Demonstration of the ACE (Arctic Coastal Erosion) model at Drew Point, AK during a permafrost bluff block collapse event in summer 2018

Jennifer M. Frederick¹, Diana L. Bull¹, Alejandro Mota², Irina Tezaur², Benjamin M. Jones³, Emily M. Bristol⁴, Robert C. Choens¹, Chris Flanary⁵, Craig A. Jones⁵, and Melissa K. Ward Jones³ 1 Sandia National Laboratories, Albuquerque, NM, USA 2 Sandia National Laboratories, Livermore, CA, USA 3 University of Alaska, Fairbanks, AK, USA 4 University of Texas, Austin, TX, USA 5 Integral Consulting, Santa Cruz, CA, USA

SAND No. 2022-16959 C

Mechanical Model

- Finite deformation time-dependent variational formulation for solid *mechanics problem* obtained by minimizing the energy functional:

 $\Phi[\boldsymbol{\varphi}] \coloneqq \int_{0}^{1} A(\boldsymbol{F}, \boldsymbol{Z}) \, dV - \int_{0}^{1} \rho \boldsymbol{B} \cdot \boldsymbol{\varphi} \, dV - \int_{0}^{1} \boldsymbol{T} \cdot \boldsymbol{\varphi} \, dS$

- J₂ plasticity extended to large-deformation regime constitutive model for ice and permafrost
- > Incorporates all mechanisms that lead to deformation, plastic flow and creep of polycrystalline materials like ice
- Minimal calibration parameters
- > Simplest material model with plastic behavior
- \blacktriangleright Modified to be a function of ice saturation f and porosity
- Boundary conditions:
 - Symmetry BCs on lateral sides
 - Wave pressure Neumann BC on bluff face (from wave model).

2.5D Slice at Drew Point, Alaska

• Computational domain is **2.5D cross-section** of archetypal 3D bluff geometry discretized using a uniform hex grid. Slice of permafrost is exposed to *realistic BC data* occurring

at Drew Point, Alaska (example for July 25, 2018 below)

275	0.2 m elevation	temp an temp	0.4 m elevation	 skin temp ocean temp 	275	0.6 m elevation	skin temp ocean temp
274.5		274.5			274.5		٠.
[y] dmat 274	••	[y] temp [V]	•		[K] temb	•	•••
273.5		273.5	**	. 1	273.5		
273 03:	00 06:00 09:00 12:00 15:00 18:00 2 07-25-2018 [hours]	273 1:00 00:00 03	:00 06:00 09:00 12:00 15 07-25-2018	.00 18:00 21:00 00:00 [hours]	273 03:	00 06:00 09:00 12:00 15:00 18:0	

- 07-25-2018 [hours] > Initial temperature field obtained from vertical thermistor string placed into DP1-1 ice core at Drew Point.
- *Material properties* determined from laboratory experiments on frozen soil samples from Drew Point, Alaska
- *Implicit* Newmark for mechanical, *explicit* forward Euler for thermal (stable $\Delta t = 1$ hour)

Material Model Calibration to Experimental Data

For further information:

Frederick, J. M., A. Mota, I. Tezaur, and D. L. Bull (2021), A thermo-mechanical terrestrial model of Arctic coastal erosion, Journal of Computational and Applied Mathematics, Vol. 397, doi:10.1016/j.cam.2021.113533. Bull et al. (2020), Arctic Coastal Erosion: Modeling and Experimentation, SAND2020-10223, Sandia National Laboratories, Albuquerque, NM.

Z: material variables

T: prescribed traction

ρ: densitv

B: body force

