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Preface

The Computer Science Research Institute (CSRI) brings university faculty and
students to Sandia National Laboratories for focused collaborative research on Department
of Energy (DOE) computer and computational science problems. The institute provides an
opportunity for university researchers to learn about problems in computer and computa-
tional science at DOE laboratories, and help transfer results of their research to programs
at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization,
algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty
estimation, validation and verification methods, mesh generation, dynamic load-balancing,
virus and other malicious-code defense, visualization, scalable cluster computers, beyond
Moore’s Law computing, exascale computing tools and application design, reduced order
and multiscale modeling, parallel input/output, and theoretical computer science. The
CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the
publication of a summer proceedings.

1. CSRI Summer Program 2022. In 2022, the CSRI summer program was executed
in a hybrid fashion. This marked the first return to an in-person component since 2020.
Most students were able to at least visit the Albuquerque or Livermore campuses during
the internship. The summer program included included students from 1400 – the Center
for Computing Research (CCR) and 8700 – the Center for Computation & Analysis for
National Security. This year’s program included the traditional Summer Seminar Series
and Summer Proceedings and continued the third annual Virtual Poster Blitz. Additionally,
this year we partnered with the Engineering Sciences Summer Institute (ESSI) to form the
Computer Science and Analysis Institute (CSA), which provided four sessions on professional
development with Dr. Jacquilyn Weeks from Word Tree Consulting. We also hosted a
speaker from the Center of Cyber Defenders for a joint talk during our summer seminar
series, and provided an opportunity to connect with a Sandia librarian for a virtual resource
tour. Outside of technical work, we hosted a virtual escape room and provided tours around
facilities such as data centers and the National Ignition Facility (NIF) at Lawrence Livermore
National Laboratory.

2. Seminar Series. The CSRI Summer Seminar Series is a quintessential part of the
CSRI Summer Intern Program Experience. Students are exposed to a broad showcase of
research from across Sandia, enriching their knowledge of the labs while providing intro-
ductions to novel subject areas. The theme for 2022 was Sandia’s Mission Campaigns
& Research Foundations and CSRI. These talks were focused on presenting exciting
research conducted by CSRI staff while simultaneously addressing the important question
“Why is Sandia doing this research?” We extend our deepest thanks to the staff who spoke
at the 2022 Seminar Series. These speakers and their talk titles are listed in Table 2.1.
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Table 2.1: List of talks and speakers at the 2021 Seminar Series

Date Name Org Title

6/14 Jim Stewart 1400 Sandia Computing & Information Science:
Introduction & Overview.

6/21 Keita Teranishi 8753 Toward Scalable and Productive Resilience
Models for Extreme Scale Computing Systems.

6/28 Asmeret Naugle 1462 Computational Social Science for National
Security.

7/7 Tom Kroeger 8767 Demythifying Cyber Security.
7/12 Bert Debusschere 8351 The UQTk C++/Python Toolkit for Uncertainty

Caitlin Curry Quantification: Overview and Applications.
7/19 Mauro Perego 1441 Ice Sheet Modeling: A Scientific Computing

Application.
7/27 Stephen Bond 1442 Plasma Simulation Software Development for

Fusion Power on the Z Machine.
8/2 Fred Rothganger 1421 Large-scale Brain Modeling.
8/9 Ojas Parekh 1464 Quantum Discrete Optimization (more than

a jumble of words?).
8/15 Steve Plimpton 1444 Particle Applications and HPC.
8/23 Irina Tezaur 8734 An Overview of the CLDERA Grand Challenge

LDRD Project: Developing a Novel Foundational
Approach for Attributing Climate Impacts.

8/30 Megan Dahlhauser 1425 Quantum Characterization, Verification, Validation
Kenneth Rudinger and Benchmarking.

3. Proceedings. All students and their mentors were strongly encouraged to con-
tribute a technical article to the CSRI Proceedings. For many students, these proceedings
are the first opportunity to write a research article. These proceedings serve both as doc-
umentation of summer research and also as research training, providing students the first
draft of an article that could be submitted to a peer-reviewed journal. Each of these arti-
cles has been reviewed by a Sandia staff member knowledgeable in the technical area, with
feedback provided to the authors.

Contributions to the 2022 CSRI Proceedings have been organized into three categories:
Computational & Applied Mathematics, Software & High Performance Computing and Ap-
plications.

All participants and their mentors who have contributed their technical accomplish-
ments to the proceedings should be proud of their work and we congratulate and thank
them for participating. Additionally, we would like to thank those who reviewed articles for
the proceedings. Their feedback is an extremely important part of the research training pro-
cess and has significantly improved the proceedings quality. Our many thanks are extended
to these reviewers: Patrick Blonigan ✧ Pete Bosler ✧ Ron Brightwell ✧ John Carpenter ✧
David Ching ✧ Matthew Curry ✧ Eric Cyr ✧ Saibal De ✧ Jed Duersch ✧ Danny Dunlavy
✧ Chris Eldred ✧ Kurt Ferreira ✧ Michail Gallis ✧ Jared Gearhart ✧ Gianluca Geraci ✧
Christian Glusa ✧ Oksana Guba ✧ Kaylin Hagopian ✧ Bill Hart ✧ Park Hays ✧ Jonathan
Hu ✧ Lucas Kocia ✧ Hemanth Kolla ✧ Paul Kuberry ✧ Scott Levy ✧ Jonathan Lifflan-
der ✧ Dave Littlewood ✧ Jay Lofstead ✧ Payton Lindsay ✧ Kathryn Maupin ✧ Megan
McCarthy ✧ Stan Moore ✧ Miranda Mundt ✧ Kyle Neal ✧ Stephen Olivier ✧ Eric Parish
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✧ Kevin Pedretti ✧ Kara Peterson ✧ Eric Phipps ✧ Steve Plimpton ✧ Teresa Portone ✧
Elaine Raybourn ✧ Drew Rohskopf ✧ Kenneth Rudinger ✧ Mohan Sarovar ✧ Tom Seidl ✧
Ember Sikorski ✧ Anh Tran ✧ Ryan Terpsma ✧ Irina Tezaur ✧ Brad Theilman ✧ Kevin
Thompson ✧ Ray Tuminaro ✧ Craig Ulmer ✧ Craig Vineyard ✧ Ed Walsh ✧ Matthew
Wong ✧ Mitch Wood ✧ Tian Yu Yen

4. Virtual Poster Blitz. In preparation for the proceedings, a virtual poster blitz was
held on 7/21/2022 where all interns hired under the CSRI intern posting were invited to
participate. These students submitted a summary slide of their current results or intended
research for their summer project, and gave a two minute elevator-pitch style presentation
to their peers. Other interns outside of CSRI were also invited to participate with their
mentor’s approval. This event provided an opportunity to formalize work directions, so-
cialize their ideas, as well as offering a chance to network and interact with other interns
and staff across the labs. The slides from the virtual poster blitz event are published under
SAND number SAND2022-9886 O.

5. Professional Development with Word Tree Consulting and Dr. Jacquilyn
Weeks. This year, in partnership with the CSA, our program invited Dr. Jacquilyn Weeks
to give four presentations. Dr. Weeks is the founder of Word Tree Consulting and is an
expert in helping scientists articulate their research ideas to a variety of audiences.

The first of this series of talks on 6/22 focused on writing a more efficient and effective
journal articles. Students were given excellent advice on how to avoid stalls in writing and
how to effectively plan for writing technical articles. Following in this theme, the followup
talk on 6/27 explored best practices for tailoring writing toward a specific journal. Here,
students learned that researching your journal and their language and style preferences are
just as important as communicating your work clearly.

Leading into the Poster Blitz, the final two talks from Jacquilyn were on best-practice
poster presentations and were held on 7/7 and 7/18. Presented in a workshop and interactive
format, students learned to identify common problems with technical posters. Students were
also given an opportunity to critique slides from previous years and learn how to build the
best poster and presentation possible.

Throughout all four talks, Dr. Weeks provided excellent professional development ad-
vice, including tips on preparing resumes and how to apply for student awards.

Deepest Thanks. Holding the first hybrid summer intern program came with new
challenges not seen from previous years. We had numerous technical glitches with telecon-
ferencing equipment. The success of our program was primarily due to the hard work of
our students and the dedication of their staff mentors. We would like to thank all stu-
dents and mentors for their extraordinary patience and dedication. We would also like to
thank the program managers for the CSRI Summer Intern Program, Michael Wolf (1465)
and Jerry McNeish (8734). Their support has been critical throughout the organization of
the seminars and the editing of these proceedings. Furthermore, the CSRI Summer Intern
Program would not be possible without the administrative support of Greg Bristol, Becky
March, Ashley Jones, Hailey Poole, Sandra Portlock, and Cookie Santamaria. We would
also like to extend a very special thank you to Alyssa Skulborstad, coordinator of the CSA.
Our cooperation allowed all of our summer interns this year to have new experiences and
interactions with Sandia.

S.K. Seritan
J.D. Smith

November 11, 2022
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Articles

I. Computational & Applied Mathematics

Computational & Applied Mathematics are concerned with the design, analysis, and imple-
mentation of algorithms to solve mathematical, scientific, or engineering problems. Articles
in this section describe methods to design new neural network architectures or algorithms for
quantum computers, discretize and solve partial differential equations, couple multiphysics
systems of equations, and analyze sensitivity & quantify uncertainty in complex systems.

1. Ahmed, Tchoua and Lofstead examine the impact of pseudo-random number gen-
eration on training machine learning models reproducibly.

2. Bandy, Portone and Acquesta explore a data-driven correction to the dynamics of
systems epidemiology by embedding a neural network in a modified Susceptible-
Infectious-Removed (SIR) model.

3. Barnett, Tezaur and Mota develop an extension to the Schwarz alternating method
to couple projection-based reduced order models to full order models or other re-
duced order models.

4. Davis, Geraci, Wildey and Motamed train neural networks which exploit multifi-
delity data and show how to expand multifidelity datasets to improve and reduce
stochasticity in neural network decisions.

5. de Castro, Kuberry, Tezaur and Bochev extend synchronous partitioning schemes
for finite element methods to the coupling of projection-based reduced order models
with either a finite element model or another reduced order model.

6. Galioto, Safta, Jakeman and Gorodetsky investigate the use of tensor-trains in vari-
ational inference algorithms for learning dynamical systems with quantified uncer-
tainty.

7. Gilani, Holman, Kallaugher and Parekh analyze the quantum query complexity of
triangle detection in the adjacency list model.

8. Higgins, Boman, Loe and Yamazaki compare the sketched Generalized Minimal
Residual Method to alternate Krylov subspace methods and show potential appli-
cations to non-symmetric computational fluid dynamics.

9. Larsen, Grace, Baczewski and Magann develop a feedback-based quantum algo-
rithm for ground state preparation on the Fermi-Hubbard model of correlated ma-
terials.

10. Munoz, Pathak and Rackers combine equivariant neural networks with Hellman-
Feynman optimized basis sets to learn quantum mechanical densities that allow the
evaluation of high-accuracy forces for quantum simulation.

11. Muollo, Raybourn, Weirs, Milewicz, Mauldin and Otahal apply a character-based
approach to measuring semantic similarity with the aim to improve duplicate iden-
tification in natural language data.

12. Rickord, Poldervaart, Wang, Dellana and Cardwell developed an event sensor data
pipeline to test spiking neural networks for motion segmentation in end-to-end neu-
romorphic systems at the edge.

13. van Heyningen, Blonigan and Parish explore the utility of weighted and penalized
residual minimization formulations of reduced order models for steady hypersonic
flows.
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14. Voronin, Tuminaro, Olson and MacLachlan investigate a novel monolithic algebraic
multigrid solver for the Stokes problem discretized with stable mixed-finite elements.

S.K. Seritan
J.D. Smith

November 11, 2022



MAKING RANDOMNESS PORTABLE ACROSS PROGRAMMING
LANGUAGES

HANA AHMED∗, ROSELYNE TCHOUA† , AND JAY LOFSTEAD‡

Abstract. Science is a practice of systematically studying something and offering data and evidence
to reach a conclusion. With first principles simulations, basic physics are used to model some phenomena
leading to consistent, repeatable results. With an incomplete physics model or models too complex or costly
to run for a given task, machine learning and artificial intelligence (ML/AI) are being used to estimate what
the missing physics would be if we could meet our goals with a first principles approach. Our work has been
exploring how to ensure ML is capable of offering a scientific level of consistency so we can trust our science
applications incorporating ML models.

Our earlier work examined the impact of pseudo-random numbers on model quality. For this study, we
have examined the pseudo-random number generation algorithms used to seed essentially all ML algorithms
to ensure that model generation can be performed by other scientists to achieve identical results.

1. Introduction. ML is having an outsized influence on seemingly every aspect of
life today. Research is demonstrating the efficacy of ML models to solve problems that
were previously difficult and/or slow to solve using other methods. The base statistical
models ML uses should be consistent from run to run prompting the incorporation of a
random element at least during model initialization. This randomness keeps models from
being identical and can offer vastly improved quality by selected different, far more favorable
starting conditions [1]. Even with this randomness, because we use pseudo-random number
generator (PRNG) software rather than true random sources, we should be able to generate
the same model again.

To ensure that work incorporating ML still meets the basic standard of science (i.e.,
others can arrive at the same results using the same data), properly recording and reporting
all environment and starting conditions is necessary for another researcher to attempt to
reproduce or replicate the work. One frequently missing parameter is the pseudo-random
number seed used to initialize the models presented in research papers. In our previous
work [1], we established the potentially extreme impact the pseudo-random number seed
has on model accuracy. We were able to demonstrate that using the same seed, we were
able to generate an identical model. The differences based on different seeds prompted
further exploration to understand how these seeds can affect reproducibility of work that
incorporates ML models.

Given anecdotal evidence that ML papers are frequently difficult to reproduce, we have
been investigating the root causes, starting with the acknowledged lack of PRNG seeds.
Our own experience has demonstrated that PRNG seeds are important but often missing
characteristics; however, they are not the only factor [2]. In this work, we are taking a
different approach in that we are attempting to take a model identically reproducible using
a ML algorithm using one language, such as Python, and see if we can reproduce it using the
same algorithm, configured identically, written in a different language, such as C++. With
Python being a frequent ML exploratory tool given the rich, easy to use tools, we know and
expect a large fraction of research publications use Python-based environments for their
research explorations. The question we are pursuing is can a Python-built ML model be
reproduced in C++ and vice versa? Our initial experimentation demonstrated extreme
failures. A simple test to see if the PRNGs are out of sequence by printing out the next
ten numbers showed no overlap between the C++ and Python code bases! This prompted

∗Scripps College, hahmed@hmc.edu
†DePaul University, rtchoua@depaul.edu
‡Sandia National Laboratories, gflofst@sandia.gov
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deeper explorations to determine what is necessary to make this portability possible. If the
algorithms and initial conditions are the same, then the outcomes should be the same.

Ensuring we were using the exact same algorithm, we drop back to exploring simply
the PRNGs themselves and their portability. With the potential impact on the generated
model quality, understanding the portability of pseudo-random number generation—the
starting point for essentially all ML algorithms—is core to portability and reproducibility,
and therefore trust, of ML-incorporated science. Our initial results show a troubling lack of
portability, despite controlling all the user-accessible parameters. This indicates the need
for stronger documentation requirements to demonstrate that the science is repeatable. We
offer insights into some of the challenges, the implications for other ML model generation
environments (e.g., GPUs), and recommendations to close this gap preventing ML-infused
science from reaching the true spirit of science.

The rest of the paper is organized as follows. First in Section 2, we provide an overview of
PRNGs and the impact on ML model generation as well as a brief glimpse into challenges in
reproducing ML publications by third parties.Next in Section 3, we describe the experiments
we have run to test and demonstrate the issues at hand.In Section 4 we offer a discussion
and recommendations before concluding in Section 5.

2. Related Work. PRNGs, the primary source of randomness in a machine learn-
ing algorithm, are themselves algorithms that generate sequences of pseudo-random values.
These are distinct from hardware random number generators (HRNGs, also called true
random number generators), which generate random values using physical rather than algo-
rithmic processes. The advantages of HRNGs are surveyed by Stipčević et al. [13]. However,
HRNGs generate a limited number of random bits per second and produce non-reproducible
sequences, as described by Haahr [6], whereas PRNGs are lower cost and easier to imple-
ment, making PRNGs more desirable to many.

In previous work, we examine the impact of PRNG seeds on final model accuracy of
common machine learning algorithms [1]. This work demonstrates that just by varying the
PRNG seeds, the generated model accuracy can vary by up to 60 accuracy points or more.
To be precise, the same data, configuration, and algorithm with a different seed could result
in a generated model accuracy of 20% or 80%. Please refer to our previous paper for more
details.

Both this paper and our previous paper conduct experiments using a Mersenne Twister
type PRNG [8], which is considered a higher quality PRNG than common linear congruential
engines (such as std::rand() offered in the C++ Standard Library) due to differences in
speed, memory, range, and period length [7]. Additionally, the Philox PRNG, which is
currently offered in the C++ and Python TensorFlow libraries, can guarantee reproducibility
across high-performance computing platforms such as GPUs and parallel programs [10].

In the past, computer scientists have regenerated pseudo-random number sequences by
recording the PRNG seed. Sen et al. [12] uses a “capture-and-replay” method to replay data
races using the same PRNG seed. Frederickson et al. [5] uses a similar approach to reproduce
Monte Carlo trees. Ahmed et al. [1] uses this approach in a series of experiments showing
the extent to which the PRNG seed, train/test split ratio, and train and test data sets
can impact final accuracy scores of various ML classification models on scientific data sets.
Our paper extends on this line of work by showing that the PRNG seed value alone is not
sufficient for reproducing pseudo-random numbers across different PRNG implementations
and programming languages. Rather, additional information such as the PRNG state and
parameter values are required to reproduce the desired number sequences.

Randomness in neural networks and the importance has also been investigated by Scar-
dapane et al. [11]. Pham et al. [9] and Alahmari et al. [3] study the repeatability of deep
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learning models using Python’s TensorFlow and Keras libraries given the presence of un-
controlled randomness. Pham et al. studies the variance in accuracy scores of deep learning
training algorithms given changes in training data, algorithm, network, and PRNG seed.
Alahmari et al. finds that while deep learning models can be repeated by saving the ran-
dom initializations, computational variances may result in a different learning process for a
given run. These papers experiment with ML algorithms unsurprisingly written in Python,
using common ML libraries such as TensorFlow, Keras, and Scikit-learn. Our paper estab-
lishes the conditions under which pseudo-random number sequences generated by common
Python implementations of PRNGs (namely, the Mersenne Twisters provided in Python’s
Random and NumPy libraries) can be reproduced by a C++ PRNG. We offer suggestions
and modifications for ensuring that ML programs in Python generate pseudo-random num-
ber sequences that are reproducible in different implementations of the same PRNG—a
Mersenne Twister—both in Python and in C++.

3. Experiments. To explore this question, we look at how ML algorithms generate
and use pseudo-random numbers in Python and C++, the two most common ML algorithm
languages. This study consists of three experiments with three different implementations
of a single PRNG algorithm, where two implementations are made publicly available in
Python and one in C++. In the first experiment, we attempt to reproduce integer sequences
generated by all three Mersenne Twisters. In the second experiment, we pursue the same
goal with floating point number sequences. Although we expect that using the same PRNG
with identical PRNG seeds would produce identical pseudo-random number sequences, our
experiments capture the necessary steps for achieving results that are as closely identical as
possible across languages and implementations. Finally, we present validation that using the
insights from these experiments, we can demonstrate portability across languages. The code,
PRNG seeds, and PRNG state values used to obtain our experiment results are publicly
available on GitHub.1

Our experiments are conducted on an Intel® CoreTM i7-8665U CPU @ 1.90GHz
2.11GHz, with 32 GB RAM. The operating system is Windows 10 and uses the C++ Clang
Compiler for Windows (11.0.0) and C++ Clang-cl for v142 build tools (x64/x86). The
Mersenne Twister parameters are the Python 3.10.5 Random values, the Python NumPy
v1.23 values, and the C++11 standard values. Further experimentation using different
numerical distributions is left for future work.

3.1. PRNG Algorithm. The following experiments were conducted using the same
type of PRNG—aMersenne Twister (also referred to as mt19937), which is a PRNG of 32-bit
numbers with a state size of 19937 bits. We evaluate the reproducibility of random number
sequences for the Python Random and NumPy libraries and the C++ Standard Library. In
our first experiment, we record the pseudo-random number sequences produced when using
integer functions. Although using the same seed value for the same PRNG algorithm should
guarantee identical results, our first experiment finds that this is not always the case. So,
we also record the pseudo-random number sequences generated when both the PRNG and
initial state are identical. Our second experiment follows a similar layout, but testing the
floating point generator functions rather than integers.

We noted while conducting this experiment set that in Python, calling a PRNG function
multiple times consecutively generates different pseudo-random number sequences when the
order and number of calls to the functions vary. In our experiments, we test the outcomes
of resetting the PRNG seed prior to calling each python PRNG function in separate loops,
as well as the outcomes of setting the seed value once at the beginning of the program

1https://github.com/hahmed17/mersenne-twister-comparison
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Table 3.1
Integer outputs of three Mersenne Twisters with the same seeds. The seed for each Python Mersenne

Twister is set once before all the functions are called together in a loop.

Pseudo-Random Number Sequences (first 3 numbers)

Seed
random.
randint()
(Python)

numpy.
random.
randint()
(Python)

std::mt19937
(C++)

std::uniform int
distribution
<u int32 t>

(C++)

0
1806341205
2195908194
2046968324

2588848963
2678185683
3830135878

2357136044
2546248239
3071714933

2357136044
2546248239
3071714933

42
1181241943
3163119785
1812140441

3143890026
1914837113
3720198231

1608637542
3421126067
4083286876

1608637542
3421126067
4083286876

1659656101
3240433680
4102924446
2511712355

2501096769
2668794612
3792665969

2229904676
1504551105
2530607890

2229904676
1504551105
2530607890

1659656104
2980296527
3014878157
309439972

3079973343
2173885170
822372728

3408234313
1229771292
3057366171

3408234313
1229771292
3057366171

1659065468
265325381
197524735
1836161563

1811291956
2228452808
2043038973

2282898853
2671758029
3412855078

2282898853
2671758029
3412855078

and calling the Python PRNG functions consecutively. The first experiment examines the
reproducibilty of pseudo-random integer generator functions, whereas the second experiment
examines pseudo-random floating point generator functions.

3.2. Integers. This first experiment deals with the following pseudo-random integer
generator functions: in Python, Random’s random.randint() and NumPy’s
numpy.random.randint(); and in C++, the <random> library’s std::mt19937 generator
and std::uniform int distribution<u int32 t>. Each function draws pseudo-random
integers from the discrete uniform distribution. For each integer function, we set the range
of values to be either [0, 4294967295] or [0, 4294967296) , where 4294967295 is the maximum
value producable by std::mt19937. In the first experiment, we seed each of the Python
Random, Python NumPy, and C++ Standard Library Mersenne Twisters with the same
integer value five different times, and record the resulting pseudo-random number sequences.
Note that the PRNG state for any of the Mersenne Twisters is not recorded at this stage. Ta-
ble 3.1 contains samples of the pseudo-random number sequences generated by each PRNG
function using five different seed values: 0, 42, and three arbitrary system datetime() gen-
erated integer values. For this set of outcomes, the Python Mersenne Twisters are seeded
once prior to calling the PRNG functions.

We find that although the two C++ generators produce identical pseudo-random integer
sequences, the Python function outputs are identical to neither each other nor to the C++
outputs. Our next step addresses this problem by configuring NumPy
numpy.random.randint() to output 32-bit integers (this can be done by setting the dtype
parameter to ’<u4’) as the other PRNG functions already do by default. We then rerun
each function using the same seed values as in the previous part of this experiment.

We find that we are able to reproduce the C++ integer sequences in NumPy when the
output of numpy.random.randint() is set to a 32-bit integer. Next, we test whether the
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Table 3.2
Integer outputs, NumPy configured to output a 32-bit integer, and Mersenne Twister seeds reset before

each function is called in a loop.

Pseudo-Random Number Sequences
(first 3 numbers)

Seed
random.randint()

(Python)

numpy
random.randint()

(Python)

0
3626764237
1806341205
2195908194

2357136044
2546248239
3071714933

42
2746317213
1181241943
958682846

1608637542
3421126067
4083286876

1659656101
1376662229
3240433680
402409861

2229904676
1504551105
2530607890

1659656104
2286574984
2980296527
3014878157

3408234313
1229771292
3057366171

1659656106
265325381
197524735
2734704416

2282898853
2671758029
3412855078

results hold when we re-structure our Python tests so that instead of seeding the Python
Mersenne Twisters only once, we set the seed values before every call to a PRNG function.
For space reasons, we omit the actual results, but can provide them on request.

These are promising results for the reproducibility of pseudo-random integers across
programming languages: the Python NumPy generator produces the exact same pseudo-
random number sequences as those produced in C++ with the same seeds (see Table 3.1).
In conducting this series of tests without configuring Python NumPy to output 32-bit
integers—and this time resetting the PRNG seed before each function call—we find that
the resulting pseudo-random number sequences remain identical to those in C++.

However, we see that the Python Random library integer generator produces number
sequences that share no overlap with the remaining three functions. In fact, the sequences
in Table 3.2 differ from those in Table 3.1 for Python Random. This indicates that despite
using the same seed value, the pseudo-random number sequences produced by Random’s
random.randint() function changes solely by changing when the PRNG seed is set.

We take one more step in attempting to address the Random library integer sequences
by setting the Random Mersenne Twister state to be identical with those of the NumPy
and C++ Mersenne Twisters for each seed value. This resulted in no change to the output
integer sequences from Python Random’s random.randint(), and we leave studying the
difference between Python Random’s Mersenne Twister from that of Python NumPy and
C++ as a future work.

3.3. Floats. The second experiment evaluates pseudo-random float generation using
the following PRNG function calls to Mersenne Twister generators in Python and C++:
in Python, the Random library’s random.random(), NumPy’s numpy.random.rand(), and
NumPy’s numpy.random.uniform() functions; and in C++, the <random> library’s
uniform real distribution<float> function. Each function draws a random floating
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Table 3.3
Floating point outputs of three Mersenne Twisters. The seed for each Python Mersenne Twister is set

once before all functions are called together in a single loop.

Pseudo-Random Number Sequences (first 3 numbers)

Seed
random()
(Python)

numpy
rand()
(Python)

numpy
uniform()
(Python)

std::mt19937
(C++)

0
0.844421
0.258916
0.404934

0.548813
0.857945
0.645894

0.715189
0.847251
0.437587

0.548814
0.592845
0.715189

42
0.639426
0.223210
0.676699

0.374540
0.779691
0.155994

0.950714
0.596850
0.058083

0.37454
0.796543
0.950714

1659065463
0.263359
0.621987
0.157480

0.074773
0.587986
0.052192

0.047212
0.067592
0.396804

0.0747732
0.167238
0.0472126

1659065466
0.405821
0.505245
0.530635

0.014769
0.392967
0.727041

0.872470
0.541198
0.599839

0.0147693
0.229618
0.87247

1659065468
0.746031
0.982195
0.777537

0.299617
0.458595
0.185734

0.498290
0.780604
0.444176

0.299618
0.441102
0.498291

point number from a uniform distribution over (0, 1]. As in the first part of the experiment,
each Mersenne Twister is initialized with an identical seed value five different times, where
the seed values are: 0, 42, and three arbitrary system datetime() values. Table 3.3 contains
samples of the pseudo-random number sequences generated by each Mersenne Twister at
each of the five seed values. In this first set of tests, we again seed each Python Mersenne
Twister once before calling all PRNG functions in a single loop.

From this first set of tests, we find that none of the four PRNG functions produce
identical pseudo-random float sequences. We note that while the sequences differ between
NumPy numpy.random.rand() and C++ uniform real distribution <float>, both sets
of sequences overlap in their first number for each given seed. We conjectured that this
discrepancy may be resolved by resetting the PRNG seeds before calling both functions. So,
we conducted another set of tests with all four of our float generation functions, this time
resetting the PRNG seed before each PRNG function call. Results are found in Table 3.4.

In our next set of tests, in addition to using the same seed value for each Python
Mersenne Twister, we also use the same initial PRNG state. For each seed value, we first
generate a pseudo-random float sequence using NumPy numpy.random.rand(). We are
then able write the state value to the other three Mersenne Twisters, using
numpy.random.get state() to get the initial state values, then
numpy.random.set state() and random.setstate() to load the state into the NumPy
and Random Mersene Twisters, and the << operator to pass state values into the C++
std:: mt19937 generator. Results of this test set are shown in Table 3.5.

Controlling both the PRNG seed and state and resetting the seed and state to their
original values before generating each sequence, we find that all three Python PRNG func-
tions generate identical floating point sequences using this particular method (see Tables 3.4
and 3.5). Furthermore, the sequences overlap with those generated in C++ (see Table 3.3).
However, the results from both languages are not identical; only every other floating point
generated by the C++ Mersenne Twister appears in the Python sequences. In an additional
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Table 3.4
Floating point outputs of three Python Mersenne Twister functions with the same seeds. The seed for

each Mersenne Twister is reset before each function is called in separate loops.

Pseudo-Random Number Sequences (first 3 numbers)

Seed
random.random()

(Python)

numpy
random.rand()

(Python)

numpy
random.uniform()

(Python)

0
0.844421
0.258916
0.404934

0.548813
0.857945
0.645894

0.715189
0.847251
0.437587

42
0.639426
0.223210
0.676699

0.374540
0.779691
0.155994

0.950714
0.596850
0.058083

1659065463
0.263359
0.621987
0.157480

0.074773
0.587986
0.052192

0.047212
0.067592
0.396804

1659065466
0.405821
0.505245
0.530635

0.014769
0.392967
0.727041

0.872470
0.541198
0.599839

1659065468
0.746031
0.982195
0.777537

0.299617
0.458595
0.185734

0.498290
0.780604
0.444176

test where we fixed only the seed value (not the initial state) for each function, then reset
the seed value before calling each function in separate loops, we found that while neither
set of NumPy results change, Random’s random.random() function generates completely
different outputs. Identifying the root of these inconsistencies is left as future work.

Given the regular interval for matching floats, we suggest as a work-around using only
every other float in the C++ sequences to obtain results that are reproducible by Python
Mersenne Twisters. We conduct a set of tests where we for every call to
std::uniform real distribution<float> we generate an extra float to make up for the
every-other difference between C++ and NumPy. Results of this test set are in Table 3.6.

Given our adjustments to our C++ code, we are able to obtain float sequences that are
essentially identical to those generated by Python Mersenne Twisters (see Table 3.7).

3.4. K-Means portability between Python and C++. We use a from-scratch
implementation of the k-means clustering algorithm developed in Python and translated
to C++. Both k-means implementations use a PRNG to generate integers and randomly
initialize the starting centroids. In both implementations, a single call to a PRNG integer
functon is made in a single loop, eliminating the need to reset the PRNG seed at any time.
Each k-means clustering model is fitted and tested on the same instances from the Iris data
set [4], and we test a variety of seed and cluster values.

We compare the output of C++ and Python k-means clustering models, where the
Python algorithm calls Python Random’s randint() function. The final k-means model
accuracies differ from one another by as much as 37.619% in accuracy points (as seen in
Table 3.7). We then adjust our Python k-means implementation to call the Python NumPy’s
randint() function. Using the NumPy PRNG, we specify the output type to be a 32-bit
integer, and use the same seed values and states as in the initial experiment. Now, our
Python k-means clustering models guarantee identical accuracy as our C++ models (note
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Table 3.5
Floating point outputs of Python Random and NumPy uniform Mersenne Twisters with the same seeds

and initial states. The seed is reset before each function is called in separate loops.

Pseudo-Random Number Sequences (first 3 numbers)

Seed
random.random()

(Python)
numpy.random.uniform()

(Python)

0
0.548813
0.715189
0.602763

0.548813
0.715189
0.602763

42
0.374540
0.950714
0.731993

0.374540
0.950714
0.731993

1659065463
0.074773
0.047212
0.304362

0.074773
0.047212
0.304362

1659065466
0.014769
0.872470
0.064023

0.014769
0.872470
0.064023

1659065468
0.299617
0.498290
0.865369

0.299617
0.498290
0.865369

that the accuracy scores from our Python k-means models are rounded off).
The adjusted code enables a C++ model to be recreated in Python, and vice versa. For

the opposite direction the C++ code would need to make similar adjustments outputting
both the seed and state for reading into the Python code. With these adjustments, the
model generates identical accuracy scores for both C++ and Python.

In order to replicate ML model accuracy using pseudo-random float generation (i.e.,
using random.random() or numpy.random.rand() in Python, and
uniform real distribution<float> in C++), the necessary adjustments to the C++
implementation requires using the same PRNG seed and state values. For convenience in
our code setup, we place each of the seed and state values in separate text files and read
them in for initializing the k-means algorithm. The Python implementation is adjusted to
use NumPy’s PRNG state and output both the seed and state values into the text files that
can now be part of the reproducibility artifacts.

3.5. Monte Carlo Simulations. Our Monte Carlo simulation estimates the integral
of e−x2

over the interval [0, 1]. Both implementations estimate over 1000 intervals. In
Python, we use the numpy.random.rand() function; and in C++, the
std::uniform real distribution<float> function with a std::mt19937 generator. We
run our C++ simulation with no adjustments to the PRNG call, and receive an output
of 0.738151 while Python yields 0.7402087652084175. To compensate for the every other
match, in the next step of our test, we add an extra call to the C++ Mersenne Twister,
where the second pseudo-random float generated per iteration is unused. We also load the
PRNG state used by our NumPy Mersenne Twister into our C++ Mersenne Twister. With
these adjustments, we run the C++ simulation again, and this time receive an output of
0.740209—effectively equivalent to the Python simulation’s output.

3.6. C++ Compilers: Intel, GNU, and LLVM. We tested our C++ PRNG
functions on three different compilers—Intel, GNU, and LLVM—and verified that each
compiler produces the same random number sequences (given the same PRNG, functions,
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Table 3.6
Floating point outputs in of C++ Mersenne Twister with same seed and initial state, and an extra

call is made to the C++ Mersenne Twister.

Pseudo-Random Number Sequences (first 3 numbers)

Seed
std::uniform real
distribution<float>

(C++)

0
0.548814
0.715189
0.602763

42
0.37454
0.950714
0.731994

1659065463
0.0747732
0.0472126
0.304362

1659065466
0.0147693
0.87247
0.0640231

1659065468
0.299618
0.498291
0.865369

Table 3.7
C++ vs. Python k-means clustering models.

Seed
# of

clusters
C++

accuracy

Python
accuracy
(pre-

adjustments)

Python
accuracy
(post-

adjustments)
1659578083 2 54.2857% 6.6667% 54.2857%
1659560144 4 38.0952% 44.7619% 38.0952%
1659560381 6 0.0 39.0476 0.0

and seed values).

4. Discussion and Future Work. These experiments establish guidelines for re-
producing pseudo-random number sequences using different implementations of the same
PRNG, a Mersenne Twister, in two different programming languages, Python and C++.
Our first experiment identifies two possible steps for reproducing integers with different
PRNG functions in Python and C++: modifying sequences NumPy’s
numpy.random.randint() to generate 32-bit integers, and/or reinitializing the PRNG seed
each time prior to calling numpy.random.randint() in a loop. Unfortunately, we found
that it is nearly impossible to reproduce integer sequences generated by Python Random’s
random.randint() using any other Mersenne Twister, and we leave the root cause of this
inconsistency in Python Random as a future work.

Our second experiment addresses floating point sequences generated by PRNG functions
in Python Random, Python NumPy, and C++ <random>. We find that using the same seed
and state does in fact guarantee reproducible floating point values generated by the Python
Random and NumPy Mersenne Twisters. However, it is neary impossible to reproduce in
Python the floating point numbers generated by a C++ Mersenne Twister, as only every
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other float generated in C++ sequences overlaps with the Python sequences. This difference
can be worked around by either: making a second call to the C++ PRNG to compensate
for the every-other difference; or, because integer reproducibility can be guaranteed by
the results in our first experiment, generating a pseudo-random integer and dividing by
the maximum value to obtain a float that can be reproduced by the integer generators in
Python. We leave determining the root cause of the discrepancy between C++ and Python
pseudo-random floats as a future work.

The third experiment both demonstrates the divergent accuracy in an ML model and
validates that the proposed adjustments can generate identical accuracy values. Addition-
ally, this behavior was demonstrated for a Monte Carlo integration. Overall, we find that
reproducible pseudo-random number sequences are not guaranteed across these different im-
plementations: Python Random and Python NumPy integers; Python Random and C++
Standard Library integers; and Python and C++ Standard Library floats. However, this
paper establishes the necessary steps for guaranteeing reproducible integers using Python
NumPy and C++ Standard Library, and reproducible floats using Python Random, Python
NumPy, and C++.

5. Conclusion. Trusting that the work performed by one researcher can be recreated
by another is the foundation of science. ML has added complexity to this process that has
not been well understood leading to high quality work omitting key pieces of information
necessary for another to recreate the same results. Our own work attempting to reproduce
seemingly well documented ML-based research has led to failures and prompted this deeper
look into what is truly necessary to achieve a science-based ML outcome. With PRNG
sequences playing a role not just in ML algorithms, but also in Monte Carlo simulations as
well as a host of other kinds of science codes, proper and complete documentation to enable
another researcher to reproduce the same results is tricky. We hope this work sheds light
on another reproducibility challenge and potential solutions
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VALIDATING NEURAL-NETWORK-CORRECTED DYNAMICAL
SYSTEMS

RILEIGH BANDY∗, TERESA PORTONE † , AND ERIN ACQUESTA‡

Abstract. The true dynamics of systems epidemiology are often governed by complex interactions that
we cannot model exactly, and so we often use classic compartmental models (e.g., SIR model). However,
high model error caused by simplifying assumptions can severely limit the predictive capability of these
models for epidemic outbreaks. We explore the reduction of model error through a data-driven model
correction—embedding a small neural network (NN) which takes current population counts as inputs—into
a modified SIR model. This approach bridges the gap between application-specific, physics-based model
inadequacy representations and general, statistical representations of model error. Physics-based model
inadequacy representations can extrapolate beyond calibration regimes but are time-consuming to develop,
while statistical representations of model error are easy and rapid to develop but have limited extrapolative
capability. However, validation of the resulting corrected model is nontrivial. We investigate the robustness
of common validation metrics and how the NN architecture and phenomenology captured in calibration data
influence predictive capability.

1. Introduction. George Box famously stated, “since all models are wrong the scien-
tist cannot obtain a ‘correct’ one by excessive elaboration.” Instead, to find the most useful
model of a phenomenon, one must reduce complexity without overly increasing inaccura-
cies. In computational modeling of infectious diseases, agent-based models, which model
each individual and relationships as a network, have been widely used to evaluate infection
control policies and inform the development of containment strategies [17]. While agent-
based models are heterogeneous and can capture complex network interactions, they can
be intractable due to computational expense and/or incomplete knowledge of the network.
Therefore, low-fidelity compartmental models are often used, where the community popula-
tion is assigned to compartments like susceptible, infectious, and removed. Compartmental
models are significantly cheaper than agent-based models, but they are derived by making
several strong simplifying assumptions (e.g., homogeneous and uniform mixing across the
host population), which can lead to model error. Model error arises from inaccuracies in the
model, such as simplifying assumptions or missing dependencies. These inaccuracies lead
to discrepancy between model predictions and observed reality, casting into doubt their
validity. Therefore, accurate assessments of model error are essential for evaluating the
credibility of model predictions.

When the model error is too large to confidently use a low-fidelity model for predictions,
we do not have to completely throw out the model. Instead, we can construct model cor-
rections to reduce the discrepancy. A common approach is to add a stochastic term to the
model predictions [8, 7]. This approach is nonintrusive, so it can be applied to a variety of
models without requiring knowledge about the intricacies of the model. However, a baseline
level of knowledge about compartmental disease models and the source of the model error
is often available, and leveraging this information is often necessary for proper treatment
of the uncertainty. It is important to respect the intrinsic nature of the model discrepancy
when constructing a model correction if it is to reliably represent uncertainty in the pre-
dictions. Another approach is to embed application-specific, theory-informed inadequacy
representations into the model [13, 12]. While this technique is broadly applicable, the in-
adequacy representation is highly specialized to the model it is embedded into and requires
expert knowledge to construct. When we have limited knowledge pertaining to the missing
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information we are trying to capture, inadequacy representations can be hard to design.
Therefore, we combine the two approaches by embedding a data-driven correction into the
model to produce a so-called universal differential equation (UDE) [15]. Baseline knowledge
gives us insight into where to embed the correction in the model, and data informs the
form of the correction. Specifically, we embed a neural-network (NN) into a compartmental
disease model to capture an unknown, nonlinear transition between compartments, as was
done in [3].

Before a neural-network-corrected model can be used by decision makers, it must go
through quantitative validation to confirm that the model predictions are in agreement with
observations. Compartmental disease models are dynamical systems which evolve in time;
correspondingly, the model correction, in the form of an embedded NN, evolves along with
it. It is important to understand the time horizon over which the corrected model is valid.
However, identifying the appropriate validation metric from the plethora of options in the
literature provides yet another challenge since the window of validation will be sensitive to
that choice of validation metric. There are several sources of uncertainty in the modeled
system, including the values of disease parameters and uncertainties in observations. Maupin
et al. recommend using all available uncertainty estimates, so we limit our investigation to
probabilistic validation metrics [11]. We explore a range of validation metrics to see which
one is the most appropriate for our application, and how the NN architecture and calibration
scenario affect validity.

The rest of the paper is organized as follows. In Section 2, we introduce the noisy “true”
model and our neural-network-corrected model. In Section 3, the details of the calibration
are presented, and our probabilistic validation metrics are defined in Section 4. Our results
are presented in Section 5, and concluding remarks are given in Section 6.

2. Compartmental Models. The SIR model is a widely implemented dynamical
model of infectious diseases, and it is the fundamental basis that captures the key driving
factors governing systems epidemiology [6]. As the SIR model is the mathematical founda-
tion upon which most high-fidelity, more complex epidemiology models are constructed, we
will focus on the research challenges laid out by running controlled numerical experiments
on the low-fidelity SIR compartmental model. It consists of three compartments: suscepti-
ble, infectious, and removed, and movement between the compartments is modeled by the
following ordinary differential equations (ODEs):

dS(t)

dt
= −β I(t)

Npop
S(t)

dI(t)

dt
= β

I(t)

Npop
S(t)− γI

dR(t)

dt
= γI(t).

(2.1)

The SIR model is a closed system where individuals are not entering or exiting the com-
munity, and S(t) is the susceptible population count, I(t) is the infectious population
count, and R(t) is the removed population count. Therefore, the total population Npop =
S(t) + I(t) +R(t) is fixed. The transition from susceptible to infectious is the force of infec-

tion function λ(t) = β I(t)
Npop

, where β is the probability of infection per unit time of contact,

and the transition from infectious to removed γ is the inverse of the average duration of
infectiousness.

However, there are many more states individuals can fall into (e.g., exposed, infected but
asymptomatic, vaccinated, or isolating). The omission of those states and their influence on
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Fig. 2.1: Depiction of the discrepancy between the low-fidelity SIR model and the “true”
model caused by the model error in the SIR model. Here the “true” model is the SIRQ
(Susceptible-Infectious-Removed-Quarantined) model defined below without noise.

Fig. 2.2: Graph of the SIRQ compartmental disease model.

the susceptible, infectious, and removed populations leads to high model error, as is depicted
in Figure 2.1, where the SIR model predictions are compared to data from a “true”, more
complex model, where the model error in the SIR model leads to significant discrepancies
with the data.

We reduce model error by enriching the SIR model with more information. For example,
with every novel outbreak contact tracers provide the first line of defense in controlling the
spread of infection by isolating known cases and quarantining the corresponding presumptive
positive contacts. For ease in communication, we simply refer to this as quarantining the
infectious population. We can intrusively correct the SIR model to include a quarantined
compartment and form the so-called SIRQ model, but we do not know the form of the transi-
tion from infectious to quarantined. The quarantine rate is dependent on people’s individual
risk tolerance and community guidelines, and it is likely a nonlinear function of the current
state of the disease in the community. That is, it is not a constant in time, as transition rates
are typically assumed to be in compartmental models of disease spread. Therefore, we will
use data to inform the transition from infectious to quarantined. A graphical representation
of the SIRQ model is shown in Figure 2.2. The transition from infectious to quarantined is
the function of quarantine intervention q(·), and the transition from quarantined to removed
δ is the inverse of the average time a person is in the quarantined compartment.
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2.1. Noisy “True” Model. Ideally, our experimental observations would come from
real data of a notional virus, but it is extremely hard to identify all of the sources of
uncertainty in real-world observations. Notably, we would have to deal with underreporting
[6, 10]. Therefore, we create a “true” model as a testbed to generate observations. The
“true” model is a system of UDEs, which are differential equations defined in full or part
by a universal approximator [15]—in this case, a NN to capture the unknown, nonlinear
transition from infectious to quarantined. For our synthetic data the form of the NN is
known and fixed. The “true” UDEs will be stochastic differential equations (SDEs) to
represent the underlying uncertainty in the model parameters θ = (β, γ, δ) and the NN
function approximation q(·). Although deterministic compartmental models assume a single
value for the model parameters, they represent an aggregation of population statistics and
may even vary in time. To represent this uncertainty, the model parameters and NN function
approximation are defined as random variables. The resulting noisy “true” model is the set
of four SDEs

dS(t) = −β I(t)

Npop
S(t)dt− σβ

I(t)

Npop
S(t)dW (t)

dI(t) =

(
β
I(t)

Npop
S(t)− γI(t)− q(S(t), I(t), R(t))

I(t)

Npop

)
dt

+

(
σβ
I(t)S(t)

Npop
− σγI(t)− σq

I(t)

Npop

)
dW (t)

dR(t) = (γI(t) + δQ(t)) dt+ (σγI(t) + σδQ(t)) dW (t)

dQ(t) =

(
q(S(t), I(t), R(t))

I(t)

Npop
− δQ(t)

)
dt+

(
σq

I(t)

Npop
+ σδQ(t)

)
dW (t),

(2.2)

where W (t) denotes a Wiener process, Npop = S(t)+I(t)+R(t)+Q(t), β = 0.15, γ = 0.013,
δ = 0.01, σβ = 0.05, σγ = σδ = 0.04, σq = 0.01, and q(S(t), I(t), R(t)) is a NN function
approximator with inputs S(t), I(t), and R(t), two hidden layers with ten nodes per layer,
and a single output.

In our numerical experiments, we assume the community starts with a total population
about the size of New Mexico, 2, 000, 000 people, where I(0) = 500 and R(0) = Q(0) = 10.
We simulate the noisy “true” model for N = 201 days and sample the states daily. While
we have data for the susceptible population, it is not available in real-world data, so we
will remove the susceptible population from our observations. Therefore, our quantities of
interest (QoIs) will be infectious, removed, and quarantined counts, and the noisy “true”
observations D will be a 3N vector of infectious, recovered, and quarantined counts from
day zero to day 200 with a timestep of one day. As discussed in [16], disease trends on
the scale of a week or more are of most interest to decision makers. Additionally, fitting to
noisy data without accounting for uncertainty in the observations can lead to overfitting. To
address these considerations, we apply a moving average filter during preprocessing, and the
resulting filtered observations are denoted D̄. We use the discrepancy between the filtered
and noisy observations to estimate the uncertainty in the observations. This procedure is
detailed in Appendix A.

2.2. Neural-Network-Corrected Model. Our enriched SIRQ model can also be
described by a system of UDEs, but they are ODEs containing an NN to capture the
unknown, nonlinear transition from infectious to quarantined. Our neural-network-corrected
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SIRQ model is a closed system with a constant total population. The resulting UDEs are

dS(t)

dt
= −β I(t)

Npop
S(t)

dI(t)

dt
= β

I(t)

Npop
S(t)− γI(t)− q(S(t), I(t), R(t); Φ)

I(t)

Npop

dR(t)

dt
= γI(t) + δQ(t)

dQ(t)

dt
= q(S(t), I(t), R(t); Φ)

I(t)

Npop
− δQ(t),

(2.3)

where Npop = S(t) + I(t) +R(t) +Q(t) = 2, 000, 000, and the unknown NN parameters are
Φ. The appropriate value for the initial conditions of the model was also considered. Given
that the model is representative of more macroscopic, smooth trends, it is not expected
to match the noisy data exactly. To this end, the initial condition was set to match the
initial value of the filtered data. In the future, the initial values of the populations could be
included in the calibration process.

The unknown model parameters are θ = (β, γ, δ). The number of elements in the
NN parameter vector Φ depends on the NN architecture. For this study, we have three
inputs S(t), I(t), and R(t) and a single output, but we will explore three different, densely
connected formations of hidden layers: 2x2, 2x10, and 4x2. The 2x2 contains two hidden
layers with two nodes per layer, and it represents a very small NN architecture with J = 11
parameters. The 2x10 contains two layers with ten nodes per layer, and it represents the
unknown, true NN architecture with J = 51 parameters. The 4x2 contains four layers with
two nodes per layer, and it represents a NN architecture with more complex relationships
and with J = 23 parameters. This will allow us to study to what degree the depth and
width of the NN impact validity. Note that the “true” noisy data is generated with a 2x10
NN, the architecture with the most parameters.

3. Calibration. Decision makers take into account the trend in the infectious popu-
lation when determining a threshold for action [18]. For example, an exponential increase
might cause them to intervene with mask mandates or stay-at-home orders. To understand
how features included in the calibration data impact the extrapolative capability of the cor-
rected model predictions, we split the calibration observations into three groups of infectious
behavior: linear, exponential, and quadratic increase. These three regimes represent three
distinct phases of the disease and are depicted in Figure 3.1.

Calibration of the model and NN parameters is performed in a Bayesian context to
incorporate information about parameter and observational uncertainties. The goal for cal-
ibration is to find the maximum a posteriori (MAP) estimate for the model parameters
θ = (β, γ, δ) and NN parameters Φ. However, the nonlinearity of the NN leads to a com-
plicated posterior distribution with many local minima. To obtain a characterization of the
posterior and its many local minima, we run an ensemble of calibrations with 100 different
initializations of Φ; resulting in 100 ensembles of the MAP estimate. A completely random
sampling of NN parameters Φ can lead to extreme numerical issues (e.g., stiffness or ill-
conditions) causing the solver to fail and the optimization to error out. To address this, an
initialization procedure was developed prior to MAP optimization to seed Φ at reasonable,
though still random, values, which is detailed in Appendix B.

