.

• Current implementation is MATLAB, but                                           
working on C++ implementation                                                               
for integration into dycores. Resolu-

tion
ILU –
hinges

ILU – no 
hinges

ML –
hinges

ML – no 
hinges

8km/5 
layers

878 sec, 
84 iter/solve

693 sec,
71 iter/solve

254 sec,
11 iter/solve

220 sec,
9 iter/solve

4km/10 
layers

1953 sec,
160 iter/solve

1969 sec, 
160 iter/solve

285 sec, 
13 iter/solve

245 sec,
12 iter/solve

2km/20 
layers

10942 sec,
710 iter/solve

5576 sec,
426 iter/solve

482 sec,
24 iter/solve

294 sec,
15 iter/solve

1km/40 
layers

-- 15716 sec,
881 iter/solve

668 sec,
34 iter/solve

378 sec,
20 iter/solve

Greenland Problem



Spherical Grids

Relative 
difference in 

surface velocity 
magnitude is 

10% in fast flow 
regions.

• Current ice sheet models are derived using planar geometries – reasonable, 
especially for Greenland.

• The effect of Earth’s curvature is largely unknown – may be nontrivial for Antarctica.
• We have derived a FO Stokes model on sphere using stereographic projection.



Deterministic Inversion: Stiffening Factor
Glen’s viscosity with stiffening/damage: 𝜇∗ 𝑥, 𝑦, 𝑧 = 𝜙(𝑥, 𝑦)𝜇(𝑥, 𝑦, 𝑧)

where 𝜙 𝑥, 𝑦 = stiffening/damage factor that accounts for modeling errors in rheology. 

𝛽(𝑥, 𝑦) 𝜙(𝑥, 𝑦)

|𝒖| computed |𝒖| observed

AIS inversion 
for 𝛽(𝑥, 𝑦) and 

𝜙(𝑥, 𝑦)
simultaneously.



UQ Problem Definition
QoI in Ice Sheet Modeling: total ice mass loss/gain 
during 21st century → sea level change prediction.

Sources of uncertainty affecting this QoI include:

• Climate forcings (e.g., surface mass balance).
• Basal friction (𝜷).
• Ice sheet thickness (h).
• Geothermal heat flux.
• Model parameters (e.g., Glen’s                                        

flow law exponent).

Basal boundary  Γ𝛽
)

Ice sheet

𝜇 =
1

2
𝐴−

1
𝑛

1

2


𝑖𝑗

ሶ𝝐𝑖𝑗
2+𝛾

1
2𝑛

−
1
2

𝑛 = Glen’s law exponent

thickness
(h)

Stage 1:
Estimate ice sheet initial 
condition (MAP point).

Stage 2:
Update prior uncertainty in ice 

sheet initial condition 
using observational data
and steady state model

Stage 3:
Propagate uncertain initial 

condition through ice-sheet 
evolution model

UQ Workflow

Deterministic 
inversion

Bayesian 
calibration

As a first step, we focus on effect 
of uncertainty in 𝛽 only. 

Basal sliding BC: 
2𝜇 ሶ𝝐𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽

Forward 
propagation



Bayesian Inference

Stage 3:
Propagate uncertain initial 

condition through ice-sheet 
evolution model

UQ Workflow

Stage 1:
Estimate ice sheet initial 
condition (MAP point).

Stage 2:
Update prior uncertainty in ice 

sheet initial condition 
using observational data
and steady state model

• Naïve parameterization: represent each degree 
of freedom on mesh be an uncertain variable

𝛽 𝒙 = (𝑧1, 𝑧2, … , 𝑧𝑛dof)

Intractable due to curse of 
dimensionality: 𝑛dof = 𝑂 100𝐾 !

Goal: solve inverse problem for ice sheet 
initial state but in Bayesian framework

• To circumvent this difficulty: assume 𝛽 𝒙 can 
be represented in reduced basis (e.g., KLE 
modes, Hessian eigenvectors*) centered around 
mean ҧ𝛽(𝒙):

log 𝛽 𝒙 = log ҧ𝛽 +

𝑖=1

𝑑

𝜆𝑖 𝜙𝑖(𝒙)𝑧𝑖

• Mean field ҧ𝛽 𝒙 = initial condition. 