After the initialization procedure, we run the MAP optimization. In the Bayesian
context, the loss function is

lossMAP(θ,Φ |Dc) = − log πlike − log πprior, (3.1)
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Fig. 3.1: Distinction of linear, exponential, and quadratic behavior in the infectious popu-
lation.

which is proportional to the negative log posterior distribution. Here Dc ⊆ D is a vector
of the noisy observations for a given calibration scenario. The prior distribution is

πprior =

(
3∏

i=1

U(0, 1)

)


J∏

j=1

N
(
0, 502

)

 , (3.2)

where J is the number of NN parameters. The prior on the NN parameters is a noninfor-
mative, minimalist prior, which Gelman et al. define as the least informed type of prior [5],
because we do not have any constraining information. The prior on the model parameters is
a maximum entropy prior because we know that the transition rates between compartments
must be nonnegative and no greater than one. The likelihood distribution is

πlike = p (Dc | θ,Φ) = N (Dc − YM (θ,Φ) | 0,Σε) , (3.3)

where Σε = diag
(
(c1 + c2Dc)

2
)

is the covariance matrix of the estimated observational
error as determined by the procedure in Appendix A. We acknowledge that it is very likely
the observational uncertainty is not Gaussian; however, a more complex data distribution
was out of scope for this project. We perform the training with an ADAM solver and
100, 000 epochs [9], and we return the values of θ and Φ that minimize lossMAP as θMAP

and ΦMAP. After calibration, we are left with and ensemble of 100 values for θMAP and
ΦMAP. However, some of these samples may have gotten stuck in a local minimum that
is significantly inconsistent with the calibration data. Therefore, the ensembles undergo
post-processing detailed in Appendix C to filter out such outliers before validation, and we
are left with M ≤ 100 ensembles.

4. Validation. In general, validation checks that model predictions are consistent with
observations from the true system. A good validation process should test the model against
relevant and reliable data from the true system, such as testing a model beyond the cali-
bration tests (i.e., for edge cases and extrapolations). The validation process should build
confidence in the model’s accuracy. However, there are several approaches for determin-
ing if model predictions and observations are consistent, and the best approach is often
application-specific. We will focus on probabilistic validation metrics because we want to
account for uncertainties in the modeled system. In this application, we are particularly
interested in how long after the calibration timeframe the model can make extrapolative
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predictions. We investigate four validation metrics: the Mahalanobis distance, quantiles,
the predictive assessment, and the reliability metric.

Before detailing the validation metrics, let us define a standard notation that will be
used for all of the metrics. The time horizon included in a given validation test is T = [t0, tN ],
where t0 is the beginning of the calibration scenario, and tN is the end of the simulated
time horizon. The linear behavior begins at t0 = 0 days, the exponential behavior begins at
t0 = 11 days, and the quadratic behavior begins at t0 = 62 days. The number of timesteps
in T is Nv, which is also the timespan since our time unit is a day. The full set of validation
data is Dv ⊆D, which is a 3Nv vector. The validation data at a single timestep is denoted
by Dv(t), and it is a vector of the three QoIs. We denote a single QoI from the validation
data as Dv(t, f), where f ∈ (1, 2, 3) corresponding to infectious, removed, and quarantined
populations. The neural-network-corrected model evaluated over the time horizon T is
defined as YM (θ,Φ;T ), which is a 3Nv vector as well. The model prediction at a single
timestep is denoted by YM (θ,Φ; t), and it is a vector of the three QoIs. We denote a single
QoI prediction as YM (θ,Φ; t, f).

The Mahalanobis distance measures the average number of standard deviations the
observations are from a Gaussian distribution centered at the model predictions:

d̄ =
1

3Nv

√
(Dv − P )TΣ−1

P (Dv − P ). (4.1)

Here P = 1
M

∑M
k=1 YM (θkMAP,Φ

k
MAP;T ) is the mean model predictions from M ensembles,

and ΣP is the ensemble covariance. A value of d̄ ≤ 2, corresponding to a 95% confidence
interval (CI), is generally accepted as valid [11]. We take the Mahalanobis distance at
each time interval, successively including more observation times to see how long the model
predictions are valid. This results in calculating Equation (4.1) with tN = t0, then tN =
t0 + 1, and so on until tN = 200, which is the maximum validation time, or d̄ > 2. We
return m, which is the first time the Mahalanobis distance exceeds the tolerance.

Quantiles compare observations of the QoIs to the quantiles of the model predictions
at a given time t, assuming our model distribution is unimodal. We detail the calculations
in Algorithm 1, where α is the Bonferroni corrected tolerance corresponding to a 95% CI.
We return q, which is the first time an observation is outside of the middle 95% CI.

The predictive assessment calculates the probability that a validation observation
Dv(t, f) is an outcome of the model given the calibration data Dc:

p(Dv(t, f) |Dc) =

∫

θMAP,ΦMAP

(
p(Dv(t, f) | θMAP,ΦMAP)

p(YM (θMAP,ΦMAP; t, f) | θMAP,ΦMAP)

p(θMAP,ΦMAP |Dc)

)
dθMAP,ΦMAP,

(4.2)

where p(Dv(t, f) | θMAP,ΦMAP) is the likelihood that the validation observation is an
outcome of the model, which is defined by the estimated observational error defined in
Equation (A.2) as

N
(
Dv(t, f)− YM (θMAP,ΦMAP; t, f) | 0, (c1(f) + c2(f)Dv(t, f))

2
)
)
. (4.3)

Our predictive assessment is almost identical to the posterior predictive assessment [4], but
we have an ensemble of θ and Φ values sampled at several local optima in the posterior
space. Then, we compare this probability to the possible model predictions. In particular,
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Algorithm 1 Quantile Validation

function quantile validation(t0, M , tN = 200)
α← 0.05

3Nv

q ← −1
for t in t0 : tN do

for f in 1 : 3 do
YM ens ← [] (empty array)
for k in 1 : M do

YM ens.append (YM (θMAP,k,ΦMAP,k; t, f))
end for
sorted← sort(YM ens)
lower bound← quantile(sorted, α/2.0)
upper bound← quantile(sorted, 1− α/2.0)
if Dv(t, f) < lower bound or Dv(t, f) > upped bound then

q ← t
BREAK

end if
end for

end for
return q

end function

we are interested in how much of the distribution corresponds to model predictions less
likely than Dv(t, f), which is given by the γ-value.

γ = 1−
∫

S

p(y∗ |Dc)dy
∗, (4.4)

where S = {y∗ : p(y∗ | Dc) ≥ p(Dv(t, f) | Dc)} is the β-highest probability density
credibility region [12]. If γ < 0.05

3Nv
, the model is generally deemed invalid for predicting the

true system. We go through ∀Dv(t, f) ∈Dv chronologically and return p, which is the first
time the β-highest probability density credibility region is less than 0.05

3Nv
.

The instantaneous reliability metric provides the degree of agreement between a
validation observation and model predictions for a given QoI f and instance in time t:

r(t, f) = p (|YM (θMAP,ΦMAP; t, f)−Dv(t, f)| < ε(t, f)) =
1

M

M∑

k=1

Ik(t, f), (4.5)

where

Ik(t, f) =

{
1 if dk(t, f) < ε(t, f)

0 otherwise
, (4.6)

dk(t, f) =
∣∣YM

(
θkMAP,Φ

k
MAP; t, f

)
−Dv(t, f)

∣∣ , (4.7)

and ε(t, f) = 2 (c1(f) + c2(f)Dv(t, f)) is the discrepancy threshold, which corresponds to a
95% CI around the observational error. If we had replicate observations, that uncertainty
could be incorporated as detailed in [1], but without replicates we use the estimated ob-
servational error to select ε(t, f). We go through ∀f ∈ (1, 2, 3) for each t and ∀t ∈ Nv

R. Bandy, T. Portone, and E. Acquesta 21



chronologically and check r(t, f) < τ , where τ = 0.9 is the tolerance interval. We return r,
which is the first time r(t, f) < τ , or when the probability the model is within two standard
deviations of the data falls below τ .

While these four metrics are all probabilistic, they each uniquely account for uncer-
tainties and make different assumptions. The Mahalanobis distance can only account for
uncertainty in the observations or the predictions but not both, and it assumes that the
uncertainty is a Gaussian distribution. Quantiles only accounts for uncertainty in the pre-
dictions, and it assumes the uncertainty is unimodal. The predictive assessment captures
uncertainty in the observations and the predictions, and it does not make assumptions about
the uncertainty distributions. However, in practice the observational error is assumed to be a
probability density function that can be easily sampled. The reliability metric also captures
uncertainty in the observations and the predictions, but without replicate observations the
observational uncertainty must define the discrepancy threshold representing the acceptable
prediction error [1]. Consequently, the reliability metric requires the user to select a few
application-specific parameters, the appropriate values of which can be challenging to know
a priori, while the other three metrics require the user to input a CI.

5. Results. We ran numerical experiments for every combination of NN architecture
(2x2, 2x10, and 4x2) and calibration scenario (linear, exponential, and quadratic) for two
replicates of the noisy “true” model, resulting in 18 calibration campaigns. Then we calcu-
lated the time when each validation metric failed for the 18 simulations. While we would not
have replicate data for real-world observations, we include replicates to show how disparate
two samples can be when the observational uncertainty is more complex than the commonly
assumed additive-Gaussian uncertainty.

Results from the first sample are depicted in Figure 5.1, Figure 5.3, and Figure 5.5, while
results from the second sample are depicted in Figure 5.2, Figure 5.4, and Figure 5.6. The
first sample’s removed population data at 200 days after 500 infections is about two times as
large as the second sample’s removed population. Similarly, the first sample’s quarantined
population peaks at around 900, 000 people then steadily decreases, while the second sam-
ple’s quarantined population peaks at around 600, 000 people and gradually decreases. The
infectious population data from the two samples is analogous, which is not surprising due to
the relatively small amount of observational error propagated to the infectious population
in comparison to the removed and quarantined populations (see Figure A.1).

The calibration data was very influential in the extrapolative capability of the neural-
network-corrected model. Results from the linear behavior calibration scenario for two sam-
ples of the noisy “true” model are shown in Figure 5.1 and Figure 5.2. The linear calibration
scenario was uninformative for developing an extrapolative neural-network-corrected model,
and there were a couple of reasons why. First, we only had 10 timesteps of calibration data,
which is a very small amount of data for calibrating a data-driven correction, especially
a NN with many parameters. Second, the little calibration data we had was not descrip-
tive causing non-identifiability. Several NN parameter combinations fit the calibration data
and assumed the linear trend would continue, which quickly resulted in a large discrepancy
beyond the linear regime.

Results from the exponential behavior calibration scenario for two samples of the noisy
“true” model are shown in Figure 5.3 and Figure 5.4. Given the exponential calibration
data, the neural-network-corrected model could usually extrapolate for a few days beyond
the calibration time horizon, but it struggled to capture the overall trend in the removed
population.

Results from the quadratic behavior calibration scenario for two samples of the noisy
“true” model are shown in Figure 5.5 and Figure 5.6. The neural-network-corrected model
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failed to fit the quadratic calibration data; this is presumably due to the increasing amount
of noise in the removed population throughout time. Even the predictive assessment failed
during the calibration time horizon, which indicates there is a discrepancy between our es-
timated observational error distribution and the true observational error. The predictive
assessment marginalizes out the estimated observational error when calculating the proba-
bility that an observation is an outcome of the calibrated model; assuming the calibration
converged, the predictive assessment failing on calibration data indicates that the observa-
tions were outside the estimated observational error distribution.

Overall, the NN architecture did not have a large impact on model predictions or,
consequently, validation. We hypothesize that the 2x2 NN architecture is a sufficient ap-
proximation for the true underlying 2x10 NN given that the model predictions are almost
indistinguishable.

In the context of this problem, we want a validation metric to determine if the cor-
rected model can make reliable predictions while adequately accounting for uncertainties
in the model and data. The Mahalanobis distance and quantiles are not ideal for this ap-
plication because they did not account for uncertainty in the data, and they failed within
the calibration time horizon for every calibration scenario. The Bayesian calibration ac-
counted for observational error in Equation (3.3), which allowed the model predictions some
flexibility in matching the calibration data. Then that flexibility was not transmitted to
the Mahalanobis distance or quantiles, and the metrics failed due to them not accounting
for observational error. The predictive assessment and reliability metric were both able to
account for observational error, but the reliability metric failed in calibration for the expo-
nential and quadratic calibration regimes, which was surprising since the observational error
distribution used in the likelihood was also used to inform the discrepancy threshold ε(t, f).
The predictive assessment tracked with intuition, and it deemed the corrected model invalid
when the CI around the predictions started deviating from the data significantly. However,
because the predictive assessment favors scenarios where the data is high probability in the
posterior predictive space, a model can be valid with a strong bias in the mean but very
large uncertainty. This may be undesirable, and a tolerable degree of uncertainty in model
predictions should be considered for a given application problem.

Fig. 5.1: Neural-network-corrected model mean predictions (solid curves) plotted with 50%
and 95% CIs (shaded regions) compared to filtered noisy “true” model data (dots) for the
linear calibration scenario. The vertical blue dashed line delineates the end of the linear
calibration time horizon, and the vertical black lines represent when each validation metric
fails. (m: Mahalanobis distance, q: quantiles, p: predictive assessment, and r: reliability)
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Fig. 5.2: Model predictions (solid curves) plotted with 50% and 95% CIs (shaded regions)
compared to observations (dots) for the quadratic calibration scenario. The blue dashed
line shows the end of the calibration time horizon, and the black lines show when validation
metrics fail.

Fig. 5.3: Model predictions (solid curves) plotted with 50% and 95% CIs (shaded regions)
compared to observations (dots) for the quadratic calibration scenario. The blue dashed
line shows the end of the calibration time horizon, and the black lines show when validation
metrics fail.

Fig. 5.4: Model predictions (solid curves) plotted with 50% and 95% CIs (shaded regions)
compared to observations (dots) for the quadratic calibration scenario. The blue dashed
line shows the end of the calibration time horizon, and the black lines show when validation
metrics fail.
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Fig. 5.5: Model predictions (solid curves) plotted with 50% and 95% CIs (shaded regions)
compared to observations (dots) for the quadratic calibration scenario. The blue dashed
line shows the end of the calibration time horizon, and the black lines show when validation
metrics fail.

Fig. 5.6: Model predictions (solid curves) plotted with 50% and 95% CIs (shaded regions)
compared to observations (dots) for the quadratic calibration scenario. The blue dashed
line shows the end of the calibration time horizon, and the black lines show when validation
metrics fail.

6. Conclusions. Embedding a NN into the SIRQ model reduced model error while
retaining the interpretability of the compartmental model, allowing the neural-network-
corrected model to make extrapolative predictions in time. While the corrected model did
not perfectly reproduce the observations, given descriptive calibration data, it could pre-
dict infectious, removed, and quarantined trends days into the future. Overall, the NN
architecture did not have a large impact on model predictions or, consequently, validation.
Quantitative, probabilistic validation was used to determine when discrepancies in the model
predictions and observations were too large to confidently use the model in place of observa-
tions. Besides determining the time horizon post-calibration that the model can be reliably
used for prediction, the validation procedures used here can inform how often a model needs
to be updated with new observation data to remain predictive. For instance, in this case
the model was only valid for a few days into the future, so it should be recalibrated every
two to three days. On the other hand, for models with longer time horizons of validity
post-calibration, data can be incorporated less frequently.

In the future we would like to further explore how the calibration data influences model
predictions by mixing the calibration regimes. Given 50 days of calibration data, is it
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better to have more quadratic, exponential, or linear behavior? It would be interesting to
compare the performance of the neural-network-corrected model to a standard SIR model.
We would like to extend this framework to embed a Bayesian neural network (BNN) into the
model instead of a standard NN. Then calibration would return a true posterior distribution
over the model parameters and the BNN parameters. We would also like to explore more
sophisticated approaches for estimating the observational error (i.e., estimating the variance
with ACCRUE [2] or calibrating the variance constants [16]).
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Appendix A. Preprocessing. We use a moving average filter to reduce the short-
term noise fluctuations and highlight the long-term trends in the observations from the
noisy “true” model. Each noisy observation D(t, f) ∈ D, where t ∈ [0, 200] is the time
and f ∈ (1, 2, 3) is the QoI, is transformed to the mean of a window of neighbors. We
selected a window of size nine, which results in a lower bound on the time neighborhood of
l = max(t−4, 0) and an upper bound on the time neighborhood of u = min(t+4, 200). The
resulting smoothed observations are

D̄(t, f) =
1

W

u∑

n=l

D(t+ n, f) ∀f ∈ (1, 2, 3), (A.1)

where W is the size of the time neighborhood around D(t, f). A comparison of the noisy
observations and the smoothed observations is shown in Figure A.1. The noisy and fil-
tered infectious observations are almost indistinguishable because the noise in the infectious
population is an order of magnitude less than the noise in the recovered or quarantined
population.

Fig. A.1: A comparison of the noisy observations (dots) and filtered observations (thick
lines).

We estimate the distribution of the observational error on the QoIs I, R, and Q by
examining the error we filtered out with Equation (A.1), so ε(t, f) = D(t, f) − D̄(t, f).
Judging by Figure A.2(a), ε(·) is time dependent and roughly symmetric about zero. We
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hypothesize that ε(t, f) depends on the size of the QoI at time t; Figure A.2(b) shows that
the absolute value of ε(·) for the quarantined population scales with the noisy quarantined
population count. Therefore, we expect the variance of observational error to contain some
constant multiplied by the noisy data. Modeling the observational error as a constant
multiple of the QoI was not sufficient to completely encapsulate ε(·), though, so an additional
term was added to the variance.

We estimate the observational error on each QoI to be

N
(

0, (c1(f) + c2(f)D(t, f))
2
)
, (A.2)

where c2(f) is the 90th percentile of the normalized absolute error’s distribution, and c1(f)
is the 90th percentile distance a noisy calibration observation is outside of a 95% CI around
the smoothed observation:

c1(f) = quantile

(
min

{ ∣∣D(t, f)− (D̄(t, f) + 2c2(f)D̄(t, f))
∣∣ ,

∣∣D(t, f)− (D̄(t, f)− 2c2(f)D̄(t, f))
∣∣
}
, 0.9

)
,

(A.3)

where t = (0, 1, . . . , 200). The conglomerate observational error distribution from all of the
QoIs is

ε ∼ N
(
0,diag

(
(c1 + c2D)

2
))

, (A.4)

where D is 3N vector of noisy observations because there are N observations for each of
the three QoIs. The 3N multiplicative trend vector is c2, and it can be constructed by
repeating c2(1) for the first N elements, placing c2(2) for the N through 2N − 1 elements,
and duplicating c2(3) for the last N elements. Similarly, the 3N additive trend vector is
c1, and it can be constructed using c1(1), c1(2), and c1(3). The estimated observational
uncertainty about the filtered observations is depicted in Figure A.3. Note, there is an
uncertainty bound around the infectious population; however, it is too small to see at this
scale. Additionally, it is very likely the observational uncertainty is not Gaussian, but a
more complex data distribution was out of scope for this project.

(a) (b)

Fig. A.2: a) The filtered error from observations of the quarantined population. b) Com-
parison of the trend in observations of the quarantined population (dashed curve) to the
filtered absolute error (dots).
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Fig. A.3: Filtered observations (solid curves) plotted with 95% CIs (shaded regions) com-
pared to noisy “true” observations (dots).

Appendix B. Initial Regression. Beginning the MAP optimization with completely
random NN parameters Φ causes numerical issues for the model and thus the optimization.
Our solution is a four part initialization procedure, which gets us in a reasonable physical
regime for the MAP optimization later and mitigates numerical issues. First, we initially
train the NN to match a constant value. We calibrate the SIRQ model with a constant
rate parameter for the transition from infectious to quarantined rather than a time-varying
function for q. The resulting ODEs are

dS(t)

dt
= −βI(t)S(t)

Npop

dI(t)

dt
=
βI(t)S(t)

Npop
− γI(t)− qconst

I(t)

Npop

dR(t)

dt
= γI(t) + δQ(t)

dQ(t)

dt
= qconst

I(t)

Npop
− δQ(t),

(B.1)

which are Equation (2.3) with qconst substituted for the NN output q(·). This optimization
results in minimizing the mean-squared error (MSE) loss function

loss1(θ, qconst | D̄c) = − logN
(
log(D̄c)− log(YM (θ, qconst;Tc)) | 0, 0.5I

)
, (B.2)

where Tc = [t0, tNc
] is the calibration time horizon, D̄c ⊆ D̄, and D̄c is a vector of the filtered

observations from the calibration scenario. The corresponding vector of model predictions
given the model parameters and qconst is YM (θ, qconst;Tc), and I is the identity matrix.
Initial optimizations are performed with respect to the logarithm of the state variables based
on previous experience that doing so leads to much more rapid convergence to optimum
values. The improved performance may have to do with the fact that the QoIs can vary by
orders of magnitude, and rescaling helps mitigate larger values dominating the calibration.
However, the uncertainty in the log-transformed values are unknown, so the MSE is used,
and the smoothed data is used to mitigate the chance of fitting to noise in the initial
regression process. We use DiffEqFlux in Julia to perform the regression with an BFGS
solver and 10, 000 epochs [14], and we store the values of θ and qconst that minimize loss1
as θ

(1)
min and q

(1)
const,min.
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Next, we calibrate the NN parameters Φ to minimize the MSE between the NN output

and q
(1)
const,min:

loss2(Φ | q(1)const,min) =
1

Nc

tNc∑

i=t0

(
q(S(i), I(i), R(i); Φ)− q(1)const,min

)
, (B.3)

where Nc is the number of days in the calibration scenario. We perform the regression
with an BFGS solver and 10, 000 epochs, and we store the values of Φ that minimize loss2
as Φ

(2)
min. Similar to the qconst calibration against filtered calibration data, we provide a

warm start to the MAP optimization for θ and Φ by first running a calibration with the
log-transformed QoIs. This helps seed the MAP optimization in a favorable location so that
it converges with a finite, but still large number of optimization steps. We optimize the log

model predictions starting with θ = θ
(1)
min and Φ = Φ

(2)
min. This results in the loss function

loss3(θ,Φ | D̄c) = − log πlike − log πprior, (B.4)

which is proportional to the negative log posterior distribution. The prior distribution is
given in Equation (3.2). The likelihood distribution is

πlike = p
(
D̄c | θ,Φ

)
= N

(
log(D̄c)− log(YM (θ,Φ);Tc) | 0, 0.5I

)
, (B.5)

where YM (θ,Φ;Tc) is a vector of model prediction given the model parameters and NN
parameters. We perform the regression with an ADAM solver and 100, 000 epochs, and

we return the values of θ and Φ that minimize loss3 as θ
(3)
min and Φ

(3)
min. Note, θ

(3)
min and

Φ
(3)
min are the values that returned the smallest loss3 over all 100, 000 epochs not necessarily

the θ and Φ values after the 100, 000th epoch. After the first optimization of loss3, we
perform a second optimization of loss3 with initial parameters as the return of the previous
optimization in an attempt to escape a local minimum that the optimization could get stuck
in if we simply doubled the number of epochs and ran a single optimization with loss3.

Appendix C. Post-processing. After calibration, we have an ensemble of 100 θMAP

and φMAP vectors, but some of these samples got trapped in a local minimum far away
from the MAP estimate and ultimately their calibration was unsuccessful as evidenced by a
clear deviation in model predictions from the calibration data. When the calibration fails,
the MSE between the calibration observations and the model predictions is relatively larger
than the other samples’ MSE. We filter these outliers with the Interquartile Rule; if the
sample’s MSE exceeds the heuristic threshold of

Q3 + 1.5(Q3 −Q1), (C.1)

where Q3 is the 0.75 quantile and Q1 is the 0.25 quantile of the ensemble MSEs, we classify
the sample as an outlier and remove it. This results in M ≤ 100 ensembles, where M is 100
less the outliers, which averaged M = 84.
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THE SCHWARZ ALTERNATING METHOD FOR THE SEAMLESS
COUPLING OF NONLINEAR REDUCED ORDER MODELS AND FULL

ORDER MODELS

JOSHUA BARNETT∗, IRINA TEZAUR , AND ALEJANDRO MOTA†

Abstract. Projection-based model order reduction allows for the parsimonious representation of full
order models (FOMs), typically obtained through the discretization of a set of partial differential equations
(PDEs) using conventional techniques (e.g., finite element, finite volume, finite difference methods) where
the discretization may contain a very large number of degrees of freedom. As a consequence of this more
compact representation, the resulting projection-based reduced order models (ROMs) can achieve consider-
able computational speedups, which are especially useful in real-time or multi-query analyses. One known
deficiency of projection-based ROMs is that they can suffer from a lack of robustness, stability and accuracy,
especially in the predictive regime, which ultimately limits their useful application. Another research gap
that has prevented the widespread adoption of ROMs within the modeling and simulation community is the
lack of theoretical and algorithmic foundations necessary for the “plug-and-play” integration of these models
into existing multi-scale and multi-physics frameworks. This paper describes a new methodology that has
the potential to address both of the aforementioned deficiencies by coupling projection-based ROMs with
each other as well as with conventional FOMs by means of the Schwarz alternating method [41]. Leveraging
recent work that adapted the Schwarz alternating method to enable consistent and concurrent multi-scale
coupling of finite element FOMs in solid mechanics [35, 36], we present a new extension of the Schwarz
framework that enables FOM-ROM and ROM-ROM coupling, following a domain decomposition of the
physical geometry on which a PDE is posed. In order to maintain efficiency and achieve computation speed-
ups, we employ hyper-reduction via the Energy-Conserving Sampling and Weighting (ECSW) approach [9].
We evaluate the proposed coupling approach in the reproductive as well as in the predictive regime on a
canonical test case that involves the dynamic propagation of a traveling wave in a nonlinear hyper-elastic
material.

1. Introduction. Projection-based model order reduction is a promising data-driven
strategy for reducing the computational complexity of numerical simulations by restrict-
ing the search of the solution to a low-dimensional space spanned by a reduced basis
constructed from a limited number of high-fidelity simulations and/or physical experi-
ments/observations. While recent years have seen extensive investments in the development
of projection-based reduced order models (ROMs) and other data-driven models, these mod-
els are known to suffer from a lack of robustness, stability and accuracy, especially in the
predictive regime. Moreover, a unified and rigorous theory for integrating these models in
a “plug-and-play” fashion into existing multi-scale and multi-physics coupling frameworks
(e.g., the Department of Energy’s Energy Exascale Earth System Model (E3SM) [12]) is
lacking at the present time.

This paper presents and evaluates an approach aimed at addressing both of the afore-
mentioned shortcomings by advancing the Schwarz alternating method [41] as a mecha-
nism for coupling together a variety of models, including full order finite element mod-
els and projection-based ROMs constructed using the proper orthogonal decomposition
(POD)/Galerkin method. The Schwarz alternating method is based on the simple idea that
if the solution to a partial differential equation (PDE) is known in two or more regularly-
shaped domains comprising a more complex domain, these local solutions can be used to
iteratively build a solution on the more complex domain. Our coupling approach thus
consists of several ingredients, namely: (1) the decomposition of the physical domain into
overlapping or non-overlapping subdomains, which can be discretized in space by disparate
meshes and in time by different time-integration schemes with different time-steps, (2) the
definition of transmission boundary conditions on subdomain boundaries, and (3) the itera-
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tive solution of a sequence of subdomain problems in which information propagates between
the subdomains through the aforementioned transmission conditions. Without loss of gen-
erality, we develop and prototype the method in the context of a generic transient dynamic
solid mechanics problem, defined by an arbitrary constitutive model embedded within the
governing PDEs. Following an overlapping or non-overlapping domain decomposition (DD)
of the underlying geometry, we use the POD/Galerkin method with Energy-Conserving
Sampling and Weighting (ECSW)-based hyper-reduction [9] to reduce the problem in one
or more subdomains. We then employ the Schwarz alternating method to couple the re-
sulting subdomain ROMs with each other or with finite element-based full order models
(FOMs) in neighboring subdomains. We demonstrate that a careful formulation and im-
plementation of the transmission conditions in the ROMs being coupled is essential to the
coupling method.

The methodology described in this paper is related to several existing coupling ap-
proaches developed in recent years. First, while this work is a direct extension of the
recently-developed Schwarz-based methodology for concurrent multi-scale FOM-FOM cou-
pling in solid mechanics [35, 36], it includes a number of advancements, including the ex-
tension of the coupling framework to: (1) FOM-ROM coupling, (2) ROM-ROM coupling,
and (3) non-overlapping subdomains. Among the earliest authors to develop an iterative
Schwarz-based DD approach for coupling FOMs with ROMs are Buffoni et al. [3]. The
approach in [3] is unlike ours in that attention is restricted to Galerkin-free POD ROMs,
developed for the Laplace equation and the compressible Euler equations. Other authors
to consider Galerkin-free FOM-ROM and ROM-ROM couplings are Cinquegrana et al. [4]
and Bergmann et al. [2]. The former approach [4] focuses on overlapping DD in the context
of a Schwarz-like iteration scheme, but, unlike our approach, requires matching meshes at
the subdomain interfaces. The latter approach [2], termed zonal Galerkin-free POD, de-
fines a minimization problem to minimize the difference between the POD reconstruction
and its corresponding FOM solution in the overlapping region between a ROM and a FOM
domain, and is developed/investigated in the context of an unsteady flow and aerodynamic
shape optimization. While the method developed [2] is not based on the Schwarz alter-
nating formulation, the recent related work [22] by Iollo et al. demonstrates that a similar
optimization-based coupling scheme is equivalent to an overlapping alternating Schwarz it-
eration for the case of linear elliptic PDE. A true POD-Greedy/Galerkin non-overlapping
Schwarz method for the coupling of projection-based ROMs developed for the specific case
of symmetric elliptic PDEs is presented by Maier et al. in [34].

While the focus herein is restricted to projection-based ROMs, it is worth noting that
the Schwarz alternating method has recently been extended to the case of coupling Physics-
Informed Neural Networks (PINNs) to each other following a DD in [28, 29]. The methods
proposed in these works, termed D3M [28] and DeepDDM [29], inherit the benefits of DD-
based ROM-ROM couplings, but are developed primarily for the purpose of improving the
efficiency of the neural network training process and reducing the risk of overfitting, both
of which are due to the global nature of the neural network “basis functions”.

We end our literature overview by remarking that a number of non-Schwarz-based ROM-
ROM and/or FOM-ROM coupling methods have been developed in recent years, including
[1, 46, 15, 20, 27, 32, 33, 5, 6, 24, 23, 39, 8, 43, 40, 18]. The majority of these approaches
are based on Lagrange multiplier or flux matching coupling formulations, and focus on
either simple linear elliptic PDEs or fluid problems. We omit a detailed assessment of these
references from this paper for the sake of brevity.

The remainder of this paper is organized as follows. In Section 2, we provide the varia-
tional formulation of the generic solid dynamics problem considered herein, and describe its
spatio-temporal discretization. Section 3 details our nonlinear model reduction methodol-
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ogy for this problem, which relies on the POD/Galerkin approach for model reduction and
the ECSW method [9] for hyper-reduction. We describe the Schwarz alternating method
for FOM-FOM, FOM-ROM and ROM-ROM coupling in Section 4. In Section 5, we eval-
uate the performance of the proposed Schwarz-based coupling methodology on a problem
involving dynamic wave propagation in a one-dimensional (1D) hyper-elastic bar whose ma-
terial properties are described by the nonlinear Henky constitutive model, characterized by
a logarithmic strain tensor [14]. We conclude this paper with a summary and a discussion
of some future research directions (Section 6).

2. Solid mechanics problem formulation. Consider the Euler-Lagrange equations
for a generic dynamic solid mechanics problem in its strong form:

DivP + ρ0B = ρ0φ̈ in Ω× I. (2.1)

In (2.1), Ω ∈ Rd for d ∈ {1, 2, 3} is an open bounded domain, I := {t ∈ [0, T ]} is a closed
time interval with T > 0, and x = φ(X, t) : Ω × I → Rd is a mapping, with X ∈ Ω and
t ∈ I. The symbol P denotes the first Piola-Kirchhoff stress and ρ0B : Ω → Rd is the
body force, with ρ0 denoting the mass density in the reference configuration. The over-dot

notation denotes differentiation in time, so that φ̇ := ∂φ
∂t and φ̈ := ∂2φ

∂t2 . Embedded within
P is a constitutive model, which can range from a simple linear elastic model to a complex
micro-structure model, e.g., that of crystal plasticity. Herein, we focus on nonlinear hyper-
elastic constitutive models such as the Henky model [14]. The details of this model are
provided in Section 5.

Suppose that we have the following initial and boundary conditions for the PDEs (2.1):

φ(X, t0) = X0, φ̇(X, t0) = v0 in Ω,
φ(X, t) = χ on ∂Ωφ × I, PN = T on ∂ΩT × I. (2.2)

In (2.2), it is assumed the outer boundary ∂Ω is decomposed into a Dirichlet and traction
portion, ∂Ωφ and ∂ΩT , respectively, with ∂Ω = ∂Ωφ ∪ ∂ΩT and ∂Ωφ ∩ ∂ΩT = ∅. The
prescribed boundary positions or Dirichlet boundary conditions are χ : ∂Ωφ× I → R3. The
symbol N denotes the unit normal on ∂ΩT . In this work, we will assume without loss of
generality that χ is not changing in time.

It is straightforward to show that the weak variational form of (2.1) with initial and
boundary conditions (2.2) is

∫

I

[∫

Ω

(DivP + ρ0B − ρ0φ̈) · ξ dV +

∫

∂T Ω

T · ξ dS

]
dt = 0, (2.3)

where ξ is a test function in V :=
{
ξ ∈W 1

2 (Ω× I) : ξ = 0 on ∂φΩ× I ∪ Ω× t0∪ Ω× t1}.
Discretizing the variational form (2.3) in space using the classical Galerkin finite element

method (FEM) [19] yields the following semi-discrete matrix problem:

Mü+ f int(u, u̇) = f ext. (2.4)

In (2.4), M denotes the mass matrix, u := φ(X, t) − X is the displacement, ü is the
acceleration (also denoted by a), f ext is a vector of applied external forces, and f int(u, u̇) is
the vector of internal forces due to mechanical and other effects inside the material, where
u̇ (also denoted by v) is the velocity. In the present work, the semi-discrete equation (2.4)
is advanced forward in time using the Newmark-β time-integration scheme [37]. We will
assume the FOM (2.4) has size N ∈ N, that is, u ∈ RN . For convenience, in subsequent
discussion, we transform the Dirichlet boundary condition (2.2) for the position into a
Dirichlet boundary for the displacement, so that the boundary condition imposed on ∂Ωφ×I
is u = uD, with uD being independent of time.
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3. Model order reduction. Projection-based model order reduction is a promising,
physics-based technique for reducing the computational cost associated with high-fidelity
models such as (2.4). The basic workflow for building a projection-based ROM for a generic
nonlinear semi-discrete problem of the form (2.4) consists of three steps: (1) calculation of
a reduced basis, (2) projection of the governing equations onto the reduced basis, and (3)
hyper-reduction of the nonlinear terms in the projected equations. Herein, we employ the
POD [42, 16] for the reduced basis generation step (step 1), the Galerkin projection method
for the projection step (step 2), and the ECSW method [9] for the hyper-reduction step
(step 3). Each of these steps is described succinctly below.

3.1. Proper orthogonal decomposition (POD). The POD is a mathematical pro-
cedure that, given an ensemble of data and an inner product, constructs a basis for the
ensemble that is optimal in the sense that it describes more energy (on average) of the
ensemble in the chosen inner product than any other linear basis of the same dimension M .
The ensemble ws ∈ RN : s = 1, ..., S is typically a set of S instantaneous snapshots of a nu-
merical solution field, collected for S values of a parameter of interest, and/or at S different
times. For solid mechanics problems, a natural choice for the snapshots is ws = us, where
the ensemble {us} denotes a set of snapshots for the displacement field. It is noted that one
can use in place of on addition to {us} snapshots of the velocity ({vs}) and/or acceleration
({as}) fields.

Following the so-called “method of snapshots” [42, 16], a POD basis ΦM ∈ RN×M of
dimensionM is obtained by performing a singular value decomposition (SVD) of a snapshot
matrix W :=

[
w1, ...,wS

]
∈ RN×S such that W = ΦΣV T and defining ΦM as the matrix

containing the first M columns of Φ. Letting

EPOD(M) :=

∑M
i=1 σ

2
i∑S

i=1 σ
2
i

(3.1)

denote the energy associated with a POD basis of size M , where σi denotes the i
th singular

value of W , the basis size M is typically selected based on an energy criterion, where
100EPOD(M) is the percent energy captured by a given POD basis.

As discussed in Section 3.2, it is often desirable to construct the POD basis ΦM such
that this basis satisfies homogeneous Dirichlet boundary conditions at some pre-defined
indices id ∈ Nd where d < N . It is straightforward to accomplish this by simply zeroing out
the snapshots at the Dirichlet degrees of freedom (dofs) prior to calculating the SVD, that
is, setting wi(id) = 0 for i = 1, ..., S.

3.2. Galerkin projection. As discussed in [9, 45], Galerkin projection is in general
the method of choice for solid mechanics and structural dynamics problems, as it preserves
the Hamiltonian structure of the underlying system of PDEs [26]. The method starts by
approximating the FOM displacement solution to (2.4) as

u ≈ ũ = ū+ΦM û, (3.2)

where û ∈ RM is the vector of unknown modal amplitudes, to be solved for in the ROM
and ū ∈ RN is a (possibly time-dependent) reference state. Similar approximations can be
made for the velocity and acceleration fields, v := u̇ and a := ü, respectively, namely:

v ≈ ṽ = v̄ +ΦM v̂,
a ≈ ã = ā+ΦM â.

(3.3)

Here, v̄ and ā are defined analogously to ū, and similarly for v̂ and â.

34 The Schwarz Alternating Method for Coupling of Reduced Order Models



In the present formulation, the reference states ū, v̄ and ā are used to prescribe strongly
Dirichlet boundary conditions within the ROM for the displacement, velocity and acceler-
ation fields, respectively. This is done following the approach of Gunzburger et al. [13].
Suppose the Dirichlet boundary conditions of interest are u(id) = uD, v(id) = vD and
a(id) = aD. Let iu denote the unconstrained indices at which the solution to (2.4) is sought.
It is straightforward to see from (3.2)–(3.3) that, if the POD modes ΦM = [ϕ1, ...,ϕM ] are
calculated such that ϕi(id) = 0 for i = 1, ...,M and

ū(id) = uD, ū(iu) = 0,
v̄(id) = vD, v̄(iu) = 0,
ā(id) = aD, ā(iu) = 0,

(3.4)

the ROM solution will satisfy the prescribed Dirichlet boundary conditions in the strong
sense.

The ROM for (2.4) is obtained by substituting the decompositions (3.2)–(3.3) into the
FOM equations (2.4), and projecting these equations onto the reduced basis ΦM . It is
straightforward to verify that doing this and moving all Dirichlet dofs to the right-hand side
of the resulting system of equations yields a semi-discrete problem of the form

M̂uuâ+ f̂ int
u (ũ, ṽ) = f̂ ext

u , (3.5)

where

M̂uu := ΦT
M,uMuuΦM,u, f

int
u (ũ, ṽ) := ΦT

M,uf
int
u (ũ, ṽ),

f ext
u := ΦT

M,u(f
ext
u −Mudād).

(3.6)

In (3.6), ΦM,u := ΦM (iu, :), Muu := M(iu, iu), f int
u := f int(iu), f ext

u := f ext(iu),
Mud := M(iu, id) and ād := ā(id).

Remark 1. It is noted that, while all three variables ũ, ṽ and ã appear in the ROM
system (3.6), we are not considering the displacement, velocity and acceleration variables as
independent fields with separate generalized coordinates in our ROM construction approach.

In particular, v̂ := dû
dt and â := d2û

dt2 in (3.3). Taking this approach ensures consistency
between the displacement, velocity and acceleration solutions computed within the ROM.

3.3. Hyper-reduction via ECSW. The POD/Galerkin approach to model reduction
described in Sections 3.1 and 3.2 is not efficient for nonlinear problems, as the projection
of the nonlinear terms appearing in the ROM system (3.5) requires algebraic operations
that scale with the dimension of the original full order model N . This problem can be
circumvented through the use of a procedure known as hyper-reduction. Here, we rely
on a specific “project-then-approximate” hyper-reduction approach known as ECSW [9].
We select this approach, as it has been shown in [9] to preserve the Lagrangian structure
associated with Hamilton’s principle for second-order dynamical systems of the form (2.4).
The resulting hyper-reduced ROM, termed HROM, is thus able to preserve the numerical
stability properties of the Newmark-β time-integration scheme applied to advance the ROM
system (3.5) forward in time.

In the context of solid mechanics, ECSW can be described as cubature-based approach
with the goal of accurately estimating the projected internal forcing term (the “project”

part of “project-then-approximate”) f̂ int
u (ũ, ṽ) in (3.5) as opposed to directly estimating

the nonlinear forcing term and then projecting the result with the appropriate basis. This
approximation can be rewritten as a summation of each of the element-wise contributions
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f̂ int
u (ũ, ṽ) =

∑
e∈E Φ

T
MLT

e f
int
u,e(Leũ,Leṽ),

K̂(ũ, ṽ) =
∑

e∈E Φ
T
MLT

e Ke(Leũ,Leṽ)LeΦM .
(3.7)

In (3.7):
• f int

u,e is the contribution to the internal forcing vector due to mesh element e;

• K, K̂ and Ke are the tangent stiffness matrix, reduced tangent stiffness matrix,
and contribution to the tangent stiffness matrix due to element e respectively, which
are formed for use in implicit time-stepping methods;

• E = {e1, e2, . . . , eN} is the set of all mesh elements ei given by the finite element
discretization of the FOM; and

• Le ∈ {0, 1}n
e
d×N is a Boolean matrix selecting the ned degrees of freedom associated

with mesh element e.
The next step is to relax the equality in (3.7) such that we only approximate the

reduced internal forcing vector (or tangent stiffness matrix) by sampling a subset of the
mesh elements and weighting them appropriately. This can be written as

f̂ int
u (ũ, ṽ) ≈∑e∈Ẽ ξeΦ

T
MLT

e f
int
u,e(Leũ,Leṽ),

K̂(ũ, ṽ) ≈∑e∈Ẽ ξeΦ
T
MLT

e Ke(Leũ,Leṽ)LeΦM ,
(3.8)

where Ẽ ⊂ E such that |Ẽ | = Ne ≤ N and ξe ∈ R≥0 is the positive weight associated with

sampled mesh element e ∈ Ẽ . In order to determine both the sampled mesh elements and
their weights, a system of matrices and vectors is formed using Nh snapshots of us and vs –
the same snapshots used to compute the POD modes ΦM . Using these snapshots, we form
the following quantities:

ũs = ΦMΦT
M (us − ū) + ū,

ṽs = ΦMΦT
M (vs − v̄) + v̄,

cse = ΦT
MLT

e f
int
u,e(Leũ

s,Leṽ
s),

ds = ΦT
Mf int

u,e(ũ
s, ṽs),

(3.9)

where ũs and ṽs are the reconstruction of the FOM snapshots using the affine approxima-
tions in (3.2) and (3.3).

Given the quantities defined above, we can construct a system of equations

Cξ = d, ξ ∈ RN
≥0, (3.10)

where

C :=



c11 . . . c1N
...

. . .
...

cNh1 . . . cNhN


 ∈ RMNh×N , d :=



d1
...

dNh


 ∈ RMNh

Equation (3.10) is satisfied by the choice ξ = 1. This choice results in a reduced set of
element equivalent to the FOM, providing no increase in computational efficiency because
Ne, defined as the number of non-zero weights in ξ sampling the finite element mesh, is
the same as the number of mesh elements. Instead, the equality in the equation (3.10) is
relaxed to instead solve a constrained optimization problem

ξ = arg min
x∈RN

||Cx− d||2 subject to x ≥ 0, (3.11)
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which, for the purposes of the present work, is solved using MATLAB’s lsqnonneg function,
with an early termination criterion with a solution step size tolerance of 10−4. By relax-
ing the equality and including an early termination condition, the system can be solved
approximately with a sparse solution for ξ such that, ideally, Ne ≪ N . Note that our
early termination criterion differs from the typical early termination criterion, in which the
algorithm terminates once ||Cξ − d||2/||d||2 is less than some chosen tolerance (< 1). As
a result, all of the HROM results presented later in the present work have a consistent
termination criterion with respect to its MATLAB implementation; however, the relative
error tolerance of the selected reduced elements will differ.

4. The Schwarz alternating method for multi-scale coupling. In this section, we
describe two variants of the Schwarz alternating method for concurrent multiscale coupling.
The first is based on an overlapping DD (Figure 4.1(a)) and the second is based on a
non-overlapping DD (Figure 4.1(b)). Consider without loss of generality a partition of the
domain Ω into two open subdomains Ω1 and Ω2, as shown in Figure 4.1, and suppose we
are interested in applying the method to a single-physics semi-discretized PDE of the form
(2.4).

(a) Overlapping (b) Non-overlapping

Fig. 4.1. Illustration showing overlapping and non-overlapping domain decomposition.

It is important to note that, to avoid a space-time discretization for the application
of the Schwarz method, it proves convenient to subdivide the time domain into “controller
time-intervals”, I0 := [t0, t1], I1 := [t1, t2],..., as shown in Figure 4.2. The controller time-
intervals are convenient markers for events of interest, and for synchronization of the Schwarz
algorithm applied only in the space domain. They also define the periods or intervals in
which the solutions of the initial boundary value problem (2.4) are determined by means
of the Schwarz alternating method; effectively, the Schwarz iteration process is converged
within a controller time interval IN before advancing to the next controller time interval
IN+1. The interested reader is referred to [36] and [17] for details.

4.1. Overlapping Schwarz formulation. Suppose a DD has been performed such
that Ω1 and Ω2 are overlapping, that is, such that Ω1 ∩ Ω2 ̸= ∅, as shown in Figure 4.1(a).
In this case, the Schwarz alternating iteration for the specific case of (2.4) with Dirichlet
boundary conditions on ∂Ω takes the following form within each time-interval IN (Figure
4.2):




M1ü
(n+1)
1 + f int;(n+1)

1 = f ext;(n+1)
1 , in Ω1,

u(n+1)
1 = uD, on ∂φΩ1\Γ1,

u(n+1)
1 = u(n)

2 , on Γ1,

u̇(n+1)
1 = u̇(n)

2 , on Γ1,

ü(n+1)
1 = ü(n)

2 , on Γ1,





M2ü
(n+1)
2 + f int;(n+1)

2 = f ext;(n+1)
2 , in Ω2,

u(n+1)
2 = uD, on ∂φΩ2\Γ2,

u(n+1)
2 = u(n+1)

1 , on Γ2,

u̇(n+1)
2 = u̇(n+1)

1 , on Γ2,

ü(n+1)
2 = ü(n+1)

1 , on Γ2.
(4.1)
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Fig. 4.2. Illustration of controller time-stepper-based time advancement of a coupled problem involving
two overlapping subdomains Ω1 and Ω2.

In (4.1), (n) for n = 0, 1, 2, .... denotes the Schwarz iterations number, and we have
introduced the short-hand f int

i := f int
i (u, u̇). The reader can observe that the trans-

mission boundary conditions on the Schwarz boundaries Γ1 and Γ2 are of the Dirichlet
type. The Schwarz Dirichlet boundary conditions are applied for not just the displace-
ment field u, but also for the velocity and acceleration fields, v and a, as we found in
our earlier work [35, 36] that these additional conditions are essential for maintaining
accuracy within the acceleration and velocity fields when performing Schwarz-based cou-
pling. The iteration (4.1) continues until convergence is reached. Herein, convergence of
the method is declared when ||u(n+1) − u(n)||2/||u(n)|| < δ, ||v(n+1) − v(n)||2/||v(n)||2 < δ
and ||a(n+1) − a(n)||2/||a(n)||2 < δ (where v(n) := u̇(n) and a(n) := ü(n)), for some speci-
fied Schwarz tolerance δ. It can be shown [36, 30] that the sequence defined by (4.1) will
converge to the solution of the underlying single-domain problem provided that problem is
well-posed, and the overlap is non-empty (Ω1 ∩ Ω2 ̸= ∅).

4.2. Non-overlapping Schwarz formulation. In certain applications, one is inter-
ested in performing coupling in a non-overlapping fashion (Figure 4.1(b)), e.g., for multi-
physics applications such as fluid-structure interaction (FSI). As noted in Section 4.1, the
overlapping formulation (4.1) will not converge in the case the overlap region is empty. This
situation can be remedied by changing the transmission conditions applied on the Schwarz
boundary Γ shown in Figure 4.1(b). Specifically, it can be shown [47, 10] that applying
the following alternating Dirichlet-Neumann (or, more-specifically, displacement-traction)
iteration in each controller time-interval IN (Figure 4.2) gives rise to a convergent sequence
of iterations:





M1ü
(n+1)
1 + f int;(n+1)

1 = f ext;(n+1)
1 , in Ω1,

u(n+1)
1 = uD, on ∂φΩ1\Γ,

u(n+1)
1 = λn+1(u), on Γ,

u̇(n+1)
1 = λn+1(v), on Γ,

ü(n+1)
1 = λn+1(a), on Γ,





M2ü
(n+1)
2 + f int;(n+1)

2 = f ext;(n+1)
2 , in Ω2,

u(n+1)
2 = uD, on ∂φΩ2\Γ,

T (n+1)
2 = T (n+1)

1 , on Γ,

(4.2)

where

λn+1(u) = θu
(n)
2 + (1− θ)λn(u) on Γ, for n ≥ 1, (4.3)
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and similarly for λn+1(v) and λn+1(a), with θ ∈ (0, 1] denoting a so-called relaxation
parameter. In our present implementation, λn(·) in (4.3) is initialized to zero, i.e., λ0(·) = 0.
As for the overlapping case, the iteration (4.2) continues until convergence is reached. If
θ = 1 in (4.3), there is no relaxation and the Schwarz boundary condition for Ω1 in (4.2)
reduces to a regular Dirichlet boundary condition. It has been demonstrated in the literature
[47, 10, 7, 25] that selecting θ < 1 (i.e., including relaxation) can reduce the number of
Schwarz iterations required for convergence in certain applications.

It is noted that the formulation (4.2) is not unique; in particular, it is possible to create
a convergent Schwarz iteration for the non-overlapping DD case if one uses Robin-Robin
transmission conditions on the Schwarz boundary Γ, as shown in [31]. Here, we chose to
develop the alternating Dirichlet-Neumann formulation over the Robin-Robin formulation
because Dirichlet (displacement) and Neumann (traction) boundary conditions are readily
available in most solid mechanics codes, unlike Robin boundary conditions.

Remark 2. Although this is not explicitly stated herein in order to avoid introducing
overly complex notation, we note that the Schwarz boundary conditions appearing in (4.1)
and (4.2) require the definition of projection operators PΩj→Γi

[·] and PΩj→Γ[·], which take
the solution in Ωj , and project and interpolate it onto Γi or Γ. For more details on how
this projection operator can be constructed, the interested reader is referred to [35, 36]. For
1D problems, such as those considered herein, the required projection and interpolation is
trivial. It is noted that, in multiple spatial dimensions, the non-overlapping Schwarz for-
mulation (4.2) requires the development of operators for consistent transfer (interpolation)
of traction boundary conditions using the concept of prolongation/restriction. We plan to
investigate the usage of the Compadre toolkit [38] for this task.

Remark 3. The Schwarz iterations (4.1) and (4.2) as written are performing something
that is often referred to as the multiplicative Schwarz algorithm [11], meaning that the
Schwarz iteration in subdomain Ω2 at time-step n + 1 depends on the Schwarz solution in
subdomain Ω1 at time-step n+1. The Schwarz iteration can be modified to achieve what is
commonly referred to as the additive Schwarz method [11] by applying boundary conditions
from the nth Schwarz iteration in Ω1 to the (n + 1)st Ω2 sub-problem. If this change is
made, the Schwarz iteration sequences (4.1) and (4.2) can be parallelized over the number
of subdomains. While we do not consider the additive variant of the Schwarz method in the
present work, preliminary results have suggested that the method does not reduce solution
accuracy and can achieve speed-ups if parallelized appropriately.

4.3. Extension to ROM-ROM and FOM-ROM coupling. As mentioned ear-
lier, this paper presents two novel extensions of Schwarz-based concurrent coupling: (1)
the extension of the original overlapping multi-scale coupling formulation [36] to the non-
overlapping DD case (Section 4.2), and (2) the extension of the Schwarz coupling framework
to the case when projection-based ROMs are being coupled to each other as well as to FOMs.

For the latter extension, it is particularly important to be able to prescribe time-varying
Dirichlet boundary conditions strongly within a given subdomain ROM. We achieve this by
applying the approach detailed in Section 3.2. In particular, the reference states ū, v̄ and
ā in (3.2)–(3.3) are updated in each Schwarz iteration requiring application of a Dirichlet
boundary condition on a Schwarz boundary. Given this approach, it is straightforward to
extend the formulations (4.1) and (4.2) to projection-based ROMs, by simply replacing the
FOM semi-discrete equations in these iterations with their ROM analogs (3.5).

Equally important to our Schwarz-based coupling strategy is that the boundary nodes
on which the Schwarz transmission boundary conditions are imposed be included in the
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sample mesh when one is using hyper-reduction (Section 3.3). In our ROM boundary
condition formulation (see Section 3.2), this is done automatically, as the boundary nodes
are effectively removed from the ROM solve and incorporated them into the reference states
ū, v̄ and ā appearing in (3.5).

Another important detail in performing Schwarz-based coupling involving projection-
based ROMs relates to the snapshot collection strategy. Ideally, one would collect snapshots
by performing simulations on the subdomains being coupled independently, that is, without
running a coupled problem on the two (or more) domains. Snapshot collection strategies of
this sort (e.g., using approaches such as oversampling [43]) will be examined in future work.
In the present work, snapshots are generated in each subdomain by running a FOM-FOM
coupled problem using the same DD as the targeted ROM-ROM or FOM-ROM coupling,
saving the converged solutions within each subdomain, and utilizing these solutions for the
construction of subdomain-local POD bases. We note that one could alternatively perform a
single-domain FOM simulation on the full domain Ω, and use snapshots from that simulation
restricted and/or interpolated onto each subdomain to generate subdomain POD bases; this
second approach is not considered herein.

5. Numerical results: nonlinear wave propagation problem. The alternating
Schwarz-based coupling strategy described in Section 4 is evaluated on a 1D wave propa-
gation problem for the solid dynamics PDEs given in Section 2. Consider a simple beam
geometry of length 1, so that Ω = (0, 1) ∈ R. We will assume that this geometry is clamped
at both ends, that is, u(0, t) = u(1, t) = 0 for all t ≥ 0. The problem is initiated by pre-
scribing an initial condition u(x, 0) = f(x) for x ∈ Ω, where f ∈ C0(Ω). In the numerical
results presented herein, we consider two initial conditions:

f(x) =
a

2
exp

[
− (x− b)2

2s2

]
, (5.1)

and

f(x) = a [tanh(−b(x− s)) + tanh(b(x− 1 + s))] , (5.2)

for a, b, s ∈ R. We will refer to (5.1) as the “Symmetric Gaussian” initial condition, and to
(5.2) as the “Rounded Square” initial condition. For both initial conditions, the problem is
run until a final time of T = 1.0× 10−3.

As demonstrated in Section 3.3 of [36], if Ω is assumed to be made up of a linear elastic
material, it is possible to derive an exact analytical solution to the governing PDEs in terms
of the initial condition f(x) using the method of superposition. Since our objective herein is
to evaluate the proposed model reduction coupling methodology on a nonlinear problem, we
will assume Ω is made up of a nonlinear hyper-elastic material whose behavior is described
by the Henky constitutive model [14] with Young’s modulus E = 1GPa and density ρ = 1000
kg/m3. The defining feature of Henky-type material models is that they possess a quadratic
energy density function and that they use a logarithmic strain. For the 1D case, this reduces
to

λ(x, t) :=
∂ [u(x, t) + x]

∂x
,

ε(x, t) := log λ(x, t),

W (x, t) :=
E

2
ε(x, t)2,

(5.3)

where λ is the stretch, ε is the strain, and W is the energy density. Henky-type material
models are popular because they are seen as the natural extension of linear elasticity to the
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finite deformation regime, given that

ε(x, t) := λ(x, t)− 1,

W (x, t) :=
E

2
ε(x, t)2,

(5.4)

for a linear elastic model, where its strain may be interpreted as an approximation to the
logarithmic strain of the Henky model. Since the Henky material model variant of the
problem of interest does not have an exact analytical solution, we began our study by first
verifying that convergence of the single-domain FOM solution to the problem with respect
to both mesh and time-step refinement is achieved. The details of this study are omitted
herein for the sake of brevity.

Several snapshots of the solution to the Symmetric Gaussian version of our model prob-
lem are plotted in Figure 5.3. The reader can observe that the initial condition splits in two
and propagates to both the left and the right, eventually reflecting back from the clamped
boundaries. The behavior of the solution to the Rounded Square version of our model prob-
lem is similar. For both problem variants, a sharp gradient forms within the acceleration
field over time. Although simple and 1D, the nonlinear wave propagation problem is a
challenging test case for coupling methods, as artifacts introduced by these schemes will be
clearly evident in the numerical solution. We additionally remark that our model problem
is particularly difficult for ROMs, which are known to struggle on traveling wave problems
and problems with sharp gradients. Here, we explore the possibility of mitigating this dif-
ficulty by: (1) restricting the ROM to a part of the domain and coupling it to a FOM in
the remainder of the domain, as well as (2) constructing several spatially local ROMs and
coupling them to each other.

While the Schwarz alternating method enables the coupling of different non-conformal
meshes with different resolutions and different time-integration schemes with different time-
steps, as shown in [35, 36], we chose, again for the sake of brevity, to focus the present study
on varying the number of POD modes in each ROM subdomain and restricted attention to a
non-overlapping DD of Ω into two subdomains, Ω1 and Ω2. As mentioned in the Introduction
section, the present work is the first to formulate and evaluate the non-overlapping variant of
our Schwarz alternating method for coupling, as all of our past work focused on overlapping
coupling [35, 36]. For results demonstrating ROM-ROM and FOM-ROM coupling by means
of the overlapping Schwarz alternating method, the interested reader is referred to [44].

Let ∆xi, ∆ti, Mi and Ne,i denote the mesh resolution, time-step, POD basis size and
number of sample mesh points in subdomain Ωi for i = 1, 2, and let ∆T denote the controller
time-step. Recall that the Schwarz tolerance is denoted by δ (see Section 4.1). Our study
employed the following DD, mesh-resolutions, time-steps and Schwarz tolerance:

Ω1 = [0, 0.6], Ω2 = [0.6, 1],
∆x1 = ∆x2 = 1.0× 10−3,

∆t1 = ∆t2 = ∆T = 1.0× 10−7,
δ = 1.0× 10−11.

(5.5)

Our choice of DD is motivated by the observation that a much steeper gradient forms in the
acceleration field in the left part of the domain than in the right during the time-interval
considered (see Figure 5.3). This suggests that it may be possible to get away with using a
relatively small ROM in Ω2 while still maintaining accuracy, whereas likely a larger ROM
or a FOM will be required in Ω1.

In both subdomains, an implicit Newmark-β time-integrator with parameters β = 0.49
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and γ = 0.9 [37] was used to advance the solution forward in time1. It can be shown [36] that
the time-step required to resolve the wave and satisfy the Courant-Friedrichs-Lewy (CFL)

condition is ∆tCFL = ∆x
c where c =

√
E
ρ is the speed of the wave. Numerical experiments

suggest that the time-step required to resolve the wave is in general one order of magnitude
smaller than ∆tCFL. For the mesh resolutions and material parameters being considered,
∆tCFL = 1.0× 10−6, which justifies our choice of time-step in (5.5).

To assess performance of our coupling method, we have written a MATLAB code that
implements the discretization methods, model reduction schemes and coupling formulations
described above. In this implementation, the non-negative least squares problem defining
the hyper-reduction weights within the ECSW algorithm (see Section 3.3) is solved using
MATLAB’s lsqnonneg function with an early termination condition, as described in Section
3.3. We present results for both a reproductive (Section 5.1) and a predictive (Section 5.2)
variant of our model problem. These problem variants are described in more detail below.

To assess our coupled models’ accuracy, we report the mean-square error (MSE) for
each of the solution fields: displacement, velocity and acceleration. For the displacement
field, we calculate this quantity using the following formula:

EMSE(ũi) :=

√∑S
n=1 ||ũn

i − un
i ||22√∑S

n=1 ||un
i ||22

, (5.6)

where un
i is the FOM displacement solution (the reference solution) at time tn in subdomain

Ωi, and ũn
i is the ROM displacement solution at time tn in subdomain Ωi. As implied by

(5.6), MSEs for coupled ROM-ROM solutions are calculated by performing an analogous
coupled FOM-FOM simulation, and computing errors in each subdomain ROM with respect
to its corresponding subdomain FOM in the FOM-FOM coupling. The formula (5.6) can
also be used to calculate errors in a FOM-ROM coupling with respect to a FOM-FOM
simulation. Assuming without loss of generality that the FOM is prescribed in Ω1, (5.6) is
modified by replacing ũ1 with the FOM solution in Ω1 in the FOM-ROM coupling. The
MSE for the velocity and acceleration fields in subdomain Ωi are denoted by EMSE(ṽi) and
EMSE(ãi), respectively, and defined analogously to (5.6).

Also reported in the following subsections is the total number of Schwarz iterations
required for convergence, denoted by NS , and the CPU time for each run. All test cases
were run in MATLAB in serial on one of two Linux RHEL workstations located at Sandia
National Laboratories. The reproductive cases described in Section 5.1 were run on a
RHEL8 Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz machine, whereas the predictive cases
described in Section 5.2 were run on a RHEL7 Intel(R) Xeon(R) CPU E7-4880 v2 2.50GHz
machine. Since a constant time-step of 1.0× 10−7 was used for all of our runs, the average
number of Schwarz iterations per time-step can easily be calculated as NS/10, 000.

5.1. Reproductive ROM results. We first study the performance of the
non-overlapping variant of the proposed alternating Schwarz coupling formulation (see Sec-
tion 4.2) in the reproductive regime. We prescribe as the initial condition for our problem
the Symmetric Gaussian (5.1), with a = 1.0 × 10−3, b = 0.5 and s = 0.02, and employ the
DD, mesh resolutions, time-steps and Schwarz tolerance given in (5.5). To generate snap-
shots for building our ROMs, we use the non-overlapping Schwarz alternating method to
perform a FOM-FOM coupled simulation in Ω := Ω1∪Ω2. A total of S =10,001 snapshots of

1We chose β = 0.49 and γ = 0.9 within the Newmark-β scheme, as these parameter values introduce
some numerical dissipation into the discretization, which our FOM-based convergence study revealed is
necessary to stabilize the rapidly-varying acceleration solution.
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the displacement are collected between time 0 and the final time T = 1.0×10−3 within each
subdomain at time-increments of 1.0× 10−7. These snapshots are used to build POD bases
for our subdomain ROMs and HROMs. For comparison and to provide a baseline, we also
perform a simulation involving a single-domain FOM, from which we build a single-domain
ROM and HROM. Note that, unless specified otherwise, the snapshots used for POD refer
to displacement snapshots.

Figure 5.1(a) shows the snapshot energy EPOD (3.1) as a function of the basis size for
the single-domain and two subdomain ROM cases. For the single-subdomain case, 64 POD
modes capture 99.99% of the snapshot energy. For the two subdomain case, 54 and 21 POD
modes are required to capture 99.99% of the snapshot energy in Ω1 and Ω2, respectively.
Interestingly, if one wishes to create a basis that captures 100% of the snapshot energy,
significantly more modes are required (509 modes for the single-domain case, and 414/145
modes in Ω1/Ω2 for the two subdomain case). As expected, fewer modes are needed to
reproduce the solution in Ω2 than in Ω1.

Fig. 5.1. Energy decay for POD modes constructed from displacement snapshots for the reproductive
Symmetric Gaussian variant of the nonlinear wave propagation problem.

Table 5.1 reports results for several single-domain ROMs and their hyper-reduced vari-
ants, termed HROMs, as well as results for several FOM-ROM, ROM-ROM, FOM-HROM
and HROM-HROM couplings. While the snapshot energies plotted in Figure 5.1 suggest
that a ROM consisting of less than 70 POD modes should be adequate in reproducing the
snapshot set, the reader can observe by examining Table 5.1 that a single-domain ROM
comprised of 60 POD modes is fairly inaccurate, achieving an MSE of almost 50% for the
acceleration field. Since such results are unacceptable in most engineering applications, we
decided to consider larger ROMs having O(100) modes in our coupling studies.

Prior to generating the results summarized in Table 5.1, we performed a parameter
sweep study to determine the “optimal” value of the relaxation parameter θ in (4.2), that
is the value of θ that yielded the smallest number of Schwarz iterations, NS , for non-
overlapping FOM-FOM and FOM-ROM couplings. This study revealed that the value of θ
that minimizes NS is 1, which corresponds to (4.2) with no relaxation. All results reported
herein hence used a value of θ = 1. The HROMs evaluated were generated using the ECSW
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hyper-reduction method described in Section 3.3. A total of Nh = 20 snapshots were used
to generate the state basis used to train the reduced mesh. These snapshots were created
by selecting every 500th displacement snapshot used to generate the POD bases.

A number of noteworthy observations can be made by examining Table 5.1. We begin by
discussing the relative performance of the various models. All couplings summarized in Table
5.1 were run on the same Linux RHEL8 workstation, to ensure consistency, as discussed
earlier. The reader can observe by examining this table that all coupled models evaluated
converged on average in less than 3 Schwarz iterations per time-step. This indicates that the
coupling method has not introduced a significant amount of overhead. Whereas the FOM-
ROM couplings converge in approximately the same number of total Schwarz iterations,
NS , as the FOM-FOM coupling, the FOM-HROM, ROM-ROM and HROM-HROM models
require more Schwarz iterations to reach convergence. It is interesting to observe that the
larger (300/80 mode) ROM-ROM is actually slightly faster than the smaller (200/80 mode)
ROM-ROM. While, at first glance, this result may seem counter-intuitive, the reason for this
behavior is clear when comparing NS for the two couplings: the larger ROM-ROM requires
fewer Schwarz iterations to converge. Most likely, this is due to the larger ROM in Ω1 being
more accurate. This result is consistent with a previously-observed trend, which showed that
coupling less accurate models with each other in general requires more Schwarz iterations
to reach convergence [35, 36]. Despite requiring more Schwarz iterations to converge, the
FOM-HROM and HROM-HROM couplings outperform the FOM-FOM coupling in terms
of CPU time by between 12.5-32.6%. This is a win in the case where a FOM-FOM coupling
is the gold standard, as would occur if the problems in Ω1 and Ω2 were discretized by two
disparate codes, making it impossible to perform a monolithic simulation on Ω as a single
domain. While all of the couplings except the smaller HROM-HROM coupling are slower
than the single-domain FOM, our preliminary results suggest that speedups over a single-
domain FOM are possible through an additive Schwarz implementation of our method (see
Remark 3). This variant of the Schwarz alternating method will be explored in a subsequent
publication.

Having discussed performance, we now turn our attention to accuracy. First, conver-
gence is observed with basis refinement for all the models except the larger HROM-HROM.
The reader can observe that the MSEs in Ω2 are lower for all ROM-ROM and HROM-
HROM couplings despite the fact that fewer modes are employed within this subdomain.
This is due to the solution in Ω2 being far smoother than the solution in Ω1 for the time
interval considered (see Figure 5.3). Among the most accurate models involving HROMs are
the FOM-HROMs considered, which achieve errors of O(0.01%) or less in the displacement
solution and of O(1%) or less in the acceleration solution. It is interesting and encouraging
to remark that the larger FOM-ROM model is incredibly accurate, achieving an MSE of
O(10−11) in the displacement solution. While our HROM-HROM couplings achieve reason-
able errors for the displacement and velocity fields, non-trivial errors of O(10%) appear to
be unavoidable when using these models given the fixed early termination criterion used in
our implementation of ECSW. In interpreting this result, it is important to recognize that all
couplings involving ROMs and HROMs are at least as accurate as the single-domain ROMs
and HROMs evaluated in Table 5.1. This result suggests that the errors we are seeing in the
coupled models are due to the inaccuracy of the individual subdomain models, rather than
errors introduced by our coupling framework. It may be possible to improve the accuracy
of coupled ROMs/HROMs by decomposing the spatial domain into more subdomains and
creating/coupling a larger number of spatially-localized ROMs/HROMs. It may also be
possible to improve the HROM-HROM results in Table 5.1 by simply changing the termi-
nation tolerance within MATLAB’s lsqnonneg algorithm used to solve (3.9). As discussed
in Section 3.3, we did not do this here, as our goal wasto have a consistent termination
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(ũ

2
)

E M
S
E
(ṽ
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criterion for all HROMs being evaluated.

In an effort to provide a complete picture of the relative computational cost and accuracy
of the models evaluated, we show in Figure 5.2 a Pareto plot, which plots the CPU time in
seconds versus the average displacement MSE over all subdomains being coupled. The reader
can observe that, while the single-domain ROMs and HROMs are the fastest, our coupling
methodology enables us to achieve lower errors by performing ROM-ROM and FOM-ROM
couplings. Future work will examine ways to improve the accuracy and efficiency of FOM-
HROM and HROM-HROM couplings, which are not optimal according to Figure 5.2. It is
not possible to make a definitive conclusion about the general utility of FOM-HROM and
HROM-HROM couplings until we have evaluated our coupling methodology in two or three
spatial dimensions. In multiple spatial dimensions, we anticipate seeing a greater benefit
from hyper-reduction, as well as a greater potential for generating “optimal” (MSE and
CPU-time minimizing) DDs and ROM/FOM assignments, in the spirit of [2].

Fig. 5.2. Pareto plot showing CPU time in seconds versus the average displacement MSE over all
subdomains being coupled for the reproductive couplings evaluated in Table 5.1.

In Figure 5.3, we plot the solution computed using our non-overlapping Schwarz coupling
method for the smaller HROM-HROM coupling summarized in Table 5.1. In this figure, the
solution in Ω1 is shown in green, and the solution in Ω2 is shown in cyan. It is evident that
the coupled solutions are indistinguishable from the single-domain FOM solution in the full
domain Ω, shown in blue. This indicates that the coupling method has not introduced any
spurious artifacts into the discretization.
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(a) t = 0 (b) t = 2.5× 10−4

(c) t = 7.5× 10−4 (d) t = 1.0× 10−3

Fig. 5.3. Plots of the HROM-HROM solutions with M1 = 200, M2 = 80, Ne,1 = 315 and Ne,2 = 130
(see Table 5.1) compared to a single-domain FOM solution. The coupled solutions in Ω1 and Ω2 are shown
in green and cyan, respectively, whereas the single-domain FOM solution is shown in blue. No coupling
artifacts are observed in the displacement, velocity and acceleration solutions.

5.1.1. Alternate POD bases. The reader can observe by inspecting Figure 5.3 that,
whereas the displacement and velocity solutions are relatively smooth, sharp gradients form
and propagate in the acceleration field over the course of the simulation. Since these gra-
dients are difficult to capture using POD modes, significantly larger MSEs are observed in
the acceleration field than in the displacement and velocity fields (see Table 5.1). This ob-
servation motivated us to explore a simple idea for improving on the results in Table 5.1 by
augmenting the POD basis used in constructing each of our ROMs with modes calculated
using snapshots of the acceleration field. Let Φu

M and Φa
M denote POD bases of size M

computed from displacement and acceleration modes, respectively. Our procedure for gen-
erating a combined displacement-acceleration POD bases involved first computing Φu

M and
Φa

M independently. Once this was done, an SVD was performed of the augmented matrix
[Φu

M ,Φ
a
M ] to remove potential linear dependencies between the two bases, and the resulting

basis was truncated as desired to yield a displacement-acceleration POD basis.

Remark 4. The idea to include snapshots of the acceleration field within the POD basis of
a ROM is related to the idea of including so-called “time difference quotients” (numerical
estimates of the time-derivative of the primary solution field) in the generation of POD
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modes [21]. These difference quotients can be thought of as representing the right-hand
side of a nonlinear PDE being solved, and were demonstrated in [21] to lead to ROMs with
improved convergence rates.

Unfortunately, while the “displacement-acceleration” basis generation approach dis-
cussed above improved the errors by approximately four orders of magnitude for the FOM-
ROM couplings we tried, the approach was actually deleterious when it came to FOM-
HROM, ROM-ROM and HROM-HROM couplings. The reason for this is unknown at the
present time, and is something we plan to look into in future work.

5.2. Predictive ROM results. Having evaluated the proposed coupling methodology
on a reproductive test case, we now turn our attention to a predictive variant of the nonlinear
wave propagation problem. First, snapshots are generated by simulating the problem with
the Symmetric Gaussian (5.1) initial condition with parameters a = 1.0 × 10−3, b = 0.5
and s = 0.02 up to time T = 1.0 × 10−3, as before. A total of 10,001 snapshots of the
displacement field are generated at increments of 1.0 × 10−7. POD modes are constructed
from these snapshots, and used to predict the solution of our model problem with a different
initial condition, namely the Rounded Square (5.2), with parameters a = 5.0×10−4, b = 100
and s = 0.6. As with the Symmetric Gaussian variant of this problem, the predictive
simulation is run until time T = 1.0× 10−3.

Before building any ROMs and performing any couplings, we assess the projection error
for the Rounded Square nonlinear wave propagation problem, defined as

Eproj(u,ΦM ) :=
||u−ΦM (ΦT

MΦM )−1ΦT
Mu||2

||u||2
, (5.7)

where u denotes the snapshots of the displacement field. The projection error can be
computed in a similar way for the velocity and acceleration snapshots, and is denoted by
Eproj(v,ΦM ) and Eproj(a,ΦM ), respectively. Equation (5.7) provides a straightforward and
inexpensive way to evaluate a given basis’s ability to represent a solution without having to
construct and run an entire projection-based ROM. Figure 5.4 shows a plot of the projection
error for the Rounded Square nonlinear wave propagation problem simulated on one domain
Ω as a function of the basis size M . We calculate and report Eproj(u,ΦM ), Eproj(v,ΦM )
and Eproj(a,ΦM ) for two kinds of POD bases: reproductive and predictive. The reader
can observe that the projection error decreases with basis refinement for both basis types,
indicating that obtaining a reasonably accurate solution should be possible even with the
predictive POD basis, provided enough modes are retained. It is noted that the acceleration
projection error is roughly two order of magnitude higher than the displacement projection
error, and exhibits a much slower decay than the displacement and velocity projection errors.

As for the reproductive problem considered in Section 5.1, we evaluate the performance
of the non-overlapping variant of the proposed Schwarz-based coupling method (Section 4.2)
with the DDs, mesh resolutions, time-steps and Schwarz tolerance given in (5.5). Again,
we set θ = 1 in (4.3), as this value yielded the best performance. We consider predictive
ROMs with a relatively large number of POD modes in each subdomain: 300 modes for
a single-domain ROM, and 300/200 modes for a two subdomain ROM in Ω1/Ω2. This
choice of basis size is motivated by the projection error results plotted in Figure 5.4, which
demonstrate that a minimum of O(100) modes are needed to reproduce our three solution
fields to a sufficient accuracy in the predictive regime.

The main results are summarized in Table 5.2. All runs summarized in Table 5.2 were
performed on the same Linux RHEL7 workstation, to ensure consistency of CPU times for
an apples-to-apples comparison, as described earlier. First, we assess the single-domain
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Fig. 5.4. Projection errors for the nonlinear wave propagation problem with the Rounded Square initial
condition.

ROM and HROM results. The reader can observe that the MSEs for the ROM and HROM
are almost identical. This is likely due to the fact that a very large number of mesh points
(more than 60%) is being selected by the ECSW algorithm when constructing the HROM.
It is interesting to remark that the ROM is actually slower than the FOM. This happens
frequently when constructing projection-based ROMs for nonlinear problems without using
hyper-reduction, and highlights the importance of hyper-reduction.

Turning our attention to the coupled results, we begin by discussing accuracy, as done in
Section 5.1. It can be seen that the FOM-ROM coupling is remarkably accurate, achieving
MSEs as low as O(10−8) for this predictive problem. This result supports our claim that
a more accurate and robust model can be obtained via our Schwarz-based coupling, and
suggests that no coupling errors have been introduced into the discretization. Although the
FOM-HROM and ROM-ROM couplings are less accurate than the FOM-ROM coupling,
one can see that they achieve MSEs lower than the single-domain ROM and single-domain
HROM summarized in Table 5.22. The MSEs for the HROM-HROM model in Table 5.2 are
about one order of magnitude higher than its corresponding ROM-ROM, but nonetheless
on par with the single-domain HROM we evaluated when it comes to MSE.

Next, we discuss the efficiency of the various models in Table 5.2. Interestingly, the
FOM-ROM model takes slightly less CPU time to converge than its corresponding FOM-
FOM model despite not having hyper-reduction, and requires approximately the same num-
ber of Schwarz iterations to converge. The same cannot be said for the FOM-HROM,
ROM-ROM and HROM-HROM summarized in Table 5.2, which are slower than their anal-
ogous FOM-FOM coupled model. This is due to the number of Schwarz iterations, which
is up to 30% higher than for the FOM-FOM and FOM-ROM couplings (with an average of
as many as three Schwarz iterations per time-step needed to converge the HROM-HROM
solution). As discussed in Section 5.1, the larger number of Schwarz iterations needed to
reach convergence is most likely due to the lower accuracy of the individual models be-

2There is, of course, the caveat that the single-domain ROM has less total modes than our ROM-ROM
coupling being evaluated.
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ing coupled. In the case of the HROM-HROM case, the reader can observe that, like for
the single-domain HROM, more than 60% of the mesh points are being sampled by the
ECSW algorithm for the HROM-HROM coupling, which contributes to the higher CPU
time attained by this model. The reader is reminded that, although the non-negative least
squares solver lsqnonneg in MATLAB used in the ECSW procedure has a consistent early
termination condition given by a fixed solution step size tolerance of 10−4, the relative error
tolerance ||Cξ − d||2/||d||2 from Section 3.3 will differ between reduced meshes depending
on the choice of number of modes and number of degrees of freedom in a given subdo-
main. It may be possible to obtain a more accurate HROM solution by simply tweaking the
lsqnonneg termination tolerance, but we chose not to do that here to ensure consistency
between all methods being evaluated, as discussed in Section 3.3. Like in Section 5.1, we
remark that all coupled models in Table 5.2 can be improved further through the use of the
additive Schwarz variant, as discussed in Remark 3.

Table 5.2
Predictive non-overlapping Schwarz coupling results, with θ = 1. The POD modes for the couplings

involving ROMs and HROMs were constructed from snapshots of only the displacement field. The ROMs
and HROMs summarized in this table had the following numbers of POD modes: M1 = 300, M2 = 200.
Couplings outperforming the FOM-FOM model in terms of CPU-time and with reasonable errors are high-
lighted in green.

Model
CPU

Ne,1/Ne,2
EMSE(ũ1)/ EMSE(ṽ1)/ EMSE(ã1)/ NStime (s) EMSE(ũ2) EMSE(ṽ2) EMSE(ã2)

FOM 1.288 ×103 −/− −/− −/− −/− −
ROM 1.358 ×103 −/− 3.451×10−3/− 6.750 × 10−2/− 3.021 × 10−1/− −
HROM 9.759 × 102 614/− 3.463 × 10−3/− 6.750 × 10−2/− 3.021 × 10−1/− −

FOM-FOM 2.133 × 103 −/− −/− −/− −/− 23,280

FOM-ROM 2.084 × 103 −/− 1.907 × 10−8/ 1.461 × 10−6/ 3.973 × 10−5/ 23,288

1.170 × 10−6 9.882 × 10−5 1.757 × 10−3

FOM-HROM 2.219 × 103 −/253
1.967 ×10−4 4.986 × 10−3 2.768 × 10−2

29,700
1.720 × 10−3 4.185 ×10−2 2.388 × 10−1

ROM-ROM 2.502 × 103 −/− 5.592 × 10−4/ 1.575 × 10−2/ 9.197 × 10−2/
26,220

4.346 × 10−4 1.001 × 10−2 5.304 × 10−2

HROM-HROM 2.200×103 405/253
4.802 × 10−3 8.500 × 10−2 3.744 × 10−1

30,067
1.960 × 10−3 4.630 ×10−2 2.580 ×10−1

As for our reproductive test case, we combine the accuracy and efficiency results sum-
marized in Table 5.2 into a Pareto plot, which shows the CPU time in seconds versus the
average displacement MSE over all subdomains being coupled (Figure 5.5). It is clear from
this figure that, by coupling a ROM to a FOM, it is possible to reduce error of a given
reduced model by several orders of magnitude. Figure 5.5 reinforces the need to investigate
ways to improve FOM-HROM and HROM-HROM efficiency and accuracy in future work.

Figure 5.6 shows the displacement, velocity and acceleration solutions at the final time
T = 1.0 × 10−3 for several of the predictive models being evaluated: the single-domain
ROM and the coupled FOM-HROM. The coupled solutions in Ω1 and Ω2 are shown in
red and green, respectively. These are plotted on top of a single-domain FOM solution,
shown in black. The reader can observe that the predictive single-domain ROM solution
(Figure 5.6(a)) exhibits some spurious oscillations in the velocity and acceleration fields. In
contrast, the FOM-HROM solution (Figure 5.6(b)) is smooth and in good agreement with
the single-domain FOM.

While the results summarized in Table 5.2 and Figure 5.6 are promising, some work
still needs to be done in improving the accuracy of the coupled model when the Schwarz
alternating method is used to stitch together HROMs. We will explore strategies to do this
in the context of a two-dimensional (2D) problem in a subsequent publication.
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Fig. 5.5. Pareto plot showing CPU time in seconds versus the average displacement MSE over all
subdomains being coupled for the predictive couplings evaluated in Table 5.2.

6. Summary and future work. In this paper, we described a methodology for cou-
pling projection-based ROMs with each other and with conventional high-fidelity finite
element models by means of the Schwarz alternating method. In this method, the physical
domain is decomposed into two or more subdomains, and a sequence of subdomain-local
problems is solved, with information propagating through carefully-constructed transmis-
sion boundary conditions posed on the subdomain boundaries. The method was formulated
for both overlapping and non-overlapping domain decompositions in the context of a generic
nonlinear solid dynamics problem. While our numerical experiments focused on couplings
in which the same time-integrator and time-step is used in all subdomains being coupled,
we emphasize that the method is capable of coupling not only disparate discretizations but
also different time-integrators with disparate time-scales, as demonstrated in [36, 44].

The utility of the proposed coupling approach is two-fold. First, it provides a mechanism
for enabling the “plug-and-play” integration of data-driven models into existing multi-scale
and multi-physics coupling frameworks, with minimal intrusion (i.e., through the introduc-
tion of a simple outer loop around the two or more disparate models being coupled). Second,
couplings such as those performed herein have the potential of improving the predictive via-
bility of projection-based ROMs, by enabling the spatial localization of ROMs (via domain
decomposition) and the online integration of high-fidelity information into these models (via
FOM coupling).

Our numerical results for a 1D nonlinear wave propagation problem (a problem which
poses a number of challenges for traditional POD-based model reduction approaches) are
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(a) Predictive single-domain ROM

(b) Predictive FOM-HROM

Fig. 5.6. Solutions to the predictive Rounded Square nonlinear wave propagation problem at the final
time T = 1.0 × 10−3. The coupled solutions in Ω1 and Ω2 are shown in red and green, respectively; the
single-domain FOM solution is shown in black. Whereas the velocity and acceleration components of the
single-domain ROM is fraught with oscillations, the FOM-HROM coupled solutions agrees closely with the
single-domain FOM solution.

promising. These results demonstrate that the proposed methodology is capable of cou-
pling disparate models without introducing numerical artifacts into the solution for both
reproductive and predictive problems. Additionally, they show that the resulting couplings
can be cost-effective when combined with hyper-reduction. Our conclusion that FOM-ROM
couplings are particularly accurate for the problems considered is not surprising, given the
sharp gradients present in the acceleration component of the solution. Features such as these
are incredibly difficult to capture using POD modes alone, especially when they propagate
dynamically in time. Our results suggest that some more work can be done in the future to
try to improve the accuracy and efficiency of couplings involving HROMs. This task will be
pursued in the context of 2D and three-dimensional (3D) problems with localized features
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in their solutions (e.g., shedding vortices behind a cylinder in a fluid simulation, failure
and strain localization in a solid simulation), where more benefits are expected from both
hyper-reduction as well as domain decomposition. Although attention herein was restricted
to non-overlapping couplings, similar results were obtained with the overlapping version of
our method, and are omitted simply for the sake of brevity; for a flavor of these results, the
reader is referred to [44].

In future work, we plan to explore the following research directions:

• Verifying that similar results can be obtained via explicit-explicit and implicit-explicit
Schwarz couplings, and in the case when disparate time-steps are used to advance
the solution in different subdomains. Preliminary testing not reported here sug-
gests that the same conclusions hold in the case of couplings involving disparate
time-integrators/time-steps.

• An extension of the proposed coupling framework to 2D and 3D problems. A multi-
dimensional implementation will require the development of transfer operators for
defining the Schwarz transmission boundary conditions. We plan to investigate the
usage of the Compadre toolkit [38] for this task. It is expected that the benefits of
hyper-reduction will be far greater in 2D and 3D than in 1D.

• Developing error indicator-based approaches for determining “optimal” domain de-
compositions and ROM/FOM placement. We plan to build on the work of Bergmann
et al. [2].

• Implementing and testing the additive Schwarz variant of the proposed coupling
method. Please see Remark 3 and [11] for more information on this variant of the
method. Preliminary studies suggest that additive Schwarz-based coupling has the
potential to yield coupled models which can achieve speed-ups over a single-domain
FOM when parallelized over the number of subdomains.

• Examining snapshot collection strategies that do not require simulating the coupled
high-fidelity model over the the entire domain. Ideas such as oversampling [43]
will be explored towards the goal of designing a workflow that can reuse existing
modular codes for individual physics in an effort to perform minimally-intrusive
modular couplings.

• Extending the proposed approach to coupling scenarios that enable “on-the-fly” FOM-
ROM switching and ROM adaptation. A nice starting point for this research direc-
tion is the work of Corigliano et al. [5].

• Performing an analysis of the method’s theoretical convergence properties. We plan
to leverage some of our past work, which analyzed the method’s convergence for
FOM-FOM coupling in solid mechanics [35, 36].

• Applying the proposed coupling methodology to problems other problems, including
multi-physics problems. We are particularly interested in problems involving FSI.
We have begun to move in this direction by starting to explore multi-material
coupling using Schwarz, as a proxy for a multi-physics problem,

• Extending the proposed framework to enable the seamless coupling of other types
of data-driven models, e.g., PINNs. PINNs are well-suited for Schwarz-based cou-
plings, as they have the notion of boundary conditions, which can be incorporated
through the loss function being minimized [28, 29].
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MULTI-FIDELITY TRAINING IN FEEDFORWARD SUPERVISED
LEARNING NETWORKS

OWEN N. DAVIS ∗, GIANLUCA GERACI † , TIMOTHY M. WILDEY ‡ , AND MOHAMMAD

MOTAMED §

Abstract. In many scientific modeling applications large amounts of high fidelity data are unavailable
or prohibitively expensive to generate. In many situations, a larger data set is assembled from disparate
sources with varying accuracy and cost. The goal of this work is twofold. First, we want to explore strategies
for training an accurate, precise, and cost effective neural network (NN), which exploits multifidelity (MF)
data with any finite number of fidelity classes. For this task we develop novel extensions of two methods
that have been previously studied for the case of two fidelity classes. The first method is a fusion of NNs
that learns the direct (possibly non-linear) correlation between the low fidelity and high fidelity data, and
the second method is a fusion of NNs which learns the (possibly non-linear) correlation between the low
fidelity data and the residual of the two data types. For each of these methods, we consider two distinct
extension strategies, which are formulated to favor two different types of MF data that often arise in MF
modeling applications. Second, we want to obtain uncertainty estimates for the NN predictions and use these
estimates to guide subsequent decisions, e.g. how to expand the MF data set to improve the reliability in
the NN predictions. For this task we explore ensemble networks and dropouts. For our model problems, we
consider a function approximation task with different fidelity data classes inherited from past multi-fidelity
modeling work.

1. Introduction. Using mathematical and numerical modeling to understand physical
phenomena is a common practice in science and engineering. In situations where physical
phenomena are hard to observe directly mathematical models can provide invaluable insight
into the phenomena behavior. However, mathematical and numerical models, which capture
the behavior of large scale multi-physics problems, often require considerable computational
investment. This is especially problematic for tasks such as uncertainty quantification (UQ)
that generally require many model evaluations. Fortunately, it is often possible to construct
a cheap to evaluate high accuracy surrogate model by combining a small number expensive
high fidelity (HF ) approximations with a larger number of inexpensive, but low fidelity
(LF ), approximations. This practice is generally referred to as multifidelity (MF) surrogate
modeling.

There are many existing strategies for MF surrogate modeling in the literature [4, 12,
16, 15, 17, 3, 22, 5, 9, 14]. Perhaps the most common approach is using a Bayesian auto-
regressive Gaussian process to model the correlations between the different data fidelity
classes [12, 5]. This method performs well for sparse HF data sets and provides built in
uncertainty estimates, but can become relatively expensive as the problem dimension grows
larger.

Recent work in MF surrogate modeling has focused on training a neural network (NN)
as the surrogate model. When seeking to use a NN as a surrogate we have MF data for use
in NN training, and the optimal way to leverage this MF training data has been the subject
of considerable past research [4, 22, 17, 16, 15, 3, 9, 14]. The motivating principle behind
the majority of this work has been to take advantage of the correlation between the LF and
HF data. In [4] an approach known as the comprehensive correction is proposed. Here the
correlation between the LF and HF data is assumed to be linear, and one seeks to use a NN
to learn a multiplicative and or additive correction which transforms the LF data to the HF
data. This method is limited by the assumption that the correlation between the LF and
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HF data is linear, and there have been several modifications of this method in an attempt
to handle non-linear correlations. In [22] the multiplicative correction term is replaced by an
unknown possibly non-linear function. In [17, 9] the multiplicative and additive corrections
are absorbed into one unknown non-linear function and this general non-linear function
is learned via a NN. We refer to this method as the Direct Non-linear NN (DNLNN). In
[16, 15, 9] this general non-linear function is split into linear and non-linear components, and
these are learned by separate NNs. In [3] it is pointed out that it is often computationally
advantageous to reformulate the correlation between data types as a non-linear residual
function and learn this instead. This method is referred to as the Residual Multifidelity
NN (RMFNN). In [9] two additional methods are proposed. In the first, the LF outputs
are considered latent variables in the NN, which learns the HF data. This is accomplished
by inserting the LF outputs in an intermediate weight layer of the network. The second
proposed method takes advantage of the connection between neural networks and Gaussian
processes [8, 13, 18]. This method is referred to as GPmimic and seeks to mimic the action
of a Gaussian process without incurring the same prohibitive computational cost. In [14]
the authors use a transfer learning approach. A deep NN (DNN) is pre-trained on a data
set that includes mostly LF data. This pre-trained DNN is then fine tuned on a target or
HF data set. In order to enforce transfer learning during fine tuning the parameters in the
first several layers of the pre-trained DNN are fixed and only the parameters in the final
layers of the network are allowed to vary.

Once a strategy is chosen to harness the MF training data it is important to under-
stand how this chosen strategy impacts the predictive uncertainty of the NN surrogate.
Quantifying uncertainty in NN predictions, a task often called UQ for Machine Learning
(ML), is an active research area, and several strategies have been proposed in the literature
[10, 11, 1, 19]. Among these the most computationally inexpensive is called dropout [23],
a procedure by which neurons are randomly dropped during training and or testing. Using
dropout during training provides network regularization and helps prevent over-fitting, and
using dropout during testing offers computationally inexpensive variance estimates. The
interpretation of dropout as an ensemble of network architectures has also been investigated
thoroughly in [2, 6].

In this work, we provide a direct comparison between the DNLNN and RMFNN methods
using MF training data with exactly two fidelity classes. We compare the methods on the
basis of predictive uncertainty (estimated via dropout), mean test error over an ensemble
of network architectures, and cost of generating the MF training set. In addition, for each
of the DNLNN and RMFNN methods, we motivate and provide two distinct strategies for
extension to MF training sets with more than two fidelity classes.

The remainder of the article is organized as follows. In section 2, we formulate the MF
surrogate modeling problem and discuss it in the case where the surrogate is taken to be an
NN and the MF data set is assumed to have any finite number of fidelity classes. We provide
mathematical descriptions of the DNLNN and RMFNN methods and discuss our proposed
extensions of these methods for more than two fidelity classes. Moreover, we discuss our
procedure for estimating the predictive uncertainty of the methods via dropout. In section
3, we compare the DNLNN and RMFNN methods for a function approximation task using
MF data with both two and three fidelity classes.

2. Mathematical Background and Theoretical Contributions. In this section,
we provide a formal mathematical description of MF surrogate modeling and specifically
consider the case where a NN is used as the surrogate. Further, we provide rigorous ex-
planations of the RMFNN and DNLNN methods and describe their generalizations to MF
data sets with M ≥ 2 fidelity classes. Finally, we discuss the way in which dropout is used
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in these methods to estimate their predictive uncertainty.

2.1. Multifidelity Surrogate Modeling. Suppose we want to create a surrogate
model, S, for some quantity of interest, Q : X → Y , where X ⊂ Rm and Y ⊂ Rn.
Further, suppose we have an HF approximation of Q called QHF and M − 1 inexpensive
LF approximations of Q called QLFi

, i = 1 · · ·M−1. When seeking to use a neural network
as a surrogate for Q we view {(x,QHF (x))}, {(x,QLF1

(x))}, · · · , {(x,QLFM−1
(x))} as high

fidelity and lower fidelity data sets for use in NN training. Our goal is to leverage this MF
training data as to minimize ||Q(x)− S(x)||L2 and ||Q(x)− S(x)||L∞ for all x ∈ X.

2.1.1. Hierarchical and Non-Hierarchical MF Data. Suppose we have a MF
data set containing M different data fidelity classes, one high fidelity, HF , and M −1 lower
fidelity, {LFi}M−1i=1 . In general, leveraging this MF training data means accurately learning
the correlations between the various data fidelity classes. We argue that the procedure by
which these correlations are learned should depend on the structure of the MF data set.
To illustrate this we consider MF data which has either a hierarchical or non-hierarchical
structure.

Hierarchical data is characterized by the different fidelity classes being ordered in their
approximation quality of the true quantity of interest. This type of MF data often arises
when all fidelity classes are generated by the same procedure. One example is MF data com-
ing from a finite element approximation of a PDE where the fidelity of the data is controlled
by the coarseness of the mesh. For data of this type we hypothesize that, for a fixed cost,
we will achieve greater accuracy by learning the correlations between adjacent lower fidelity
data classes in the hierarchy (as opposed to directly learning the correlations between each
lower fidelity data class and the highest fidelity data class). It is often possible to learn
these correlations between adjacent fidelity classes all at once, but from an implementa-
tion perspective it is generally easier to use a sequential procedure. Assume our M fidelity
classes are hierarchical with the LFi data being a better approximation to the true quantity
of interest than the LFj data whenever i < j. Given this set up we begin by learning the
correlation between the LFM−1 and LFM−2 data. Next, we learn the correlation between
the LFM−2 and LFM−3 data. We continue in this manner and terminate the process after
learning the correlation between the LF1 and HF data.

Dealing with non-hierarchical MF data in surrogate modeling applications is also gaining
traction due to the abundance of cases in which this type of data often arises (the lower
fidelity data classes relationships are often unknown). In this case, we do not want to use a
sequential method which would impose a potentially incorrect hierarchy on the data fidelity
classes. As an alternative, we leverage the MF data via what we refer to as a concatenation
method. This method is defined by independently learning each correlation between the LFi

data and the HF data for all i = 1, · · · ,M −1. In learning these correlations independently
we avoid potentially false assumptions concerning the relationships between the lower fidelity
data classes.

2.1.2. Hyperparameter Tuning in NN Training. In addition to the importance
of effectively leveraging the MF training data, there are many challenges associated with
constructing an optimally performing NN. In the case of limited training data and finite
computational resources, training a NN, which performs optimally, requires careful tuning
of many hyperparameters including capacity, learning rate, initialization, and regularization.
Optimal tuning of NN hyperparameters is often computationally prohibitive because it in-
volves expensive continuous optimization over hyperparameter combinations. More often
these hyperparameters are tuned manually or via some finite grid search over hyperparam-
eter combinations. In addition to the hyperparameters contained in a given NN there are
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many different types of neural networks. In this work, we restrict ourselves to feedforward
supervised learning and we point the reader to [7] for a comprehensive introduction to the
theory of feedfoward NNs and their training procedures.

2.2. The RMFNN and DNLNN Methods. While the two fidelity class versions
of the RMFNN and DNLNN methods have been well studied in [17, 3], no explicit method
for extending the DNLNN and RMFNN methods for M > 2 fidelity classes or experimental
results for these extensions are present in the literature. In this section, we provide general
RMFNN and DNLNN formulations, which work for any number of fidelity classes and
are capable of leveraging the MF training data using either a sequential or concatenation
approach. In order to clearly explain these methods we (1) provide a detailed description of
the structure of the training data, (2) point out the core difference between the RMFNN and
DNLNN methods, (3) provide general training diagrams and pseudocode implementations
of the methods, and (4) explain the dropout procedure used to quantify their predictive
uncertainty.

2.2.1. The Training Data. In this work, we consider training data with the general
structure pictured in Figure 2.1 Each fidelity class, LFi, has its own unique collection of

Fig. 2.1. Training data for the DNLNN and RMFNN methods.

samples, XLFi
, and for each datapoint, x ∈ XLFi

, we have an LFi output, yLFi
. We note

here that the structure of the training data provided in Figure 2.1 is the most general form
that can be used for all of our proposed methods. In certain experimental settings it may
be possible or more convenient to take different forms of the training data. In particular,
we point out the case in which lower fidelity data is readily generated at any point in the
domain with negligible cost. In this case, a training data structure that has a nested sample
input space across different fidelity classes can be implemented. However, this can be viewed
as a special case of the training data in Figure 2.1.

2.2.2. Correlational Learning in the DNLNN and RMFNN Methods. The
core difference between the DNLNN and RMFNN methods is the process by which they
learn the correlation between different data fidelity classes. To illustrate this we consider
learning the correlation between the LFi and HF data.

The DNLNN learns this possibly non-linear correlation directly using the procedure
outlined in Figure 2.2 and described in the following.

First, a neural network, NNLFi
, is trained on the LFi data. Next, a neural network,

NNcorri , is trained to learn the map between LFi and HF data. In particular, NNcorri

takes inputs x ∈ XHF and an LFi prediction at x, NNLFi
(x). It then attempts to learn the

mapping between these inputs and the HF output, yHF (x). Notice that the training set
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Fig. 2.2. The procedure by which the DNLNN method learns the correlation between LFi and HF data.

for NNcorri has size equal to the number of available HF training samples, so in a general
MF surrogate modeling situation NNcorri is trained on relatively sparse data.

The RMFNN learns the correlation between fidelity classes in a slightly different way.
It casts this problem as learning the possible non-linear correlation between the LFi data
and the residual between the HF and LFi data. This procedure is pictured in Figure 2.3.
The first step is the same as it was in the DNLNN correlational learning procedure. The

Fig. 2.3. The procedure by which the RMFNN method learns the correlation between LFi and HF data.

difference is evident in the second step where we train the neural network NNresi . The
training inputs to this network are the same as they were for NNcorri in the DNLNN
method, but we now train with respect to the difference between the HF output, yHF (x),
and the LFi prediction, NNLFi(x). Once NNresi is trained, the HF model can be evaluated
by summing the two contributions, as illustrated in the red box of Figure 2.3.

2.2.3. Training and Testing Procedures. In this section, we present training/testing
diagrams for the DNLNN and RMFNN methods. For each of these methods we present one
training procedure that leverages the MF training data using a sequential approach and one
that leverages the MF data using a concatenation approach. The interested reader can also
find full pseudo-code implementations of these methods in Appendix A.