* Isaac, Petra, Stadler, Ghattas, JCP, 2015.

Deterministic inversion is consistent 
with Bayesian analog: it is used to find 

the MAP point of posterior. 



Bayesian Inference Assumptions

• Likelihood is:  ො𝜋lhood 𝒛 = 𝑒−𝑚lin(𝒛)

• Normal Laplace posterior given by: 𝜋pos 𝒛 = 𝐶evid
−1 ො𝜋lhood(𝒛)𝜋pr 𝒛

where 𝐶𝑒𝑣𝑖𝑑 =  ො𝜋lhood 𝒛 𝜋pr 𝒛 𝑑𝒛.

• Additive Gaussian noise model: 𝒚obs = 𝒇 𝒛 + 𝜖, 𝜖 ~ 𝑁(𝟎, 𝜞obs)

⇒ Mismatch functional to be minimized: 

𝑚 𝒛 =
1

2
𝒚obs − 𝒇 𝒛

𝑇

𝜞obs
−1 𝒚obs − 𝒇 𝒛

• Gaussian prior with exponential covariance and mean 𝒛𝑀𝐴𝑃 = ҧ𝛽.

B
ay

es
’ r

u
le

* Constantine, Kent, Bui-Thanh, SISC, 2016. **Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 

Notation*:

𝒚obs= observations

𝒛 = random params

𝒇(𝒛) = deterministic 
map from params to 
observables.

Covariance of Gaussian 
posterior related to 

inverse of misfit Hessian 
at MAP point**.

Evaluation of misfit 
Hessian is expensive!

⇒ further approximation 
required.

+ linearization of 
𝒇(𝒛) around 𝒛𝑀𝐴𝑃



Bayesian Inference Workflow

*

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.  

Two-part dimension 
reduction procedure to 

obtain modes 𝜙𝑖(𝒙)

Procedure for computing 
covariance of normal 

Laplace posterior, 𝜞post

KLE = Karhunen-Loeve Expansion
AS = Active Subspace
PCE = Polynomial Chaos Expansion
MAP = Maximum a Posteriori

*



GIS Bayesian Inference via KLE + AS

KLE modes Data-informed (AS) directions (𝑑=73*)

• Above: marginal distributions of Gaussian posterior computed using 
KLE vs. KLE+AS; any shift from mean of 0 is due to observations.

• KLE eigenvectors have variance and mean close to prior.

• Data-informed eigenvectors have smaller variance and are most 
shifted w.r.t. prior distribution (as expected).  

KLE and AS amplitudes

AS principal component

index

Gradients of mismatch 
function obtained via 
adjoint solve in ALI.

* Value of 𝑑 was obtained via cross-validation.

𝐶 𝑟1, 𝑟2 = exp −
𝑟1− 𝑟2

2

𝐿2

KLE modes = eigenvecs of 
exponential covariance kernel:



Bayesian Inference
• There are many sources of uncertainty, e.g. 

➢ Climate forcing (e.g., surface mass balance)
➢ Basal friction
➢ Bedrock topography (noisy and sparse data)
➢ Geothermal heat flux
➢ Modeling errors
➢ Model parameters (e.g., Glen's Flow Law exponent)
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Bayesian Inference
Approach 1: KLE + PCE + MCMC

➢ KLE = Karhunen Loeve Expansion: assume 𝛽 𝒙 can be represented 
in reduced basis of KLE modes centered around mean ҧ𝛽(𝒙): 

log 𝛽 𝒙 = log ҧ𝛽 +

𝑖=1

𝑑

𝜆𝑖 𝜙𝑖(𝒙)𝑧𝑖

➢ PCE = Polynomial Chaos Expansion: create PCE emulator for 
mismatch (over surface velocity, SMB, thickness) discrepancy.

➢ MCMC = Markov Chain Monte Carlo: do MCMC calibration        
using PCE emulator to infer Maximum A Posteriori (MAP) point.

First 10 KLE modes
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➢ PCE = Polynomial Chaos Expansion: create PCE emulator for 
mismatch (over surface velocity, SMB, thickness) discrepancy.

➢ MCMC = Markov Chain Monte Carlo: do MCMC calibration       
using PCE emulator to infer Maximum A Posteriori (MAP) point.

Upshots:

☺ Can obtain arbitrary posterior distribution.

First 10 KLE modes

Bayesian Inference
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Bayesian Inference

Upshots:

☺ Can obtain arbitrary posterior distribution.

Issues:

 KLE requires correlation length parameter, which is unknown.

 MCMC only lets you use 𝑶(𝟏𝟎) KLE modes – many more are needed to represent basal 
friction field 𝑂(1000); more modes needed for finer resolution problems.



Approach 1: KLE + PCE + MCMC

➢ KLE = Karhunen Loeve Expansion: assume 𝛽 𝒙 can be represented 
in reduced basis of KLE modes centered around mean ҧ𝛽(𝒙): 

log 𝛽 𝒙 = log ҧ𝛽 +

𝑖=1

𝑑

𝜆𝑖 𝜙𝑖(𝒙)𝑧𝑖

➢ PCE = Polynomial Chaos Expansion: create PCE emulator for 
mismatch (over surface velocity, SMB, thickness) discrepancy.

➢ MCMC = Markov Chain Monte Carlo: do MCMC calibration          
using PCE emulator to infer Maximum A Posteriori (MAP) point.

First 10 KLE modes

Upshots:

☺ Can obtain arbitrary posterior distribution.

Issues:

 KLE requires correlation length parameter, which is unknown.

 MCMC only lets you use 𝑶(𝟏𝟎) KLE modes – many more are needed to represent basal 
friction field 𝑂(1000); more modes needed for finer resolution problems.

|𝒖𝐌𝐀𝐏|

10 KLE modes, 4km GIS: 
ice too fast (mismatch at 

MAP point: 1.87 ×
mismatch at ҧ𝛽)

|𝒖𝑜𝑏𝑠|

Bayesian Inference



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

• Gaussian prior, likelihood ⇒ Gaussian posterior: 𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

Bayesian Inference

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

• Gaussian prior, likelihood ⇒ Gaussian posterior: 

• Linearize parameter-to-observable map around MAP point:

𝒚obs = 𝒇 𝒛 + 𝜖 ≈ 𝒇 𝒛MAP + 𝑭 𝒛 − 𝒛MAP + 𝜖

𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

Bayesian Inference

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Symbols*:

𝑽𝑟 , 𝑫𝑟: eigenvecs, eigenvals of ෩𝑯misfit

෩𝑯misfit = prior-preconditioned Hessian 

of data misfit = 𝜞prior
1/2

𝑯misfit𝜞prior
1/2

𝑯misfit = Gauss-Newton portion of 

Hessian misfit = 𝑭𝄯𝜞obs
−1 𝑭

෩𝑽𝑟 = 𝜞prior
1/2

𝑽𝑟, ෩𝑽𝑟
♢= adjoint of ෩𝑽𝑟

𝜞prior
−1 = 𝑴−1𝑲,𝑲= Laplace stiffness.

• Gaussian prior, likelihood ⇒ Gaussian posterior: 

• Linearize parameter-to-observable map around MAP point:

• Covariance of Gaussian posterior given by:

𝒚obs = 𝒇 𝒛 + 𝜖 ≈ 𝒇 𝒛MAP + 𝑭 𝒛 − 𝒛MAP + 𝜖

𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

𝜞post = 𝑯misfit
PCE + 𝜞prior

−1 −1

Bayesian Inference

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 
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* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 
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• Linearize parameter-to-observable map around MAP point:
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−1 −1

𝒚obs = 𝒇 𝒛 + 𝜖 ≈ 𝒇 𝒛MAP + 𝑭 𝒛 − 𝒛MAP + 𝜖

𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

Dense!

Bayesian Inference

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 



Approach 2: Normal Approximation + Low Rank Laplace Approximation*
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𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

Dense!