DNLNN Sequential. In Figure 2.4 the network training and prediction diagram for the
DNLNN sequential method is pictured. We note that, when we leverage the MF training
data using a sequential approach we learn the correlations between the data fidelity in
a sequential manner. In accordance with this goal, we begin by training a single neural
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Fig. 2.4. DNLNN training on a MF data set with M fidelity classes leveraged using a sequential
approach.

network, NNLFM−1
, to learn the LFM−1 data. Next, we train a neural network, NNcorrM−1

,
to learn the correlation between the LFM−1 and LFM−2 data. This correlational learning
is accomplished in the manner previously explained for the DNLNN method. From here,
we continue to train neural networks that allow us to sequentially move up the fidelity class
hierarchy. The general step pictured in the diagram is for the training of NNcorrj+1

, which
learns the correlation between the LFj+1 and LFj data. Notice that the direct inputs are
a native LFj input, x ∈ XLFj , and an LFj+1 prediction at x. This LFj+1 prediction is
handed down from the previously trained NNcorrj+2 , which in turn requires the prediction
of NNcorrj+3

, and so on and so forth. The training outputs for NNcorrj+1
are yLFj

(x) for
each x ∈ XLFj

. This general training process is terminated with the training of NNcorr1 ,
which learns the correlation between the LF1 and HF data. From here NNcorr1 issues
network predictions. Notice though that to issue a network prediction all networks trained
during the training procedure need to be evaluated at the test input. We refer to this as a
compound network prediction. In Figure 2.4, we also indicate where we apply dropout to
quantify predictive uncertainty, which happens in the training and testing of NNcorr1 .

DNLNN Concatenation. The network training and prediction for the DNLNN concate-
nation method is pictured in Figure 2.5. The method proceeds in a slightly different way
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Fig. 2.5. DNLNN training on a MF training set with M fidelity classes leveraged using a concatenation
approach.

than it did in the sequential approach. Recall that when leveraging the MF training data
using a concatenation approach we independently learn all the correlations between the LFi,
i = 1, · · · ,M − 1, and HF data. Given this goal, we begin by training NNLFi

to learn the
LFi data for all i = 1, · · · ,M − 1. Once these M − 1 neural networks are trained, we train
a single neural network, NNcorr. Notice that the training inputs are a native HF input,
x ∈ XHF , and an LFi prediction at x, NNLFi

(x) for all i = 1, · · · ,M − 1. The training
outputs are the HF outputs, yHF (x) for each x ∈ XHF . Given this training data, NNcorr

can be understood as learning the general correlation between all lower fidelity data and
the HF data. Once NNcorr is trained it is used to issue predictions on our test inputs.
Notice that evaluating NNcorr requires an evaluation of NNLFi

for all i = 1, · · · ,M − 1, so
once again we use a compound network prediction. Take note as well that dropout is being
applied to NNcorr in both training and testing.

RMFNN Concatenation. In Figure 2.6 the training testing procedure for the RMFNN
leveraging data using a concatenation approach is pictured. Following the training diagram,
we start by training a neural network, NNLFi , to learn the LFi data for all i = 1, · · · ,M−1.
Next, we train a neural network, NNresi , to learn the correlation between the LFi data and
the residual between the HF and LFi data for all i = 1, · · · ,M − 1. This correlational
learning is done via the RMFNN strategy previously explained. From here the trained
NNresi is used to generate synthetic HF outputs for all x ∈ XLFi . After all synthetic data
generation is complete, we have an HF output for every input in the MF training set. We
finish by training NNHF to learn this enlarged HF training set, and then use NNHF to
issue network predictions. Notice the difference in workflow from the DNLNN methods.
Here a single neural network trained on an enlarged synthetic HF data set is used to issue
final network predictions. We refer to this as synthetic data generation network prediction.
As indicated in Figure 2.6, dropout is used in both the training and testing of NNHF .
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Fig. 2.6. RMFNN training procedure for a MF data set with M fidelity classes leveraged using a
concatenation approach.

RMFNN Sequential. In Figure 2.7, the training procedure used for the RMFNN method
with training data leveraged via a sequential approach is pictured. Following the training
diagram we begin by training a neural network, NNLFi , to learn the LFi data for all i =
1, · · · ,M−1. Next, for i = M−1, · · · , 1 we alternate between (1) training a neural network,
NNresi , which learns the correlation between the LFi data and the residual between the
LFi−1 and LFi data, and (2) using the trained NNresi to generate synthetic LFi−1 outputs
for all x ∈ XLFi . Once this sequential procedure is complete we have an HF output for all
inputs in the original MF training set. We finish by training a neural network, NNHF , on
this enlarged HF training set, and we use the trained NNHF to issue network predictions.
Notice again that we have made use of a synthetic data generation network prediction. Just
as in the RMFNN concatenation method dropout is applied during the training and testing
of NNHF

RMFNN Compound Approach. In [3], an alternative workflow for the RMFNN method
is presented for the case of two fidelity classes. This alternative workflow uses a compound
network prediction instead of the synthetic data generation network prediction used in the
previously presented RMFNN methods. For our explanation of this two-fidelity method
we label our fidelity classes LF1 and HF . When the MF training set contains only two
fidelity classes the concatenation and sequential methods are the same, so to understand
the RMFNN compound workflow the reader can refer to the M = 2 version of either
Figure 2.6 or Figure 2.7. In the standard M = 2 version of the RMFNN method, we
start by training a neural network, NNLF1 , to learn the LF1 data. Then we train a neural
network, NNres1 , to learn the correlation between the LF1 data and the residual between
the HF and LF1 data. Once trained, NNres1 is used to generate synthetic HF outputs
for all x ∈ LF1. In the alternate workflow this synthetic data generation step is removed.
Instead we use a combination of NNres1 and NNLF1 to directly issue network predictions,
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Fig. 2.7. RMFNN training procedure for a MF data set with M fidelity classes leveraged using a
sequential approach.

ypred = NNres1(xtest, NNLF1
(xtest))+NNLF1

(xtest). In this alternative workflow we apply
dropout to the training and testing of NNres1 .

For clarity we provide Table 2.1, which contains a compact summary of all proposed
methods from this section.

Table 2.1
Proposed NN Methods

Num.
Fidelity
Classes (M)

Method Data Leveraging: sequen-
tial (S) or concatenation
(C)

Prediction Workflow

M = 2
RMFNN

S and C equivalent
Synthetic Data Gen.
Compound

DNLNN Compound

M > 2
RMFNN

S
Synthetic Data Gen.

C

DNLNN
S

Compound
C

2.3. Estimating Predictive Uncertainty. We quantify the predictive uncertainty
in our NN methods via dropout. A general description of dropout as both a regularization
and UQ strategy is presented in section 1 along with the references therein. In this section
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we offer a description of our dropout scheme used for the previously presented methods. In
each method’s network diagram it was indicated to which neural networks dropout would
be applied. In each instance dropout was applied during both training and testing. The
use of dropout during both training and testing was inspired by the findings in [21] where it
was pointed out that to promote accurate individual test predictions (as opposed to only an
accurate mean prediction over many model evaluations) required that dropout be used in
training as well as testing. All neural networks in our methods are composed of linear layers
and ReLU activation functions. We apply dropout after each linear layer (except the output
layer), and we assign all neurons a fixed dropout probability of 1/20. This probability is
a hyperparameter that was manually tuned. From our tests, we observed that the value
1/20 provided a favorable balance of network regularization during training and sufficient
perturbation of the network architecture during testing.

3. Numerical Results.

3.1. Training Data Structure. As mentioned in section 2.2.1, there are variety of
training data structures that are applicable to our proposed methods. For our numerical

Fig. 3.1. On the left is the training data structure for RMFNN compound and sequential methods,
and on the right is the training data structure for RMFNN concatenation method.

results the DNLNN sequential and concatenation methods use the training data structure
outlined in section 2.2.1. For the RMFNN compound, concatenation, and sequential meth-
ods we use the training data structure outlined in Figure 3.1. This data structure is the
one used in [3] and provides a simplification of the RMFNN training procedures outlined
in Figure 2.6 and Figure 2.7. The left graphic in Figure 3.1 is the training data structure
used for the RMFNN sequential method. Recall that in the RMFNN sequential train-
ing procedure, Figure 2.7, the network(s) NNresi , i = 1, · · · ,M − 1, learn the mapping
(x ∈ XLFi−1 , NNLFi(x)) 7→ (yLFi−1 − NNLFi(x)). Now, since the data fidelity classes are
nested in the input space we can replace the network prediction, NNLFi

(x), with the avail-
able lower fidelity sample, yLFi

(x). The right graphic in Figure 3.1 is the training data struc-
ture for the RMFNN concatenation method. Recalling the training procedure, Figure 2.6,
the network(s) NNresi , i = 1, · · · ,M − 1, learn the mapping (x ∈ XHF , NNLFi(x)) 7→
(yHF −NNLFi(x)). In this new training structure there is a sample input space, Xshared,
common to all fidelity classes which numbers the amount of available HF samples. The
training of the network(s), NNresi , are now done on this shared input space, and the net-
work prediction, NNLFi

(x), can be replaced by the available lower fidelity output, yLFi
(x).

For the RMFNN compound numerical results either of the the training data structures in
Figure 3.1 can be used as they are equivalent in the case of two fidelity classes.

3.2. Test Problem: 4D Function Approximation, M = 2.

In order to compare the M = 2 DNLNN and composite RMFNN methods we consider
the task of approximating the following function using MF training data.
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fHF (x1, x2, x3, x4) =
x1
2

[√
1 + (x2 + x23)

x4
x21
− 1

]
+ (x1 + 3x4) exp(1 + sin(x3)) (3.1)

where (x1, x2, x3, x4) ∈ (0, 1)4. This function has been used in past multifidelity model-
ing work [20]. Since we are considering only two fidelity classes we call them HF and LF .
In order to generate HF training data we sample directly from Equation (3.1).

We hypothesize that the nature of the correlation between the LF and HF data in the
MF training set will heavily impact the performance of the RMFNN and DNLNN methods,
so we choose to conduct this approximation task on two different MF training sets. In one
of them the LF data is linearly correlated with the HF data. To generate this linearly
correlated LF data we sample from the following function:

fLF,lin(x1, x2, x3, x4) =

[
1 +

sin(x1)

10

]
fHF (x1, x2, x3, x4)− 2x1 + x22 + x23 + 0.5 (3.2)

which is linear in fHF and appeared in past MF modeling work [24]. In the other MF
training set the LF data is non-linearly correlated with the HF data. To generate this LF
training data we sample from

fLF,nonlin(x1, x2, x3, x4) =

[
1 +

sin(x̃1)

10

]
[fHF (x̃1, x̃2, x̃3, x̃4)]

3/2 − 2x̃1 + x̃2
2 + x̃3

2 + 0.5

where

(
x̃1 x̃2 x̃3 x̃4

)
=




cos(3π/2) 0 − sin(3π/2) 0
0 1 0 0

sin(3π/2) 0 cos(3π/2) 0
0 0 0 1







x1
x2
x3
x4


 (3.3)

where fLF,nonlin is a non-linear function of fHF .
All the network training data is generated through random uniform sampling of the

functions above. In particular, our sampling workflow is as follows. For a given fidelity class
we generate random uniform samples of each coordinate numbering the desired amount of
data points in that fidelity class. Using these random samples we generate a random grid
on which we evaluate the desired function.

Our goal is to compare the best possible DNLNN and the best possible RMFNN with
respect to the cost of generating the MF training data. To verify that the DNLNN and
RMFNN methods are leveraging the MF data effectively we also consider a neural network,
NNHF , trained on a data set comprised of only HF data with the same cost as the MF
training set used for the DNLNN and RMFNN methods.

To generate these data sets, we fix a cost ratio, CHF /CLF = 20/1, where CHF and CLF

are respectively the cost to generate HF and LF samples, and a fidelity ratio, NHF /NLF =
1/5, where NHF and NLF are respectively the number of HF and LF samples present in the
training set. This cost and fidelity ratio simulate a common MF surrogate modeling situation
where we have a small set of expensive HF data and a much larger set of inexpensive LF
data. With these cost and fidelity ratios fixed we measure the cost of an MF training set in
HF equivalent evaluations.
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For each numerical experiment, (1) linearly correlated LF data and (2) non-linearly
correlated LF data, we have four different test cases, A, B, C, and D, each of which considers
a training set of different cost. The composition of the training sets for each of these test cases
and for each of the RMFNN , DNLNN , and NNHF methods are presented in Table 3.1.

Table 3.1
Training set composition for DNLNN, RMFNN, and NNHF .

Test Case Cost RMFNN , DNLNN Training Set NNHF Training Set
A 10 NHF = 8, NLF = 40 NHF = 10, NLF = 0
B 50 NHF = 40, NLF = 200 NHF = 50, NLF = 0
C 100 NHF = 80, NLF = 400 NHF = 100, NLF = 0
D 500 NHF = 400, NLF = 2000 NHF = 500, NLF = 0

In comparing the RMFNN and DNLNN methods we desire estimates of their predictive
uncertainty. In order to obtain these estimates we use dropout as outlined in section 2.3.
Dropout is also applied to NNHF in the same manner with the same drop probability
of 1/20. Furthermore, in section 2 the necessity of tuning the hyperparameters of NNs
was discussed. Since for a given MF training set we want to compare the best possible
RMFNN, DNLNN, and NNHF we manually tune their hyper parameters independently to
provide close to optimal performance. Now with dropout active, as described in section
2.3, we evaluate each model 1000 times on an independent test set. From these 1000 model
evaluations we collect the mean L∞ test error, standard deviation in the L∞ test error,
mean L2 test error, and the standard deviation in the L2 test error. The results for both
the linearly correlated LF training data and the non-linearly correlated LF training data
are displayed in Figure 3.2 and Figure 3.3.

Fig. 3.2. L∞ test error and standard deviaition (left) and L2 test error and standard deviation (right)
for HF only (blue), DNLNN (orange), and RMFNN (magenta) surrogates on an MF training set where
the LF data is linearly correlated with the HF data.

Examining Figure 3.2 we see that both the RMFNN and DNLNN methods provide
improved mean L∞ and mean L2 test error when compared to NNHF . We also notice
that for a given MF training set the standard deviation in predictions issued by DNLNN
and RMFNN are marginally lower than those for NNHF . In comparing the RMFNN and
DNLNN methods, we see that RMFNN is considerably better in terms of mean test error,
and comparable in terms of standard deviation. The relatively high performance of the
RMFNN method on this test problem most likely stems from the residual between the HF
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Fig. 3.3. L∞ test error and standard deviaition (left) and L2 test error and standard deviation (right)
for HF only (blue), DNLNN (orange), and RMFNN (magenta) surrogates on an MF training set where
the LF data is non-linearly correlated with the HF data.

and LF data being uniformly small in magnitude over the full domain. Because of this
RMFNN is able to approximate this residual very accurately with sparse training data [3].

Examining Figure 3.3, we see very little benefit to the RMFNN or DNLNN methods in
terms of mean test error or standard deviation when compared to NNHF . The reason for
this is most likely due to the fact that (1) the direct correlation between the LF and HF
data and (2) the correlation between the LF data and the residual of the HF and LF data
are both very non-linear. The performance of DNLNN and RMFNN depends on accurately
learning (1) and (2) respectively using a small number of training samples equal to the
amount of HF data available in the MF training set. In the case of a very difficult mapping
and extreme data sparsity these methods suffer. This assessment is supported by the results
presented in Figure 3.3. The only MF data set for which we see a benefit to the DNLNN
and RMFNN methods is that which costs 500 HF equivalent evaluations and includes 400
samples of strictly HF training data. With this larger set of HF data the DNLNN and
RMFNN methods are able to learn their respective non-linear correlation maps and issue
predictions which improve upon the predictions of NNHF .

3.3. Test Problem: 4D function approximation, M = 3. Here we consider the
same four dimensional function approximation task as in section 3.2, but instead of using MF
training data with two fidelity classes we consider three fidelity classes. We call these HF ,
LF1, and LF2. Moreover, we consider two distinct MF training sets. We hypothesize that
one of them is structured to favor sequential data harnessing while the other is structured
to favor the concatenation data harnessing. Our goal in this numerical experiment is to
compare the best possible DNLNN sequential, RMFNN sequential, DNLNN concatenation,
and RMFNN concatenation methods with respect to the structure of the MF training data.
Moreover, to verify that the MF methods are effectively leveraging the MF training data
we also compare to a single fidelity neural network, NNHF , trained on an exclusively HF
training set of cost equal to that of the MF training sets.

Sequential Favoring MF Training Set. In this first MF training set we take the
HF data to be random samples of the function fHF in Equation (3.1). For the LF1 data
we sample from the function fLF,lin in Equation (3.2). For the LF2 data we sample from
the function:
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fLF2,seq(x1, x2, x3, x4) =

[
1 +

sin(x̃1)

10

]
[fHF (x̃1, x̃2, x̃3, x̃4)]

3/2 − 2x̃1 + x̃2
2 + x̃3

2

+

[
0.5 +

sin(x1)

20

]
fLF (x1, x2, x3, x4) + 0.5

where (x̃1, x̃2, x̃3, x̃4) is the same as in Equation (3.3). Notice now that the LF1 data is
linearly correlated with the HF data whereas the LF2 data is non-linearly correlated with
the HF data, but linearly correlated with the LF1 data. Because of this we expect it to
be easiest to first learn the correlation between the LF2 and LF1 data, and then learn the
correlation between the LF1 and HF data. This is a procedure that theoretically favors the
sequential versions of the RMFNN and DNLNN methods.

Concatenation Favoring MF Training Set. In this MF training set we take the
HF data to be random samples of the function fHF in Equation (3.1). For the LF1 data
we sample from the function fLF,lin in Equation (3.2). For the LF2 data we sample from
the function:

fLF2,concat(x1, x2, x3, x4) =

[
1 +

sin(x̃1)

10

]
[fLF (x̃1, x̃2, x̃3, x̃4)]

3/2 − 2x̃1 + x̃2
2 + x̃3

2

+

[
0.5 +

sin(x1)

20

]
fHF (x1, x2, x3, x4) + 0.5

where (x̃1, x̃2, x̃3, x̃4) is the same as in Equation (3.3). Notice now that the LF1 data is
linearly correlated with the HF data whereas the LF2 data is non-linearly correlated with
the LF1 data, but linearly correlated with the HF data. Because of this we expect it to
be easier to learn direct correlations between the LF1 and HF data and between the LF2

and HF data than it is to learn the correlation between the LF1 and LF2 data. This is a
procedure that theoretically favors the concatenation versions of the RMFNN and DNLNN
methods.

For each type of MF data, (1) sequential favoring and (2) concatenation favoring, we
consider a single test case with training data which costs 48 high fidelity equivalent evalu-
ations. The composition of our training set (in terms of the number of samples from each
fidelity class) will be based on (1) the cost to generate a sample from each fidelity class
and (2) the ratio of number of HF to number of LF1 to number of LF2 samples in the
training set. The costs of generating a data sample (measured in high fidelity equivalent
evaluations) for each fidelity type are CHF = 1, CLF1

= 1/10, and CLF2
= 1/20 where CHF ,

CLF1
, and CLF2

are respectively the cost to generate a single sample of HF , LF1, and LF2

data. The ratio between number of HF samples (NHF ) and number of LF1 samples (NLF1)
is NHF /NLF1 = 1/5, and the ratio between the number of HF samples and the number of
LF2 samples (NLF2

) is NHF /NLF2
= 1/10. The specific composition of the training sets

used for DNLNN sequential and concatenation, RMFNN sequential and concatenation, and
NNHF are pictured in Table 3.2.

In comparing the RMFNN and DNLNN M = 3 sequential and concatenation methods
we desire estimates for their predictive uncertainty. In order to obtain these estimates we
use dropout as outlined in section 2.3. Dropout is also applied to NNHF in the same
manner with the same drop probability of 1/20. Furthermore, in section 2 the necessity of

O.N. Davis, G. Geraci, T.M. Wildey, and M. Motamed 69



Table 3.2
Training set composition for DNLNN (sequential and concatenation), RMFNN (sequential and con-

catenation), and NNHF .

Cost RMFNN and DNLNN (seq. and con-
cat.) Training Set

NNHF Training Set

48 NHF = 30, NLF1
= 150, NLF2

= 300 NHF = 48, NLF1
= 0, NLF2

= 0

tuning the hyperparameters of NNs was discussed. Since we want to train the best possible
RMFNN, DNLNN, and NNHF we manually tune their hyperparameters independently to
provide close to optimal performance. Once each model is trained it is evaluated 1000 times
on an independent test set with dropout activated. From these 1000 model evaluations we
collect mean L2 test error, standard deviation in L2 test error, mean L∞ test error, and
standard deviation in L∞ test error. The results of this numerical experiment are pictured
in Figure 3.4 and Figure 3.5 below.

Fig. 3.4. Mean L2 test error and standard deviation (right) and mean L∞ test error and standard
deviation (left) for the RMFNN and DNLNN sequential methods (cyan) and concatenation methods (ma-
genta) trained on the sequential favoring MF training set. The same statistics for a NN trained on only
HF data is also displayed (green).

Fig. 3.5. Mean L2 test error and standard deviation (right) and mean L∞ test error and standard
deviation (left) for the RMFNN and DNLNN sequential methods (cyan) and concatenation methods (ma-
genta) trained on the concatenation favoring MF training set. The same statistics for a NN trained on only
HF data is also displayed (green).

Examining Figure 3.4 we see that the results are very similar across both the L∞ and
L2 performance measures. For the RMFNN methods we see that the sequential extension
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far outperforms the the concatenation extension. This is inline with our prediction based
on the structure of the MF training set.

For the DNLNN methods the difference in performance between the sequential and
concatenation extensions is negligible.

Comparing the results across all MF methods we see that RMFNN sequential yields
both the lowest mean L2 test error and lowest mean L∞ test error. At the same time
RMFNN concatenation is the worst for both measures. Also note that all MF methods
outperform NNHF in terms of both mean test error and predictive uncertainty. Additional
numerical experimentation and a more robust UQ strategy is needed before we can say
anything conclusive about the predictive uncertainty of these methods.

Examining Figure 3.5 we again see that the results are very similar across both the
L∞ and L2 performance measures. For the RMFNN results we see that the sequential
method far outperforms the concatenation method. This is opposite of what was predicted,
and it suggests a potential pitfall in RMFNN concatenation. As the method currently
functions, it attempts to independently learn the correlations between (1) the LF1 and HF
data and (2) the LF2 and HF data. The training sets for these correlational maps match
the number of HF data available. In the case where the HF data is especially sparse
or does not spread evenly over the full domain these correlational maps can be extremely
difficult to learn. In certain cases this data sparsity issue may negate any inherent benefit
the concatenation method has stemming from the overall structure of the MF training
set. Further experimentation is necessary before any conclusion can be drawn about this
hypothesis.

For the DNLNN method we see the results we expected. The concatenation extension
outperforms the sequential by a small margin.

It is also illuminating to compare DNLNN concatenation with the RMFNN concate-
nation. Recalling Figure 2.5 the DNLNN concatenation method learns a single general
correlation between (1) LF1 and LF2 data, and (2) HF data. We hypothesize that if one
of the correlational maps (LF1 7→ HF or LF2 7→ HF ) is considerably more difficult than
the other the DNLNN concatenation method will choose to ignore the lower fidelity data
associated with the harder correlational map. This could be useful in a situation where some
portion of the lower fidelity data is too poor to be informative of the true quantity of inter-
est, but in other situations it may prevent the method from optimally harnessing all lower
fidelity information. Compare this with RMFNN concatenation, Figure 2.6, where each of
the correlations (LF1 7→ (HF − LF1) and LF2 7→ (HF − LF2)) are learned independently,
and where the synthetic data generation workflow enforces that each of these learned maps
is used to generate training data for NNHF , which issues final network predictions. This
strategy makes sure that all lower fidelity data is harnessed, but, in the case that one of
the correlational maps (LF1 7→ HF − HF − LF1 or LF2 7→ HF − LF2) is considerably
harder than the other, we hypothesize that the overall generalization error of the method
will trend with the accuracy with which the more difficult correlational map is learned.
More experimentation is necessary to reject or support these hypotheses.

Comparing the results across all the methods we again see that RMFNN sequential
is best in all collected performance measures while RMFNN concatenation is worst in all
collected measures. We also see that all the MF methods outperform NNHF in terms of both
test error and predictive uncertainty. Additional experimentation and more robust dropout
procedures are needed before we can say anything conclusive concerning the predictive
uncertainty of the methods.

4. Conclusions and Future Work. In this work we considered two distinct strategies
for leveraging MF training data in feed-forward supervised learning networks. These were
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the DNLNN and RMFNN methods which have been independently studied for the case
of two fidelity classes in [17] and [3]. In section 2.1, we pointed out that MF data with
greater than two fidelity classes can be both hierarchical and non-hierarchical, and argued
that it is important to consider this structure when trying to leverage MF data in network
training. For hierarchical data we argued that learning the correlations between fidelity
classes in a sequential manner is preferable, and for non-hierarchical data we argued that
the correlations should be learned via the concatenation method. Moreover, in section 2.2,
we provided two distinct strategies for extending the DNLNN and RMFNN methods for any
number of fidelity classes based on the sequential and concatenation correlational learning
frameworks.

In section 3.2, we saw that for a function approximation task the performance of the
two fidelity composite RMFNN and two fidelity DNLNN methods in terms of mean test
error and predictive uncertainty was dependent on the nature of the correlation between
the LF and HF data. When the LF data was linearly correlated with the HF data we
saw both MF methods far outperform a single fidelity neural network, NNHF , trained on
exclusively HF data with cost equivalent to MF training sets used for the MF methods. In
this case where we had linear correlation between the fidelity classes the RMFNN composite
method was particularly successful. It far outperformed the DNLNN method on the basis
of mean test error. When the LF data was non-linearly correlated with the HF data we
saw little benefit to using the MF methods. Both DNLNN and RMFNN require that the
correlation between the LF and HF data be learned on a training set with size equal to the
number of HF training samples. When the correlation between the data fidelity classes is
very non-linear and HF training data is sparse these methods can falter.

In section 3.3, we found inconclusive results concerning whether or not the concatenation
and sequential MF methods perform differently depending on the structure of the MF data.
We considered two separate MF data sets. One of them was theoretically structured to favor
the sequential methods and the other to favor the concatenation methods. In terms of mean
test error across all MF methods and both MF data sets RMFNN sequential performed best
and RMFNN concatenation performed worst. The results for DNLNN were more in line
with our hypothesis. For the MF data set favoring the sequential extension both DNLNN
methods performed similarly in terms of mean test error, and for the MF data set favoring
the concatenation extensions the DNLNN concatenation method outperformed the DNLNN
sequential method in terms of mean test error. When compared to a single fidelity neural
network, NNHF , trained on HF data of cost equivalent to the MF training data, all MF
methods were superior in terms of both mean test error and predictive uncertainty.

Future work will consider adding an active learning component to our proposed RMFNN
and DNLNN methods where initial predictions inform future sampling in targeted areas of
the domain where the method suffers from epistemic error or high predictive uncertainty.
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Appendix A. Pseudocode.

A.1. DNLNN Pseudocode Implementation.

1: procedure Training Data Generation
2: N = NLFM−1

+NLFM−2
+ · · ·+NLF1 +NHF = number of training samples

3: procedure Generate Input Values
4: XHF := {x(1), · · · , x(NHF )}
5: XLF1

:= {x(NHF+1), · · · , x(NHF+NLF1
)}

6: XLF2 := {x(NHF+NLF1
+1), · · · , x(NHF+NLF1

+NLF2
+1)}

7:
...

8: XLFM−1
:= {x(N−NLFM−1

), · · · , x(N)}
9: X = XLF1

∪XLF2
∪ · · · ∪XLFM−1

∪XHF

10: end procedure
11: procedure Generate Output Values
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12: for x(i) ∈ XHF do
13: compute: y

(i)
HF

14: end for
15: for j = 1 · · · ,M − 1 do
16: for x(i) ∈ XLFj

do

17: compute: y
(i)
LFj

18: end for
19: end for
20: end procedure
21: end procedure
22: if Sequential then
23: procedure Network Training
24: for x(i) ∈ XLFM−1

do

25: NNLFM−1
learns x(i) 7→ y

(i)
LFM−1

26: end for
27: for j = M − 1, · · · , 1 do
28: for x(i) ∈ XLFj−1 do
29: Define: XLF0

:= XHF

30: NNcorrj learns:

31: (x(i), NNcorrj+1
(· · ·NNcorrM−1

(x(i), NNLFM−1
(x)))) 7→ y

(i)
LFj−1

32: end for
33: end for
34: end procedure
35: procedure Network Prediction
36: Test Input: x
37: y = NNcorr1(x,NNcorr2(x,NNcorr3(· · ·NNcorrM−1

(x,NNLFM−1
(x)))))

38: end procedure
39: end if
40: if Concatenation then
41: procedure Network Training
42: for j = 1, · · · ,M − 1 do
43: for x(i) ∈ XLFj

do

44: NNLFj
learns x(i) 7→ y

(i)
LFj

45: end for
46: end for
47: for x(i) ∈ XHF do
48: NNcorr learns (x(i), NNLF1(x(i)), · · · , NNLFM−1

(x(i))) 7→ y
(i)
HF

49: end for
50: end procedure
51: procedure Network Prediction
52: Test Input: x
53: y = NNcorr(x,NNLF1(x), NNLF2(x), · · · , NNLFM−1

(x))
54: end procedure
55: end if

A.2. RMFNN Pseudocode Implementation.

1: procedure Training Data Generation
2: N = NLFM−1

+NLFM−2
+ · · ·+NLF1 +NHF = number of training samples
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3: procedure Generate Input Values
4: XHF := {x(1), · · · , x(NHF )}
5: XLF1 := {x(NHF+1), · · · , x(NHF+NLF1

)}
6: XLF2

:= {x(NHF+NLF1
+1), · · · , x(NHF+NLF1

+NLF2
+1)}

7:
...

8: XLFM−1
:= {x(N−NLFM−1

), · · · , x(N)}
9: X = XLF1 ∪XLF2 ∪ · · · ∪XLFM−1

∪XHF

10: end procedure
11: procedure Generate Output Values
12: for x(i) ∈ XHF do
13: compute: y

(i)
HF

14: end for
15: for j = 1 · · · ,M − 1 do
16: for x(i) ∈ XLFj do

17: compute: y
(i)
LFj

18: end for
19: end for
20: end procedure
21: end procedure
22: if Sequential then
23: procedure Network Training
24: if Sequential then
25: Define LF0 := HF
26: for j = 1, · · · ,M − 1 do
27: for x(i) ∈ XLFj

do

28: NNLFj
learns x(i) 7→ y

(i)
LFj

29: end for
30: end for
31: for j = M − 1, · · · , 1 do
32: for x(i) ∈ XLFj−1

do

33: NNresj learns (x(i), NNLFj
(x(i))) 7→ (y

(i)
LFj−1

−NNLFj
(x(i)))

34: end for
35: Generate synthetic LFj−1 outputs
36: for x(i) ∈ XLFj do

37: y
(i)
LFj−1

= NNresj (x(i), NNLFj
(x(i))) +NNLFj

(x(i))
38: XLFj−1 ← XLFj−1 ∪XLFj

39: end for
40: end for
41: for x(i) ∈ XHF do
42: NNHF learns x(i) 7→ y

(i)
HF

43: end for
44: end if
45: end procedure
46: end if
47: if Concatenation then
48: procedure Network Training
49: for j = 1, · · · ,M − 1 do
50: for x(i) ∈ XLFj do

O.N. Davis, G. Geraci, T.M. Wildey, and M. Motamed 75



51: NNLFj
learns x(i) 7→ y

(i)
LFj

52: end for
53: for x(i) ∈ XHF do
54: NNresj learns (x(i), NNLFj (x(i))) 7→ (y

(i)
HF −NNLFj (x(i)))

55: end for
56: end for
57: Generate synthetic HF outputs
58: for j = 1, · · · ,M − 1 do
59: for x(i) ∈ XLFj do

60: y
(i)
HF = NNresj (x(i), NNLFj

(x(i))) +NNLFj
(x(i))

61: XHF ← XHF ∪XLFj

62: end for
63: end for
64: for x(i) ∈ XHF do
65: NNHF learns x(i) 7→ y

(i)
HF

66: end for
67: end procedure
68: end if
69: procedure Network Prediction
70: Test Input: x
71: Prediction: y = NNHF (x)
72: end procedure

A.3. RMFNN 2-Fidelity Composite Approach Pseudocode Implementation.

1: procedure Training Data Generation
2: N = NLF +NHF = number of training samples
3: procedure Generate Input Values
4: XLF := {x(1), · · · , x(NLF )}, XHF := {x(NLF+1), · · · , x(N)}
5: Require: XLF ∩XHF = ∅
6: X = XLF ∪XHF

7: end procedure
8: procedure Generate Output Values
9: for x(i) ∈ XLF do

10: compute y
(i)
LF

11: end for
12: for x(i) ∈ XHF do
13: compute y

(i)
HF

14: end for
15: end procedure
16: end procedure
17: procedure Network Training
18: for x(i) ∈ XLF do
19: NNLF learns x(i) 7→ y

(i)
LF

20: end for
21: for x(i) ∈ XHF do
22: NNres learns (x(i), NNLF (x(i))) 7→ (y

(i)
HF −NNLF (x(i))

23: end for
24: end procedure
25: procedure Network Prediction
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26: Test Input: x
27: Prediction: y = NNres(x,NNLF (x)) +NNLF (x)
28: end procedure
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A SYNCHRONOUS PARTITIONED SCHEME FOR COUPLED REDUCED
ORDER MODELS BASED ON SEPARATE REDUCED ORDER BASES

FOR THE INTERIOR AND INTERFACE VARIABLES.

AMY DE CASTRO∗, PAUL KUBERRY† , IRINA TEZAUR‡ , AND PAVEL BOCHEV§

Abstract.
We present further development of the schemes proposed in [3], which couple a projection-based reduced

order model (ROM) to either a finite element model (FEM) or another ROM. The non-singularity of the
dual Schur complement is an essential requirement for these coupling schemes, because it defines a system
for the interface flux that is used to decouple the subdomain equations. The approach in [3] utilized
full subdomain bases containing all subdomain degrees of freedom (DOFs) and did not provide rigorous
guarantees for unique solvability of the ROM-ROM/FEM systems. To address this issue we reformulate our
coupling scheme by (i) employing separate reduced bases (RBs) for the interior and interface DOFs, and
(ii) using one of the interface RBs for the Lagrange multipliers. These modifications ensure that the dual
Schur complement is provably non-singular.

1. Introduction. Partitioned methods are an attractive alternative to monolithic ap-
proaches for multiphysics applications, because they increase concurrency and enable reuse
of existing codes for the constituent physics components; see, e.g., [7] for an expository
survey. Furthermore, because each individual component is solved independently, the codes
can run at their “sweet spots” utilizing, e.g., multi-rate time integrators [8]. Performance
of partitioned schemes can be further enhanced by replacing the full-fidelity models in one
or more subdomains by computationally efficient projection-based reduced order models
(ROMs).

This work continues our efforts in [3] to extend the partitioned schemes in [17] and
[21] to the coupling of projection-based ROM to either a finite element model (FEM) or
another ROM. In [3], we defined the subdomain ROMs by utilizing full subdomain bases
obtained by performing proper orthogonal decomposition (POD) [19, 12] on a collection
of snapshots representing both the interior and interface DOFs. While this strategy is
common in approaches combining domain decomposition and ROM (see, e.g., [15]), it does
not guarantee that the dual Schur complement system for the Lagrange multiplier is non-
singular. Unique solvability of this system is essential for the extension of the partitioned
schemes in [17] and [21] because the Lagrange multiplier defines the interface flux, which
allows us to define well-posed subdomain equations that can be solved independently.

In this paper, we propose modifications of the coupling scheme in [3] that address
this issue. First, instead of using the conventional full subdomain bases, we construct
separate ROM bases for the interfacial and interior DOFs. Second, the dimension of the
Lagrange multiplier space is also reduced by utilizing the reduced interfacial basis from a
particular subdomain. By combining these two ideas, we are able to obtain a provably non-
singular, symmetric and positive definite Schur complement matrix. We provide numerical
results that demonstrate the ability of these modifications to improve the conditioning of
the dual Schur complement system and to obtain accurate solutions while retaining fewer
reduced basis modes than the original formulation. Results are shown on a two-dimensional
(2D) time-dependent advection-diffusion problem in the advection-dominated (high Péclet)
regime.

Conceptually, our work is related to approaches combining reduced order models and
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domain decomposition (DD) ideas such as the Reduced Basis Element (RBE) method [15,
16], the Reduced Basis DD method [13], and the static condensation RBE [18], among
others. However, these papers focus primarily on using DD as a vehicle to improve the
efficiency of model order reduction for extreme scale problems and decomposable problems.
In the former case the offline phase can be computationally intractable if a global state space
is used, whereas in the latter case the problem domain can be decomposed into a relatively
small number of archetypes [18], each depending on a separate set of parameters. A change in
an archetype thus changes the global space, making a monolithic problem ill-suited for these
types of problems. Typically, application of DD in the above context leads to subdomains
separated by artificial rather than physical interfaces. In contrast, we consider multiphysics
problems where the interface is physical and our main goal is to enable partitioned solution
of the coupled system. Thus, our focus is on schemes enabling the independent solution of
the subdomain equations using possibly different time integrators running at different time
steps (see, e.g., [8, 9, 2]), whereas the combinations of ROM and DD cited earlier use the
same time integrator and time step for all subdomains.

2. Model problem and coupling formulation. In this section we define the model
transmission problem and summarize the Implicit Value Recovery (IVR) coupling [17] that
forms the basis for our ROM-ROM and ROM-FEM coupling schemes. Let Ω ∈ Rd, d = 2, 3
denote a bounded region divided into two non-overlapping subdomains Ω1 and Ω2 by an
interface γ. Without a loss of generality, we assume that the unit normal nγ points towards
Ω2, and set Γi := ∂Ωi\γ, i = 1, 2. We then consider the following advection-diffusion
transmission problem

ϕ̇i −∇ · Fi(ϕi) = fi on Ωi × [0, T ]

ϕi = gi on Γi × [0, T ], i = 1, 2,
(2.1)

where the over-dot notation denotes differentiation in time, the unknown ϕi is a scalar field,
Fi(ϕi) = κi∇ϕi−uϕi is the total flux function, κi > 0 is the diffusion coefficient in Ωi, and
u the velocity field. We augment (2.1) with initial conditions:

ϕi(x, 0) = ϕi,0(x) in Ωi, i = 1, 2 . (2.2)

Along the interface γ, we enforce continuity of the states and continuity of the total flux,
giving rise to the following interface conditions:

ϕ1(x, t)− ϕ2(x, t) = 0 and F1(x, t) · nγ = F2(x, t) · nγ on γ × [0, T ]. (2.3)

To define the IVR scheme we differentiate the first interface condition in (2.3) in time1

and use Lagrange multipliers to enforce it in a weak sense. We then discretize the weak
monolithic problem over a finite element subspace V h ⊂ V := H1

Γ(Ω1)×H1
Γ(Ω2)×H−1/2(γ).

The resulting semi-discrete monolithic problem can be written in the following compact
matrix form:



M1 0 GT1
0 M2 −GT2
G1 −G2 0






Φ̇1

Φ̇2

λ


 =



f1 −K1Φ1

f2 −K2Φ2

0


 , (2.4)

where, for i = 1, 2, Mi is a mass matrix, Ki is a stiffness matrix, fi is a source term vector,
and Φi is the vector containing the unknown nodal values of the solution. The matrices Gi

1As long as the initial conditions are continuous over the interface, this differentiated constraint is
equivalent to the original one.
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define the algebraic form of the first constraint in (2.3) and λ is the coefficient vector of the
discrete Lagrange multiplier.

One can show that if the Lagrange multiplier space is taken to be the trace of the finite
element space on either of Ω1 or Ω2, the dual Schur complement of the matrix in (2.4) is
symmetric and positive definite; see [17] for details. This fact is at the core of the IVR
scheme because it allows us to solve for the Lagrange multiplier in terms of the subdomain
states, which reduces (2.4) to a system of two ODEs:

[
M1 0
0 M2

] [
Φ̇1

Φ̇2

]
=

[
f1 −K1Φ1 −GT1 λ(Φ1,Φ2)
f2 −K2Φ2 +GT2 λ(Φ1,Φ2)

]
. (2.5)

It is easy to see that application of either a fully explicit or an implicit-explicit (IMEX)
scheme that treats λ(Φ1,Φ2) explicitly, to each equation in (2.5) decouples the subdomain
equations and allows their independent solution; see [17]. We note that these time integrators
are not required to be the same and they can also use different time steps over shared
synchronization time intervals.

3. Extension of IVR to ROM-ROM/FEM couplings using full subdomain
bases. In this section we briefly review the extension of IVR to ROM-ROM and ROM-
FEM couplings, developed in [3]. For brevity we only present the ROM-ROM case, as the
ROM-FEM coupling is very similar.

To obtain the coupled ROM-ROM problem, we apply the POD/Galerkin method to
the coupled FEM-FEM problem (2.4). During the offline stage of the model reduction
procedure, we solve a monolithic FEM problem to collect a series of solution snapshots over
the entire domain Ω and arrange them into a snapshot matrix X. We then partition X into
subdomain snapshot matrices Xj containing the finite element DOFs on Ωj , j = 1, 2. After
zeroing all entries of Xj corresponding to the Dirichlet nodes in the finite element mesh we
obtain the adjusted snapshot matrices Xj and compute their SVD, i.e., Xj = UjΣjV

T
j . The

reduced basis on each subdomain is defined as the first d left singular vectors of the adjusted
snapshot matrix, where d > 0 is an integer that depends on the desired ROM accuracy. We
arrange these vectors in reduced basis matrices Ũj , j = 1, 2. Because the columns of these
matrices contain both the interior and interface DOFs on Ωj , in the literature they are
usually referred to as the full subdomain bases. To effect the projection of the coupled
FEM-FEM problem (2.4) onto the reduced basis we set

Φi := Ũiϕi + βi; i = 1, 2. (3.1)

The rows of βi corresponding to non-Dirichlet nodes are set to 0, while the rows correspond-
ing to Dirichlet nodes on Γi contain the values of the Dirichlet boundary data gi at these
nodes; see [10]. Note that the FEM coefficient vectors Φi, the reduced order coefficient
vectors ϕi, and the boundary vectors βi are functions of the time.

Inserting (3.1) into (2.4) and then multiplying the resulting subdomain equations on

the left by ŨTj yields the full subdomain basis monolithic ROM-ROM system:



M̃1 0 G̃T1
0 M̃2 −G̃T2
G̃1 −G̃2 0






ϕ̇1

ϕ̇2

λ


 =



f̃1 − K̃1ϕ1 − ŨT1 K1β1 − ŨT1 M1β̇1

f̃2 − K̃2ϕ2 − ŨT2 K2β2 − ŨT2 M2β̇2

−G1β̇1 +G2β̇2


 =:



s1

s2

0


 (3.2)

where M̃i = ŨTi MiŨi, K̃i = ŨTi KiŨi, G̃i = GiŨi, and f̃i = ŨTi fi. We note that the right-

hand side of the last equation, −G1β̇1 + G2β̇2, is precisely zero, because the matrices Gi
act only on the interface nodes where the coefficients of βi are zero by construction.
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Similar to the monolithic FEM-FEM problem (2.4), which is the basis for the IVR
scheme, the monolithic problem (3.2) is the basis for the extension of IVR to ROM-ROM
couplings, which reads as follows.

Offline: Computation of POD bases and and pre-computation of matrices for
the full subdomain basis ROMs

1. Using a suitable monolithic FOM solve the model problem (2.1) on Ω, collect so-
lution snapshots into a snapshot matrix X and partition X into subdomain snap-
shot matrices Xj , j = 1, 2. Compute the SVD of the adjusted snapshot matrix
Xj = UjΣjV

T
j .

2. For j = 1, 2, given a threshold δj > 0, define the reduced basis dimension NR,j

as the smallest integers such that
∑NR,j
k=1 σ2

j,k ≥
(

1− δj
)∑N

k=1 σ
2
j,k, where σj,k are

the singular values from the diagonal of Σj , and N is the total number of singular

values. Define the reduced basis matrices Ũj by retaining the first NR,j columns of
Uj .

3. For j = 1, 2, pre-compute the ROM matrices, where Nγ is the size of the LM space:

M̃j := ŨTj MjŨj ∈RNR,j×NR,j ; K̃j := ŨTj KjŨj ∈ RNR,j×NR,j ;

and G̃j := GjŨj ∈ RNγ×NR,j .
(3.3)

Online: Solution of the full subdomain basis ROM-ROM system

1. Given a simulation time interval [0, T ] choose an explicit time integration scheme, or
an IMEX scheme with explicit treatment of λ, for each subdomain, i.e., an operator
Dn
j,t(ϕ), j = 1, 2.

2. For n = 0, 1, . . . use ϕn1 to compute the vector

sn1 := ŨT1 fn1 − K̃1ϕ
n
1 − ŨT1 K1β

n
1 − ŨT1 M1β̇

n
1

3. For n = 0, 1, . . . use ϕn2 to compute the vector

sn2 := ŨT2 fn2 − K̃2ϕ
n
2 − ŨT2 K2β

n
2 − ŨT2 M2β̇

n
2 .

4. Solve the Schur complement system

(
G̃1M̃

−1
1 G̃T1 + G̃2M̃

−1
2 G̃T2

)
λn = G̃1M̃

−1
1 sn1 − G̃2M̃

−1
2 sn2

for λn. Compute G̃T1 λ
n and G̃T2 λ

n.

5. Solve the system M̃1D
n
1,t(ϕ1) = sn1 − G̃T1 λn.

6. Solve the system M̃2D
n
2,t(ϕ2) = sn2 + G̃T2 λ

n.
7. Project the ROM solutions ϕi onto the full order state spaces on Ωi, i = 1, 2:

Φ1 := Ũ1ϕ1 + β1; Φ2 := Ũ2ϕ2 + β2.

It is clear that success of the above extension of IVR to a ROM-ROM coupling hinges
on the unique solvability of the Schur complement system in Step 4 of the online portion
of the scheme. For the original IVR scheme, one can show that under some conditions on
the Lagrange multiplier space the dual Schur complement of the upper left 2 × 2 submatrix
from (2.4) is symmetric and positive definite; see [17] for details. In particular, choosing the
trace of the finite element space from either one of the subdomains as a Lagrange multiplier
space always satisfies these conditions.
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At the same time, one can easily construct an example for which the matrix S̃ :=
G̃1M̃

−1
1 G̃T1 + G̃2M̃

−1
2 G̃T2 cannot even be defined. To that end, it suffices to consider any

manufactured solution whose restriction to Ωi is supported on a compact subset ωi ⊂ Ωi
such that ωi does not intersect any elements having nodes on the interface γ. In this case,
all the rows of the snapshot matrix corresponding to interfacial degrees of freedom would
be exactly 0, which would result in Ũi being 0 on those same rows. It is easy to see that
in this case the projected mass matrices M̃i will be singular, and so the Schur complement
will be undefined.

The example problem used to perform reproductive tests of the full subdomain basis
extensions of IVR to ROM-ROM and ROM-FEM in [3] did not have the pathology described
in the above scenario and we did not observe failures of these formulations. At the same
time, these extensions of IVR obviously cannot offer any guarantees that the ROM-ROM
and ROM-FEM couplings will be well-posed for all possible configurations of the model
transmission problem (2.1). In the next section we formulate a modified version of the IVR
extension that resolves this issue.

4. A split reduced basis ROM-ROM formulation. In this section we formulate an
alternative extension of the IVR scheme to a ROM-ROM coupling that has a provably non-
singular dual Schur complement. To achieve this property we need to ensure the following
two conditions: first, the projected mass matrices M̃i, i = 1, 2 are symmetric and positive
definite, and second, the constraint matrix (G̃1, G̃2)T has a full column rank. To that end
we consider a combination of two ideas targeting each one of these conditions.

4.1. Projection-based ROM using split reduced bases. To prevent the projected
mass matrices M̃i from becoming singular we must ensure that the sub-columns of Ũi cor-
responding to the interfacial DOFs have full column rank on their own. It is clear that such
a property cannot be achieved when using the full subdomain basis, in which case, one can
only guarantee that the entire columns of Ũi, comprising both interior and interface DOFs,
are full column rank.2.

To regain control over the properties of the sub-columns containing interfacial DOFs we
propose to construct separate reduced order bases Ũi,γ and Ũi,0, performing POD for the
interface and interior DOFs, respectively. The construction of these matrices is described in
Steps 1-2 of the offline stage of the algorithm presented in Section 4.3, and is similar in flavor
to the approach of Eftang et al. [4] and Hoang et al. [11]. To effect the projection of the
FEM-FEM monolithic problem, instead of (3.1) we now consider two separate expansions
for the interior and interface DOFs given by

Φi,0 = Ũi,0ϕi,0 + βi,0 and Φi,γ = Ũi,γϕi,γ + βi,γ (4.1)

respectively. We then insert (4.1) into (2.4) and multiply the blocks corresponding to the

interior and interface DOFs by ŨTi,0 and ŨTi,γ , respectively. These steps yield the following

2We note that the “method of snapshots” in which one computes the SVD of XTX instead of of X, is a
cost-effective alternative to compute the reduced order basis when the number of FOM DOFs is significantly
larger than the number of collected snapshots. This, however, may lead to a loss of orthonormality in the
basis vectors. In this work we always use the SVD of the snapshot matrix X and, for the examples considered
in the tests, the columns of Ũi have remained orthonormal to machine precision.
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split reduced basis formulation:



M̃1,γ M̃1,γ0 0 0 G̃T1
M̃1,0γ M̃1,0 0 0 0

0 0 M̃2,γ M̃2,γ0 −G̃T2
0 0 M̃2,0γ M̃2,0 0

G̃1 0 −G̃2 0 0







ϕ̇1,γ

ϕ̇1,0

ϕ̇2,γ

ϕ̇2,0

λ




=




s1,γ

s1,0

s2,γ

s2,0

−G1β̇1,γ +G2β̇2,γ




(4.2)

where for i ∈ {1, 2} and {j, k} ∈ {γ, 0},

M̃i,jk := ŨTi,jMi,jkŨi,k, K̃i,jk := ŨTi,jKi,jkŨi,k, G̃i := GiŨi,γ , f̃i,j := ŨTi,jfi,j (4.3)

and
[
si,γ
si,0

]
=

[
f̃i,γ
f̃i,0

]
−
[
K̃i,γ K̃i,γ0

K̃i,0γ K̃i,0

] [
ϕi,γ
ϕi,0

]

−
[
ŨTi,γKi,γ ŨTi,γKi,γ0

ŨTi,0Ki,0γ ŨTi,0Ki,0

] [
βi,γ
βi,0

]
−
[
ŨTi,γMi,γ Ũi,γMi,γ0

ŨTi,0Mi,0γ Ũi,0Mi,0

] [
β̇i,γ
β̇i,0

]

Let Q̃i := M̃i,γ0M̃
−1
i,0 M̃i,0γ and P̃i = M̃i,γ − Q̃i, i = 1, 2. Elimination of the interior degrees

of freedom from (4.2) then yields the following linear system:




P̃1 0 0 0 G̃T1
Q̃1 M̃1,γ0 0 0 0

0 0 P̃2 0 −G̃T2
0 0 Q̃2 M̃2,γ0 0

G̃1 0 −G̃2 0 0







ϕ̇1,γ

ϕ̇1,0

ϕ̇2,γ

ϕ̇2,0

λ




=




s1,γ − M̃1,γ0M̃
−1
1,0s1,0

M̃1,γ0M̃
−1
1,0s1,0

s2,γ − M̃2,γ0M̃
−1
2,0s2,0

M̃2,γ0M̃
−1
2,0s2,0

0




(4.4)

Because the columns of Ũi,γ and Ũi,0 are orthonormal, one can show that the matrices P̃i are

invertible and so, one can formally define the Schur complement matrix S̃ := G̃1P̃
−1
1 G̃T1 +

G̃2P̃
−1
2 G̃T2 and the following linear system

S̃λ = G̃1P̃
−1
1 (s1,γ − M̃1,γ0M̃

−1
1,0s1,0)− G̃2P̃

−1
2 (s2,γ − M̃2,γ0M̃

−1
2,0s2,0)

for the Lagrange multiplier in (4.4).

4.2. Reduced Lagrange multiplier space. We now focus on the second condition
necessary for the well-posedness of the Schur complement matrix, i.e., ensuring that the
constraint matrix (G̃1, G̃2)T has a full column rank. To that end, assume that the FEM
matrices Gi are defined using the trace of one of the subdomain FEM spaces on γ for the
Lagrange multiplier. We recall that with this choice the monolithic FEM-FEM problem
(2.4) is well-posed [17]. Let Nγ be the dimension of this Lagrange multiplier space. Then,

the matrices G̃i in the split reduced basis formulation (4.4) have dimension Nγ × NR,iγ
where NR,iγ the number of reduced basis modes on the interface of Ωi.

It is clear that (G̃1, G̃2)T cannot have a full column rank unless NR,1γ + NR,2γ > Nγ .
Since effective ROM requires reduced bases with the smallest possible dimensions NR,iγ ,
this inequality will likely be violated unless one artificially keeps the size of the reduced
basis large enough. Our second modification aims to resolve this problem by reducing the
size of the Lagrange multiplier (LM) space to some NR,γ < Nγ such that

NR,1γ +NR,2γ > NR,γ . (4.5)
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By assumption, the original Lagrange multiplier space was chosen to be the trace space of
the FEM space on Ωi for i = 1 or i = 2. Thus, we can choose the associated matrix Ũi,γ
as the reduced basis matrix for the LM space. Specifically, we define ŨLM := Ũ1,γ if the

LM space was taken to be the trace space of Ω1 and ŨLM := Ũ2,γ if the LM space was the
trace space of Ω2. With these choices NR,γ = NR,1γ or NR,γ = NR,2γ and (4.5) is trivially
satisfied.

To incorporate this modification into (4.4) we insert the ansatz λ = ŨLM`, where ` is the

reduced basis Lagrange multiplier, into (4.2) and multiply the constraint equation by ŨTLM .

The new problem has the same form as (4.2), but with G̃i now defined as G̃i =: ŨTLMGiŨi,γ .
As a result, the linear system for the reduced basis Lagrange multiplier ` is now given by

S̃` = G̃1P̃
−1
1 (s1,γ − M̃1,γ0M̃

−1
1,0s1,0)− G̃2P̃

−1
2 (s2,γ − M̃2,γ0M̃

−1
2,0s2,0) (4.6)

where the Schur complement S̃ := G̃1P̃
−1
1 G̃T1 + G̃2P̃

−1
2 G̃T2 is provably invertible. Indeed,

assuming the conditions in [17], the FOM matrix (G1, G2)T is guaranteed to have a full

column rank. The columns of ŨTLM and Ũi,γ are orthonormal and so, they have full column
rank by construction. As a result, pre and post multiplication of Gi by these matrices
preserves the column rank of the FOM matrix, i.e., (G̃1, G̃2)T also has full column rank.

Remark 1. Although the full subdomain basis system (3.2) cannot be guaranteed to
have a well-defined Schur complement, a use of a reduced basis LM space in this system
can help avoid its over constraining. We implemented such a version of (3.2) using the

reduced basis LM space outlined in this section, i.e., setting λ = ŨLM` in (3.2), where ŨLM
is defined as described above. Numerical results in Section 5 confirm that the full subdomain
basis scheme implemented with this reduced Lagrange multiplier space performs very well,
although it still lacks the theoretical guarantees of the split basis scheme.

4.3. Split basis ROM-ROM algorithm. Together, the modifications in Sections
4.1-4.2 lead to the following split reduced basis extension of the IVR scheme to ROM-ROM
couplings.

Offline: Computation of the split basis ROMs.

1. Using a suitable monolithic FOM solve the model problem (2.1) on Ω, collect solu-
tion snapshots into a snapshot matrix X and partition X into subdomain snapshot
matrices Xi, i = 1, 2. Compute two SVDs from the adjusted snapshot matrix:
Xi,0 = Ui,0Σi,0V

T
i,0 for the interior DOFs and Xi,γ = Ui,γΣi,γV

T
i,γ for the interface

DOFs.

2. Given thresholds δi,0, δi,γ > 0 for i = 1, 2, define the reduced bases dimensions NR,i0
and NR,iγ as the smallest integers such that

NR,i0∑

k=1

σ2
i,k0 ≥

(
1− δi,0

) N0∑

k=1

σ2
i,k0 and

NR,iγ∑

k=1

σ2
i,kγ ≥

(
1− δi,γ

) Nγ∑

k=1

σ2
i,kγ

Define the reduced basis matrices Ũi,0, Ũi,γ by retaining the first NR,i0 columns of
Ui,0 and the first NR,iγ columns of Ui,γ .

3. Choose ŨLM to be Ũ1,γ or Ũ2,γ . For i = 1, 2 and {j, k} ∈ {0, γ}, precompute the
ROM matrices:

M̃i,jk := ŨTi,jMi,jkŨi,k ∈ RNR,ij×NR,ik ; K̃i,jk := ŨTi,jKi,jkŨi,k ∈ RNR,ij×NR,ik ;

G̃i := ŨTLMGiŨi,γ ∈ RNR,γ×NR,iγ ; P̃i : = M̃i,γ − M̃i,γ0M̃
−1
i,0 M̃i,0γ ∈ RNR,iγ×NR,iγ
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Online: Solution of the split basis ROM-ROM system

1. Given a simulation time interval [0, T ] choose an explicit time integration scheme, or
an IMEX scheme with explicit treatment of λ, for each subdomain, i.e., an operator
Dn
j,t(ϕ), j = 1, 2.

2. For i = 1, 2 and n = 0, 1, . . . use ϕni,0 and ϕni,γ to compute the vectors:

[
sni,γ
sni,0

]
=

[
f̃ni,γ
f̃ni,0

]
−
[
K̃i,γ K̃i,γ0

K̃i,0γ K̃i,0

] [
ϕni,γ
ϕni,0

]
−
[
ŨTi,γKi,γ ŨTi,γKi,γ0

ŨTi,0Ki,0γ ŨTi,0Ki,0

] [
βni,γ
βni,0

]

−
[
ŨTi,γMi,γ Ũi,γMi,γ0

ŨTi,0Mi,0γ Ũi,0Mi,0

][
β̇ni,γ
β̇ni,0

]

3. Solve the Schur complement system

(
G̃1P̃

−1
1 G̃T1 + G̃2P̃

−1
2 G̃T2

)
`n = G̃1P̃

−1
1 (sn1,γ − M̃1,γ0M̃

−1
1,0s

n
1,0)

− G̃2P̃
−1
2 (s2,γ − M̃n

2,γ0M̃
−1
2,0s

n
2,0)

for `n. Compute G̃T1 `
n and G̃T2 `

n.
4. Solve the systems

[
M̃i,γ M̃i,γ0

M̃0γ M̃0

]
Dn
i,t

([ϕi,γ
ϕi,0

])
=

[
sni,γ + (−1)iG̃Ti `

n

sni,0

]
.

5. Project the ROM solutions to the state spaces of the full order models on Ωi:

Φi,γ := Ũi,γϕi,γ + βi,γ ; Φi,0 := Ũi,0ϕi,0 + βi,0.

5. Numerical Results. To demonstrate the efficacy of separating the interior and
interface DOFs as well as reducing the size of the Lagrange multiplier space, we show
results for a solid body rotation test for (2.1) from [14], as in our previous work [3]. The
initial conditions for this test problem comprise a cone, a cylinder, and a smooth hump
(Figure 5.1(a)). Using the domain Ω := (0, 1) × (0, 1), with Ω1 := (0, 0.5) × (0, 1) and
Ω2 := (0.5, 1) × (0, 1), we define the advection field u := (0.5 − y, x − 0.5) and diffusion
coefficients κi := 10−5, i = 1, 2. We impose homogeneous Dirichlet boundaries on all non-
interface boundaries Γi, i = 1, 2 and set the final time to be 2π, representing one full rotation.
All results in this section were obtained by using an IMEX version of the Crank-Nicholson
time-stepping scheme in which the Lagrange multiplier terms in Step 3 of the Online phase
of the algorithm are treated explicitly.

For the FEM discretizations, we spatially discretize Ω by setting ∆x = ∆y = 1
64 , yielding

4225 DOFs in Ω, and 2145 DOFs in Ωi for i = 1, 2 as seen in Figure 5.1(b). Snapshots are
collected from a monolithic FEM solution using the snapshot time step ∆ts = 6.734×10−3.
All coupled problems are solved with ∆t = 3.367 × 10−3, which is determined from the
Courant-Friedrichs-Lewy (CFL) condition. We present results for ROM-ROM couplings
using the full subdomain basis and the split basis, each with a full size or a reduced size
Lagrange multiplier space. For comparison, the FEM-FEM coupling is shown as well. All
cases shown here are reproductive, meaning that we solve the ROM-ROM problems to the
same final time 2π with the same diffusion coefficient and initial conditions.

With the snapshot time step set to ∆ts = 6.734 × 10−3, 933 snapshots are collected.
A prerequisite for an effective ROM is the rapid decay of the singular values. We first
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(a) Initial conditions (b) Meshes used to discretize Ω1 (blue) and Ω2

(red)

Fig. 5.1. Initial conditions, domain partitioning, and mesh for the model 2D transmission problem.

confirm that this is indeed the case and that most of the energy is contained within a much
smaller subset of the snapshots. Let d represent the number of reduced basis modes retained
from the singular value decomposition of the snapshot matrix. Then the snapshot energy is
defined as

E :=

∑d
i=1 σ

2
i∑N

i=1 σ
2
i

, (5.1)

where N is the number of singular values.

Fig. 5.2. Snapshot energy (5.1) as a function of the POD basis size for each ROM-ROM coupling type.

In Figure 5.2, we see that for each of the ROM couplings, no more than 50 modes are
needed to capture 99.999% of the snapshot energy. In fact, for the full subdomain basis
ROM-ROM coupling, about 25 modes are needed to capture 99% of the energy, whereas for
the split basis ROM-ROM coupling, about 20 interior modes are needed and only 5 interface
nodes are needed to capture 99% of their respective snapshot energies. For this reason, we
only show results up until a basis size of about 120, as all the significant energy is contained
in these modes.
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First, we examine the relative errors, measured against the monolithic FEM solution.
We define these errors as

ε :=
||X2π − F2π||2
||F2π||2

(5.2)

where F2π represents the monolithic FEM solution at final time T = 2π, and X2π represents
one of the coupled solutions (either ROM-ROM, or FEM-FEM) at final time T = 2π. For
the split basis ROM-ROM coupling, using a full or reduced size LM space produces the
same relative errors up to machine precision, so we only display errors for the reduced LM
space.

Note that in Figure 5.3 and Figure 5.4, the basis size shown on the x-axis is the total
size of the reduced basis employed on each subdomain. For the full subdomain basis ROM-
ROM coupling, this is just the number of modes retained for each subdomain. For the split
basis ROM-ROM, the total reduced basis size equals the sum of the interior and interfacial
modes retained on each subdomain, i.e., NR,10 +NR,1γ .

In each split basis ROM-ROM simulation, we set the size of the interfacial basis to be
one-fifth of the total subdomain basis size. Since the size of the reduced basis for the LM
is defined in terms of one of the interfacial bases, the size for the reduced LM space is also
one-fifth of the total subdomain basis size. Thus, we have

NR,iγ =
1

5

(
NR,iγ +NR,i0

)
=⇒ NR,iγ =

1

4
NR,i0.

The interfacial basis size (and thus the reduced LM size) does have a fixed maximum,
however, and so NR,iγ cannot be greater than 63 for our particular mesh discretization.
This yields

NR,iγ = min
{1

4
NR,i0, 63

}
.

In Figure 5.3, the notation “fLM” refers to the full size Lagrange multiplier space, which
is of dimension 63, and the notation “rLM” refers to the reduced size Lagrange multiplier
space. We observe that using the reduced Lagrange multiplier space in the full subdomain
basis formulation (3.2) eliminates the large spike in errors observed around a basis size of
50. Also, as expected for a reproductive test, the error in all couplings approaches the FEM-
FEM coupling error as the total size of the reduced basis is increased. The full-subdomain
basis formulations3 are actually able to very slightly outperform the FEM-FEM formulation,
with an error of about 0.0032 versus 0.0036. The split basis ROM-ROM formulations both
asymptotically approach a relative error of about 0.0045. Using the split basis ROM-ROM
formulation produces errors on the same order as the full subdomain basis ROM-ROM
coupling with the reduced LM space. This supports the hypothesis that our new formulation,
namely, separating the DOFs in the ROM construction, does not introduce extra errors to
the coupling.

Next we examine the condition number of the Schur complement in each one of our cou-
pling formulations. This number is a measure of the Schur complement’s “well-posedness”
and can be used to assess the success of our modifications. Recall that our proposed so-
lutions to ensuring a well-conditioned Schur complement matrix were to both separate out

3We note that as the size of the reduced basis increases past the dimension of the full size Lagrange
multiplier space, the full subdomain basis formulation (3.2) recovers its accuracy because it ceases to be
over-constrained anymore.
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Fig. 5.3. Relative error (5.2) as a function of the POD basis size for each coupling type. Note: errors
for “split basis RR, fLM” and “split basis RR, rLM” are identical to machine precision, so only “split basis
RR, rLM” is shown.

the interfacial and interior DOFs in constructing ROM bases, as well as to reduce the size
of the Lagrange multiplier space. As seen in Figure 5.4, taken together, these two modifi-
cations do indeed empirically fix the condition number. First, observe that using the full
order Lagrange multiplier space, with either the full subdomain or split basis ROM-ROM
coupling, results in very high condition numbers. While the condition number does de-
crease as basis size increases for the full subdomain basis ROM-ROM coupling, it is still
high compared to the FEM-FEM coupling, and it only reaches a reasonable scale when the
reduced basis size is larger than we wish to implement. Using a reduced size Lagrange mul-
tiplier space dramatically decreases the condition number. With this tweak, the split basis
ROM-ROM formulation (1.0 ≤ cond(S) ≤ 5.7), is able to outperform the full subdomain
basis ROM-ROM formulation (1.0 ≤ cond(S) ≤ 1.8 × 104). In particular, the conditioning
of the Schur complement for the split basis ROM-ROM formulation is essentially the same
as for the FEM-FEM coupling, for which the Schur complement matrix was proven to be
well-conditioned in [17].

In the Pareto plot in Figure 5.5, we see again that each coupling variant is capable
of obtaining an error on the order of the relative error for the FEM-FEM coupling. The
reduced LM space formulations are able to achieve this error in less time than it takes the
FEM-FEM coupling, while the split basis ROM-ROM with full LM space takes longer to
achieve this optimal error. It can be observed from Figure 5.5 that the full subdomain
basis ROM-ROM with the reduced Lagrange multiplier space is the method of choice for
this problem. Again, we note that the full subdomain basis ROM-ROM with full LM space
experiences a sharp jump in errors (likely due to the ill-conditioning of the Schur complement
system for smaller basis sizes), but eventually it is able to also obtain the optimal error for
one particular choice of reduced basis size.

Next, in Figure 5.6, we show the ability of the ROM formulations to enforce the interface
condition. Although these are only for selected basis sizes, we note that the split basis
formulations are actually able to capture the behavior on the interface accurately by a basis
size of about 45, while the full basis formulations take a larger basis size to perform this well.
However, all four ROM-ROM formulations are able to enforce alignment on the interface as
well as the FEM-FEM coupling, provided the basis size is large enough.

Lastly, we show a visual comparison of the simulation results by the four different ROM-
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Fig. 5.4. Condition number of Schur complement matrix as a function of the POD basis size for each
coupling type.

Fig. 5.5. Pareto plot showing relative error (5.2) as a function of online run time for each coupling
formulation. Each point on the plot represents a different subdomain basis size.

ROM couplings at the final time. Each of the following results uses a total of 50 reduced
basis modes in each subdomain. For the split ROM-ROM formulation, this amounts to 40
interior and 10 interfacial basis modes. This is one of the cases that we saw the spike in
relative error for the full subdomain basis ROM-ROM with full LM space in Figure 5.3.
As seen in Figure 5.7, using either the split basis or the reduced LM space provide drastic
improvements over the full subdomain basis with full LM space, for this particular basis
size. Both of the split basis ROM-ROM couplings (Figures 5.7(c)-5.7(d)) perform better in
the eye ball norm than the full subdomain basis ones (Figures 5.7(a)-5.7(b)).

6. Conclusions. While implementing ROMs on individual subdomains of partitioned
problems provides valuable savings in computational time, care needs to be taken in ex-
tending existing coupling formulations designed for FOMs to work with ROMs. For our
partitioned approach in particular, the dual Schur complement expressing the Lagrange
multiplier is the key component, as it provides the interface flux needed to independently
solve the subdomains at each time step. This system must be well-conditioned for the
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(a) FEM-FEM formulation (b) Full subdomain basis ROM-ROM; reduced LM

(c) Split basis ROM-ROM; full LM (d) Split basis ROM-ROM; reduced LM

Fig. 5.6. Results on the interface at Tf for NR,i = 90 for FEM-FEM and selected ROM-ROM coupling
formulations

partitioned scheme to be reliable. Our previous numerical studies revealed that the Schur
complement of the full subdomain basis ROM-ROM formulation proposed in [3] can become
severely ill-conditioned, compromising the accuracy of the coupling. In this work we con-
sidered two modifications of our earlier scheme that target two specific conditions necessary
to obtain well-posed Schur complements. To ensure invertibility of the projected interfacial
mass matrices we deployed a dedicated interfacial reduced basis obtained from snapshots
containing only the interface DOFs. To guarantee that the transpose constraint matrix has
a full column rank we replaced the standard finite element Lagrange multiplier space by a
reduced basis one taken to be one of the two interfacial reduced bases.

Our future work will focus on rigorous analysis of the Schur complement conditioning
for the split basis formulation, demonstration of the scheme in the predictive regime and
examining other methods for constructing the reduced Lagrange multiplier space. Addition-
ally, towards our goal of designing a workflow that can reuse existing codes for individual
physics that may not be coupled with each other, we plan to examine snapshot collection
strategies that do not require simulating the coupled high-fidelity model over the the entire
domain, e.g., oversampling [20].

Finally, we plan to consider extensions of our ROM-ROM and ROM-FEM partitioned
schemes to nonlinear models. Indeed, the reduced order operators defining our ROM sys-
tems, such as (3.3) and (4.3), can only be precomputed in the case of a linear partial
differential equation (PDE). For nonlinear problems, to circumvent the computational cost
of computing the projection of the nonlinear terms in the PDEs onto the reduced basis
online, hyper-reduction approaches such as the Discrete Empirical Interpolation Method
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(a) Full subdomain basis ROM-ROM; full LM (b) Full subdomain basis ROM-ROM; reduced LM

(c) Split basis ROM-ROM; full LM (d) Split basis ROM-ROM; reduced LM

Fig. 5.7. Results at Tf for NR,i = 50 for each ROM-ROM coupling formulation

(DEIM) [1], gappy POD [5] and the Energy-Conserving Sampling and Weighting (ECSW)
method [6] can be employed and will be considered in our work.
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BAYESIAN FUNCTION APPROXIMATION USING FUNCTIONAL
TENSOR-TRAINS WITH INVESTIGATIONS INTO UNCERTAINTY
QUANTIFICATION AND ESTIMATION OF DYNAMICAL SYSTEMS

NICHOLAS GALIOTO∗, COSMIN SAFTA† , JOHN D. JAKEMAN‡ , AND ALEX A.

GORODETSKY§

Abstract. Spatio-temporal systems are ubiquitous in many engineering disciplines such as climate
modeling, materials engineering, and fluid dynamics. However, learning models of such systems is challeng-
ing because the high-dimensionality of their state-space necessitates learning models with large numbers of
unknown coefficients, often from limited data. To address these challenges, we investigate the use of func-
tional tensor-trains, which are extremely expressive parsimonious model forms whose number of coefficients
scale linearly with dimension, with computationally efficient variational inference algorithms for learning
dynamical systems with quantified uncertainty.

1. Introduction. Models of physical systems are useful for a variety of applications
such as ice sheet and climate modeling. Many physical systems of interest are spatio-
temporal and thus high-dimensional, which makes generating high-fidelity simulations of
the system extremely expensive. Therefore, inexpensive and less accurate models known as
surrogates are typically required to explore the range of model behaviors over the range of
parameter choices. The surrogate construction requires a rigorous control on the accuracy
of the model over the range of dynamics for which the model is used.

In order to tackle high-dimensional complex systems, one requires seemingly conflicting
properties, i.e., surrogate model forms need to be sufficiently expressive and yet sufficiently
cheap to enable uncertainty quantification (UQ) studies. Typically, creating an inexpensive
surrogate model of one’s system of interest can address the issue of model expense, but the
costs of many of the most popular surrogate modeling techniques scale poorly with dimen-
sion. For example, the dynamic mode decomposition [38] technique models a dynamical
system in discrete time with a state-transition matrix. With this method, the number of
parameters scales quadratically with dimension, and the cost scales cubically. The sparse
identification of nonlinear dynamics [7] approach fits a linear combination of basis functions
to a system’s estimated time derivatives. If a tensor product basis is used for the basis
expansion, the number of parameters in this method scales exponentially with the state
dimension. Other methods have UQ built into the estimation procedure and can perform
UQ without requiring a large number of model evaluations, such as Gaussian process re-
gression [35, 23], polynomial chaos expansions [43, 26], and relevance vector machines [3].
Unfortunately, these approaches also tend to scale poorly with dimension.

One of the most common approaches when working with high-dimensional data is to
project the data onto a low-dimensional manifold. These projections can be linear such
as principal component analysis (PCA) [42, 36] or active subspaces [10], or they can be
nonlinear such as diffusion maps [9, 31], autoencoders [41], or kernel PCA [30, 25]. The
drawback of these dimension reduction methods is a loss of interpretability since the data
are projected onto an eigenspace or some other mathematical abstraction where the physical
meaning is unclear. In applications where the model is intended to provide physical insight
into the actual system, this loss of interpretability is especially undesirable. Additionally,
these techniques have the added cost during prediction of mapping input data to the low-
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dimensional space and/or outputs to the high-dimensional space.
A promising alternative to dimension reduction is representing functions as functional

tensor-trains (FTT). FTTs scale linearly rather than exponentially with dimension and
can use the original coordinates of the data, potentially offering better interpretability.
Quantifying the uncertainty in FTTs, however, is not straightforward. In general, UQ
is oftentimes achieved by drawing samples from an inferred posterior distribution. Using
Markov chain Monte Carlo (MCMC) methods to sample the parameter posterior of an FTT,
however, can take extremely long to converge due to the fact that FTT parameterizations
are non-unique. Thus, more efficient methods of UQ for FTTs are needed. A common
alternative to MCMC sampling is variational inference (VI), which approximates a target
distribution by solving an optimization problem and can therefore lead to faster convergence.
In this report, we investigate the use of VI to sample posterior distributions of FTT model
parameters. Specifically, this report contributes the following:

• an investigation on how the choice of FTT structure affects the estimation error on
unseen data,

• a comparison of MCMC and VI algorithms for sampling the posterior distribution
over the FTT parameters,

• a proof of concept for using FTTs for estimating dynamical systems.
The rest of the report is organized as follows: Section 2 describes methods for func-

tion approximation based on tensor decompositions and details FTTs. Next, Section 3
explains Bayesian inference and touches on two of the most powerful inference algorithms:
MCMC and VI. Then, Section 4 explains our approach to estimating dynamical systems.
In Section 5, numerical results are presented on two test problems. The report ends with
conclusions and possible directions for future work in Section 6.

2. Function approximation. In this section, methods for approximating functions
with parsimonious representations are described. First, some notation is introduced. Let
R denote the real space, and let Z+ denote the space of positive integers. In this report,
tensors are denoted with bold calligraphic font, e.g., A, matrices with boldface and up-
percase font, e.g., A, vectors with boldface and lowercase font, e.g., a, and scalars with
italicized and lowercase font, e.g., a. Element (i1, i2, . . . , id) of a d-way tensor A is denoted
as Ai1i2...id . If the full mode is being indexed, a colon (:) will be used in place of an index.
For example, a two-dimensional slice of a three-way tensor X would be written as X::i3 .
Lastly, a normal distribution with mean µ and covariance Σ is denoted as N (µ,Σ), and a
uniform distribution with lower bound a and upper bound b is denoted as U [a, b].

2.1. Tensor-train decomposition. There are a number of different methods for rep-
resenting tensors in compressed forms [28], but we focus here on tensor-train (TT) represen-
tations [32]. We choose this representation for its scalability, which allows for inexpensive
modeling of high-dimensional/partial differential equation (PDE) systems. The memory
and computational requirements of TTs scale linearly with dimension, and as a result,
TTs have shown potential as a method for low-dimensional approximation of solutions to
PDEs [2, 14, 37]. Furthermore, TTs belong to a broader class of tensor decompositions
known as tensor networks. Therefore, they can be generalized to other tensor network
topologies that may be more appropriate for certain problems. For example, different ten-
sor network topologies are used to model quantum many-body problems depending on the
structure of the particles, e.g., the lattice model geometry and holographic geometry are
generated by different tensor network topologies [15]. Thus, any methods developed using
the TT decomposition potentially have the flexibility of being applied to a wide range of
structured problems. In this section, the TT basics are described.

Let B ∈ Rn1×...×nd be a d-way tensor with ni ∈ Z+ elements along the ith mode. A
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TT representation approximates B with a tensor A ≈ B whose elements can be evaluated
as

Ai1i2,...id = A(1)
1i1:

A(2)
:i2:

. . .A(d)
:id1

, (2.1)

where each A(k) ∈ Rrk−1×nk×rk is a three-way tensor known as a TT-core. The sizes
rk ∈ Z+ are known as TT-ranks, and for proper dimensions, the condition r0 = rd = 1 must
be satisfied. The ranks can be chosen either by the user or selected adaptively.

The primary advantage of the TT decomposition is that it avoids storage requirements
that scale exponentially with dimension. If r = maxk rk and n = maxk nk, then the mem-
ory complexity is O(dnr2), which scales linearly with dimension d. Moreover, evaluating
an element of the tensor can also be completed in linear (in d) time with computational
complexity O(dr2).

2.2. Tensor-train representation of functions. Tensor-train representations can
be used to compactly approximate functions. Here we discuss the advantages and disadvan-
tages of each tensor-train representation, relative to each other and to other approximation
methods. In the following subsections, we will consider scalar functions of the form

f : X 7→ R (2.2)

that map a d-dimensional space X = X1 ×X2 × . . . Xd to the real line.

2.2.1. Tensor grid. One of the simplest ways to approximate the function f is to
discretize each Xk into nk ∈ Z+ points and store the function value at each point of the
finite subset in a d-way tensor A [27, 12]. With this method, X becomes a tensor grid
denoted as X , and A is viewed as a restriction of f to X , i.e., f |X = A : X 7→ R.

Unfortunately using tensor grid approximations presents a number of challenges:
1. Without compression, this method quickly becomes unwieldy since the number

of values that need to be stored is
∏d

k=1 nk, which scales exponentially with the
dimension.

2. Capturing multi-scale features on a given grid requires prior knowledge. In order
to represent small-scale changes in the function value, finer grids would be needed
in the regions of these features. Prior knowledge of where these regions are is
oftentimes unavailable.

3. Function values are not available at arbitrary points in the domain which limits the
accuracy of certain operations, e.g., numerically computing gradients and integrals.
The accuracy of these numerical operations depends on the grid discretization, but
even with fine grids, these methods still only return approximations.

4. Operations with multiple functions, e.g., additions or multiplication, require all
functions be defined on the same grid. If the underlying grids are different, per-
forming these operations requires interpolation, which can be inaccurate and adds
the expense of decompressing the low-rank representation.

2.2.2. Tensor of coefficients. Some of the aforementioned challenges can be over-
come by representing a function f as a linear expansion of a tensor product basis [8, 13].
Let ψkik : Xk 7→ R be a univariate basis function for k = 1, . . . , d and ik = 1, . . . , nk. Then

the function f can be approximated by a function f̂ defined as

f̂(x1, x2, . . . , xd) =

n1∑

i1

n2∑

i2

. . .

nd∑

id

Ai1i2...idψ1i1(x1)ψ2i2(x2) . . . ψdid(xd). (2.3)
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This representation requires storage of the basis coefficients Ai1i2...id . Again, there are∏d
k=1 nk values that are stored in the tensor A, which is then compressed using a tensor

decomposition.
Because this function approximation has an analytical expression, derivatives and in-

tegrals are analytically tractable, unlike for functions defined numerically on tensor grids.
However, the issues with resolving local features and multilinear algebra still persist. If the
local features of discontinuities are not known a priori, one cannot ensure that the choice of
basis functions properly resolves these features. Performing multilinear algebra operations
with the compressed representation of a tensor of coefficients requires that all functions
share the same parameterization. Otherwise, projection or interpolation techniques must
be used, likely adding to the computational expense and error incurred in the computation.

2.2.3. Functional tensor-train. Functional tensor-trains (FTTs) [33, 19] are contin-
uous analogues of the TT decomposition [32] and can be used to address the aforementioned
issues of tensor-grid and -coefficient methods. The FTT representation decomposes a func-
tion into d core tensors whose sizes depend on the specified or learned ranks rk. An FTT
approximation of the function f is written as

f̂(x) = F (1)(x1)F (2)(x2) . . .F (d)(xd), (2.4)

where F (k) : Xk 7→ Rrk−1×rk are the FTT cores and rk ∈ Z+ are the FTT ranks. The
condition r0 = rd = 1 is still enforced to ensure proper dimensions. Each FTT core is a
collection of matrix-valued univariate functions defined as

F (k)(xk) =




f
(k)
11 (xk) · · · f

(k)
1rk

(xk)
...

...

f
(k)
rk−11

(xk) · · · f
(k)
rk−1rk(xk)


 . (2.5)

Proper selection of the FTT ranks is important to avoid overfitting. One way to specify
the FTT ranks without prior knowledge is to use a procedure known as rounding combined
with cross-validation [20]. The idea of rounding is to decompose the FTT using an SVD-like
algorithm, and then truncate as much as possible while keeping the relative error below a
specified threshold. A detailed description of rounding can be found in Ref. [19].

The FTT representation addresses all four challenges described in Sec. 2.2.1:
1. A high-dimensional representation of the FTT is not required prior to compression,

so the initial exponential memory requirement is avoided.
2. There exist algorithms that can adapt FTTs to properly resolve local features and

discontinuities, such as the one described in Ref. [19].
3. Since FTTs are composed of continuous functions, taking derivatives and integrals

is straightforward.
4. Lastly, the original coordinates are preserved in the low-rank form, so there is no

need for projection or interpolation routines before performing multilinear algebraic
operations.

The challenge of using FTTs, however, is that the nonlinear interactions of the parame-
ters can make optimization quite challenging. One strategy for optimization is an algorithm
known as alternating least squares (ALS). In ALS, the parameters for all FTT cores ex-
cept for one are held constant, turning the optimization problem into a linear least squares
problem for the parameters of one FTT core at a time. The algorithm loops over each FTT
core until the improvement in the cost function falls below a specified threshold. It was
shown in Ref. [20] that the gradient descent algorithm can find better estimates than ALS,
especially when the number of training data is low. Motivated by these findings, Ref. [21]
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developed an automatic differentiation framework for arbitrary tensor networks, which was
used in this work to conduct the numerical experiments in Section 5.

3. Bayesian inference. Using tensor-trains, or any other approximation, with con-
fidence in place of the model it approximates necessitates quantifying the error in the ap-
proximation. The uncertainty of a parametric model can be represented as a distribution
over the model parameters. Using Bayesian inference, the posterior distribution p(θ|D) that
represents the uncertainty of the parameters after data D have been collected is given by

p(θ|D) = p(D|θ)p(θ)
p(D) . (3.1)

The distribution p(D|θ) is known as the likelihood, p(θ) as the prior, and p(D) as the
evidence.

3.1. Markov chain Monte Carlo. In many cases, it is the uncertainty in the output
of a model rather than the uncertainty of the model parameters that is of interest. This
is especially true with black-box models where the parameters do not represent physical
quantities. One way of obtaining the output uncertainty from the parameter uncertainty is
to draw samples from the parameter posterior and push them through the model to generate
samples of the output. The main challenge in this approach is drawing samples from the
parameter posterior. When the posterior distribution is non-Gaussian and analytically in-
tractable, which is almost always the case, drawing independent samples with methods like
inverse transform sampling is not possible. A less efficient alternative to drawing indepen-
dent samples is to instead draw autocorrelated samples using a Markov chain Monte Carlo
(MCMC) algorithm [24]. This approach, however, typically requires hundreds of thousands,
if not millions, of samples to reach an appropriate effective sample size. The cost of each
sample includes at least one evaluation of the posterior, which makes this option infeasible
when the posterior evaluation is expensive. Moreover, convergence of the MCMC sampler
is especially tricky when the posterior is multi-modal, i.e., regions of high probability are
separated by regions of low probability, or there are complicated correlations between the
parameters.

3.2. Variational inference. Variational inference (VI) [5] is an alternative to MCMC
sampling that approximates the posterior using a distribution that is easy and computa-
tionally inexpensive to sample from. Furthermore, the approximation takes the form of an
optimization problem, which can converge much faster than an MCMC sampler with modern
optimization techniques. Using VI requires specifying a family of variational distributions
qϕ parameterized by variational parameters ϕ. Optimization is then used to vary ϕ until
some notion of distance between the variational distribution and the posterior is minimized.
A common choice is the Kullback-Leibler (KL) divergence, defined as:

KL(qϕ(θ), p(θ|D)) =
∫

θ

qϕ(θ) log

(
qϕ(θ)

p(θ|D)

)
= −L(ϕ) + log p(D), (3.2)

where L(ϕ) :=

∫

θ

qϕ(θ) log

(
p(D|θ)p(θ)
qϕ(θ)

)
. (3.3)

The KL divergence is always nonnegative, so the log evidence log p(D) must always be
greater than or equal to L(ϕ). For this reason, L(ϕ) is often referred to as the evidence lower
bound (ELBO). Moreover, since the evidence is independent of the variational parameters,
minimizing the KL divergence is equivalent to maximizing the ELBO. Therefore, the optimal
variational distribution qϕ∗ is found by solving ϕ∗ = maxϕ L(ϕ).
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The choice of variational distribution plays an important role in how effective a given VI
algorithm is. The family of distributions should be broad enough such that it can properly
approximate the target distribution, but it should not be so broad that optimization becomes
cumbersome. A reliable approach to choosing the variational distribution is to start simple
and slowly add complexity until the desired approximation capabilities are achieved. One
of the most popular methods to simplify the variational distribution is to use the mean-field
approximation [40, 16, 6], in which each element of the parameter vector θ ∈ Rp is assumed
to be independent. Under this assumption, the variational distribution can be decomposed
as qϕ(θ) =

∏p
i=1 q

i
ϕ(θi). Here, we use Gaussian marginal variational distributions qiϕ [5].

This leads to the variational distribution

qϕ(θ) =

p∏

i=1

1

σi(ϕ)
√
2π

exp

(
−1

2

(
θi − µi(ϕ)

σi(ϕ)

)2
)
. (3.4)

In Section 5, the mean-field Gaussian (3.4) and multivariate Gaussian (3.5) variational
distributions

qϕ(θ) = |2πΣ(ϕ)|−1/2 exp

(
−1

2
(θ − µ(ϕ))TΣ−1(θ − µ(ϕ))

)
. (3.5)

will be compared for approximating the posterior distribution of FTT parameters using the
Pyro software package [4, 34].

4. Dynamical system estimation. Now, we will investigate using tensor-trains to
learn models of dynamical systems. First, consider a system with continuous-time dynamics
and discrete-time outputs

dx

dt
= f(x), yk = xk, (4.1)

where the function f : Rd 7→ Rd maps the state x ∈ Rd to its time derivative, and the
observations yk are taken at a constant time interval denoted ∆t. The goal of this work
is to learn a model of f that can predict the system outputs at times in the future. In
order to estimate the system outputs from an approximation of f , a time-stepping scheme
is required. Without loss of generality, we employ explicit forward Euler integration [1] such
that

zk+1 = zk + f̂(zk,θ)∆t, (4.2a)

yk = zk + ηk, ηk ∼ N (0, σ2), (4.2b)

where f̂ : Rd × Rp 7→ Rd is an approximation of the function f parameterized by unknown
parameters θ ∈ Rp, zk ∈ Rd represents the state xk estimated by the dynamics f̂ , and the
term ηk represents the measurement noise and is assumed to be independent and identically
distributed. Since the variance of the noise is typically unknown, σ is added to the estimation
problem as a hyperparameter. Note that approximation error is not accounted for in this
modelling framework. However, we select this output model (4.2b) because it is standard
in the system identification literature [39] and provides a simple posterior that can be used
for preliminary testing of the FTT approximation. Future work will build complexity by
applying estimation approaches that account for model error, such as the one described
in [18].
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The posterior distribution p(θ, σ|Y) representing the uncertainty in the parameters
given a set of training data (Section 3) satisfies

p(θ, σ|Y) ∝ p(Y|θ, σ)p(θ, σ), with (4.3)

p(Y|θ, σ) =
N∏

k=1

1

σ
√
2π

exp

(
−1

2

(
yk − zk(θ)

σ

)2
)
, (4.4)

where zk(θ) is written as a function of θ to emphasize its dependence on the approximated

dynamics f̂ that are parameterized by θ. The form of the prior distribution is problem-
dependent and left to the user. In this report, the parameters θ and σ are always assumed
to be independent such that p(θ, σ) = p(θ)p(σ). This independence assumption is used for
simplicity, but it is not restrictive. Correlations between θ and σ can still be introduced
into the posterior through the contribution of the likelihood. Moreover, since we use weakly
informative priors throughout this work, the contribution of the prior is minimal.

5. Results. In this section, the methodology of combining FTTs with VI is applied
to two test problems, and the method’s utility for function approximation and uncertainty
quantification is evaluated. The first example uses a time-independent test function to
highlight the challenges of using FTTs for function approximation. The second example
considers a dynamical model known as the Lorenz ’63 system to demonstrate the feasibility
of pairing FTTs with the approach of Section 4 for the estimation of dynamical systems.

5.1. Friedman function. The Friedman function [17] is a five-dimensional test prob-
lem for function approximation and is defined as

y = 10 sin
(π
4
(x1 + 1)(x2 + 1)

)
+ 5(x3 − 1)2 + 5(x4 + 1) +

5

2
(x5 + 1). (5.1)

In the following we construct and test FTT approximation, with varying FTT ranks and
Legendre polynomials of varying degree for each FTT core, using 7,000 model evaluations
of this function. The inputs are drawn uniformly at random from the interval [-1, 1], i.e.
x(i) ∼ U [−1, 1]5 for i = 1, . . . , 7000. Then, each input is pushed through the Friedman
function to generate its corresponding output y(i). We partition the dataset into N = 5, 000
pairs (x(i), y(i)) for training and 2,000 pairs for testing. The univariate functions inside each
FTT core are Legendre polynomials. We consider several polynomial orders and FTT ranks
for this example problem.

5.1.1. Deterministic learning. In this section, we learn the coefficients of the FTT
using deterministic optimization. Specifically, assuming uniform priors p(θ), we find the
maximum a posteriori (MAP) point of the posterior distribution by minimizing

J (θ) =
N∑

i=1

(
y(i) − f̂(x(i),θ)

)2
, (5.2)

where f̂ is an FTT parameterized by θ. The nonlinear interactions of the parameters
during the evaluation of the FTT make this cost function’s surface non-convex and difficult
to optimize, so a good initial point for optimization is critical. To address this issue, Ref. [20]
initialized optimization using a linear fit of the data represented in FTT format. For this
experiment, we extended this idea into a hierarchical approach. A low order/rank FTT was
trained first, and the optimization result was used as a starting point for training an FTT
with larger order/rank. Specifically, an FTT with polynomial order 1 and rank 2 was found
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Fig. 5.1: Parity plots at different order-rank pairs over the testing data. The blue line
represents an exact fit and is overlaid for reference.

using linear least squares. Then, the rank was incremented and the new FTT was trained
using non-linear optimization starting from the initial point given by the optimum of the
previous learned FTT. This procedure was continued for order 1 up to rank 6. At this
point, the order was incremented and the FTT of the same rank but lower order was used
as a starting point. This procedure was continued up to order 6. Note that the choice of
incrementing the rank first and the order second was an arbitrary one. Based on the authors’
experience, incrementing the order first and the rank second does not produce statistically
different results.

After completing the aforementioned training procedure, three order/rank pairs were
selected and parity plots depicted in Figure 5.1 were created using testing data. The
three order/rank pairs were chosen to be the smallest FTT with order 1 and rank 2, an
intermediate-sized FTT with order 4 and rank 3, and a large FTT with order 6 and rank 5.
In Figure 5.1a, the FTT fit is not much better than the linear fit since the order/rank is so
small. The intermediate-sized FTT in Figure 5.1b fits the data well with all of the markers
lying very close to the blue line that represents an exact fit. The large FTT in Figure 5.1c,
however, shows worse performance than the medium FTT despite being more expressive. A
possible explanation for this behavior is that the greater expressiveness leads to overfitting
the training data.

The mean squared error (MSE) of the FTT estimates on the testing data are presented
in a heatmap in Figure 5.2a. As the order increases, the MSE decreases at all ranks except for
rank 2, which begins to overfit around order 5. As the rank increases, the MSE decreases at
first, but after rank 3 it begins to rise. This rise in MSE across the ranks is possibly also due
to overfitting, but for a fixed rank, the MSE actually decreases as order increases. While
increasing order and rank both increase the number of unknowns that must be learned,
the number of unknowns only increases linearly with order but quadratically with rank.
Thus, increases in rank can lead to overfitting more easily. Figure 5.2b shows the Pearson
correlation coefficients between the predicted and actual testing values. This figure shows
similar trends to the MSE heatmap. An interesting future experiment would be to observe
how these heatmaps change if the previous rank is used as a starting point rather than the
previous order.

5.1.2. Sampling. This section compares the performance of MCMC and VI for sam-
pling the parameter posteriors of FTTs. Since the authors’ past experience has shown that
sampling from FTTs can be quite challenging, a simpler, two-dimensional test function
was considered before attempting the five-dimensional Friedman function. Specifically, we
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Fig. 5.2: Figure 5.2a shows the mean squared error between predicted and actual values,
and Figure 5.2b shows the correlation between predicted and actual values.

learned an order-1 and rank-2 FTT approximation of

f(x) = sin
(π
4
(x1 + 1)(x2 + 1)

)
, (5.3a)

y = f(x) + ξ, ξ ∼ N (0, 4), (5.3b)

which we henceforth refer to as the 2D modified Friedman function. This FTT structure
contains eight learnable parameters. Additive Gaussian noise was added to the output data,
which has a smoothing effect on the posterior that makes sampling easier. The prior on the
parameters was specified as follows

p(θ, σ) =

{
1
2π exp

(
−θT θ

100

)
1
π exp

(
−σ2

2

)
, if σ > 0;

0, otherwise,
(5.4)

where the distribution over θ has a wide variance of 10 to reflect the fact that we do not
have any prior information on the FTT parameters. Gaussian variational distributions, with
and without the mean-field approximation, were used to draw 104 samples. These samples
were then compared with 104 samples drawn using an MCMC algorithm known as delayed
rejection adaptive Metropolis (DRAM) [22].1

To illustrate the complexity of the posterior distribution, the 1D and 2D marginal
distributions of the parameters in the first FTT core are plotted in Figure 5.3. The blue
represents the MCMC samples, the orange the mean-field Gaussian VI samples, and the
green the multivariate Gaussian VI samples. In this example, the two VI algorithms appear
to have converged to the same mean values, and the multivariate distribution has slightly
larger variance. This figure shows how the posterior of the FTT parameters possesses
complex correlations that make MCMC sampling and VI difficult. The VI algorithms appear
to converge to a local approximation of the posterior.

Note that the 2D modified Friedman function is bounded between -1 and 1, but the
noise used in this example had a variance of 4. Although the noise is unrealistically large
compared to the signal, it was found that this larger noise value allowed MCMC sampling

1MCMC was actually used to generate 106 samples but 105 were discarded as burn-in, and the remaining
samples 104 were drawn at regular intervals to avoid using highly correlated MCMC samples.
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Fig. 5.3: 1D and 2D marginals of the parameters in the 1st FTT core. Blue are MCMC
samples, orange are mean-field VI samples, and green are multivariate VI samples. The
mean-field and multivariate VI samples overlap in this case.

to converge in a timely manner, whereas for lower noise values, the sampler tended to get
stuck in a local region of the posterior.

Clearly, the VI algorithms considered here cannot properly capture the posterior dis-
tribution, but in many applications, the uncertainty in the output predictions is of greater
interest than that in the parameters. Figure 5.4 shows 500 samples from each algorithm
pushed through the FTT function. This figure also gives the marginal distribution of σ,
which represents the estimated distribution of errors of each algorithm. In the push-forward
plots, x2 was fixed at 0.5 and x1 was allowed to vary. It is observed that the MCMC samples
give the smallest spread in the output, despite having the greatest variance in parameter
space. This is a result of the approximation errors of the variational Gaussian distributions.
The VI approximations overestimate the probability density in certain regions of the param-
eter posterior, which causes there to be a greater proportion of samples from low-probability
regions. Since the output variance depends, in part, on the variation of the probabilities of
the parameters, we therefore observe greater variance in the output from the VI approxi-
mations. Also note that the output distributions produced by the two VI algorithms have
roughly the same spread, but the multivariate Gaussian output variance is slightly smaller
for this value of x2. This suggests that the greater flexibility offered by the multivariate
Gaussian distribution allows for a better local approximation of the posterior.
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Fig. 5.4: Push-forward of samples and estimated marginal distribution of σ from each
inference algorithm. The black line represents the truth.

The σ marginals in Figure 5.4d show that the mean of the output errors is roughly the
same across the three algorithms. The variance of σ, however, is much smaller when using
MCMC, and approximately equal between the two VI algorithms in this example. These
trends are similar to what was observed in the output plots, suggesting that the σ marginals
can be used as a quick way of assessing the uncertainty in the output rather than pushing
samples through a, possibly expensive, forward model.

The same inference approach and sampling procedure used on the simplified function
was applied to the full, five-dimensional Friedman function with only a few small changes.
The FTT is still order 1 and rank 2, but now has five cores instead of two. For this
experiment, no noise was added to the output data, and the prior for σ > 0 was

p(θ, σ) =
1

2π
exp

(
−5θTθ

) 1

π
exp

(
−σ

2

2

)
, (5.5)

and 0 otherwise. The 1D and 2D marginals of the parameters in the first FTT core are
shown in Figure 5.5. It is apparent that the MCMC sampling did not converge as evidenced
by the absence of the manifolds seen in the previous example. This figure serves to show the
performance of sampling from FFTs when applied to a more realistic dataset. Even with
one million samples, the MCMC sampler does not appear close to convergence, preventing
any meaningful assessment of the VI approximation when estimating the FTT parameters.

The push-forwards of each algorithm are presented in Figure 5.6. Here, the fixed di-
mensions of x are set to random values between -1 and 1. Similar to the simplified example,
MCMC shows the smallest output variance. This time, the variance reduction from using
the multivariate variational distribution over the mean-field one is more significant. An
interesting direction for future research would be investigating the validity of the quantifica-
tion of output uncertainty from sampling only a local region of a posterior when the model
parameters are non-unique. In such a case, samples covering the posterior in the output
space could be generated much more quickly than samples covering the posterior parameter
space. Another direction could be selecting a prior in such way that the symmetries in the
posterior are broken, allowing for more efficient sampling [11].

5.2. Lorenz ’63. In this example, the FTT framework is used to approximate a dy-
namical system. Consider the Lorenz ’63 system [29] defined as

ẋ1 = σ(x2 − x1), (5.6a)

ẋ2 = x1(ρ− x3)− x2, (5.6b)

ẋ3 = x1x2 − βx3, (5.6c)
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Fig. 5.6: Push-forward of samples and estimated marginal distribution of σ from each
inference algorithm. The black line represents the truth.

where a common choice of parameters of σ = 10, ρ = 28, and β = 8/3 is used. The Lorenz
system is an example of a deterministic system that exhibits chaotic behavior and can pose a
challenge for system identification techniques since even small errors will grow exponentially
with time.

The time derivatives of the Lorenz system can be represented as a set of FTT models
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as

ẋ1 =
[
−σx1 1

] [ 1
σx2

]
, (5.7a)

ẋ2 =
[
ρx1 1

] [ 1 1/ρ
−x2 0

] [
1
−x3

]
, (5.7b)

ẋ3 =
[
x1 1

] [x2 0
0 1

] [
1
−βx3

]
. (5.7c)

We use this formulation as our model of the dynamics and attempt to learn the unknown

parameters θ :=
[
σ ρ β

]T
using the methodology described in Section 4. This approach

does not technically use the FTT structure, but we parameterize the model in this way to
improve identifiability of the model. Furthermore, writing the system in an FTT format
allows us to begin introducing other parameters into the inference problem in the future,
slowly building complexity.

To generate the data, the system is first simulated for 50s from a random initial point to
allow the solution to reach the attractor. The final point of this simulation is then used as
the initial condition for numerical integration using forward Euler for 2.0s with ∆t = 0.02.
The state is measured at each timestep of this integration procedure without added noise,
i.e. yk = xk for k = 1, . . . , 100.