• Low-rank approximation of 𝜞post obtained 

using Sherman-Morrison-Woodbury formula: 

𝜞post ≈ 𝜞prior − ෩𝑽𝑟𝑫𝑟
෩𝑽𝑟
♢

Bayesian Inference

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 
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Symbols*:
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• Gaussian prior, likelihood ⇒ Gaussian posterior: 

• Linearize parameter-to-observable map around MAP point:

• Covariance of Gaussian posterior given by:

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 

𝒚obs = 𝒇 𝒛 + 𝜖 ≈ 𝒇 𝒛MAP + 𝑭 𝒛 − 𝒛MAP + 𝜖

𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

• Low-rank approximation of 𝜞post obtained 
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𝜞post ≈ 𝜞prior − ෩𝑽𝑟𝑫𝑟
෩𝑽𝑟
♢

Bayesian Inference

𝜞post = 𝑯misfit
PCE + 𝜞prior

−1 −1
Dense!



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Symbols*:

𝑽𝑟 , 𝑫𝑟: eigenvecs, eigenvals of ෩𝑯misfit
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♢= adjoint of ෩𝑽𝑟

𝜞prior
−1 = 𝑴−1𝑲,𝑲= Laplace stiffness.

• Gaussian prior, likelihood ⇒ Gaussian posterior: 

• Linearize parameter-to-observable map around MAP point:

• Covariance of Gaussian posterior given by:

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.  ** Constantine, Kent, Bui-Thanh, SISC, 2016. 

𝒚obs = 𝒇 𝒛 + 𝜖 ≈ 𝒇 𝒛MAP + 𝑭 𝒛 − 𝒛MAP + 𝜖

𝜋pos 𝒛 | 𝒚
obs = 𝑁(𝒛MAP, 𝜞post)

• Low-rank approximation of 𝜞post obtained 

using Sherman-Morrison-Woodbury formula: 

𝜞post ≈ 𝜞prior − ෩𝑽𝑟𝑫𝑟
෩𝑽𝑟
♢

• ෩𝑯misfit and its eigenvalue decomposition can be computed efficiently using a parallel 
matrix-free Lanczos method.

• Rank (𝜞post) = # modes informing directions of posterior (active subspace vectors**).

Bayesian Inference

𝜞post = 𝑯misfit
PCE + 𝜞prior

−1 −1
Dense!



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 

Upshots:

☺ Eigenvalues of prior-preconditioned misfit Hessian ෩𝑯misfit decay rapidly and decay is 
independent of # parameters.

Greenland Antarctica*

Figures above: eigenvalue decay of prior preconditioned misfit Hessian

Bayesian Inference



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Upshots:

☺ Prior preconditioned misfit eigenvectors have physical interpretation: 

➢ First modes correspond to regions which are highly informed by data

➢ Modes become more global as eigenvalues decay

Mode 1 Mode 2 Mode 3 Mode 200
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Upshots:

☺ Prior preconditioned misfit eigenvectors have physical interpretation: 

➢ First modes correspond to regions which are highly informed by data

➢ Modes become more global as eigenvalues decay

☺ The use of data has drastically reduces the posterior variance

Mode 1 Mode 2 Mode 3 Mode 200

Bayesian Inference



Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Issues:

 PDF will be Gaussian – general PDFs cannot be 
obtained.
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Approach 2: Normal Approximation + Low Rank Laplace Approximation*

Issues:

 PDF will be Gaussian – general PDFs cannot be 
obtained.

 Laplace equation (regularization) involves 
correlation length parameter that changes decay of 
eigenvalues of prior preconditioned Hessian. 

 Dimension of parameter space is too high O(1000) 
for forward propagation. 

 Log-normal prior may be cause of (nonphysical) 
bias towards mass increase when performing forward 
propagation.

Bayesian Inference



Ongoing work:

Bayesian Inference

➢ Use low fidelity models (e.g. SIA) to study problems (such as bias in SLR on previous
slide) with the large-scale, high-resolution, expensive end-to-end framework.

➢ Use dimension reduction, leveraging transient adjoints obtained from new model
suite, to reduce cost of propagating uncertainties through transient model.