The inference problem is formulated according to the methodology described in Sec-
tion 4, and a timestep of ∆t = 0.02 is used within the learning procedure. Using the same
integration scheme for both data generation and learning simplifies the model training by
removing discrepancies in integration between the data and the model prediction. Without
this adjustment, there would be estimation error regardless of the parameter values. It is
expected that this discrepancy grows rapidly due to the system’s chaotic nature. We further
mitigate this issue by using a short training period of 2.0s, which avoids challenges related
to error accumulation over longer time spans. Addressing this issue requires algorithms that
can handle model uncertainty, e.g., as in Ref. [18], and is the topic of future work.

We do not assume any prior information on the parameters and consequently place
an improper uniform prior, i.e., a distribution with equal probability over the entire real
space, on them. Then, the MAP point of the parameters is found through optimization
of the negative log posterior. Starting from the same initial point as the training data,
the estimated system is simulated for 20s, and the estimated trajectory is compared to a
trajectory simulated with the true parameters in Figure 5.7. The discrepancy between the
approximate model and the Lorenz model evolution is plotted in Figure 5.8. The inferred
model provides a close approximation of the truth for about 10s before the error starts to
blow up as a result of system’s chaotic nature.

6. Conclusions. In this report, we evaluated a variational inference approach for the
purpose of quantifying uncertainties in functional tensor-train approximations. We found
that Markov chain Monte Carlo algorithms are challenged by the lack of identifiability in the
functional tensor-train structure. However, initial results suggested that Gaussian approxi-
mations of the posterior distribution found with variational inference provide a conservative
estimate of the uncertainty in the functional tensor-train outputs.

A number of future research directions were identified. These include exploring more
expressive variational distribution families, investigating the performance of gradient-based
Markov chain Monte Carlo samplers, and exploring the effect of priors on eliminating sym-
metries in the parameter posterior without sacrificing expressiveness in the output space.

Functional tensor-trains were also applied for estimating the Lorenz ’63 system. Given a
number of simplifying assumptions, the estimated model performed well, providing reliable
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Fig. 5.7: Trajectories of the estimated and truth systems integrated with forward Euler.
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Fig. 5.8: Residuals between the estimated and truth trajectories of Figure 5.7.

predictions for roughly five times longer compared to the extent of the training period.
Future work will begin to remove the simplifying assumptions and also investigate the
scalability of the approach to higher dimensional systems.
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THE QUANTUM QUERY COMPLEXITY OF TRIANGLE DETECTION IN
THE ADJACENCY LIST MODEL

AMIN GILANI ∗, BLAKE HOLMAN † , JOHN KALLAUGHER ‡ , AND OJAS PAREKH §

Abstract. The problem of determining whether a graph G on N nodes admits a triangle is one of the
most well-studied graph problems in both the classical and quantum settings. Generally, algorithms are
allowed to make queries to learn 1) the ith neighbor of a node, 2) the degree of a node, and 3) whether
two nodes are connected. In the classical setting, almost all work on triangle-related problems uses all
three types of queries. In the quantum setting, however, work has also been done using only queries
about the connectivity between nodes. In this work, we take steps toward understanding the quantum
query complexity of detecting whether G contains a triangle. In particular, we show that the quantum
query complexity determining whether a node participates in a triangle is Θ(N), and the quantum query
complexity of determining whether an edge participates in a triangle is Θ(N2/3).

1. Introduction. Three nodes u, v, w in a graph G = (V,E) form a triangle if they are
all adjacent in G. The problems of detecting, finding, counting, and listing triangles are well
studied in a variety of classical settings [4, 5, 7, 10, 14] and have applications in networking,
social systems, and bioinformatics [1, 3, 9, 11]. Classical algorithms for triangle-related
problems generally use a specific model for accessing the graph, which allows for three types
of queries:

1. neighborhood queries which take a node v and an index i and outputs the ith
neighbor of v,

2. degree queries which take a node v and output the degree of v denoted dv, and
3. pair or edge queries which take two nodes u and v and output whether they are

connected.

The access model associated with only neighborhood and degree queries is called the
(adjacency) list model, while the access model with only pair queries is called the (adja-
cency) matrix model. We call the query model with access to all three types of queries the
augmented list model. The augmented list model is the most common for triangle prob-
lems. In the augmented list model Eden, Levi, Ron, and Seshadhri [5] give an algorithm

which achieves the optimal query complexity of Õ
(

N
T 1/3 + min{m3/2

T ,
√
m}
)

(here, the tilde

hides polylog factors and polynomial dependency on the error parameter ε). The reason
for this is that triangle problems are classically intractable in the list and matrix query
models. A simple argument shows that even approximate triangle counting in the matrix
model requires Ω(N2) queries, and in the list model there is no sublinear query algorithm
for approximately counting triangles [6].

Quantum algorithms can query the graph oracles on superpositions of inputs. As a
result, quantum algorithms for triangle counting in the matrix and list models do have
sublinear query complexity. The quantum query complexity of triangle finding in the matrix
model is Õ(N5/4), which can be easily modified to be a triangle counting algorithm with
the same quantum query complexity. In the augmented list model, the quantum query

complexity of triangle counting is Õ
( √

N
T 1/6 + m3/4

√
T

)
. While triangle problems in the matrix

and augmented list models have been well studied, prior to this work nothing was known
about the quantum query complexity of triangle problems in the list model.
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1.1. Our Contributions. We make progress towards characterizing the quantum
query complexity of triangle problems in the list model. There are several challenges in
working with the list model. For example, with pair queries it only takes 3 queries to deter-
mine whether some nodes u, v, and w form a triangle. However, in the list model, we must
search the neighbors of these nodes to determine whether they are all connected. First, we
consider the problem of determining whether a node participates in a triangle. We give an
algorithm that uses O(N) queries and a matching lower bound.

Theorem 1.1. In the adjacency list model, the quantum query complexity of determin-
ing whether a node in a graph on N nodes participates in a triangle is Θ(N).

Next, we consider the problem of determining whether an edge {u, v} participates in a
triangle. The upper bound is simple, as it reduces to determining whether the neighborhoods
of u and v are disjoint, which is well studied in the quantum setting [2]. The lower bound
is considerably more difficult than the previous problem. We give a reduction from the
Element Distinctness Problem, which gives a function f and asks whether f is one-to-one.

Theorem 1.2. In the adjacency list model, the quantum query complexity of determin-
ing whether an edge in a graph on N nodes participates in a triangle is Θ(N2/3).

2. Preliminaries. In this section, we give the background and notation on graphs and
their quantum query models.

2.1. Graphs and Query Models. Let G = (V,E) be a graph on N nodes and m
edges. We always use the convention that V = {0, . . . , N − 1}. A vertex u is a neighbor of
v if u and v are connect in G, and we let Γ(v) denote the neighbors of v. Additionally, for
any S ⊂ V , we let Γ(S) =

⋃
v∈S Γ(v). Additionally, we let Γ(v, i) to be the ith neighbor

of v according to an arbitrary but fixed order for each vertex. The degree of a vertex v is
denoted dv = |Γ(v)| and we let dmax = maxv∈V dv.

There are three main query models which allow us to gain information about G in
many different ways. In adjacency matrix model (or just matrix model), we have access to
an oracle which, given nodes u and v, tell us whether or not {u, v} ∈ E. In the adjacency
list model we have access to two oracles: a degree oracle and a neighborhood oracle. The
degree oracle takes a node v and returns its degree dv. The neighborhood oracle takes in a
vertex v and an index i, returning the ith (starting from zero) neighbor with respect to an
arbitrary but fixed order. If i ≥ dv, then the oracle returns a special symbol ⊥. The last
query model is the augmented adjacency list model which is simply the union of the matrix
and adjacency list model.

2.2. Quantum Computation. A classical bit is either in the state 0 or the state 1.

We can represent these states via a vector such that the zero state is |0〉 =

[
1
0

]
and the one

state is |1〉 =

[
0
1

]
. A qubit, however can be in any state of the form

|ψ〉 = α |0〉+ β |1〉

for α, β ∈ C such that |α|2 + |β|2 = 1. In order to gain information about |ψ〉, we must mea-

sure ψ. Upon measuring, |ψ〉 collapses to |0〉 with probability |α|2 and |1〉 with probability

|β|2. We will also use 〈ψ| to represent |ψ〉† and 〈ψ|φ〉 to represent 〈ψ| |φ〉.
More generally, for a bit-string s = s1, . . . , sn ∈ {0, 1}n, we can represent s as a vector

v of length 2n, where vs = 1 (here we are indexing with respect to the integer corresponding
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to s) and all other entries are zero. Equivalently,

v = |s〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sn〉 ,
where ⊗ denotes the tensor product between two vectors. Intuitively, writing v as a tensor
product of single-qubit states allows us to view v as the bit-string it represents. Additionally,
we use the following equivalent notation:

|a〉 ⊗ |b〉 = |a〉 |b〉 = |a, b〉 = |ab〉 .
A quantum circuit acting on n qubits can be represented as a 2n×2n matrix U . Quantum

circuits are inherently reversible, meaning that after applying U to some state |φ〉, there
exists a quantum circuit U−1 which undoes the effect of U . Moreover, due to the natural
rules of measurement above, it is clear that U must maintain the 2-norm of |ψ〉. We call
such matrices unitary. Since U is unitary, it can be shown that U† = U−1.

We make use of the following quantum subroutine. Given quantum query access to a
function f : [N ]→ {0, 1}, Grover’s search algorithm [8] can find a marked item x (meaning
f(x) = 1) or report that none exist using O(

√
N) queries to f (as opposed to classical

algorithms which require Ω(N) queries).

3. Quantum Algorithms for Triangle Problems in the Adjacency List Model.
The first problem we consider is determining whether a vertex v participates in a triangle.
In the matrix model, this can be done straightforwardly using Grover’s search algorithm to
find pairs of nodes u,w ∈ V in which u, v, and w are all adjacent in G, using this uses
O(N) queries. In the adjacency list model, however, we cannot simply check whether pairs
of vertices are connected in constant time. We give an O(N) algorithm for the problem.

Lemma 3.1. The problem of determining whether a node participates in a triangle in a
graph on N nodes has quantum query complexity O(N).

Consider the following method:
1. Query the neighborhood oracle to find the neighborhood u1, . . . , udv of v.
2. Search over the neighbors of ui to find w which is also a neighbor of v.

The first step costs O(N) queries, as we are classically recording each of v’s neighbors.
Since we have stored the neighbors of v, it doesn’t take any additional queries to determine
whether a neighbor w of ui is a member of Γ(v). So, the query complexity of the second
step is O(

√
|Γ(Γ(v)))|) = O(N), resulting in Lemma 3.1.

Next, we consider the query complexity of determining whether an edge {u, v} admits
a triangle. Again this can be done in the adjacency model by searching for a node w which
is connected to both u and v in O(

√
N) queries. We show that in the adjacency model we

can determine whether a vertex v forms a triangle with u and v or report that none exists
using O(N2/3) quantum queries.

Lemma 3.2. The problem of determining whether an edge participates in a triangle in
a graph on N nodes has quantum query complexity O(N2/3).

This problem is similar to the element distinctness problem.

Definition 3.3. Let ElementDistinctness be the problem of determining whether
a function f : [N ]→ [M ] with M = Θ(N) is one-to-one.

Ambainis gave a quantum algorithm that solves element distinctness using O
(
N2/3

)

queries [2]. In our case, we have an edge {u, v} and a list consisting of the entries (with
duplicates) of Γ(u) and Γ(v) of size at most 2dmax. The proof of Lemma 3.2 follows by
applying the element distinctness algorithm to determine whether the edge is a triangle
edge.
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4. Lower bounds in the Adjacency List Model. In this section, we give lower
bounds for triangle-related problems in the adjacency list model.

4.1. Triangle Vertex Determination. First, we consider the problem of deciding
whether a vertex participates in a triangle. We give a reduction from the problem of deciding
whether a bitstring of length M contains a one, which is known to require Ω(

√
M) quantum

queries. In the previous section, we gave an algorithm that tests whether a node is a triangle
node using O(N) queries.

Fig. 4.1. Above is the graph associated with the string x′ = 10011 from Lemma 4.1. The associated

matrix is X =




1 0 0
0 0 1
0 1 1


 . Green edges between ai and fj and red edges between bi and cj correspond to

the case where Xij = 1. The red edges create the triangle bicjv.

Lemma 4.1. In the adjacency list model, determining whether a node v in a graph G
is part of a triangle requires Ω(N) queries. .

Proof. Given some x′ ∈ {0, 1}M , let N be the smallest integer such that
(
N
2

)
≥ M

and let x = x′‖0(N
2 )−M , where ‖ denotes string concatenation. Now define the symmetric

N × N matrix X which encodes two copies of x in the following way. First, we construct
the upper triangular matrix X ′ which takes the values xi in the natural order. We let
X = X ′ + X ′T − diag(X ′). Next, we construct a graph G = (V,E) on 4N + 1 nodes. Let
A = {a1, . . . , aN}, B = {b1, . . . , bN}, C = {c1, . . . , cN}, and F = {f1, . . . , fN}. Finally, we
let V = A∪B∪C∪F ∪{v}. For each u ∈ B∪C, {u, v} is an edge in G. Next, if Xij = 1 then
{ai, fj}, {aj , fi}, {bi, cj}, {bj , ci} ∈ E. IfXij = 0, then {ai, bj}, {aj , bi}, {ci, fj}, {cj , fi} ∈ E.

Then we can define the jth neighbor of ai to be fj if Xij = 1 and bj otherwise. The jth
neighbor of bi is cj if Xij = 1 and aj otherwise. The jth neighbors of ci and fi are defined
analogously. Since each node in A∪B ∪C ∪ F has degree N , we do not have to query x to
simulate the degree oracle. Lastly, each query to the neighborhood can be answered with
one query to x.

Now, v, bi, and cj form a triangle if and only if Xij = 1. So, given an algorithm for the
triangle vertex problem which uses at most q quantum queries, then we can find a 1 in x
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using O(
√
q) queries. Since we know that the problem of deciding whether x contains a 1

has query complexity Ω(
√
N), we know that q = Ω

(√(
N
2

))
= Ω(N).

Theorem 1.1 follows from Lemmas 3.1 and 4.1.

4.2. Triangle Edge Determination. In this section we show that in the adjacency
list model, the problem of determining whether an edge is a triangle edge has quantum query
complexity Ω(N2/3/ logN), completing the proof of Theorem 1.2. To accomplish this, we
show that the triangle edge problem requires just as many queries (asymptotically) as the
element distinctness problem, which asks whether a function f : [N ] → [M ] is one-to-one
(i.e. has no collision). Prior work showed that the promise problem in which M = N and
there is at most one collision in f also has quantum query complexity Ω(N2/3) [13]. We will
let UElementDistinctness denote this special case of element distinctness.

The reduction from UElementDistinctness to the problem of determining whether
an edge is a triangle edge relies on the following ideas. Suppose we have disjoint sets
W = {w1, . . . , w`/2} and Z = {z1, . . . , z`/2} which are both subsets of the domain of our
function f . Suppose further that between W and Z there is either a single collision pair
(and no more) wi and zj such that f(wi) = f(zj) and i 6= j or there are none. Now we
want to set up a graph with an edge {u, v} such that {u, v} participates in a triangle if
and only if some wi and zj form a collision. A natural approach is to have a set of N
vertices L1, . . . , LN with an edge from u to Li whenever f(wj) = i and an edge from v to Li

whenever f(zj) = i. At a glance, this seems to work, as the resulting graph G has a triangle
whenever W and Z have a collision. The problem, however, is that determining the degree
of Li is essentially the same as checking whether a list contains a certain element, meaning
we cannot simulate it with a constant number of queries to f . To circumvent this problem,
we add an additional N nodes R1, . . . , RN and connect Li to Rj whenever f(wj) 6= i and
f(zj) 6= i. Now we can straightforwardly implement the neighborhood and degree oracles
with only a constant number of queries to f .

To increase our success probability, we split up our input X = 〈x1, . . . , xN 〉 into more
than two sublists, each of size ` = Θ(N) so that the probability that a collision pair is in
the same sublist is small. We can now construct the graph mentioned above on every pair
of these sublists to determine whether f has a collision with probability � 1/2.

Lemma 4.2. The problem of determining whether an edge of a graph on N nodes is a
triangle edge requires Ω

(
N2/3

)
queries.

Proof. Let f : [N ] → [N ] be an instance of UElementDistinctness. Let A be an
A(N)-query algorithm for triangle edge detection. We construct the B(N)-query algorithm
B, which does the following on input f . Let π be a random permutation of [N ], and let
F = 〈f(π(1)), . . . f(π(N))〉. Now we divide F into N/` sublists F i = 〈F`(i−1)+1, . . . , F`i〉 for

` = N
3 . The probability that no sublist contains a collision pair and any two sublists which

share a value share it at different indices is at least 1−
(

`
N

)2 · N` − 1
` = 2/3− o(1). For now,

assume this is the case.

The graph Gij = (V,E) is constructed as follows. The vertex set V of size 2N + 2
consists of two sets of nodes corresponding to the range L1, . . . , LN and R1, , . . . , RN as well
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as two helper nodes u and v. The edge set is defined such that

E = {{u, v}}
∪ {{u, La} : a ∈ F i} u is adjacent to nodes corresponding to F i

∪ {{v, La} : a ∈ F j} v is adjacent to nodes corresponding to F j

∪ {{La, Rb} : F i[b], F j [b] 6= a} La is adjacent to Rb if F i[b] 6= a and F j [b] 6= a.

First, we will show that neighborhood queries can be answered using O(1) queries to f . The
bth neighbor of nodes u and v can be answered by simply querying the bth entry of F i and
F j , respectively. The bth neighbor of La is

Γ(La, b) =





Rb if F i[b], F j [b] 6= a

u if F i[b] = a

v if F j [b] = a,

so any neighbor query can be answered with O(1) queries to the list. Recall that we are
assuming that F i[b] 6= F j [b] for all b. For the Ra nodes, we let Γ(Ra, b) = Lb′ , where
b′ = b +

∣∣{r ≤ i : F i[a] = r or F j [a] = k
}∣∣, which can be answered by querying F i[a] and

F j [a]. By our assumption dRa
= N −

∣∣{r ∈ [N ] : F i[a] = r or F j [a] = r
}∣∣. So, answering

the degree queries also only takes O(1) queries to f . Nodes u and v have degree ` and
each La has degree N . Thus, the probability B successfully find a collision is at least
2/3− o(1) which can be amplified using majority voting. Furthermore, B(N) = O(A(N)),
so A(N) = Ω(N2/3/ logN).

Theorem 1.2 follows from Lemmas 3.2 and 4.2.

5. Conclusion and Open Problems. In this work, we show that the quantum query
complexity of the problem of determining whether a node participates in a triangle is Θ(N)
and for edges is Θ(N2/3). The natural next step is to give nontrivial upper or lower bounds
on the quantum query complexity of determining whether a graph has a triangle. A promis-
ing avenue may be to use similar techniques as we did to lower bound the edge triangle
problem. We can generalize the element distinctness problem to the case where we are
given any function f : [N ] → [M ] and are asked to determine whether f is one-to-one. In
this case, the problem of determining whether at least 1 of N instances of this new problem
is one-to-one has query complexity Ω(N7/6) [12]. Likewise, it is still open whether there is
a o(N3/2) algorithm for determining whether a graph admits a triangle in the adjacency list
model.

REFERENCES

[1] M. Al Hasan and V. S. Dave, Triangle counting in large networks: a review, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 8 (2018), p. e1226.

[2] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM Journal on Computing, 37
(2007), pp. 210–239.

[3] B. Andreopoulos, C. Winter, D. Labudde, and M. Schroeder, Triangle network motifs predict
complexes by complementing high-error interactomes with structural information, BMC bioinfor-
matics, 10 (2009), p. 196.
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NUMERICAL EVALUATION OF RANDOM SKETCH GMRES

ANDREW J. HIGGINS∗, ERIK G. BOMAN† , JENNIFER A. LOE† , AND ICHITARO YAMAZAKI†

Abstract. Krylov subspace methods (KSMs) are state of the art iterative solvers for large, sparse
linear systems of equations of the form Ax = b. GMRES is a robust KSM for non-symmetric problems
that minimizes the computed solution’s residual norm over the generated Krylov subspace. Recent advances
in Numerical Linear Algebra suggest randomized methods can boost performance without sacrificing much
accuracy, and very recent articles have incorporated randomized techniques into KSMs. This manuscript is
dedicated to experimentation and analysis of randomized variants of GMRES, along with a review of the
prerequisite randomized linear algebra theory used to design the algorithms.

The randomization technique analyzed in this manuscript uses a “sketch” matrix to reduce the dimension
of the associated GMRES least squares problem while preserving the least squares norm within a specific
tolerance. A recently proposed algorithm called “sketched GMRES” (sGMRES) is a variant of GMRES using
a partially orthogonalized Krylov basis along with a sketched least squares solution. It is evident that the
computational cost per iteration of sGMRES can be far lower than GMRES if an appropriate sketch matrix
is used, however, it is unclear whether the method will converge similarly enough to GMRES to ensure that
sGMRES is beneficial. Thus, in this manuscript, we compare sGMRES to GMRES from the standpoint
of robustness. We show that while the sGMRES method with efficient sketching is more computationally
efficient, its robustness is inhibited by the partial orthogonalization. Other strategies for producing the
sGMRES Krylov basis that avoid full orthogonalization are explored, but suffer failures similar to those
of the traditional sGMRES approach. However, experiments show sGMRES may have potential for some
practical applications, including non-symmetric computational fluid dynamics problems.

1. Introduction. Krylov subspace methods (KSMs) are the state of the art iterative
algorithms for solving large, sparse systems of equations of the form Ax = b, which are ubiq-
uitous throughout scientific computing [8]. When the coefficient matrix A is non-symmetric,
often times the Generalized Minimal Residual Method (GMRES) is used to solve the system,
due to its robustness and monotone convergence guaranteed by the residual minimization
properties of the algorithm [11]. In spite of its robustness, a major drawback of GMRES is
its computational cost due to its long-tail recurrence relation used to create a basis for the
Krylov solution space. While alternative KSMs for non-symmetric systems exist that are
less computationally expensive per iteration such as BiCGSTAB, the residual is not minimal
in each iteration, and therefore convergence is non-monotone, and can sometimes require
far more iterations to converge than GMRES [13]. For this reason, alternative variants
of GMRES and GMRES-like algorithms are still of great interest in the Numerical Linear
Algebra community.

Development and analysis of randomized techniques is cutting edge research in the field
of Numerical Linear Algebra. In particular, the integration of randomized techniques into
Krylov subspace methods for solving linear systems has only begun in the past couple of
years. One popular randomized approach in Numerical Linear Algebra is the concept of
random “sketching”, which is a dimension reduction technique via a short and wide random
matrix S that ensures 〈x, y〉 ≈ 〈Sx, Sy〉 and therefore ‖x‖2 ≈ ‖Sx‖2 with high probability
[2]. Very recently, two versions of GMRES that leverage this sketching strategy have been
proposed [2, 9]. The one we will focus on in this manuscript was proposed by Nakatsukasa
and Tropp in a paper that has not yet been published, which they refer to as “sketched
GMRES” (sGMRES) [9]. The idea of the sGMRES algorithm is to produce the Krylov
basis using a truncated orthogonalization, and then apply a random sketch to reduce the
size of the corresponding least squares problem, which is then solved directly via a QR
factorization.
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1.1. Random Sketching. Given A ∈ Cn,n, let s � n, and define the sketch matrix
S ∈ Cs,n. The sketch matrix S is typically chosen to be a subspace embedding, or a linear
map to a lower dimensional space that preserves the `2-inner product of all vectors within
the subspace up to a factor of

√
1± ε for some ε ∈ (0, 1) [9, 12]. Such embeddings also

preserve `2-norms in a similar way [2].
Definition 1.1 (ε-subspace embedding). Given ε ∈ (0, 1), a sketch matrix S ∈ Cs,n

is an ε-subspace embedding for the subspace V ⊂ Cn if ∀x, y ∈ V,

|〈x, y〉 − 〈Sx, Sy〉| ≤ ε‖x‖2‖y‖2. (1.1)

Equation (1.1) provides a straightforward relation between the sketching matrix and
the preservation of the `2-norm.

Corollary 1.2. If the sketch matrix S ∈ Cs,n is an ε-subspace embedding for the
subspace V ⊂ Cn, then ∀x ∈ V,

√
1− ε ‖x‖2 ≤‖Sx‖2 ≤

√
1 + ε ‖x‖2 . (1.2)

Corollary 1.2 implies that we can also bound the singular values of a matrix V by the
sketched matrix SV . This implies that if SV is well conditioned, then so is V .

Corollary 1.3. If the sketch matrix S ∈ Cs,n is an ε-subspace embedding for the
subspace V ⊂ Cn, and V is a matrix whose columns form a basis of V, then

(1 + ε)−1/2 σmin(SV ) ≤ σmin(V ) ≤ σmax(V ) ≤ (1− ε)−1/2 σmax(SV ). (1.3)

Proofs for Corollary 1.2 and 1.3 are provided by Balabanov and Grigori in their paper on
Randomized Gram-Schmidt [2].

The limitation of ε-subspace embeddings presented in Definition 1.1 is that one needs
to know the subspace V ⊂ Cn a priori to ensure the sketch matrix approximately pre-
serves norms and inner products. To use sketched techniques in Krylov subspace methods
efficiently, we should instead use a sketch matrix that does not require complete prior knowl-
edge of the subspace, since Krylov subspaces are generated as the algorithm iterates. This
can be accomplished by using (ε, δ, d) oblivious `2-subspace embeddings [2].

Definition 1.4 ((ε, δ, d) oblivious `2-subspace embedding). A sketch matrix S ∈ Cs,n

is an (ε, δ, d) oblivious `2-subspace embedding if it is an ε-subspace embedding for any fixed
d-dimensional subspace V ⊂ Cn with probability at least 1− δ.

There are several examples of (ε, δ, d) oblivious `2-subspace embeddings. Given a Gaus-
sian matrix G ∈ Cs,n, a concrete example of a (ε, δ, d) oblivious `2-subspace embedding is
S = 1√

s
G where s = Ω(ε−2 log d log(1/δ)) [12]. Nakatsukasa and Tropp claim that an “op-

timal scaling” of the embedding length follows the relation s ≈ d/ε2 [9]. Using ε = 1/
√

2,
they describe a simple relation between the embedding dimension (sketch size) s and the
subspace dimension d by s = 2(d + 1) which is consistent with this “optimal scaling”, but
in principle, one could choose a different value of ε to construct a different sketch size.

Due to its simplicity in implementation, we conducted our experiments using a Gaussian
sketch matrix S of this form, as we were more concerned with robustness and stability of the
sketching methods than we were with performance in this manuscript. It should be noted
for performance considerations that a dense Gaussian sketch matrix is not a practical choice
of a sketch matrix for large-scale problems. Other (ε, δ, d) oblivious `2-subspace embeddings
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that can be applied efficiently and can be stored in a sparse format include sub-sampled
randomized Hadamard and Fourier transforms (SRHT and SRFT, respectively), and “sparse
dimension reduction maps” [2, 9].

1.2. GMRES Algorithm. GMRES is an algorithm designed to solve linear systems
of equations of the form Ax = b, where A ∈ Cn,n, b ∈ Cn. By design, GMRES(m) chooses
a solution that solves the least squares problem

xm = arg min
x∈x0+Km(A,r0)

‖b−Ax‖2 , (1.4)

where r0 = b−Ax0, and

Km(A, r0) = span(r0, Ar0, A
2r0, . . . , A

m−1r0) (1.5)

is the m-dimensional Krylov subspace generated by A and r0.
In principle, GMRES can use any basis for the Krylov subspace Km(A, r0) to construct

its approximate solution. If Vm is a matrix whose columns form a basis of Km(A, r0),
then regardless of how the basis is constructed, the GMRES(m) solution is mathematically
equivalent to

xm = x0 + Vmym, ym = arg min
y∈Cm

‖b−AVmy‖2 (1.6)

in exact arithmetic. In practice, if one is not careful with the construction of the basis of
Km(A, r0), then Vm (and consequently the least squares matrix AVm) will become severely
ill-conditioned, leading to a rank-deficient basis in finite precision, thereby causing stag-
nation of GMRES(m). This is one of the reasons the traditional implementation of the
GMRES(m) algorithm uses a full orthogonalization of the Krylov basis vectors via Modified
Gram-Schmidt (MGS). By the orthogonality of the Krylov basis vectors Vm, one can show
that

ym = arg min
y∈Cm

∥∥βe1 −Hm+1,my
∥∥
2

(1.7)

is equivalent to equation (1.6), where Hm+1,m ∈ Cm+1,m is an upper Hessenberg matrix,
β =‖b‖2, and e1 is the first column of the m ×m identity matrix. Solving the Hessenberg
least squares problem in equation (1.7) can be done efficiently using Givens rotations [10].

GMRES boasts two key advantages over other Krylov subspace methods. The first
being that in exact arithmetic, it is guaranteed to converge to the correct solution in at
most n iterations for any system of equations where A ∈ Cn,n is square and non-singular,
and therefore is a more robust method than many other iterative methods for nonsymmetric
systems. This fact is a consequence of equation (1.4), the fact that the true solution A−1b ∈
x0 + Kn(A, r0) (which itself follows from the Caley-Hamilton theorem), and the fact that
GMRES with a fully orthogonalized basis is backwards stable. The second key advantage
of GMRES is that its convergence is monotone, which also follows from equation (1.4).

The major drawback of the traditional GMRES algorithm based on full orthogonal-
ization is that GMRES uses a long-tail recurrence relation to compute the Krylov basis,
and therefore has a relatively high computational complexity per iteration. Since the full
orthogonalization of the Krylov basis after m iterations requires O(nm2) FLOPs in total,
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it is advantageous to use restarted GMRES with a relatively small restart cycle m to keep
the computational cost low.

The drawback to restarting GMRES is that the convergence is dependent on the restart
parameter m, and is very difficult to predict how m should be chosen a priori. Although
it is counterintuitive, using a larger restart parameter m in restarted GMRES does not
necessarily mean the method will converge in fewer iterations [5].

1.3. Newton Krylov Basis. Ideally, one can form a Krylov basis that is better con-
ditioned than the standard Krylov basis {b, Ab,A2b, . . . , Am−1b} without incurring signif-
icantly more computational cost. One strategy to control the conditioning of the Krylov
basis, albeit not as well as a full orthogonalization does, is to use a Newton basis [1]. The
Newton Krylov basis of κm(A, b) is defined as



b, (A− θ1I)b, (A− θ2I)(A− θ1I)b, . . . ,

m∏

j=1

(A− θjI) b



 , (1.8)

where θ1, θ2, . . . , θm are the Ritz values from one cycle of GMRES(m) (i.e., the eigenvalues
of the Hessenberg matrix Hm+1,m) [1].

A brief procedure outlining how to form a Newton basis of the Krylov subspaceKm(A, r) =
span{r,Ar, . . . , Am−1r} is given in Algorithm 1. In order to obtain the Ritz values θ1, θ2, . . . , θm,
one must first perform one cycle of GMRES(m).

Algorithm 1 Newton Krylov Basis

Input: Coefficient matrix A ∈ Rn,n, cycle length m, initial basis vector r ∈ Rn,
Ritz values (using Leja ordering) θ1, θ2, . . . , θm

Output: Newton Krylov basis Vm ∈ Rn,m

1: v1 = r/‖r‖2
2: for j = 1, . . . ,m do
3: w = Avj − θjvj
4: vj+1 = w/‖w‖2
5: end for

Asymptotically, computing the Newton Krylov basis is no more computationally ex-
pensive than the standard basis, because the Ritz values are pre-computed once before
beginning the algorithm.

1.4. sGMRES Algorithm. Nakatsukasa and Tropp proposed the sGMRES algo-
rithm in 2021, which forms the Krylov basis matrix Vm using a partial orthogonalization,
and then solves equation (1.4) using a random sketch [9]. In particular, given a sketch
matrix S, their method directly solves the sketched least squares problem

ym = arg min
y∈Cm

‖Sr0 − SAVmy‖2 (1.9)

via a QR factorization, and then updates the solution xm = x0 +Vmym [9]. The idea is that
if S is a (ε, δ, d) oblivious `2-subspace embedding, then it follows from equation (1.2) that

√
1− ε ‖r0 −AVmym‖2 ≤‖Sr0 − SAVmym‖2 ≤

√
1 + ε ‖r0 −AVmym‖2 . (1.10)
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Therefore, when the sketched residual norm‖Sr0 − SAVmym‖2 is small enough to converge,
the true residual norm ‖r0 −AVmym‖2 should also be small enough to converge, and con-
versely, if the sketched residual norm does not converge, the true residual norm should not
converge.

Moreover, one can expect the convergence of sGMRES to be driven by the choice of
the basis Vm rather than the sketching. To see this, consider the “unsketched” version
of the sGMRES algorithm where we produce the Krylov basis Vm in the same way as
sGMRES (e.g., with partial orthogonalization or some other basis construction). Then this
“unsketched” sGMRES will have residual norm ‖r0 −AVmỹm‖2, where

ỹm = arg min
y∈Cm

‖r0 −AVmy‖2 . (1.11)

Since the sketched least squares solution ym is not the minimizer of‖r0 −AVmy‖2, it follows
from equation (1.10) that

√
1− ε ‖r0 −AVmỹm‖2 ≤

√
1− ε ‖r0 −AVmym‖2 ≤‖Sr0 − SAVmym‖2 . (1.12)

Moreover, since ỹm is not the minimizer of the sketched least squares norm
‖Sr0 − SAVmy‖2, it follows that

‖Sr0 − SAVmym‖2 ≤‖Sr0 − SAVmỹm‖2 ≤
√

1 + ε ‖r0 −AVmỹm‖2 . (1.13)

Therefore,
√

1− ε ‖r0 −AVmỹm‖2 ≤‖Sr0 − SAVmym‖2 ≤
√

1 + ε ‖r0 −AVmỹm‖2 , (1.14)

which implies the computation of the basis for sGMRES solely determines the convergence
of the algorithm. If Vm is severely rank-deficient, then the “unsketched” sGMRES residual
norm ‖r0 −AVmỹm‖2 will stagnate, as new columns of Vm will not add new information to
the least squares solution, and by equation (1.14), this implies sGMRES will also stagnate.
Conversely, if the basis Vm is chosen so that the “unsketched” sGMRES residual norm
‖r0 −AVmỹm‖2 converges, then sGMRES will also converge by equation (1.14).

Pseudocode for m iterations of sGMRES with a k-vector partial orthogonalization,
denoted ‘sGMRES(m)’ is shown in Algorithm 2. Nakatsukasa and Tropp show that m iter-
ations of sGMRES incurs only O(m3 +nm log(m)) FLOPs provided a k � m vector partial
orthogonalization and a highly efficient SRFT sketch matrix are used, while GMRES incurs
O(nm2) FLOPs, and is therefore more expensive since n� m [9]. Their FLOP analysis ex-
cludes the sparse matrix-vector multiplications used to produce new Krylov vectors because
these computational costs are the same for both the GMRES and sGMRES algorithms, and
therefore are not necessary to include when comparing the costs of the two algorithms.

While the partial orthogonalization procedure used in sGMRES leads to computational
savings, the resulting Krylov basis Vm should not be expected to maintain full or even
almost full rank. Hence, we can expect unrestarted sGMRES to stagnate much earlier
than GMRES. To combat this, one can restart sGMRES in an analagous way to GMRES.
However, one should keep in mind that restarts are not guaranteed to resolve stagnation
issues in KSMs and can drastically change the convergence behavior in unanticipated ways.

Provided the sketch matrix is a (ε, δ, d) oblivious `2-subspace embedding, the choice of
the sketch should not substantially affect convergence, as they will preserve the norms of
the least squares solution within a factor of ε and all sGMRES implementations produce
the same Krylov subspaces, regardless of the sketch matrix.
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Algorithm 2 sGMRES(m) with a k-vector partial orthogonalization

Input: Non-singular matrix A ∈ Cn,n, sketch matrix S ∈ Cs,n,
RHS vector b ∈ Cn, initial guess x0 ∈ Cn

Output: Solution xm ∈ Cn

1: r0 = b−Ax0
2: β =‖r0‖2 , v1 = r0/β
3: for j = 1, . . . ,m do
4: w = Avj
5: for i = max(1, j − k + 1), . . . , j do
6: w = w − (v∗iw)vi
7: end for
8: vj+1 = w/‖w‖2
9: end for

10: ym = arg miny‖SAVmy − Sb‖2
11: Vm = [v1|. . .|vm]
12: xm = x0 + Vmym

2. Computational Experiments. Randomized GMRES variants can only be consid-
ered promising if they are more robust or computationally efficient than previously studied
efficient GMRES implementations and GMRES-like algorithms. While the primary mo-
tivation for incorporating randomized techniques into GMRES is driven by parallel effi-
ciency considerations, to understand whether sGMRES is worth implementing into a high-
performance software library like Trilinos, we first analyzed the robustness of sGMRES.
Thereafter, we attempted to improve the stability of the Krylov basis construction by lever-
aging a Newton basis. Finally, we consider whether sGMRES–with or without a Newton
basis–has value for practical applications.

2.1. Robustness of sGMRES. Nakatsukasa and Tropp present promising results for
the sGMRES algorithm in terms of both efficiency and robustness [9]. However, there is
a commonality between their examples showing positive results: the problems are nearly
symmetric. In particular, they show two examples where GMRES and sGMRES converge
at about the same rate: the first using the t2em matrix from the SuiteSparse Library [4],
and another using a 2D Laplacian matrix. The t2em matrix has 99.9% pattern and numeric
symmetry, and Laplacian matrices are all symmetric.

This is significant because when one has a symmetric matrix, the full orthogonaliza-
tion performed by the Arnoldi procedure in GMRES reduces to the symmetric Lanczos
procedure. The Lanczos procedure for symmetric problems produces a fully orthogonal-
ized Krylov basis using a short-term recurrence (in particular, a three-term recurrence).
Therefore, when the problem is symmetric, the sGMRES method with a k-vector partial
orthogonalization should succeed, since a full orthogonalization reduces to a 3-vector par-
tial orthogonalization in exact arithmetic. To avoid getting a full orthogonalization in the
Laplacian example, Nakatsukasa and Tropp use only a 2-vector partial orthogonalization,
but one should note that this is nearly a full orthogonalization. In the t2em example, the
matrix is extremely close to symmetric, and a 4-vector partial orthogonalization is used. By
the near symmetry of the problem, a 3-vector partial orthogonalization would likely be close
to fully orthogonal, and so a 4-vector partial orthogonalization is unlikely to suffer from a
significant loss of orthogonality.

Nakatsukasa and Tropp illustrate one hard example where sGMRES fails while GMRES
does not, which uses the fs 680 1 matrix from SuiteSparse. The authors recognize that
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there are other examples where the partial orthogonalization does not sufficiently avoid
stagnation, but do not elaborate much further. It is worth noting that fs 680 1 is the
only example presented that is far from symmetric, with 51.1% pattern symmetry and 0%
numeric symmetry [4].

For problems that are far from symmetric, one should not expect the partial orthog-
onalization to maintain an orthogonal basis. Since the standard Krylov basis in Equation
(1.5) is severely ill-conditioned, the loss of orthogonality induced by the partial orthogo-
nalization can cause the rank of the sGMRES Krylov basis Bm deteriorate, while the fully
orthogonalized GMRES Krylov basis remains full rank. This results in earlier stagnation of
the sGMRES residual, as mentioned in Section 1.4.

To illustrate this, we tested additional difficult, highly non-symmetric problems for
sGMRES to solve. In all our experiments in this subsection, we solved Ax = b using both
GMRES and sGMRES, where A ∈ Rn,n is detailed on a case-by-case basis and b ∈ Rn is a
sinusoidal vector where bk = sin(k) for k = 1, 2, . . . , n. Given a Gaussian matrix G ∈ Cs,n

with s = 2(m + 1) where m is the restart parameter for GMRES and sGMRES, then the
sketch matrix in sGMRES is S = 1√

s
G.

The first example we show uses the lhr04 matrix from the SuiteSparse library with
1.4 added to each diagonal entry, which we refer to as “lhr04 + 1.4I” for brevity. The
original lhr04 matrix is an extremely challenging problem, as it is highly non-symmetric
with 1.5% pattern symmetry and 0% numeric symmetry, and is severely ill-conditioned
with a condition number of 4.1 × 1018 [4]. Adding 1.4 to each diagonal entry preserves
the symmetry properties, but reduces the condition number down to 1.0 × 105. Thus, the
problem is constructed in such a way that it is seemingly innocuous at first glance, but is
close to an extremely challenging problem.

In our experiments with lhr04 + 1.4I, we did not use restarts, and we set the restart
parameter (i.e., the maximum number of iterations in this case) to m = 700. We compared
GMRES to two different versions of sGMRES: the first being sGMRES with only a k = 4
vector partial orthogonalization which we refer to as sGMRES(4) in the plots, and then sGM-
RES with a k = 100 vector partial orthogonalization which we refer to as sGMRES(100).
We plot the residual norm convergence behavior of each algorithm in Figure 2.1 (a). In Fig-
ure 2.1 (b), we plot rank(ABj) as the number of iterations increase where Bj is the Krylov
basis for the method at iteration j using MATLAB’s rank function for the numerical rank
with default settings1. The behavior of rank(ABj) is of interest since ABj is the coefficient
matrix in the least squares problem (1.6). Thus, when rank(ABj) = rank(ABj+1), then the
residual norm does not decrease from iteration j to iteration j + 1, since the least squares
problem at iteration j+1 does gain any new information that was unavailable at iteration j.
Therefore, we can expect worse convergence behavior of any GMRES type of method when
ABj is rank-deficient. Figure 2.1 (b) shows that the partial orthogonalization can lead to
a severely low rank least squares matrix, even when a 100-vector partial orthogonalization
is used. Figure 2.1 (a) shows this loss of rank leads to stagnation in the sGMRES residual
norm.

2.2. Newton Basis sGMRES. In an attempt to improve the robustness of sGMRES
without resorting to a fully orthogonalized basis, we tested a few alternative basis construc-
tions involving the Newton basis described in Section 1.3. This can be incorporated into
sGMRES in several ways. The first way is to replace the truncated Arnoldi procedure in
lines 4-8 of Algorithm 2 with lines 3-4 of Algorithm 1, which we refer to as “Newton Basis

1The default threshold for the numerical rank of a matrix Z ∈ Cn,m using MATLAB’s rank function
is max{n,m}eps(‖Z‖2), where eps(‖Z‖2) is the distance between ‖Z‖2 and the next largest floating point
number.
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Fig. 2.1: Performance of non-restarted GMRES (blue) compared to sGMRES with a 4-vector
partial orthogonalization (red) and a 100-vector partial orthogonalization (yellow).

sGMRES without orthogonalization”. Additionally, one can still partially orthogonalize the
basis, but replace line 4 in Algorithm 2 with line 3 of Algorithm 1 to try to stabilize the
partial orthogonalization without incurring significantly more computational cost, which we
refer to as “Newton Basis sGMRES with partial orthogonalization”.

Figure 2.2 demonstrates experimental results for these Newton basis versions of sGM-
RES compared to the ordinary sGMRES with partial orthogonalization and to GMRES for
the same lhr04+1.4I test problem studied in section 2.1. All partially orthogonalized meth-
ods used a 4-vector partial orthogonalization. In figure 2.2 (a) and (b) we plot the residual
norm and the rank of the least squares matrix ABj at iteration j, just as we did in section
2.1, and in (c) we plot the condition number of the least squares matrix ABj at iteration j.
The results indicate that the use of the Newton basis, with or without partial orthogonal-
ization, do not resolve the stagnation issue that sGMRES faces for this problem in general,
due to a severely ill-conditioned, and ultimately rank-deficient least squares problem. How-
ever, we will investigate the effectiveness of these methods for practical Computational Fluid
Dynamics problems in Section 2.3.

2.3. Effectiveness of sGMRES on Practical Computational Fluid Dynamics
Problems. While it is understood from the experiments in Sections 2.1 and 2.2 that sGM-
RES with partial orthogonalization, a Newton basis, or a partially orthogonalized Newton
basis can stagnate badly while GMRES converges well, the method is not entirely invalid
just because it fails for a particularly difficult example. Indeed, while it is mathematically
satisfying to understand whether or not a method is robust, we must consider how these
methods perform on practical problems. Because sGMRES with a Newton basis without
any orthogonalization can be executed very efficiently on high-performance machines, it may
still be useful, provided the method works for realistic applications.

Let us first understand why the results shown thus far are not exactly a realistic demon-
stration of the sGMRES method’s performance. First, the lhr04 + 1.4I test problem was
concocted to accomplish a specific task. The lhr04 matrix is highly non-symmetric and
severely ill-conditioned. Adding 1.4I to the matrix preserves the symmetry pattern, but re-
duces the condition number substantially. Therefore, lhr04+1.4I is highly non-symmetric,
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Fig. 2.2: Performance of sGMRES with and without a Newton basis compared to GMRES

and almost severely ill-conditioned. This is not realistic for many physics and engineering
applications.

Next, we did not use restarts on any of our methods and chose a restart parameter
of 700. This is again unrealistic, because realistic implementations of any GMRES-type
method would use a relatively small restart parameter, such as 50 in order to keep storage
requirements and computational complexity low. Lastly, we did not use any preconditioning
on our examples for simplicity.

This prompted us to consider applying the experiments in Section 2.2 to every Com-
putational Fluid Dynamics (CFD) problem in SuiteSparse with 50, 000 to 2, 000, 000 rows.
We eliminated any symmetric positive definite (SPD) problem from our tests, as these were
cases where Conjugate Gradient would obviously be preferable over any GMRES variant.
We tested GMRES compared to sGMRES with a 4-vector partial orthogonalization (denoted
as ‘sGMRES(4)’ in Figures 2.3 and 2.4), and sGMRES with a Newton Krylov basis without
any orthogonalization (denoted as ‘sGMRES Newton’ in Figures 2.3 and 2.4). We allowed
restarts for each method with a cycle length of 50, and used ILU(0) right-preconditioning.
In large-scale parallel applications, ILU(0) would likely not be used in favor of other precon-
ditioners that perform better in parallel, but for now we simply wanted to understand how
the methods perform provided we have a reasonably good preconditioner, and real examples
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would choose preconditioners on a case-by-case basis. The ILU(0) preconditioner appears
to perform well for these test problems, with the exception of the PR02R example shown
in Figure 2.4 (f); this is due to the fact that the ILU(0) factorization produces a lower
triangular part L with κ(L) ≈ 1058 and an upper triangular U with κ(U) ≈ 1063. Thus,
the triangular solves done in the preconditioning step for this problem are very inaccurate,
causing each of the algorithms to fail for this problem.

The residual norm convergence behavior for each test example are plotted in Figures 2.3
and 2.4. The title of each plot gives the name of the matrix used in the SuiteSparse library.
The results show that Newton basis sGMRES without partial orthogonalization performs
quite well. In spite of the method requiring more iterations than GMRES at times, we
conjecture that the increased number of iterations is not substantial enough to outweigh the
savings in computational cost by not orthogonalizing the basis vectors.

3. Conclusions. In this manuscript, we tested the robustness of the sGMRES algo-
rithm. We found that the algorithm can stagnate very quickly due to a severe loss in rank of
the least squares matrix arising from the partially orthogonalized basis, even if one performs
a partial orthogonalization with many vectors, while GMRES converges without issue for
this same problem. We tested incorporating a Newton Krylov basis with and without the
partial orthogonalization into sGMRES to improve the conditioning of the least squares
problem, which also did not resolve the stagnation issue of sGMRES for a challenging, yet
reasonably well conditioned problem.

However, we showed that Newton basis sGMRES without orthogonalization generally
succeeds for practical CFD problems, and converges in nearly the same number of iterations
as GMRES. This is interesting, as Newton basis sGMRES without orthogonalization is far
less computationally expensive per iteration than GMRES. Provided Newton basis sGMRES
without orthogonalization does not converge in significantly more iterations than GMRES,
which was not the case in any of the experiments in Section 2.3, sGMRES should outperform
GMRES on large parallel machines.

While the robustness of sGMRES is limited, ideas explored in this investigation may
have additional benefits for other algorithms. Future work related to the sketching tech-
niques used in this manuscript include incorporating sketching into the inner orthogonal-
ization procedure in the block Arnoldi process, using ideas from a recent publication by
Balabanov and Grigori on Randomized Gram-Schmidt [2]. This could help maintain a well-
conditioned, full rank basis at low computational cost for a variety of methods using block
Arnoldi, such as s-step GMRES and block GMRES [3, 6].

Sketching the least squares problem for block GMRES may also be worth investigating.
Solving the block GMRES least squares problem is far more computationally expensive than
the least squares problem for GMRES, since it involves converting a banded Hessenberg
matrix to upper triangular form, compared to the very inexpensive Givens rotations used
to convert the Hessenberg matrix to upper triangular form in GMRES [6, 7]. Thus, the
computational savings realized by sketching the least squares problem for block GMRES
may be more significant than those for GMRES.
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Fig. 2.3: Convergence behavior of sGMRES with a 4-vector partial orthogonalization and
sGMRES with a Newton Krylov basis without orthogonalization compared to GMRES for
CFD problems from SuiteSparse.
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Fig. 2.4: Convergence behavior of sGMRES with a 4-vector partial orthogonalization and
sGMRES with a Newton Krylov basis without orthogonalization compared to GMRES for
CFD problems from SuiteSparse.
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LYAPUNOV CONTROL-INSPIRED QUANTUM ALGORITHMS FOR
GROUND STATE PREPARATION

JAMES B. LARSEN∗, MATTHEW D. GRACE† , ANDREW D. BACZEWSKI† , AND ALICIA B.

MAGANN†

Abstract. Finding the ground state of a quantum system is a well studied problem with applications
spanning chemistry, physics, and material science. There has been a recent surge of interest from the quan-
tum computing community in variational quantum algorithms for solving this problem. These algorithms
utilize a hybrid quantum-classical framework to prepare ground states, requiring classical optimization
protocols that become prohibitively expensive in higher dimensions. We address this challenge through
the development of a feedback-based quantum algorithm for ground state preparation that is inspired by
quantum Lyapunov control and is optimization free. We demonstrate this algorithm through numerical
simulation of the Fermi-Hubbard model for correlated systems and explore aspects of the algorithm’s per-
formance. This new method provides a pathway to enhance our understanding of the Fermi-Hubbard model
and other quantum systems.