➢ Dimension reduction by adding physics: subglacial hydrology models rely on only a
handful of parameters that, to first approximation, can be considered uniform

𝛽 𝒖 = 𝜇𝑓𝑁
|𝒖|

𝒖 + 𝜆𝐴𝑁𝑛

𝑞
1

|𝒖|

Figure 1: ISMIP-HOM B test + SIA and BP 
models is >1000× less than GIS.

Figure 2: gradients can determine 
directions that significantly impact SLR.

+ Thickness equation 
(subglacial hydrology)



MPI+X FEA via Kokkos

• MPI-only nested for loop:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; MPI process n



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)

Thread 2 computes A for 

(cell,node,qp)=(0,0,1)

Thread N computes A for 

(cell,node,qp)=(numCells,numNodes,numQPs)MPI process n

MPI+X FEA via Kokkos



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)

Thread 2 computes A for 

(cell,node,qp)=(0,0,1)

Thread N computes A for 

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 

*  Unified Virtual Memory.

MPI process n

*  Unified Virtual Memory.

MPI+X FEA via Kokkos
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MPI process n
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• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)
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• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

• For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

*  Unified Virtual Memory.
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MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)

Thread 2 computes A for 

(cell,node,qp)=(0,0,1)

Thread N computes A for 

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

• For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

*  Unified Virtual Memory.

MPI process n

MPI+X FEA via Kokkos

Kokkos parallelization in    
ALI is only over cells.

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 



MPAS + ALI Coupling

Albany Land-
Ice (C++)

velocity solve

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 

coupling to DOE-ESM

LandIce_
model

output file

−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔
𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

C++/Fortran 
Interface, Mesh 

Conversion

“Loose” sequential/staggered coupling between 𝒖 and (𝑇, 𝐻).



FO Stokes-Thickness Coupling

Albany Land-
Ice (C++)

velocity solve

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 

coupling to DOE-ESM

LandIce_
model

output file
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𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

C++/Fortran 
Interface, Mesh 

Conversion

𝐻 equation is solved with upwind 
scheme + incremental remap.
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☺ Upside: scheme fits nicely into existing codes

𝐻 equation is solved with upwind 
scheme + incremental remap.



FO Stokes-Thickness Coupling

Albany Land-
Ice (C++)

velocity solve

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 
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LandIce_
model

output file
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𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

C++/Fortran 
Interface, Mesh 

Conversion

☺ Upside: scheme fits nicely into existing codes

 Downside: for problems with shallow ice on frozen bedrock, need to 
satisfy very restrictive diffusive CFL condition*: Δ𝑡 ≤ 𝐶𝐹𝐿diff ∆𝒙

2

𝐻 equation is solved with upwind 
scheme + incremental remap.



FO Stokes-Thickness Coupling

Albany Land-
Ice (C++)

velocity solve

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 

coupling to DOE-ESM

LandIce_
model

output file

−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔
𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

C++/Fortran 
Interface, Mesh 

Conversion

☺ Upside: scheme fits nicely into existing codes

 Downside: for problems with shallow ice on frozen bedrock, need to 
satisfy very restrictive diffusive CFL condition*: Δ𝑡 ≤ 𝐶𝐹𝐿diff ∆𝒙

2

 Downside: Very crude representation of ice advancement/retreat

𝐻 equation is solved with upwind 
scheme + incremental remap.



Semi-Implicit Coupling
MPAS 

Unstructured explicit finite 
volume on Voronoi grids

Solves for thickness
(upwind method) 

Unstructured finite element 

Solves FO Stokes for velocity-
thickness together

𝐻

• MPAS computes thickness 𝐻, uses it to define geometry, which is passed to ALI.



Semi-Implicit Coupling
MPAS 

Unstructured explicit finite 
volume on Voronoi grids

Solves for thickness
(upwind method) 

Unstructured finite element 

Solves FO Stokes for velocity-
thickness together

𝐻

• MPAS computes thickness 𝐻, uses it to define geometry, which is passed to ALI.

• ALI computes coupled velocity-thickness (𝒖, 𝐻) pair:

−2𝜇 𝒖 𝑛+1 𝛻 ∙ ሶ𝝐 𝒖 𝑛+1 = −𝜌𝑔𝛻 𝑏 + 𝐻(𝑛+1) , in Ω𝐻(𝑛+1)

𝐻(𝑛+1) − 𝐻(𝑛)

Δ𝑡
= −𝛻 ∙ ഥ𝒖(𝑛+1)𝐻(𝑛+1) + ሶ𝑏

Idea: the velocity computed by the coupled system FO-thickness equation will be more 
stable than the one computed by FO Stokes only and will allow use of larger Δ𝑡
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Semi-Implicit Coupling
MPAS 

Unstructured explicit finite 
volume on Voronoi grids

Solves for thickness
(upwind method) 

Unstructured finite element 

Solves FO Stokes for velocity-
thickness together

𝐻

𝒖

• MPAS computes thickness 𝐻, uses it to define geometry, which is passed to ALI.

• ALI computes coupled velocity-thickness (𝒖, 𝐻) pair:

−2𝜇 𝒖 𝑛+1 𝛻 ∙ ሶ𝝐 𝒖 𝑛+1 = −𝜌𝑔𝛻 𝑏 + 𝐻(𝑛+1) , in Ω𝐻(𝑛+1)

𝐻(𝑛+1) − 𝐻(𝑛)

Δ𝑡
= −𝛻 ∙ ഥ𝒖(𝑛+1)𝐻(𝑛+1) + ሶ𝑏

• Downside: more intrusive implementation; larger system; expense associated to geometry 
changing between iterations (use Newton to compute shape derivatives).

• Only velocity 𝒖 is passed back to MPAS.

Idea: the velocity computed by the coupled system FO-thickness equation will be more 
stable than the one computed by FO Stokes only and will allow use of larger Δ𝑡



Semi-Implicit Approach: Dome Test Case

Top left: reference 
solution computed 

using sequential 
approach and time 
step of 5 months Semi-implicit 

approach allows the 
use of much larger 

time-steps than 
sequential approach!
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Semi-Implicit Approach: Antarctica

• Variable-resolution Antarctica grid with maximum 
resolution of 3km.

• Compared semi-implicit with adaptive ∆𝑡 based 
on advective CFL condition vs. explicit scheme 
based on diffusive CFL condition.

• Sequential approach: ∆𝑡 = 𝑂(days)

• Semi-Implicit approach: ∆𝑡 = 𝑂(months)

• Cost of iteration is larger for semi-implicit scheme 
because of increased dimension of nonlinear 
system (more expensive assembly and solve).

• Nonetheless, with semi-implicit scheme, we 
obtained speedup of 4.5× (~2 year run).

Basal friction: obtained with inversion.
Geometry: Bedmap2 (Fretwell et al., Cryosphere, 2013), managed by D. Martin and X. Asay-Davis.
Temperature: Cornford, Martin et al, 2014; Pattyn et al., 2010.
Mesh: unstructured Delaynay mesh refined based on surface velocity (MPAS planar Voronoi grid 
generator by M. Duda, NCAR).

155



Towards Fully Implicit FO Stokes-Thickness 
Coupling

• We are looking at the following fully implicit formulations:

➢ Level set formulation coupled with the thickness evolution equation is 
used to track the front position*: no need to modify mesh, can handle 
changes in topography.

➢ Thickness equation as an obstacle problem/variational inequality**: no 
need to track boundary, amenable to implicit integration

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏, in Σ+

න
𝜕𝐻

𝜕𝑡
𝑣 − 𝐻 ≥ න ഥ𝒖𝐻 ∙ 𝛻 𝑣 − 𝐻 𝐻 ≥ 0, ∀𝑣 ≥ 0, in Σ

*Bondzio et al. 2016.  **Bueler, 2016.

+න𝜃 𝑣 − 𝐻 ,
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PISCEES & E3SM Coupling Validation
Sub-shelf melt rates (RRS30to10km resolution)

Filchner-Ronne
Ice Shelf

model observations* model – obs.

* Rignot et al., Science, 2013

Ross
Ice Shelf