1. Introduction. In recent years, rapid progress in the development of quantum com-
puting technologies has given rise to the current noisy intermediate-scale quantum (NISQ)
era [32]. This has motivated substantial research exploring applications of NISQ devices in
a variety of areas, including quantum simulation. In particular, the prospect of utilizing
NISQ devices to find ground states of chemical and materials systems is currently receiving
significant attention. A variety of approaches have been developed for this task [2], including
Quantum Phase Estimation [7, 16], Imaginary Time Evolution [10, 28, 30], and the Varia-
tional Quantum Eigensolver (VQE) [31]. VQE is a hybrid quantum-classical algorithm, and
may hold particular promise in the near-term. However, a practical challenge associated
with VQE is the need to classically optimize over a set of quantum circuit parameters, a
task whose complexity can increase rapidly with the dimension of the search space.

To avoid this increased complexity, we investigate an alternative formulation for finding
ground states that is optimization free. Instead of classically optimizing over a parame-
terized circuit, we utilize a feedback law to sequentially set the parameters layer-by-layer,
conditioned on feedback from qubit measurements. Our feedback law is based on quantum
Lyapunov control, and it guarantees that the value of our objective function monotonically
decreases with respect to circuit depth.

In particular, this method extends the Feedback-based ALgorithm for Quantum Op-
timizatioN (FALQON) [24, 25], a feedback-based approach for solving combinatorial opti-
mization problems on quantum computers that utilizes the quantum approximate optimiza-
tion algorithm (QAOA) ansatz from 2014 [9]. The QAOA ansatz is formed by a sequence
of layers, where each layer is composed of alternating unitaries generated by a “problem”
Hamiltonian, which is an Ising encoding of a combinatorial optimization problem [23], and a
“driver” Hamiltonian. QAOA has subsequently inspired the development of other ansätze,
including the Hamiltonian variational ansatz (HVA) introduced in [36] in 2015. The HVA
aims to generalize the QAOA ansatz to other classes of Hamiltonians beyond Ising models
and is based on a similar premise: each layer contains a sequence of parameterized unitaries
generated by portions of the problem Hamiltonian. If the qubits are initialized in the ground
state of a simple (e.g., noninteracting) portion of the problem Hamiltonian, then it can be
shown that the ground state of the full problem Hamiltonian is reachable with enough layers
using the HVA, invoking the adiabatic theorem just as in QAOA.
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Here, we explore applications of feedback-based quantum algorithms to finding ground
states of the Fermi-Hubbard model. The Fermi-Hubbard model is a model of strongly cor-
related solid-state systems that was introduced by John Hubbard in 1963 [13] and has since
been a subject of intense interest [1, 33]. The model describes the behavior of fermions
that are allowed to hop between lattice sites and experience repulsive on-site interactions.
Despite its simplicity, the Fermi-Hubbard model is capable of capturing a variety of or-
derings and certain details of its phase diagram remains an open topic of research. As an
approximation to a more detailed model of numerous material systems, it is difficult to
unambiguously constrain the model’s phase diagram through experiments. Thus, classical
and quantum computers provide the only way to unambiguously study the model in and of
itself. At zero temperature, this involves approximating the ground state of the model for
finite-size instances and extrapolating to the thermodynamic limit.

The 2D square lattice Fermi-Hubbard model is among the most studied variants of this
model and it is thought to capture phenomena related to high-temperature superconduc-
tivity in hole-doped cuprates. A recent comparison of numerous state-of-the-art classical
methods for studying this variant can be found in [21]. The authors find that the inter-
mediate coupling regime near half-filling is especially difficult to study and has the most
uncertain results; this may also be the regime relevant to cuprate superconductivity [34].

The difficulty of studying relevant regimes highlights one of the key challenges that
motivates the use of quantum computers to study the Fermi-Hubbard model. Classical
computers force us to choose between exact algorithms requiring resources that scale ex-
ponentially with the number of lattice sites, and approximate algorithms that are efficient
but without easily quantifiable errors. The exponential cost of exact classical algorithms
is nicely highlighted by one of the largest exact simulations done on a trapped instance of
the Fermi-Hubbard model, with 22 sites and 17 electrons [37]. To approach the thermody-
namic limit while preserving quantifiable error, it may be that quantum computers provide
a decisive advantage. While we do not expect to be able to efficiently prepare the ground
state of arbitrary Hamiltonians on quantum computers, there is good reason to expect that
many physical Hamiltonians possess ground states that can be efficiently prepared. In ad-
dition to numerical calculations on classical and quantum computers, the Fermi-Hubbard
model can also be studied using analog quantum simulation. The two major platforms for
analog quantum simulation of the Fermi-Hubbard model are cold atoms in optical lattices
[3, 18, 26, 35] and semiconductor quantum dot arrays [8, 12, 14, 19, 20].

In this work, we formulate feedback-based quantum algorithms that utilize the HVA to
prepare ground states of the Fermi-Hubbard model in a manner that is optimization free.
The paper is organized as follows: in Sec. 2, we describe the necessary preliminary theory
behind our proposed method. This includes an explanation of quantum Lyapunov control,
FALQON, the Fermi-Hubbard model, the HVA, and Jordan-Wigner (JW) fermion-to-qubit
encoding. Next, in Sec. 3, we combine these preliminaries and introduce our feedback-based
quantum algorithm for ground state preparation. We then show several numerical results
on different instances of the Fermi-Hubbard model in Sec. 4, and conclude with a discussion
of our results and possible future avenues of research in Sec. 5.

2. Preliminaries. In this section, we provide technical details behind the key ideas
utilized in this work.

2.1. Quantum Lyapunov Control. The inspiration for this is quantum Lyapunov
control theory, which is a framework for designing one or multiple time-dependent controls
to drive a quantum dynamical system towards a desired objective in an asymptotic manner
[6, 11]. To describe the method, we begin by considering a quantum system whose dynamics
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are dictated by the time-dependent Schrödinger equation,

i
d

dt
|ψ(t)〉 =

(
Hp +Hdβ(t)

)
|ψ(t)〉, (2.1)

where Hp denotes the time-independent portion of the Hamiltonian and Hd denotes the
control Hamiltonian that couples a time-dependent control function, β(t), to the system.
We consider the control problem of designing β(t) to drive |ψ(t)〉 to a state that minimizes
an objective function J . Quantum Lyapunov control has been formulated for a variety of
different objective functions, such as capturing the distance from a target state, the target
state error, or the expectation value of a target observable. Here, we define our objective
function to be the expected value of Hp:

J(|ψ(t)〉) = 〈ψ(t)|Hp|ψ(t)〉. (2.2)

To solve this control problem, we demand that β(t) is defined in a manner that satisfies

dJ

dt
≤ 0,∀t (2.3)

such that the objective function decreases monotonically over time (ideally, to the global
minimum of J).

Evaluating the left-hand-side of Eq. (2.3) using Eqs. (2.1) and (2.2), we find

dJ

dt
=

d

dt
〈ψ(t)|Hp|ψ(t)〉

=

(
d

dt
〈ψ(t)|

)
Hp|ψ(t)〉+ 〈ψ(t)|Hp

(
d

dt
|ψ(t)〉

)

=
(
〈ψ(t)|i(Hp +Hdβ(t))

)
Hp|ψ(t)〉+ 〈ψ(t)|Hp

(
− i(Hp +Hdβ(t))|ψ(t)〉

)

= 〈ψ(t)|i[Hd, Hp]|ψ(t)〉β(t)

≡ A(t)β(t),

(2.4)

where [C,D] = CD − DC denotes the commutator of C and D and we have introduced
the abbreviated notation A(t) ≡ 〈ψ(t)|i[Hd, Hp]|ψ(t)〉. Given the form of Eq. (2.4), the
condition in Eq. (2.3) is satisfied for β(t) = −wf(t, A(t)), where w > 0 is a positive weight
and f(t, A(t)) is a function selected such that f(t, 0) = 0 and A(t)f(t, A(t)) > 0 for all
A(t) 6= 0.

One formulation is to choose β(t) according to the following simple control law:

β(t) = −A(t) = −〈ψ(t)|i[Hd, Hp]|ψ(t)〉, (2.5)

so that the condition given by Eq. (2.3) is satisfied, i.e., dJ
dt = −

(
A(t)

)2 ≤ 0.

2.2. FALQON. FALQON is a quantum algorithm developed specifically to solve com-
binatorial optimization problems on quantum computers in a manner that is optimization-
free, thus distinguishing it from other candidate strategies such as the QAOA. This is
accomplished by first mapping the combinatorial optimization problem under consideration
to an Ising Hamiltonian, Hp, such that the ground state of Hp encodes the solution to the
combinatorial optimization problem [23]. Then, the task is to minimize an objective func-

tion J = 〈ψ|Hp|ψ〉 over a set of parameters ~β that influence the state |ψ〉. FALQON is a

feedback-based quantum algorithm that assigns values to each element in ~β according to a
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feedback law derived from quantum Lyapunov control theory, as outlined in Sec. 2.1. We
begin this section by describing how the controlled quantum time evolution described by
Eq. (2.1) could be simulated on a quantum computer. We then go on to discuss FALQON
implementation details.

The solution to Eq. (2.1) for time-dependent Hamiltonians is given by

|ψ(t)〉 = T e−i
∫ t
0

(Hp+Hdβ(t′))dt′ |ψ(0)〉, (2.6)

where T denotes the time-ordering operator. We first digitize this evolution into a sequence
of ` discrete time steps and approximate the Hamiltonian as time-independent over each
step, such that

|ψ(t+ ∆t)〉 = e−i(Hp+β(t)Hd)∆t|ψ(t)〉. (2.7)

Then, we approximate the evolution over each time step using Trotterization, i.e.,

e−i(Hp+βkHd)∆t ≈ e−iβkHd∆te−iHp∆t. (2.8)

which can be justified for small ∆t using Trotter’s formula,

ei(C+D)t = lim
n→∞

(eiCt/neiDt/n)n. (2.9)

In total, this sequence of approximations serves to break the complicated unitary governing
the time evolution in Eq. (2.6) into a product of much simpler exponentials, i.e.,

|ψ`〉 = e−iβ`Hd∆te−iHp∆t · · · e−iβ1Hd∆te−iHp∆t|ψ0〉
= Ud(β`)Up...Ud(β1)Up|ψ0〉.

(2.10)

In Eq. (2.10), we have adopted the abbreviated notation βk ≡ β(2k∆t); |ψk〉 ≡ |ψ(2k∆t)〉;
Up ≡ e−iHp∆t; and Ud(βk) ≡ e−iβkHd∆t, for k = 1, 2, ..., `.

We now describe the mechanics of implementing FALQON. In the following, we use the
simplified notation Ak ≡ 〈ψk|i[Hd, Hp]|ψk〉. The initial step is to select an appropriate initial
state |ψ0〉 and to seed the algorithm with β1 = 0. Then, FALQON utilizes the following
feedback law at each step 1 < k ≤ `,

βk = −Ak−1 = −〈ψk−1|i[Hd, Hp]|ψk−1〉 (2.11)

which is a digitized version of the control law given earlier in Eq. (2.5). We call Eq. (2.11)
a feedback law because at each step, Ak−1 is “fed back” to set the value of the next βk. In
general, the values of each Ak can be estimated via repeated measurements of the observable
i[Hd, Hp], decomposed into a linear combination of multiqubit Pauli operators, in the state
|ψk〉. The free parameters in FALQON are the choice of the time step ∆t, initial state |ψ0〉,
and number of layers `. For further implementation details, see Fig. 2.2, as well as [24, 25].

2.3. Hamiltonian Variational Ansatz. The Hamiltonian variational ansatz (HVA)
proposed in [36] is going to be our ansatz of choice for generalizing the FALQON feedback
law for ground state preparation. The HVA is motivated by QAOA and, more broadly, the
premise of quantum annealing. For the HVA, instead of separating out our problem Hamil-
tonian and our driver Hamiltonian, we can instead decompose our problem Hamiltonian as
a sum of different terms,

Hp =

m∑

j=1

Hj . (2.12)
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From here, we can use Trotter’s formula, Eq. (2.9), to approximate the time evolution
under this Hamiltonian as a product of individual exponentials, which we may additionally
parameterize by {βjk}mj=1, where j labels the corresponding term in the Hamiltonian and
k labels the associated layer of HVA. This gives us that the kth layer of our Trotterized
evolution is as follows:

|ψk+1〉 = e−iβ
1
kH1∆te−iβ

2
kH2∆t...e−iβ

m
k Hm∆t|ψk〉. (2.13)

This ansatz is discussed in greater detail in [29].
We can see that for appropriate choices of {βjk}mj=1, this method can be made very

similar to a digitized implementation of quantum annealing. That is, if Hx is a Hamiltonian
with a known and easily prepared ground state, we could let βx0 = 1 and βj 6=x0 = 0. As time
increases, we could slowly turn on the other Hamiltonians, Hj 6=x, such that βj 6=x → 1, in
order to generate an adiabatic transition to our new, sought-after ground state of the full
Hamiltonian Hp in Eq. (2.12).

2.4. The Fermi-Hubbard Model. The Fermi-Hubbard model describes a lattice of
fermions. As opposed to bosons, fermions obey the Pauli-exclusion principle, meaning no
two fermions can occupy the same state at the same time. Throughout this section, we use
hats to distinguish fermionic operators from their eigenvalues.

First, we define the Hilbert space associated with a lattice site x:

Hx = span{|nx↑nx↓〉 : nxσ ∈ Z2}, (2.14)

where σ denotes the spin of the fermion, and can take the value of either spin up, ↑, or spin
down, ↓. This notation is an occupation number representation, where each nxσ is referred
to as a spin orbital. Specifically, when nxσ = 1, the lattice site x is occupied by one fermion
of spin σ. For example, |11〉 indicates full occupation of site x by fermions of both spins
and |00〉 indicates the site is unoccupied. Considering a system of N lattice sites, we get
the following Hilbert space:

Hlattice =

N⊗

x=1

Hx (2.15)

= span{|n1↑n1↓...nN↑nN↓〉 : nxσ ∈ Z2}. (2.16)

From this, we can see that each vector in the Hilbert space is going to be a normalized

vector in C22N

, with each element of the vector corresponding to the amplitude of a certain
arrangement of the fermions across the lattice.

Prior to formalizing the Fermi-Hubbard Hamiltonian, we need to define several operators
on the Hilbert space of the lattice. First, we will define the annihilation operator:

âxσ|...nxσ...〉 =

{
pxσ|...0...〉 if nxσ = 1

0 if nxσ = 0
, (2.17)

and its Hermitian conjugate, the creation operator:

â†xσ|...nxσ...〉 =

{
0 if nxσ = 1

pxσ|...1...〉 if nxσ = 0
. (2.18)

The variable pxσ corresponds to a factor of 1 or −1 that depends on the “parity” of the
state, where a factor of −1 represents an odd number of fermions in the system. Note that
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neither of the above operators are Hermitian, but combining them gives us the number
operator, which is Hermitian:

â†xσâxσ|...nxσ...〉 ≡ n̂xσ|...nxσ...〉 = nxσ|...nxσ...〉. (2.19)

The number operator satisfies an eigenvector relation with eigenvalue zero or one. We can
use this number operator in the construction of our Hamiltonian to count the number of
fermions in each site of the lattice.

With these definitions in place, we now introduce the Fermi-Hubbard Hamiltonian,
which we denote by HFH . We note that general fermionic Hamiltonians are described in
detail in Section 3.1 of [5]. The Fermi-Hubbard Hamiltonian contains two terms:

HFH = T + V. (2.20)

The T term represents the kinetic energy associated with fermions moving, or “hopping,”
between sites on the lattice and forms the noninteracting portion of the Hamiltonian:

T = −
∑

〈m,n〉
tm,n(â†m↑ân↑ + â†n↑âm↑ + â†m↓ân↓ + â†n↓âm↓), (2.21)

where 〈m,n〉 labels adjacent sites in the lattice and tm,n is the kinetic energy associated
with hopping from site m to site n, also referred to as the tunneling amplitude. In our
case, for all 〈m,n〉-pairs, we set tm,n to be equal to the same value, τ . We remark that the
Fermi-Hubbard model can be studied with or without periodic boundary conditions, and in
this work, we opt for the latter.

Meanwhile, V in Eq. (2.20) represents the local potential energy at each site that is
due to the on-site interaction between fermions:

V = U

N∑

k=1

n̂k↑n̂k↓, (2.22)

with U representing the on-site repulsive interaction strength.
The Fermi-Hubbard model can be solved analytically in the tight-binding limit where

U/τ → 0 and also in the atomic limit where τ/U → 0. However, in the general case,
an analytical solution is only known for the 1D case, which utilizes the Bethe ansatz [22].
Different regimes of U/τ are studied in materials science for analyzing different properties.
For example, [18] looked specifically at U/τ ≈ 14.

2.4.1. HVA formulation for the Fermi-Hubbard model. We now consider ways
to formulate the HVA for the Fermi-Hubbard Hamiltonian. One possibility is for the Hj ’s
in Eq. (2.12) to correspond to H1 = T , the kinetic energy associated with tunneling from
one site to another, and H2 = V , the potential energy associated with local repulsion at
each site, as given in Eq. (2.20). As proposed in [4], another possibility is to further divide
the Hamiltonian by separating T into sets of mutually commuting terms. For example,
a 1D model would have two sets of terms: Hh1 composed of terms associated with even-
numbered sites and Hh2 for odd sites. A 2D model would have two additional sets of
terms, Hv1 and Hv2, taking into account the vertical dimension. This procedure splits the
2D Fermi-Hubbard Hamiltonian into five pieces total. Each of the five pieces can then be
parameterized, giving us that layer k of the HVA has the form:

U(βv2
k , β

h2
k , βv1

k , β
h1
k , βVk ) = e−iβ

v2
k Hv2e−iβ

h2
k Hh2e−iβ

v1
k Hv1e−iβ

h1
k Hh1e−iβ

V
k V , (2.23)
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Fig. 2.1. Configuration of 5 ↑ and 3 ↓ fermions in a 3×3 Fermi-Hubbard lattice. The potential energy
associated with on-site interactions between fermions has strength U , and the tunneling amplitude associated
with fermions hopping between adjacent lattice sites is given by τ , as shown in red. Two fermions with the
same spin cannot occupy the same state, and thus, fermions are prohibited from hopping to adjacent states
that are already occupied, which we illustrate in gray. In addition, the HVA decomposition of the hopping
terms in T is shown in different shades of purple (horizontal terms h1 and h2) and green (vertical terms
v1 and v2).

where we note the similarities between Eq. (2.13) and Eq. (2.23). In Sec. 3, we take
advantage of these similarities to formulate a feedback-based quantum algorithm for the
Fermi-Hubbard model with the HVA, thereby extending the premise of FALQON to a new
application.

Fig. 2.2. Feedback-based quantum algorithm for the Fermi-Hubbard model, based on the premise of
FALQON. (a) The steps for implementing the algorithm. Each step k involves extending the quantum
circuit by one layer, i.e., concatenating the quantum circuit from the prior step k− 1 with Ud(βk)Up. The
value of βk at each layer k is set using the results from the prior step k − 1 according to the feedback law
βk = −Ak−1. (b) The specific decompositions for Up and Ud based on the HVA that are used in this work,
shown here for the case of a single control function, with colors loosely corresponding to Fig. 2.1. (c) Our
decomposition of Ud in the case of multiple control functions.

2.5. Jordan-Wigner Encoding. In our Fermi-Hubbard model description, we rep-
resented whether or not a particular spin orbital was occupied with |1〉 or |0〉, with the
state |1〉 corresponding to occupation of the spin orbital and the state |0〉 corresponding to
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the spin orbital being unoccupied. In this section, we consider how to map this fermion
occupation number representation to a qubit representation using the Jordan-Wigner (JW)
encoding scheme. JW encoding relies on properties of operators to maintain antisymmetry
conditions associated with fermions, and is arguably more intuitive than other encoding
methods such as Bravyi-Kitaev or parity encoding. The primary difference between the
encoding schemes is the locality of storing parity versus storing occupation number. In JW
encoding, the occupation number is stored locally and the parity is stored through design
of the associated operators. Other encoding schemes alter this paradigm by storing a mix
of the parity and occupation number locally, see [27] for a more in depth description of this.
In this section, we adopt the notation X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
to denote

single-qubit Pauli operators.
We can encode the creation and annihilation operators using JW encoding as follows

[15, 27]:

âx 7→ Qx ⊗ Zx−1 ⊗ ...⊗ Z0, (2.24)

â†x 7→ Q†x ⊗ Zx−1 ⊗ ...⊗ Z0. (2.25)

For notational convenience, we now use the subscript x to denote each different spin orbital
instead of indexing spin up and spin down separately. We encode Qx as 1

2 (X + iY ), and
as such Q†x = 1

2 (X − iY ). The string of Z operators multiplies the result by the proper

parity factor px, where px = (−1)
∑x−1

k=0 nk . The benefit of using this encoding is that we can
write our Hamiltonian from the Fermi-Hubbard model entirely in terms of strings of Pauli
matrices, which are easy to work with on a quantum computer.

We can additionally derive the encoding for each â†mân + â†nâm term from the Fermi-
Hubbard Hamilton in Eq. (2.21) with JW encoding as follows:

â†mân + â†nâm 7→
1

4
[(Xm − iYm)(Xn + iYn) + (Xn − iYn)(Xm + iYm)]Zm+1...Zn−1 (2.26)

=
1

4
(XmXn + YmYn +XnXm + YnYm)Zm+1...Zn−1 (2.27)

=
1

2
(XmXn + YmYn)Zm+1...Zn−1. (2.28)

Note that Eq. (2.28) is exactly the encoding scheme provided by [4].

3. Feedback-based Quantum Algorithm for the Fermi-Hubbard Model. We
now detail how the FALQON framework can be adapted to obtain a feedback-based quantum
algorithm for preparing ground states of the Fermi-Hubbard model.

3.1. Single-Driver Hamiltonian. The simplest generalization of FALQON for the
Fermi-Hubbard model is to define the driver Hamiltonian in Eq. (2.10) as Hd = T and the
problem Hamiltonian in Eq. (2.10) as Hp = HFH = T + V . In this manner, we will have
one β-parameter per layer of our quantum circuit, and the complete evolution will take the
form of Eq. (2.10).

We select our initial state |ψ0〉 as the ground state (associated with the appropriate
fermion number and spin sector) of T which maintains an analogy to quantum annealing.
This follows a standard practice in the literature with Fermi-Hubbard ground state prepa-
ration protocols, and the state can be prepared using quantum circuits based on Givens
rotations [15, 17]. Since we start in this ground state, we let Hp = HFH and Hd = T . With
these choices of problem and driver Hamiltonian, our feedback law from Eq. (2.11) is given
by

βk+1 = −〈ψk|i[T,HFH ]|ψk〉 = −〈ψk|i[T, V ]|ψk〉, (3.1)
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where |ψk〉 is the state after k layers, as given by Eq. (2.10). This feedback law for βk
guarantees a monotonic decrease in the value of our objective function, J . Numerically, we
observe an associated increase in ground state occupation, further discussed in Sec. 4.

To form the layers of our quantum circuits, we use the HVA to decompose the Up and
Ud(βk) terms as

Up = e−iHFH∆t (3.2)

= e−i(Hv2+Hh2+Hv1+Hh1+V )∆t (3.3)

≈ e−iHv2∆te−iHh2∆te−iHv1∆te−iHh1∆te−iV∆t. (3.4)

and

Ud(βk) = e−iβkT∆t (3.5)

= e−iβk(Hv2+Hh2+Hv1+Hh1)∆t (3.6)

≈ e−iβkHv2∆te−iβkHh2∆te−iβkHv1∆te−iβkHh1∆t. (3.7)

Notice the similarities between Eqs. (3.4), (3.7) and Eq. (2.23). In the next section, we
further build on this decomposition.

3.2. Multiple Control Functions. The decomposition in Eq. (3.7) provides a natural
extension for using multiple control functions as outlined in [25]. In particular, it enables
us to treat each of the four noninteracting terms of the HVA as separately controlled terms,
giving us the following modification to Eq. (2.4):

dJ

dt
=

∑

j∈{v2,h2,v1,h1}
〈ψ(t)|i[Hj , HFH ]|ψ(t)〉βj(t), (3.8)

where βj denotes the control function associated with Hj .
To ensure Eq. (3.8) is nonpositive, we can set our feedback law in the digitized picture

according to a generalization of Eq. (2.11), yielding:

βjk+1 = −〈ψk|i[Hj , H]|ψk〉, (3.9)

where j ∈ {v2, h2, v1, h1}. This yields the following modified formulation for each layer:

|ψk+1〉 = Ud(β
v2
k , β

h2
k , βv1

k , β
h1
k )Up|ψk〉, (3.10)

where Up retains the same form as in Eq. (3.4), and

Ud(β
v2
k , β

h2
k , βv1

k , β
h1
k ) = e−iβ

v2
k Hv2∆te−iβ

h2
k Hh2∆te−iβ

v1
k Hv1∆te−iβ

h1
k Hh1∆t. (3.11)

This method takes advantage of the additional separation of terms in the HVA seen in
Eq. (2.23). Note that this further decomposition does not necessarily guarantee better per-
formance than the single driver case, but still requires the measurement of more observables
in the execution of the algorithm.

4. Results. In this section, we explore the performance of our feedback-based quantum
algorithm for the Fermi-Hubbard model through numerical simulations at various lattice
sizes. We examine results for both the single driver Hamiltonian case and the multiple
control functions case, as described in Sec. 3.1 and 3.2 respectively.
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Fig. 4.1. Simulations of our feedback-based ground state preparation method with two different lattice
configurations, utilizing one parameter per layer, ∆t = 0.01, and acting in the U/τ = 5 regime. In the top
plots, the dashed lines show the actual ground state energy the algorithm should be converging to. In the
middle plots, there is a dashed line at 1 to provide a reference for the algorithm’s performance.

4.1. Single Control Function. We begin by considering the simplest interesting case
of the Fermi-Hubbard model, i.e., a 2-site lattice. The results for this lattice configuration
at half-filling are presented in Fig. 4.1(a) for ∆t = 0.01 and U/τ = 5. Using the same
choice of ∆t and U/τ , we show like results for a 2 × 3 lattice with just over half-filling in
Fig. 4.1(b). In the top panels, we see the value of the objective function is monotonically
decreasing with respect to layer, as expected given our choice of feedback law from Eq. (3.1).
Each layer k evolves the system by Up and Ud(βk), as given in Eqs. (3.4) and (3.7). The
middle panels show that as the value of the objective function decreases, the fidelity of
preparing the ground state approaches |〈gs|ψ〉|2 = 1, a property that should be the case
with any successful ground state preparation algorithm. The bottom panels show the actual
β parameter values used in the circuit, as obtained by the feedback law in Eq. (3.1).
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Fig. 4.2. Comparing ground state infidelity for different numbers of up and down fermions for a 1× 5
Fermi-Hubbard lattice (10 qubits), with U/τ = 5 and ∆t = 0.01.

Fig. 4.2 visualizes the infidelity of the ground state with respect to layer for various
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fillings of a 1×5 lattice. Plots of 1/
√
k and 1/k are provided for reference, helping show the

asymptotic performance and rate of convergence. We note that each of the different fillings
exhibit slightly different rates of convergence, corresponding to differences in the underlying
problem structures.

In addition to the choice of feedback law for setting the βk parameters, this method
also requires a choice for ∆t. In most of our simulations, we found that ∆t = 0.01 was
sufficiently small for convergence to a state that decently overlaps the actual ground state.
However, we also explored the algorithm’s performance with varying timesteps. As shown

Fig. 4.3. Exploring effect of timestep on feedback-based quantum algorithm for 1× 4 lattice (8 qubits)
with 3 ↑ and 2 ↓ fermions.

in Fig. (4.3), the algorithm fails to converge when the timestep is too large. In this regime,
the βk parameters oscillate dramatically and the objective function fails to monotonically
decrease. We remark that in practice, feedback-based quantum algorithms do not require
objective function evaluations at each step, only measurement-based feedback to set each
βk value. As such, signs of oscillatory behavior in βk should serve as the first warning that
the timestep is too large and the algorithm is not converging.

We also explore how βk parameter curves vary for different regimes of U/τ . Recall that
our initial ground state corresponds to the ground state of our noninteracting Hamiltonian,
T . Increasing U/τ would in some sense be providing more relative weight to the portion
of the Hamiltonian not represented with our choice of initial state. To compensate for
this, intuition suggests that a sharper increase in our βk parameters should take place. This
intuition is matched by the results of our numerical experimentation, as shown in Fig. 4.4(a).
We see that as U/τ increases, the βk parameter curves grow taller and thinner. We can see
an oscillatory behavior in Fig. 4.4(b) similar to the oscillatory behavior of Fig. 4.3, showing
that our timestep is likely too large. Hence, the steepness of the βk-curves required for the
U/τ ≥ 22 regime demands a timestep ∆t ≤ 0.01.

4.2. Multiple Control Functions. We now explore the formulation with multiple
control functions, per Sec. 3.2. In 1D, only horizontal hopping terms are present. This
yields two control functions, βh1

k and βh2
k , in general. In 2D, we consider a 2×3 lattice

that additionally yields nonzero βv1
k -parameters. The results of this simulation are shown

in Fig. 4.5; since our vertical dimension is 2, the βv2
k -parameters are zero at every layer. We

remark that a 3×3 lattice would make all four parameters nonzero throughout the evolution
and would be an interesting instance to explore in future work. We additionally note that
in Fig. 4.5, βh1

k = βh2
k at each layer.
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Fig. 4.5. Simulation of feedback-based ground state preparation method for a 2 × 3 Fermi-Hubbard
lattice (12 qubits) with 3 ↑ fermions and 2 ↓ fermions, utilizing multiple control functions, ∆t = 0.01, and
acting in the U/τ = 5 regime.

Even though there are additional parameters introduced for the multiple control func-
tions setting, comparing its performance with the case of a single control function shows
that these additional parameters do not guarantee improved performance. In fact, compar-
ing the results for the same 2×3 lattice instance in Figs. 4.1(b) and 4.5, we see that a single
control function performs slightly better. We believe this comes from the fact that Eq. (3.8)
is overconstrained, i.e., in order for dJ

dt to be nonpositive, there is no requirement that each
of the terms in the sum in Eq. (3.8) are negative. Perhaps there is a better feedback law
that would take this additional structure into account.

4.3. Algorithm Modifications. As shown in Fig. 4.6, we also implemented several
improvements upon the base algorithm, inspired by the work in [25]. We tested an iterative
method and added a reference field perturbation to see if our convergence could be improved.

For the iterative method, we first ran the algorithm through all ` layers with the standard
feedback law. After acquiring the βk parameters of each layer for the first iteration, we
ran the algorithm a second time, but this time added the original βk values to the new
parameter values. This resulted in more extreme parameter values after each successive
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Fig. 4.6. Simulation of modifications to base algorithm for a 1 × 4 Fermi-Hubbard lattice (8 qubits)
with 1 ↑ fermion and 1 ↓ fermion, ∆t = 0.01, in the U/τ = 10 regime. The blue curves provide the base case
performance using the standard feedback law. The green curves show the new convergence with a reference
field perturbation added to the β parameter curves. The red curves show the new convergence after four
iterations, summing over the β parameters at each iteration. The dashed lines show the overlap of the
prepared state with the actual ground state, |〈gs|ψ〉|2, and the solid lines show the ratio of the objective
function to the actual ground state energy. From this figure, we see that the iterative method provided the
most significant improvement in this case, while the reference field perturbation did also positively impact
convergence.

iteration, summing over all previous parameter values. Fig. (4.6) only shows the result after
the fourth iteration, summing over the previous three iterations of parameter values.

We also explored adding a reference field perturbation to our calculated β parameters
to see if we could improve the performance of the algorithm. This practice is inspired by
common practices in quantum control. For this exploration, we used a simple linear ramp
going from 0.5 at the first layer down to 0 at the last layer, specifically β′k = βk + 0.5 · (1−
k/`). Both this modification and the iterative method resulted in slight improvements to
convergence with nontrivial instances of the Fermi-Hubbard model.

5. Conclusion. In this work, we have introduced a novel method for ground state
preparation of the Fermi-Hubbard model that utilizes an optimization-free feedback law
inspired by quantum Lyapunov control. We have presented simulation results exploring
its performance on different problem instances, and with enough layers, we seem to get
consistently good convergence. The algorithm at times still seems to converge to suboptimal
solutions (see Fig. 4.2), but we have tested strategies to modify the base algorithm to improve
this performance (see Fig. 4.6) This method for ground state preparation has more general
prospect beyond the NISQ era since it eliminates the need for the prohibitively large search
spaces of variational quantum algorithms, shifting the burden of energy minimization to the
quantum computer.

This work motivates a variety of further avenues for research. This feedback-based
framework for preparing Fermi-Hubbard ground states could be implemented on actual
NISQ hardware and the impact of the associated noise could be analyzed. This framework
could also be used to seed other ground state preparation algorithms, such as VQE. There
is also additional research to be done exploring how FALQON for the Fermi-Hubbard model
scales with lattice-size or number of fermions, and how measurement cost of these algorithms
compare with other algorithms.
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Another potential direction for future study would be to adapt this framework for other
Hamiltonian models, broadening the applicability of feedback-based quantum algorithms.
Future work on feedback-based algorithms could also verify convergence properties of these
methods, explore adaptations to fault-tolerant architectures, or apply FALQON to problems
with nonlinear cost functions such as those found in quantum machine learning. This ansatz
could also be compared to other methods for state preparation, benchmarking its perfor-
mance against other common practices. It might be interesting to compare the performance
of this feedback-based algorithm to quantum annealing, another method for ground state
preparation without classical optimization.
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LEARNING QUANTUM MECHANICAL DENSITIES OF
HELLMAN-FEYNMAN OPTIMIZED BASIS SETS USING EQUIVARIANT

NEURAL NETWORKS

ALEXANDER R. MUNOZ∗, SHIVESH PATHAK† , AND JOSH A. RACKERS‡

Abstract. The simulation of quantum mechanical properties has been a long-standing problem in the
field of quantum chemistry. While traditional quantum chemistry techniques have found great success, they
scale poorly with system size. Recent advances have been made using equivariant neural networks, allowing
for the use of smaller system sizes to effectively simulate the properties of larger systems. In tandem with
high accuracy basis sets designed to accurately simulate forces, Hellman-Feynman (HF) bases, our work is
focused on obtaining high accuracy densities for the HF bases from equivariant neural networks. In this
manuscript, we show that the form of the HF basis functions causes a significant difference in learning as
compared to a well-established basis. By introducing a multipole expansion inspired scaling factor to the
neural network architecture, we decreased the error in the HF basis’ electron density by a factor of four.

1. Introduction. The simulation of quantum mechanical systems has been an active
field of research for over 70 years. The development of density functional theory (DFT)
has been an exceptionally fruitful research program with advances made in the study of
magnetism [2], topological systems [21], and molecular dynamics [15]. However, the scaling
of these calculations with system size can make calculations of forces on large molecules
prohibitively expensive [10]. Recently, new methods for circumventing the quantum scaling
limit have emerged from the synthesis of physical concepts and machine learning [14].

While machine learning techniques have found success in this field, it is still problem-
atic to create a sufficiently large training set given the scaling problem in DFT. To train
some neural networks, it takes thousands of DFT samples to learn material phases and
properties[14]. Equivariant neural networks are a particular form of neural network that
exploit the symmetries of a data set to increase the efficiency of learning. For DFT, the
most important symmetries to encode are the symmetries of 3D space, that are capture by
a class of neural networks known as Euclidean neural networks [7].

A framework of Euclidean neural network, e3nn, has been used to learn DFT densities[14].
The ability to learn densities beyond the size of the training data will enable the use of these
densities to efficiently compute the forces on the ions in the system, in spite of the quantum
scaling limit. The computation of forces from densities can be done through the use of the
Hellman-Feynman theorem[17]. The downside of this computation is that the Pulay force
creates an error in which the Hellman-Feynman theorem is no longer exact [13].

In this study, we examine recently developed basis sets that minimize the Pulay force
[16, 11]. Particularly, we contrast e3nn’s efficacy in computing the density on a simple
basis set, def2, with training on a Hellman-Feynman optimized basis set, with the density
fitting basis generated automatically as in Stoychev, Auer, and Neese [20, 18]. By studying
the training on both bases, we determine that the Hellman-Feynman optimized basis set’s
geometry causes an error in the density that makes it unsuitable for use in computing forces.
We introduce a new layer to the neural network, inspired by the multipole expansion, that
rescales the input data as a function of angular momentum. Other data normalization
schemes have found success in machine learning, and with this physically motivated data
normalization, we were able to reduce the density error on the Hellman-Feynman optimized
basis set by a factor of four [9]. We then turn to other physically motivated training
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techniques that will lead to further improvements, enabling the use of HF basis densities for
the computation of forces.

2. Methods.

2.1. Density functional theory.
Quantum mechanical systems are described by the ab initio many-body Schrodinger equa-
tion. The Hamiltonian for the problem of interest here is,

Ĥ = −1

2

N∑

i

∇2
i +

N∑

i̸=j

1

rij
−
∑

Ii

ZI

|rI − ri|
+
∑

IJ

ZIZJ

|rI − rJ |
, (2.1)

where each term represents the electron kinetic energy, the electron-electron potential,
electron-ion potential and the ion-ion potential, respectively. Obtaining solutions to the
Schrodinger equation is an exponentially hard problem with respect to the size of the sys-
tem. Given a basis, the dimension of the Hilbert space grows combinatorially with the
system size. As a consequence, the treatment of realistic solids and liquids often falls under
the purview of density functional theory (DFT).

The framework of DFT provides a way of computing noninteracting single-particle or-
bitals. In the Kohn-Sham approach, they determine a noninteracting auxiliary potential
such that the electronic density equals the electronic density for the interacting system.
Kohn-Sham DFT circumvents the problem of directly solving the Schrodinger equation by
computing the energy of a state from a density instead of the positions of each electron and
ion in a system [10].

With a non-interacting system, we can write the solutions as Slater determinants built
from single-particle orbitals,

Eiϕi(r⃗) = (−1

2
∇2 + veff )ϕi(r⃗) (2.2)

where veff is the auxiliary potential, and ϕi is one of the single-particle orbitals. This equa-
tion is known as the Kohn-Sham equation. With veff , Kohn-Sham can be self-consistently
solved for the full set of orbitals, ϕi. Using ϕi, a density is computed,

n(r⃗) =

N∑

i

|ϕi(r⃗)|2. (2.3)

Solving the Kohn-Sham equation for each orbital independently is far more tractable
than the direct solution of the Schrodinger equation. However, the solution to the equa-
tion still scales like N3

e where Ne is the number of electrons in the system. While DFT’s
scaling is effective for many large systems, the use of DFT in generating starting points for
large molecular dynamics simulations is often still prohibitively expensive, especially when
considering the size and composition of an orbital basis.

In this work, we use Gaussian type Orbitals, GTOs [6]. These basis functions are written
with the radial-angular decomposition,

ϕ(r⃗) = Rl(r)Ylm(θ,Φ) (2.4)

where Ylm is a spherical harmonic, l is the angular momentum, and m is the z-component
of the angular momentum. The radial part of the function is written as,

Rl(r) = N(l, α)rle−αr2 (2.5)
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Fig. 2.1. Internal construction of the convolutional layer in our model. Features rab and xa are
inputs to the network and represent the geometry of the graph and a one-hot encoding of the atom types,
respectively. The majority of the trainable weights are in the italicized sections. The radial basis network
is represented with a fully-connected multilayer perceptron. In practice, we use several convolutional layers
connected with gated nonlinearities.

where α is a parameter, and N(l, α) is the normalization determined by,

∫ ∞

0

dr r2 |Rl(r)|2 = 1. (2.6)

These bases can be written in a general way with an arbitrary number of functions such
that the density is written as,

n(r) =

Natoms∑

i

Nbasis∑

k

lmax∑

l

l∑

m=−l

CiklmYlme
−αikl(r−ri)

2

, (2.7)

where Ciklm are the coefficients for each basis function [14]. For our purposes, we will focus
on two bases, def2 and a Hellman-Feynman optimized basis [11], distinguished by the size
of the bases and the schemes used to produce them [20, 18].

Hellman-Feynman basis sets are specifically designed for the calculation of the Hellman-

146 Learning QM Densities of Hellman-Feynman Optimized Basis Sets



Feynman force,

FE
I = − ∂E

∂R⃗I

= −∂⟨Ψ(R⃗i)|Ĥ|Ψ(R⃗i)⟩
∂R⃗I

= F⃗HF
I + F⃗Pulay

I , (2.8)

where, from the chain rule, FHF
I is the derivative of the Hamiltonian with respect to the ionic

coordinates and the Pulay term is the derivative of the wave function with respect to the
ionic coordinates. In order for the Hellman-Feynman theorem to hold, the Pulay term must
be suppressed. Hellman-Feynman bases are optimized to suppress the Pulay terms such
that the HF force can be computed from the electron density. With a sufficiently accurate
density for a large system, we should be able to compute the force with a similar accuracy
for less computational cost than starting from DFT. If our goal is to obtain densities for
large molecular dynamics calculations, DFT can still be restrictive, so we turn to the use of
neural networks to circumvent the scaling problem of DFT [4].

2.2. Equivariant Neural Networks.

In learning the density of GTO DFT calculations, the goal is to build a model that
accurately predicts Ciklm using a loss function like,

Lossdensity =
1

n

n∑

i

(CML
i − Ctarget

i )2 (2.9)

where n is the number of functions in the basis set. Invariant machine learning models,
models that operate only on scalars between layers, can be restrictive in how they learn
data with underlying symmetries like those present in 3-dimensional geometry [1]. On the
other hand, equivariant neural networks are symmetry-aware, meaning they can encode
the rotation and translation of 3-dimensional geometric objects like Ciklm. Specifically,
equivariance means that if an operation is performed on the inputs to a function, it is
equivalent to applying the same operation to the outputs, of the function,

f(Γ(x)) = Γ(f(x)), (2.10)

where x is the input, f is the function, and Γ is an arbitrary symmetry operation[7]. In this
work we use a machine learning framework called Euclidean Neural Networks (e3nn). For
cases with 3-dimensional data, e3nn has been shown to reduce the necessary training data
by a factor of 1000 with respect to invariant models.

The e3nn framework constructs graph convolutional neural networks with nodes defined
by the atoms in the system [7, 8]. For the convolution, shown in Figure 2.1, we input
two parameters xa and rab, a one-hot encoding of the atomic species and the geometry
of the graph. The one-hot encoding gives each node in the graph an input irreducible
representation. The hidden layer is then a gated convolution relying on the outputs of
the preceding layer x(i). Practically, we use a series of convolutions akin to depth-wise
convolutional layers to reduce the computation time [5].

The transformation of the convolution with a nonlinear gate between layers is

x(i+1)
a = σgated(Lin2(

∑

b∈n(a)

C(Lin1(x
(i)
b ), r⃗ab) + SC(xia))) (2.11)

where σ is an equivariant gated nonlinearity, SC is the self-connection mixing channels
of the same irreducible representation, Lin1 and Lin2 are equivariant linear layers, n(a)
are the neighbors within a specified radius of a, r⃗ab is the vector between atom b and the
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convolution center, and C is the convolution tensor product operation [14]. The convolution
tensor product operation is core to e3nn’s functionality, as it permits all tensor operations
that yield the desired irreducible representations set as the output of the network by the
user. The convolutional tensor product is defined as

C(xb, r⃗ab) = xb ⊗R(|rab|)Y (r⃗ab) (2.12)

where Y is a set of spherical harmonics up to a certain l, and R is the radial basis function.
The radial basis function contains most of the learnable parameters in the convolutional
layer and is constructed as a simple multilayer perceptron (MLP) defined as

R(|rab|) =W2(σMLP (W1(B(|rab|)))) (2.13)

where the W1,2 are the weights of the MLP layers, σ is the sigmoid nonlinearity, and B are
Gaussian radial basis functions. In total, this operation brings us to the form of the DFT
basis functions we are attempting to learn.

3. Results.

3.1. DFT calculations.
For the experiments in this paper, we use Psi4 and the PBE0 density functional to pro-
duce densities on 100 geometries of three water molecules [12, 19]. These calculations were
performed on the conventional def2 basis and the Hellman-Feynman optimized basis. In
addition, we performed calculations on isolated atoms that were be subtracted away from
the molecular clusters to normalize the data for learning. For the purposes of validating our
dataset, we use the conventional split of 85-15 for training and testing, respectively [3].

3.2. Neural Network Architecture. The network used for our experiments is com-
posed of three convolutional layers combined depth-wise with the radial basis function being
represented by a single-layer fully connected network [5]. The internal tensor product uses
spherical harmonics up to l=5. The hidden layer features in our network admit functions
with a maximum angular momentum of four. We use 125 functions for l=0, 45 functions for
l=1, 20 functions for l=2, 15 functions for l=3, and 7 functions for l=4. The use of the higher
angular momentum functions increases the data efficiency of the network. To train the net-
work, we utilize the Adam optimizer built into PyTorch. With an initial learning rate 0.01,
we found this set of parameters optimally trains on both the def2 and Hellman-Feynman
bases.

3.3. Learning on the def2 basis.
As an example, we demonstrate the effectiveness of our network architecture in learning the
densities of def2 DFT calculations in Figure 3.1. Both the training and test errors on the
DFT coefficients reach total losses of 10−6 before 200 epochs have passed. The training and
test losses also appear to be converging at similar rates, indicating that the network is not
overfitting to the training data. The percent density error on the test set, ϵtest is computed
as,

ϵtest = 100×
∫
dr⃗|ρQM (r⃗)− ρML(r⃗)|∫

dr⃗ρQM (r⃗)
(3.1)

where the integrals are performed over the entire simulation cell. In def2’s case, we observe
that ϵtest can be trained to below one percent and even arbitrarily lower with a higher
number of epochs. For purposes like computing forces, this training is ideal as the density
error should be well-correlated with the force errors.
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Fig. 3.1. Example of training on the def2 basis. The training set contained 85 geometries of three
water molecules and the test set contained another 15 geometries. The difference between the training error
and test error is due to a residual amount of overfitting that is systematically controlled by the learning rate
and size of the batch used for training. By training on this data set, we were able to compute the density
error, ϵ, on the test set. The percent error with respect to the DFT reference density is converged to less
than one percent, our target density error.

3.4. Learning on the Hellman-Feynman basis.
In contrast to the ideal training shown in Figure 3.1, we tracked the training of an identical
neural network on the Hellman-Feynman optimized basis set, as shown in Figure 3.2. Unlike
training on def2, the training error nearly converges around 10−5. The growing oscillation
at more than 100 epochs is controllable with batch training, but due to the small dataset
used in this study, we used an optimized batch size of three during training. Likewise, the
test error only reaches 10−3 even after 250 epochs, although the network reaches this level
after only 50 epochs. While the training error continues to decrease with each epoch, the
test error plateaus. After 150 epochs, the network begins learning on the test data at a very
slow rate that is infeasible for larger systems.
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Fig. 3.2. Initial training on an HF optimized basis. For training and testing, we used the same 85-
15 split in geometries that was used for def2. In comparison to def2, the errors are higher by orders of
magnitude, and are not converging to the same level with the same number of epochs. Particularly, we
observe an initial density error of over 500 percent that converges to 30 percent after 250 epochs. The
converged 30 percent error is persistent across many random initializations of our network architecture,
and across hyperparameter sweeps.

In Figure 3.2, we plotted the ϵtest error for the Hellman-Feynman optimized basis set.
Strikingly, the initial error on the density is two orders of magnitude larger than the initial
density error on def2, starting around 525 percent. Inaccurate initial guesses can cause the
optimization algorithm to become caught in local minima that may not generalize to the test
data set [3]. While the density error does fall rapidly with the first few epochs, the density
error begins to plateau with the test error. As a consequence, the error on the density reaches
35 percent after 250 epochs. With further iterations, the density error converges around 30
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percent regardless of the seed given to the randomized initial weights. It is important then,
to turn to the differences in the basis sets to determine why the Hellman-Feynman basis
initializes poorly and suffers from poor training.

Fig. 3.3. Distribution of the DFT target orbital populations for the HF basis in comparison to the
distribution of the neural network initial guesses for the orbital populations. As the angular momentum is
increased, we observe that the network’s initialization has an increasingly high variance with respect to the
target distribution variance. Large differences between the distributions at high angular momentum lead to
larger density errors than differences at low angular momentum. The initial errors in the density are then
tied directly to the initialization of the neural network at high angular momentum.

3.5. Distributions of Initial Guesses.

On initialization, it is clear from the ϵtest error that the machine learning initial coeffi-
cients are not close to the initial distribution of the DFT target coefficients. In Figure 3.3, we
show histograms with the distributions of the machine learning coefficients after one epoch
in comparison to the target coefficients as a function of the angular momentum channel. As
we progress higher in angular momentum, the target populations have increasingly small
variances. However, the initialization of our network does not inherently alter the variance
of the model with angular momentum. The mismatch in orbital population distributions
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Fig. 3.4. Distribution of the DFT target orbital populations in comparison to the neural network
initialized orbital populations after rescaling the outputs for the HF basis in accordance with the multipole
expansion. By applying successively smaller prefactors to the angular momentum, the neural network
initialization of the orbital populations is brought within an order of magnitude of the target populations.
The initialization can be further improved by tuning the prefactors; however, the architecture performs
similarly in reducing the error on the density as long as the initialization is reasonable.

leads directly to a large error in the density. The density from an orbital is computed as,

ρi = Pi ×Ni (3.2)

where Pi is the population of electrons in orbital i, and Ni is the normalization of the orbital.
Small differences in the population of an orbital can lead to large differences in the density if
the normalization of the orbital is large. This is of particular importance when considering
the GTOs of the Hellman-Feynman optimized basis set at high angular momentum which
have both high angular momentum and larger exponents than the def2 basis. Both of these
factors lead to a larger normalization as we can tell from the radial part of the GTO.

3.6. Scaling coefficients with respect to the Multipole Expansion.
In order to resolve the initialization issue, we augmented the neural network to include a
rescaling of the machine learning orbital populations in each epoch. For water molecules,
we expect that the density is almost entirely contained in the s-orbitals, as seen in Figure
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3.3, and the total density should converge in accordance with the multipole expansion,

ρ(θ, ϕ) =

∞∑

l=0

l∑

m=−l

Cm
l Y

m
l (θ, ϕ) (3.3)

where Cm
l are the coefficients and Y m

l are the spherical harmonics. Given the diminishing
target populations at high angular momentum, we scale the machine learning populations
as a function of angular momentum. Starting from one we decrease the scaling factor by
a factor of ten for each angular momentum channel. The new machine learned coefficients
after a single epoch of learning are shown in Figure 3.4. At high angular momentum, we
have removed the overestimates of the target populations by factors of 10 or 100. The initial
density error is also reduced by a factor of ten as shown in the first epoch of Figure 3.5.

We show the effect the rescaling has on the training in Figure 3.5. The test loss now
maintains a steady decrease from epoch 100 to epoch 250, but we maintain the oscillatory
behavior in the training loss. However, the oscillations can be systematically controlled
with batch training, and learning rate optimization. The ϵtest graph shows some initial
fluctuations in training, but has a near-monotonic behavior after 20 epochs. Eventually, the
training reduces the error on the density to seven percent with indications it could continue.

While the multipole rescaling has improved the training on the Hellman-Feynman op-
timized basis by a factor of four, it is an insufficient improvement for extension to larger
datasets. To this point, however, further optimization can be performed in our learning
procedure. This includes learning rate hyperparameter sweeps on an angular momentum
dependent basis, allowing us to potentially learn the high population orbitals to the precision
necessary to push the density error below one percent.
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Fig. 3.5. Training on the HF basis with the scaling procedure applied within the neural network. In
comparison to the density error without the scaling, we find the initial state has a density error an order
of magnitude smaller. With this improvement, the reaches density error is a factor of four smaller than
the converged density error without scaling, reaching an eight percent total density error. Inspecting both
the test error and the density error, they do not appear to have converged after 250 epochs, but the rate of
training is impractical for density improvements to the level necessary for computing forces.

4. Conclusions. The problem of extending ab initio quantum mechanical calculations
to larger systems has been long-standing. Advances in equivariant neural networks like e3nn
have reduced the cost of training densities for large systems with the ability to reach one
percent error with traditional basis sets like def2. An attractive prospect remains in the
ability to extend the use of equivariant neural networks to the computation of forces us-
ing the Hellman-Feynman theorem and basis sets optimized to remove the Pulay force. In
this manuscript, we have improved the machine learned density estimates from Hellman-
Feynman basis sets by a factor of four by introducing a multipole expansion inspired scaling
to the neural network architecture. However, these errors still need to be reduced to be
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viable for the computation of forces. Further work in correcting the machine learned den-
sity continues through investigations into the ideal learning rates for the different angular
momentum channels, and applying an angular momentum dependent learning to the appro-
priate functions.
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[11] S. Pathak, J. A. Rackers, I. E. López, R. L. Fernández, A. J. Lee, W. P. Bricker, and
S. Lehtola, Accurate hellmann-feynman forces with optimized atom-centered gaussian basis sets,
2022.

[12] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density
functional approximations, The Journal of Chemical Physics, 105 (1996), pp. 9982–9985.

[13] P. Pulay, Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules.
I. Theory, Molecular Physics, 17 (1969), pp. 197–204.

[14] J. A. Rackers, L. Tecot, M. Geiger, and T. E. Smidt, Cracking the quantum scaling limit with
machine learned electron densities, 2022.

[15] P. C. Rathi, R. F. Ludlow, and M. L. Verdonk, Practical high-quality electrostatic potential sur-
faces for drug discovery using a graph-convolutional deep neural network, Journal of Medicinal
Chemistry, 63 (2020), pp. 8778–8790.
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A CHARACTER-BASED APPROACH TO DUPLICATE IDENTIFICATION

KILLIAN MUOLLO∗, ELAINE M. RAYBOURN† , V. GREGORY WEIRS‡ , REED MILEWICZ§ ,

JEFFREY A. MAULDIN¶, AND THOMAS J. OTAHAL‖

Abstract. Noisy, unstructured data — particularly natural language data — are abundantly available,
yet inherently difficult to parse, organize, and analyze. Identifying duplicate information is crucial to
compiling and disseminating information, but the process of doing so can be tedious and often requires a
significant degree of human processing. However, natural language processing techniques can be used to
minimize the amount of manual oversight needed for duplicate identification within unstructured textual
data. Using a dataset consisting of 310 phrases of varying lengths pulled from automatically-generated video
transcripts, we apply a character-based approach to measuring semantic similarity. We compute pairwise
normalized Levenshtein distances, then identify groups of duplicate statements by generating a graph from
these metrics and isolating all connected subgraphs. We find that a character-based methodology helps
account for irregularities in the data, and could potentially be applied to similar natural language data with
great success.

1. Introduction. An important component of understanding natural language data
of any form is the ability to identify and disambiguate similar pieces of information. In
doing so, developers can track bugs that spread unwittingly with the cutting and pasting of
existing code into new products, and community forums can detect potential for plagiarism
and develop usage statistics [6]. Duplicate information, and by extension its identification,
is also key to the compilation and dissemination of knowledge. For example, Bettenburg et
al. [1] found that software developers actually tend to find duplicate issue trackers helpful
— being able to read about the same problem from slightly different perspectives often
helped them build a more robust understanding of the situation. A wealth of knowledge
can similarly be found in videos, especially those regarding software documentation and
walkthroughs [7]. Automatically-generated transcription services provided by companies
like Zoom, YouTube, and Microsoft Teams make it easier to apply duplicate-identification
techniques to such sources for the purpose of aggregating related information, over tran-
scribing by hand. However, the manner in which the natural language is encoded (e.g. how
prosody or the patterns of stress, intonation, or pauses are handled in the text transcription)
can also introduce errors. Some human oversight is still necessary.

The manual process of picking out and sorting duplicates can be tedious and time-
consuming. However, automating this process is possible with the aid of existing natural
language processing techniques. Ellmann [2] classifies automated approaches to duplicate
identification into five categories of analysis: characteristic, syntactic, semantic, classifica-
tion, and prediction. Characteristic analysis looks at the qualities of a document outside its
actual textual content, like ID numbers and creation and closing timestamps; syntactic and
semantic analyses focus on the words used in a document and their relation to each other;
and classification and prediction center on feature extraction, often facilitated by some sort
of machine learning tool or algorithm.

Existing literature on duplicate identification in technical fields specifically discusses
the issue of human error and variation in text generation. While attempting to pick out
duplicate bug reports, Sureka et al. [8] found typos, shorthand, punctuation, and other
natural language nuances to vary wildly across users; similarly, Wang et al. [9] noticed
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that developers used a great deal of paraphrasing when describing duplicate tasks. In order
to address this issue, Ellmann [2] suggests following the approach of researchers who use
character-based approaches to syntactic and semantic comparison. For example, Sureka et
al. used a character n-gram (as opposed to word n-gram) algorithm to look at portions
of words for comparison, leading them to correctly identify parts of text like “Add Java
exception” and “AddExceptionDialog” as having a similar meaning.

In the following sections of this paper, we present our interpretation of a character-based
approach to duplicate identification. We utilize the Levenshtein distance as a character-
based measure of string similarity, and then use a graphical representation of the generated
relationships between datapoints to isolate groups of duplicate text. We measure the ac-
curacy of this technique by comparing our results to a manual classification of our entire
dataset. Finally, we discuss the limitations of our investigation and potential expansions of
our research.

2. Methodology.

2.1. Dataset. For the present effort, we used a test dataset consisting of 310 natural
language entries. Each entry was created by one of six individuals (henceforth referred to
as “coders”) whose goal was to independently identify salient phrases from recorded walk-
throughs of two different software use cases. The walkthroughs encompassed three separate
videos, lasting between 60 and 90 minutes each, with synced audio and video, as well as
text transcripts generated automatically by Microsoft Teams. The phrases identified by
the six coders were sometimes cut directly from the transcripts, sometimes cut from the
transcripts and then edited based on the audio, and sometimes pulled by ear from just the
audio. This resulted in a great deal of variation in formatting, length, human errors like
typos, and the inclusion of stopwords like “uh” or “um.” While each selected phrase was
also labeled by the coders with a timestamp, there was a similar level of variation in how
these were entered; like with the phrases themselves, some coders pulled their timestamps
from the transcripts, while others identified them by matching the audio with the scrub bar
on the video. Included below is an example of the same phrase pulled from the same video,
but recorded differently by two separate coders:

Timestamp Phrase

Coder 3 0:38:57 So all I’m getting out of this are the images,
there is no other burden on the file system?

Coder 5 00:38:55.770 - ->
00:39:11.480

So all that I’m getting out of this is the images,
right? There’s no other. Burden on the file
system. Yeah. Right, right.

Our goal was to identify and group all duplicate phrases that refer to the same point in the
same video walkthrough, but had been selected and entered by at least two different coders.

2.2. Identifying Duplicates. In order to avoid incorrectly identifying “duplicates”
that actually occur in different videos, we started by splitting all phrases into three groups
based on which walkthrough they were extracted from. Therefore, each phrase was only
compared to phrases that originate from the same video. The only natural language pre-
processing we applied to these phrases is conversion to lower case; common practices like
removing punctuation and lemmatizing words are forgone for the sake of preserving inher-
ent syntactic information. Finally, for each of the 310 phrases in our dataset, we limited
our search for duplicates to a small time frame nearby. Since there was some significant
variation in the timestamping of phrases, we made this window twice as large as the longest
identified phrase, which was recorded as lasting 70 seconds. So, as an example using times-
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tamps formatted as HH:MM:SS, we would have only checked for duplicates of a phrase with
a starting timestamp of 00:38:55 and an ending timestamp of 00:39:11 between the times
00:36:35 and 00:41:31.

Like Sureka et al. [8], we wanted to use a character-based similarity metric to com-
pare phrases. One such well-known measure of string similarity is the Levenshtein distance.
Given two sequences of characters pulled from a finite alphabet, their Levenshtein distance
is calculated as the minimum number of insertions, deletions, and substitutions required to
match them exactly. Since the length of phrases in our dataset was not consistent, we could
not use this metric without first normalizing it, so we turned instead to the normalized
Levenshtein distance metric introduced by Yujian et al. [10]. This metric outputs values
between zero and one, with measures closer to one corresponding to lower Levenshtein dis-
tances and, thus, stronger string similarity.

Using the Python package Levenshtein [3], we computed pairwise normalized Leven-
shtein distances between all phrases that fell within the aforementioned 140-second window
of each other. For the same reason we did not lemmatize or remove punctuation, we cal-
culated the Levenshtein distance without sorting words or characters beforehand. Phrases
that were measured to have a partial Levenshtein distance greater than or equal to 0.9 were
considered duplicates of each other. This threshold was selected through a trial and error
process. As would be expected, higher thresholds resulted in more statements that were
actually duplicates being overlooked by our tool; for example, increasing the threshold from
0.9 to 0.95 resulted in 52.94% more of these false negatives. Lowering the threshold too far
also presented problems, albeit in a less obvious way. When lowering the threshold from
0.9 to 0.85, only one additional statement was falsely identified as a duplicate. However,
as a result of the duplicate grouping method described in the next section, there were four
instances wherein our tool falsely merged distinct sets of duplicates.

2.3. Grouping Duplicates. With the Levenshtein calculations, we obtained a list
for each phrase of its duplicates, but encountered an issue with false negatives. If there
was a group of more than two true duplicates, our method often linked them in a chain to
each other, but did not identify all pairwise connections. For example, consider four true
duplicates, phrases A, B, C, and D. Phrase A may have both B and C in its duplicate list, B
may have just A, and C may have A and D. With human oversight, we could have followed
this connection from A to C to D using the transitive property, i.e. if A=C and C=D, we
must also have A=D. In terms of duplicate identification, we conclude that if statement C is
a duplicate of statement A, and statement D is a duplicate of statement C, then statement
D must also be a duplicate of statement A. In order to account for this, we constructed
a graph in which each phrase in our dataset represented a single node. We created edges
between two nodes if those phrases were identified as duplicates using the method described
above. Then, we selected the final grouping of duplicates as the connected subgraphs of this
graph. Figure 2.1 illustrates an example of this. Here, phrases A, B, C, and D would all be
identified as duplicate group 1; E, F, and G would be duplicate group 2; H would not be a
duplicate at all; and I and J would be duplicate group 3.

3. Results. For the purpose of measuring accuracy, we reviewed the grouped phrases
manually and labeled them according to one of four categories: false positive (FP), false
negative (FN), true positive/negative (TPN), and grouped duplicate (GD). The first three
labels are intuitive, with the label “FP” indicating that a phrase was not actually a dupli-
cate of another phrase, but was labeled as such by our tool; “FN” indicating that a phrase
was a true duplicate but was not identified as one; and “TPN” indicating that our tool
correctly identified the phrase as a duplicate or not a duplicate. The last label, “GD,” was
created to account for a particular idiosyncrasy of our dataset that was revealed through
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Fig. 2.1. Toy example of using graphs to identify groups of duplicate statements: Each individual
statement is represented by a node, nodes are connected with an edge if the statements they represent are
identified as duplicates based on character similarity, and duplicate groupings are established by connected
subgraphs

the grouping process.
As mentioned in our description of the dataset, the length of each phrase varied greatly,

and contiguous sentences were entered by some coders as a single phrase, but as multiple
phrases by others. For example, the transcript excerpt, “It seems...pretty usable at the mo-
ment. I’m sure there’s some nuance that I won’t really understand until I start using it” was
split in half by some coders, but left whole by others. As a result of the subgraph grouping
we applied, this also meant that the two sentences, even when entered separately, were iden-
tified as duplicates because of their connection to the larger phrase. Some applications of
duplicate identification that require a stricter definition of a duplicate might consider such a
grouping a failure. However, for many research questions involving duplicate identification,
units of text falling under this category of “grouped duplicates” still provide a great deal
of information and minimize the need for human intervention in data processing. In our
test case, having these duplicate groups allowed us to easily identify what needed additional
human oversight, thus facilitating an efficient expenditure of our resources. We were able
to able to focus on a smaller subset of the data — less than a quarter — for more detailed
analysis, which may not have fit the exact definition of duplicate identification but certainly
provided a helpful and meaningful transformation of otherwise unstructured textual data.
Although we separated statements like this into their own group to distinguish them from
exact duplicates that required no additional processing, we considered these GDs to be
successful duplicate identifications for the goal of minimizing human oversight. With this
standard in mind, we were able to correctly group 93.55% of phrases with their appropriate
duplicates. More specifically, as visualized in Figure 3.1, we ended up labeling 3 phrases as
FPs (0.97%), 17 as FNs (5.48%), 71 as GDs (22.90%), and 219 as TPNs (70.65%).

4. Conclusions and Future Work. The work presented in this paper attempts to
identify duplicates in a rather literal sense, and this allows us to see our findings very clearly
and extrapolate them in support of similar conclusions in the current literature.
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Fig. 3.1. Percent of phrases labeled as false positive (FP), false negative (FN), grouped duplicate (GD),
and true positive/negative (TPN)

Perhaps most obviously, we can reiterate the importance of context to identifying a
duplicate. Before calculating the Levenshtein similarity between phrases, we first had to
separate the videos and impose limited timeframes in which to search for duplicates. Just as
Sureka et al. [8] found increased accuracy by limiting their search for duplicate issue trackers
to specific projects, we see here a need to artificially differentiate the separate walkthroughs
before applying our tool. Without taking such precautions, we found more false positives.
For example, when removing just the timeframe restriction but still separating the videos,
we idenitifed sixteen false positives instead of three — an increase of more than 400%.
Manual inspection revealed that simple comments like “yeah” and “right,” which appeared
often throughout the transcripts but were spoken by different individuals at different times,
conflated duplicate detection. We can thus see that such unspecific language relies on the
context in which it is given for meaning and can impede duplicate identification if considered
in isolation.

The high accuracy of our method, despite the differences in how coders gathered and
entered their data, supports another conclusion drawn by Sureka et al. [8]: that a character-
based similarity measure accounts for human variation better than a word-tokenizing method
might. Using the Levenshtein distance allowed us to successfully connect words and phrases
that sounded the same when spoken, but were recorded very differently in text, like “par-
aview” versus “pair of view.” Typos similarly had little effect on the performance of our
method, since we did not have to rely on any sort of pre-constructed dictionary or lexicon.
This natural language “noise” that we were able to account for bodes well not just for this
investigation, but for all forms of natural language processing. The specific types of errors
we encountered in our dataset mirror issues experienced when trying to draw conclusions
from many other forms of unstructured textual data. In qualitative analyses of corpora,
coding schemas are commonly used to extract key themes and features from a body of text,
but attempting to consolidate them is an arduous task for many of the reasons we discussed
in this paper [4]. Furthermore, any research that relies on automated transcription services
to generate textual data for study will experience varying levels of accuracy and, in turn,
varying levels of “noise” depending on the tool they choose for transcription [5]. Being able
to filter out some level of variation before turning to manual analysis would be invaluable
in saving time and resources in all fields of study.

The biggest limitation of the work presented in this paper is that it was performed on
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a relatively small dataset. We observed very strong accuracy as detailed in the “Results”
section, but Sureka et al. [8] used a dataset consisting of over 200,000 bug reports and found
that the percentage of false positives increased with the size of their data. Although this
would very likely be a limitation if we applied our work as-is to higher volume data, the
application of duplicate identification to larger datasets also presents an excellent opportu-
nity for future work. With a larger dataset, it becomes possible to train a machine learning
model that could potentially make up for whatever deficits arise in the character-based ap-
proach we employed in this paper. A classification-based, black box machine learning model
could also help provide more nuance in the “grouped duplicate” problem we encountered, as
it might be able to gauge some features of the text that we were unable to explicitly define.

A similar limitation that also presents an opportunity for future work is the type of
data we used in this paper. While there was some slight variation in the lengths of each
statement comprising our dataset, unstructured textual data can vary far more than what
we analyzed here. In our data, some statements were only one word long and others were
several sentences, but natural language often comes in entire paragraphs, pages, or even
books worth of text. So, the method examined in this paper could likely be implemented
with little adjustment on short-form text like product reviews, tweets, or bug reports, but
would require at least some degree of pre-processing before use with longer text corpora like
full, unfragmented video transcripts.
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EVENT SENSOR DATA PIPELINE FOR TESTING SPIKING MOTION
SEGMENTATION ALGORITHM

WALKER A. RICKORD∗, SHANE POLDERVAART† , FELIX WANG‡ , RYAN DELLANA§ , AND

SUMA GEORGE CARDWELL¶

Abstract. Neuromorphic event sensors are inspired by the human retina and measure per-pixel bright-
ness changes asynchronously. These cameras have high temporal resolution (µs) with reduced motion blur,
high dynamic range (140 dB), and low power consumption (10 mW–10 µW). However, novel algorithms are
required to process the sparse data (i.e. motion segmentation, target detection) generated by event sen-
sors. Spiking neural networks are ideal for processing event sensor data. Event-based motion segmentation
algorithms cluster the events in a given time snapshot of a scene. This can be leveraged for background
subtraction and thus accurate target detection. In this work, we investigate SpikeMS, a deep spiking neural
network for motion segmentation. We detail the construction of an event-based data pipeline to prepare
raw event data from event-based vision sensors for use in model development. Additionally, the pipeline
functions to convert event streams to videos for visualization. We hope this work will come to enable the exe-
cution of motion segmentation algorithms at the edge with better energy efficiency through the combination
of spiking neural networks, event-based dynamic vision sensors (DVS), and neuromorphic processors.

1. Introduction. Neuromorphic computing has seen a rise in interest due to its ability
to distribute both computation and memory along the same “neurons” with high energy
efficiency [22]. This architecture overcomes the Von Neumann bottleneck found in classical
computing, associated with limited computational speeds and low energy efficiency in con-
ventional devices [23]. Utilizing artificial neurons and synapses, neuromorphic computing’s
objective is to mimic key computational blocks of the brain for computational efficiency.
Based on asynchronous, event-based spikes, neuromorphic systems have the ability to per-
form complex calculations with a drastic decrease in energy consumption and footprint
due to their sparse nature [6]. These systems include both neuromorphic event sensors,
which replicate the process of translating sensory information to spikes, and neuromorphic
processors, which aim to function similar to that of the biological brain [19].

Neuromorphic platforms are promising since they can meet the size, weight, and power
(SWaP) constraints desirable for edge applications. With the commercial production of
event-based cameras [29], this is increasingly a viable solution for edge computing systems
and applications [12]. Furthermore, as neuroscientists continue to better understand the
inner-workings of the brain, researchers will continue to advance neuromorphic algorithms
for which neuromorphic hardware is the ideal candidate to achieve peak SWaP performance.
In this paper, we provide an overview of neuromorphic event sensors, spiking deep learning
based neuromorphic algorithms, and neuromorphic hardware. Then, we discuss the insights
obtained from the development of an event sensor data pipeline, followed by the results of
our implementation and testing of SpikeMS [24], a deep spiking neural network for motion
segmentation on traditional computer hardware [24].

Neuromorphic computing consists of both bio-inspired hardware and algorithms. To
better understand the required components for deep learning-based neuromorphic motion
segmentation, we will cover a brief explanation of event sensors in Section 1.1, spiking neural
networks (SNNs) in Section 1.2, a technique to allow for model training/learning using non-
differentiable spikes (i.e. spike layer error reassignment in time – SLAYER) in Section 1.3,
and neuromorphic processors in Section 1.4.
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‡Sandia National Laboratories, felwang@sandia.gov
§Sandia National Laboratories, rdellan@sandia.gov
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1.1. Event Sensors. Event-based sensors (EBS) generate events/spikes due to changes
in the sensed quantity and include vision [18], auditory [2] and tactile sensors [3]. Event-
based vision sensors are inspired by the human retina. They asynchronously measure the
per-pixel brightness change in the scene. Event cameras output the time, pixel location and
the polarity of brightness change. These biologically inspired cameras have been designed
in order to overcome the limitations of traditional cameras, such as frame-based imaging
with low temporal resolution, capturing images at a fixed rate, low dynamic range and
subjectivity to motion blur. Many designs exist within the event sensor realm [14, 26], in-
cluding dynamic vision sensors (DVS) [18], asynchronous time based image sensors (ATIS)
[25], dynamic and active pixel vision sensors (DAVIS) [5], and contrast detectors (CD) [27].
DVS event cameras are responsible for reading in brightness changes, whereas ATIS cameras
account for brightness changes and assign an additional sub-pixel to account for “absolute”
intensity. DAVIS cameras combine an active pixel sensor (APS) with a DVS to achieve
smaller pixel sizes in its readout and to enable the sensors to output frames in addition to
events [14]. CD sensors stem from ATIS cameras and feature high resolution, low latency,
and high dynamic range among other benefits. Since each camera type includes a DVS,
we will be primarily focusing on the constructs of this sensor, and specifically Prophesee’s
implementation.

DVS cameras read in changes in light intensity independently and asynchronously at
each pixel. When a pixel is fired, its output contains the coordinates (x, y), timestamp
(t), and polarity (p) of the brightness change. The polarity indicates if the change was an
increase or decrease in brightness. This enables the analysis of visual information based
off of sparse arrays, therefore coming at a fraction of the energy and data cost when com-
pared to traditional frame-based devices [14]. A comparison of event-based and frame-based
technologies can be seen in Figure 1.1 and Figure 1.2. Due to the promises of low power
computing that spiking affords, there is interest in further work assessing end-to-end neu-
romorphic systems comprised of event sensors and neuromorphic processors.

Fig. 1.1. Output comparison for frame-based and event-based sensors [15]. Image reproduced with
permission from [15].

1.2. Spiking Neural Networks (SNNs). With rising applications of deep learning,
there is an increased amount of focus on understanding artificial neural networks (ANNs)
and the various architectures associated with them, especially efficient implementation in
hardware. ANNs, which are loosely inspired by biological neural networks, are comprised
of node layers with biases, weights, transfer functions, activation functions, and specific
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Fig. 1.2. Image comparison for frame-based image and binned event sensor capture using a Prophesee
Gen 4. Blue represents positive pixel events where it got brighter and black represents negative events where
the pixel darkened.

connectivity. Current research is centered on pushing these model architectures to their
limits, as increasing parameter size may result in better performance. However, as seen
in Table 1.1, this also escalates power consumption and model training time causing high
compute costs. Training bigger ANNs is expensive and does not emulate the energy efficiency
seen in biological systems. For this reason, there are challenges in deploying deep learning
models at the edge in real-time.

Table 1.1
Various state-of-the-art ANN estimated model training costs [34]. Table reproduced with permission

from [34].

Model Hardware Power(W) Hours kWh · PUE CO2e Cloud Compute Cost

Transformerbase P100x8 1415.78 12 27 26 $41-$140
Transformerbig P100x8 1515.43 84 201 196 $289-$981
ELMo P100x8 517.66 366 275 262 $433-$1472
BERTbase V100x64 12,041.51 79 1507 1438 $3751-$12571
BERTbase TPUv2x16 96 $2074-$6912
NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 32,623 $44,055-$146,848
GPT-2 TPUv3x32 168 $12,902-$43,008

On the other hand, SNNs may alleviate the high costs of traditional neural networks
while fitting perfectly into the neuromorphic ecosystem. SNNs take greater biological in-
spiration than their ANN counterparts. Rather than being based off of an abstract neuron,
SNN neurons produce discrete events (distinct from events as defined for event sensors)
which exist at specific points in time [8]. Similar to biological neurons, which fire after their
membrane potential reaches a threshold, SNN neuron membrane potentials must reach an
activation threshold for the corresponding neuron to spike. As described in Section 1.4, a
neuron’s spike is sent to all its downstream neurons, whose membrane potentials will then
be positively or negatively effected depending on established weights. After firing, each
neuron resets below its resting potential to mimic the refractory period seen in biology.

Although more fundamental approaches to SNNs have been developed (i.e. spike time
interval computational kernel — STICK [16]), we will fixate on deep SNNs. A point of focus
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for deep SNNs is their training algorithms. Spikes are non-differentiable, which inhibits the
use of traditional gradient-descent-based error backpropagation in training [17]. Methods
have been presented to overcome this (i.e. [30]). Loihi 2, in particular, has two approaches
to neuromorphic error backpropagation: online and offline. Online refers to the ability to
deploy SNNs locally and allow approximations of error backpropagation to train the model
parameters in real-time. Offline, on the other hand, refers to translating the SNN to an
ANN, applying error backpropagation to the ANN, and using those parameters to train the
SNN [10].

To encourage researchers to develop on Loihi 2, Intel created their neuromorphic devel-
opment package, Lava, as a framework for mapping neuro-inspired applications to neuromor-
phic hardware [9]. Their framework contains both online and offline training mechanisms.
An implementation of SLAYER, which will be described in Section 1.3, is utilized for online
training in Lava. The offline ANN-SNN training approach, Bootstrap, is not relevant for
our work.

1.3. Spike Layer Error Reassignment in Time (SLAYER). SLAYER is a tech-
nique to learn synaptic weights and axonal delays using a temporal credit assignment policy
for error backpropagation in preceding layers. Importantly, SLAYER has proven to achieve
state-of-the-art performance for an SNN on numerous widely used datasets [33].

SLAYER’s training mechanism allows for networks to adapt to event-based data directly.
It overcomes non-differentiability by using a surrogate gradient based off of the probability
density function (PDF) for change of state of a spiking neuron. Error is then assigned to
previous layers. SLAYER enables traditional optimization to occur in SNNs, while avoiding
the gradient vanishing and explosion problem commonly associated with recurrent neural
networks [35].

Lava’s implementation of SLAYER supports recurrent network structures and a wider
variety of neuron models and synaptic connections among other features [32]. In future
works, we hope to use Lava’s SLAYER as a method for training SpikeMS in an end-to-end
neuromorphic fashion.

1.4. Neuromorphic Processors. The human brain uses approximately 20 W of
power for computation [11], making mimicking its energy efficiency highly advantageous.
As a result, neuromorphic processors were devised with the aim to emulate the brain and
its biological processes in silicon. To design neuromorphic processors, interdisciplinary re-
search has been conducted to develop analog and digital architectures based on the spiking
nature found in biological neurons.

Analog processors have the potential to offer greater advantages in energy and latency
when compared to an optimized digital application specific integrated circuit (ASIC) [1].
Despite their increased complexity, analog systems are not readily available, are noisy, and
require target algorithm development [6]. In the future, if scaled, these systems would be
more computationally efficient. Our work focuses on digital neuromorphic processors.

Currently, a state-of-the-art digital neuromorphic processor combines many neuromor-
phic cores with a few traditional cores. Neuromorphic cores rely on networks-on-chip to
route their communications. Rather than communication being dependent on time-steps
(clock-driven), communication and computation only happens when a spike occurs (event-
driven) [4]. They utilize these spike events to communicate between downstream neurons,
with associated weights and delays present for each synaptic connection [31]. One function
of traditional cores is to perform on-board translations of data from the dense, synchronous
domain to the neuromorphic domain. These features allow for fully integrated memory
and computation, sparse connectivity, massive parallelism, network fan-outs, and on-chip
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learning, all features strongly desired within the neuromorphic algorithms development com-
munity [10].

One chip of note is Intel’s Loihi 2 [10]. Loihi 2 was developed with vast improvements
from its predecessor by focusing on expanding its application space. Specifically, Loihi 2’s
hardware is primed for easier neuromorphic algorithm development. The processor features
the ability to carry integers within spikes, rather than binary values, and can integrate
various spiking neural network model types [10]. SpiNNAKER [13] and IBM’s TrueNorth
[20] are additional chips designed with spiking neural network architectures, however, we
will focus on Loihi 2 and its algorithmic benefits throughout the remainder of this discussion.

2. Methods. When examining various neuromorphic implementations of motion seg-
mentation algorithms, it is important to account for the information being passed into each
network. We tested SpikeMS for its ability to perform incremental predictions. Specifically,
testing on edge cases such as extreme camera motion and rotation to verify the network’s
ability to generalize outside of what it was trained on. We found it necessary to develop
a seamless method for ingesting new event sensor data into the existing SpikeMS model to
view the results. In Section 2.1 we detail the process of efficiently converting event data
into workable formats. In Section 2.2 we describe the SpikeMS implementation and provide
results from testing it on new datasets.

2.1. Event Data Pipeline. The two-element event data pipeline is designed with the
purpose of creating a simple interface for event sensor data manipulation. The first element
creates a streamlined process of extracting the necessary event information from the event
sensor output. This implies converting the RAW event sensor format to the desired file type
(i.e. HDF5, NPZ, etc). The second element provides visualization of Prophesee event sensor
data.

Prophesee’s Metavision [28] is utilized to read in Prophesee event sensor RAW files.
Three necessary components must be extracted from the event sensor files to complete
these tasks. The first component is the event stream, which consists of time, x-coordinate,
y-coordinate, and polarity information. The second component is an array of each events’s
starting index. Logic for retrieving each event as a bin is built into Metavision’s EventsIter-
ator [28]. The final component is the sensor dimensions. Although the pipeline can convert
file formats beyond RAW event sensor files (e.g., NPZ, CSV, and TXT), we demonstrate
pseudo code for RAW file conversion in Algorithm 1.

To store event information, numerous formats were tested. Hierarchical Data Format
version 5 (HDF5) is found to be the most efficient for reading/writing event data when
compared to NPZ, CSV, and TXT. NPZ files are formatted similarly to HDF5, but result
in slower read/write times when converting RAW data. Although CSV and TXT files
are human readable and directly editable, they result in vastly slower read/write times
during conversion. For this reason, SpikeMS’s prediction feature (an addition to the network
described in Section 2.2) is based off of information extracted from HDF5 files using H5PY
[7]. Event information is stored in HDF5 files as shown in Table 2.1.

Testing determined NPZ format to be the most effective for video conversion (converting
event stream data into a video). HDF5 files perform the same task marginally slower,
whereas CSV and TXT files face significantly longer video conversion times. The pipeline’s
converter enables NPZ files to be generated containing the same information depicted in
Table 2.1. The information is quantized into frames based on timestamp and polarity and
output as MP4 files. Examples of these outputs are shown in Section 2.2.

Overall, the pipeline is capable of converting a Prophesee RAW file or event stream file
into an HDF5 suitable for SpikeMS predictions. Additionally, the pipeline’s video converter
is a useful tool to visualize original input event streams and SpikeMS predicted event streams
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Algorithm 1: Event Sensor Data Pipeline

input = rawFilePath
output = outputF ilePath
outputType = Extract output type from path.

eventsFromRaw = Extract events using Prophesee’s Metavision [28].
totalEvents = Extract spike count from eventsFromRaw.
dimensions = Extract sensor size from eventsFromRaw.

idx = Index counter.
events, events idx = Empty arrays to store events information.
for eventBin in eventsFromRaw do

shape = Extract length of event bin from eventBin.
nextIdx← idx+ shape
events[idx : nextIdx]← [t, x, y, p] from eventBin
events idx← [idx]
idx← nextIdx

end
if outputType is “.hdf5” or “.npz” then

events dictionary ← events, events idx, dimensions
Open outputF ile
outputF ile← events dictionary

end
if outputType is “.csv” or “.txt” then

Open outputF ile events, outputF ile events idx, outputF ile dimensions
outputF ile← events, events idx, dimensions accordingly.

end

Table 2.1
Event data contained in exported files.

Key Size Value

“events” (# of Events, 4) [t, x, y, p]
“events idx” (# of Bins, 1) [starting index for bin]
“dimensions” (2) [height, width]

for direct comparison of results. This enables interoperability within the system. The ideal
workflow is shown in Figure 2.1.

2.2. SpikeMS Implementation. SpikeMS was designed by the University of Mary-
land Dept. of Computer Science’s Perception and Robotics Group [24]. The algorithm
is a spiking neural network implementation of an encoder-decoder architecture. For mo-
tion segmentation, this hourglass-shaped architecture is highly appealing due to its ability
to identify objects of interest and reduce background noise. It uses a modified version of
SLAYER to train. SpikeMS is available with a pre-trained model on an event-based motion
segmentation learning set, EV-IMO [21]. EV-IMO contains pixel-wise motion masks, ego-
motion (sensor movement), and ground truth depth to enable results such as those seen in
Figure 2.2.

To further test its implementation, we incorporated a “predict only” feature to SpikeMS.
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Fig. 2.1. Event sensor pipeline SpikeMS workflow for visualizing original input and SpikeMS predicted
event streams.

Fig. 2.2. SpikeMS prediction images compared to input and ideal output for EV-IMO dataset. Predic-
tions generated from our native implementation of SpikeMS.

The feature does not require mask information, but rather uses event streams and the
event indices to make its predictions. As such, the output does not contain ideal images.
We allocated the predicted tensors into event streams, similar to the function of an event
sensor, to enable visualization. We performed further analysis of SpikeMS’s predictions
on Prophesee event sensor datasets [29] and scenes captured at the Neuromorphic Research
Laboratory (NERL) at Sandia National Laboratories. These datasets include driving scenes,
a pendulum swinging, and fan spinning. The results are demonstrated in Figures 2.3 and
2.4 using the visualization tool mentioned in Section 2.1.

Fig. 2.3. SpikeMS prediction images on Prophesee driving dataset. SpikeMS correctly identifies mul-
tiple moving objects of interest. Predictions generated from our native implementation of SpikeMS and our
event sensor data pipeline.

SpikeMS accurately completes motion segmentation and background subtraction tasks.
These scenes as shown in Figure 2.3 and Figure 2.4 introduce egomotion, multiple objects
of focus, and background objects to test various situations with SpikeMS.
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Fig. 2.4. SpikeMS prediction images on NERL pendulum dataset. Sensor is undergoing egomotion
and SpikeMS was correctly able to identify the foreground object. Predictions generated from our native
implementation of SpikeMS and our event sensor data pipeline.

3. Conclusions. We have demonstrated a pipeline that enables flexible visualization
of event sensor data and integration of this data into neural networks. Additionally, we have
shown results from SpikeMS tested on data external to its training set. We verified that
SpikeMS is capable of incremental predictions (predictions from smaller amounts of test
data than the dataset it was trained on). Our preliminary results indicate that SpikeMS
is a great candidate to implement on a neuromorphic processor due to its success with
complex scenarios and edge cases that were not introduced during training. Therefore, in
future work, we plan to explore implementing this system on a neuromorphic processor,
Intel’s Loihi 2, using Lava to enable end-to-end neuromorphic motion segmentation at the
edge. With this hardware implementation we can analyze performance along with potential
energy benefits without the need for simulation.

4. Acknowledgments. Special thanks to Park Hays for his work related to handling
Prophesee data for Algorithm 1.
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WEIGHTED AND PENALIZED RESIDUAL MINIMIZATION
FORMULATIONS FOR MODEL REDUCTION OF STEADY

HYPERSONIC FLOWS

R. LOEK VAN HEYNINGEN∗, PATRICK J. BLONIGAN† , AND ERIC J. PARISH‡

Abstract. Computational simulations of hypersonic flow play an important role in the design of hyper-
sonic vehicles, for which experimental data are scarce. Reduced order models (ROMs) have the potential to
make many-query problems, such as design optimization and uncertainty quantification, tractable for this
domain. Recent work has shown that residual minimization ROMs which incorporate entropy principles
into their optimization statement can possess improved accuracy and robustness for compressible flow. We
incorporate this entropy weighting with other residual minimization techniques developed for convective
problems, including `1 minimization and penalized formulations of a constrained minimization problem that
enforces conservation. This project investigates the utility of these ROMs for steady hypersonic test cases.
Particular attention is paid to accuracy for problems with strong shocks, which are common in hypersonic
flow and challenging for projection-based ROMs.

1. Introduction. The relevance of hypersonic flow to technologies with strategic and
commercial interest has spurred the development of computational fluid dynamics (CFD)
methods capable of simulating such flows at greater scales and higher levels of fidelity. De-
spite advances in computational methods, CFD for hypersonic flow is often computationally
expensive. This poses a challenge when trying to integrate CFD into engineering studies that
require repeated simulations at different operating conditions, such as design optimization
or uncertainty quantification.

In these many-query workflows, cheap approximations of a numerical solver, achieved
with some form of model order reduction, can be used in place of the high-fidelity solver.
Examples of model reduction include the consideration of simplified physics, the construction
of purely data-driven surrogates, and the use of projection-based reduced order models
(ROMs). Projection-based ROMs tend to require more intrusive access to the full order
model (FOM) than other surrogate approaches, but they use the structure of the governing
equations to offer high accuracy with limited FOM data and can potentially provide rigorous
error estimates [5].

Projection-based ROMs are usually introduced with Galerkin ROMs, which enforce
orthogonality of the continuous dynamical system with a basis constructed from FOM data.
In fluid dynamics problems for which Galerkin ROMs can lack robustness, they can be
augmented with stabilization terms [4] or variable transformations that can enhance their
stability [17, 22, 10]. A related class of ROMs are residual minimization ROMs, which aim to
minimize the residual in a specified norm rather than achieving exact orthogonality. These
include the Least-Squares Petrov Galerkin (LSPG) method [8], which has been demonstrated
on large scale turbulent and hypersonic fluid problems [29, 6]

The features of hypersonic flow that make full order CFD simulations expensive also
pose challenges for projection-based ROMs. These issues can be addressed through the
construction of the reduced basis or the formulation of the ROM itself.

A significant issue is the hyperbolic-like nature of hypersonic flow and the appearance
of shocks or sharp gradients. Convection-dominated problems possess a large Komogorov n-
width, which means that the linear subspace often used in ROMs will be slow to converge [1].
This has been demonstrated explicitly in a number of common high-speed flow benchmarks
[16, 28, 20]. Though a larger basis can always be considered, projection-based ROMs scale
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poorly with the size of the basis, which can lead to ROMs that are more expensive than
the FOMs at moderate basis sizes [6]. This issue has spurred the development of local and
adaptive linear bases [1, 23], nonlinear manifold approximations [18], and registration-based
methods [27, 21]. For shock dominated flows, particularly effective ROMs can be developed
if discontinuities can be aligned in the training data [20, 21, 11].

Other less intrusive modifications to the basis can also have advantages. Offline aug-
mentations of the basis can provide substantial benefits for compressible flow ROMs [3].
Previous work has found that the introduction of simple positivity-enforcing functions can
make ROMs that are more stable for hypersonic and chemically reacting flow [11, 13]. Other
works have found that using different variable sets to construct the basis can have accuracy
advantages. This can have a dramatic effect when using entropy variables to add symme-
try to a Galerkin formulation [17, 22], while primitive and entropy variable bases can add
accuracy for LSPG [11, 14].

This work is mostly a follow up to [11], which primarily focused on the above im-
provements to the basis. There are also potential benefits to be gained by reconsidering
the construction of the ROM itself rather than the basis. This is the focus of this work,
particularly in the context of residual minimization ROMs.

Previous works have pointed out that the usual `2 norm is dimensionally inconsistent for
compressible flow problems [2]. In previous hypersonic studies this was avoided by dividing
each component of the residual by a reference scale [6]. Later [22], showed that a norm
defined by a so-called entropy-based inner product could lead to even more accurate ROMs
for compressible flow. The preconditioned LSPG ROMS of [19] can also be considered
as an adaptive modification of the standard `2 norm. Other works have proposed using
an `1 norm minimization, motivated by its connection to the Total Variation Diminishing
property, which is useful to simulations of hyperbolic problems [1]. Minimization of the
`1 norm has been shown to provide improved accuracy over LSPG for some hyperbolic
problems [2, 21].

Adding constraints to a residual minimization ROM’s optimization statement is a way
to reintroduce structure that is lost in the projection to a reduced basis. We focus on the
addition of conservativity, which was first derived in [9]. Earlier work on projection-based
ROMs for hypersonics showed that the conservativity constraint led to the fastest and most
accurate ROMs [6], but the method ran into robustness issues when used on a problem
with more limited data [11]. Both of these works used a strict equality constraint, but the
conservation violation can also be incorporated as a penalty to the objective function.

This work tests out these variations of the optimization statement to a shock dominated
problem from [11]. Despite the fact that [11] showed that mesh adaptivity resulted in the
most effective ROMs, we test combinations of entropy weighting, `1 minimization, and
the conservation penalty to both fixed mesh and adapted solutions. This is because not
every CFD code will have adaptive capabilities and not every hypersonics problem will
be amenable to grid tailoring. The ROM formulations and software used are discussed in
Section 1. Results on fixed and adapted meshes for problems with sharp features are shown
in Section 3, and conclusions are given in Section 4.

2. Methods.

2.1. Software and Application.

2.1.1. Hypersonic CFD code. We build off the framework for hypersonic model
reduction developed in [6, 11]. For the full order model, we use the Sandia Parallel Aero-
dynamics Reentry Code, or SPARC [12]. SPARC solves the Navier-Stokes equations using
a cell-centered finite volume discretization on structured or unstructured meshes. While
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SPARC has capabilities for turbulence models and thermochemical nonequilibrium, we re-
strict our attention to flows that remain laminar and in equilibrium. For steady flow, the
FOM is expressed as

f(x;µ) = 0. (2.1)

The function f will be referred to as the residual and the solution of (2.1) is an evaluation
of the FOM.

For a d-dimensional domain discretized with n cell centers, the total number of degrees
of freedom is N = (d + 2)n, with f(·, ·) ∈ RN , x ∈ RN , and µ ∈ Rq. The state variables
are the conservative variables density ρ, momentum ρu and energy ρE, while µ is a vector
of parameters. For the ROM basis, we also make use of the primitive variables xprim =
(ρ,u, T ). The expression for f can be found in [12].

For the steady problems considered in this work, SPARC uses pseudo-time stepping.
SPARC also has a form of mesh adaptivity known as grid tailoring [26, 7]. This technique
aligns the mesh with a bow shock, which can greatly improve heat flux computations for
finite volume methods. Details of SPARC’s grid tailoring implementation can be found in
[11].

2.1.2. Reduced order modeling library. The ROM routines are implemented with
Pressio, a header-only C++ library [25]. This lightweight interface allows the ROM methods
to reuse the data structure and methods of the FOM, allowing for large-scale ROM studies.

Pressio requires the evaluation of f and the application of the Jacobian of f to a vector.
As opposed to the previous Pressio and SPARC studies, this work uses exact Jacobian-vector
products using automatic differentiation (AD) provided by the SACADO library [24]. The
exact Jacobian vector product is slower than the previous finite difference approach but is
expected to provide robustness. A full study of the tradeoffs for the AD capability is out of
scope for this work.

2.2. Reduced order model techniques.

2.2.1. Basis generation. We assume that the solution to our PDE (2.1) can be rep-
resented as a composition of a nonlinear and affine mapping,

x(µ) = h(x0(µ) + Φx̂) (2.2)

where h : RN → RN , Φ ∈ RN×p is a data-driven basis, and x̂ ∈ Rp are the expansion
coefficients in this basis. An offset vector, x0, is used to better center the data around the
origin and is often set to zero or the mean of the training data. The nonlinear mapping h is
a simple “clipper” function that prevents the solution from reaching nonphysical states by
ensuring that the density and temperature remain positive.

A standard choice for generating the basis Φ is proper-orthogonal decomposition (POD).
With training snapshots Xtrain, optionally shifted and scaled as shown in [6, 11], the POD
basis consists of the p leading left singular vectors of the singular value decomposition of
Xtrain. The number of modes p can be can be chosen based off the decay of the singular
values.

As mentioned in the introduction, global POD modes tend to do a poor job of capturing
flows with discontinuities or strong gradients. As an alternative, we use the dictionary basis
described in [11]. To query the basis for a new parameter µ, a basis is built up out of the
displacements from the nearest training snapshot in Xtrain. First, the training parameter
closest to µ is determined as µn with a corresponding snapshot xn. Then, the p snapshots
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closest to xn, as measured by a metric in the µn field, are loaded into a matrix X(µn(µ)).
The local basis is then defined as

Φ(µ) = X(µn(µ))− xn(µn(µ)) (2.3)

where subtraction is performed column-wise.
When the FOMs use grid tailoring and µ has quantities that can change the shock

location, each snapshot is potentially solved for on a different grid. This means that for
a new parameter set µ, we must first calculate a mesh for the ROM to use. In this case,
a dictionary basis is also used for training data of grid displacements. Computing a POD
basis for this training data is possible but was not attempted here. Note that the grid
basis can have a different order than the basis for the fields themselves. The ROM grid is
constructed before the residual minimization process begins rather than being updated at
each iteration.

The basis is also constructed using primitive rather than conservative variables. Prim-
itive variable bases were preferred for all tests except for one quantity of interest (QoI) in
a single test case in [11]. Whether primitive variables are always more effective is an open
question, and it is pointed out in [11] that the optimal choice of state variable may depend
on test case and QoI1. For example, surface heat flux is often of interest for hypersonic
flow, and it has a simpler dependence on the primitive variables than conservative variables.
Another reason for the difference in accuracy could be that the nonlinear mapping h can act
directly on the primitive variables but requires extra operations to act on the conservative
variables [11].

2.2.2. Residual minimization: choice of norm. The LSPG ROM of order p finds
a solution x̂ ∈ Rp that minimizes the residual in the the `2 norm

x̂ = arg min
ẑ∈Rp

‖Af(x0(µ) + Φẑ;µ)‖2. (2.4)

Hyper-reduction [8, 30] is incorporated with the matrix A, which we ignore in this work by
letting A = I.

We solve (2.4) with Gauss-Newton iterations. Given an iterate ẑk, the next iterate is
determined by setting up and solving a linear least squares problem

fk = Af(x0(µ)+Φẑk;µ), Jk = A
∂f

∂x

∣∣∣
h(x)

∂h

∂x

∣∣∣
x

(2.5)

δẑk = arg min
δẑ∈Rp

‖Jkδẑ + fk‖2 (2.6)

ẑk+1 = ẑk + αkδẑ
k. (2.7)

Note that while αk can be a stepsize defined through a line-search or trust region algorithm,
here we leave it equal to one.

As with any Newton-type method, the starting iterate has a substantial effect on con-
vergence and efficiency properties. Based on the conclusions from [11], we use radial basis
function (RBF) interpolation to construct an initial guess ẑ0. An effective initial guess
allows the steady ROM to obtain susbstantial speedups over the hypersonic FOMs even
without hyper-reduction, since only a moderate number of Newton iterations are typically
required for convergence [6].

1Note that in [22], the use of entropy snapshots and have been shown was shown to be advantageous.
We do not consider this here, as the advantage was somewhat minor and we expect the entropy snapshots
to be less helpful for LSPG with a dictionary basis.
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Many hypersonic codes including SPARC output quantities in dimensional variables.
The `2 norm of the dimensional residual is dimensionally inconsistent and problematic nu-
merically; the energy is typically up to five orders of magnitude greater than the density,
for example. This can be avoided by considering a weighted LSPG statement

x̂ = arg min
ẑ∈Rp

‖Af(x0(µ) + Φẑ;µ)‖2,W (2.8)

where W ∈ RN×N and ‖f‖2,W = fTWf . Previous works used a diagonally scaled `2

norm, where W is a matrix that nondimensionalizes each component of f by including the
reciprocal of a reference state xref.

An alternative `2 was derived in [22], using the entropy forms of compressible flow
equations. Using a set of entropy variables w in the formulation of the FOM can result
in equations that provably preserve an entropy functional and can provide stability by
symmetrizing the equations [15]. While we do not use an entropy formulation of the FOM,
we use the observation of [22] that for a single collection of conservative variables x ∈ Rd+2

and entropy variables w ∈ Rd+2, the following expression is dimensionally consistent:

xT
(
∂w

∂x
(xref)

)
x. (2.9)

Since the residual f has the same units as x, the inner product fTWentf will be di-
mensionally consistent if Went ∈ RN×N is a block diagonal matrix where each block is
∂w
∂x (xref) ∈ R(d+2)×(d+2).

Note that xref for the diagonal or entropy-based weights could be made to adapt for each
degree of freedom or time step, but here it is kept constant through all ROM iterations as
the mean of the training snapshots. An adaptively weighted norm would have similarities to
the preconditioned LSPG ROMs of [19], which propose the use of norms adaptively weighted
by an approximate Jacobian inverse.

Another alternative norm choice is proposed in [1]

x̂ = arg min
ẑ∈Rp

‖Af(x0(µ) + Φẑ;µ)‖1. (2.10)

The `1 minimization problem can be solved as a linear program or using iteratively reweighted
least squares (IRLS). This method uses the fact that the `1 can be expressed as a weighted
`2 where the weighting is a diagonal matrix with |Af(x0(µ) + Φx̂;µ)|−1 on the diagonal.
This weighting implicitly depends on the solution of the minimization problem, so an itera-
tive procedure is used to approach the optimum. For an iteration k of the IRLS algorithm,
a weight matrix

W k = diag
(
|Af(x0(µ) + Φẑk;µ)|−1

)
(2.11)

is formed and the minimization problem

ẑk+1 = arg min
ẑ∈Rp

‖Af(x0(µ) + Φẑ;µ)‖2,W k (2.12)

is solved. This process is repeated until convergence.
In addition to being more expensive than the usual Gauss-Newton method, there are

fundamental difficulties to solving (2.10). Two of these are described in [2]. First, the
`1 norm is not convex, which can be addressed with a convex regularization term. The
choice of regularization is an open question for this problem. Furthermore, the norm is not
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differentiable around 0. As suggested in [2], we use the Huber norm which smoothly switches

between to the `2 norm close to the origin. The norm is defined as ‖f‖H =
∑N
i=1Hδ(fi)

where H is a function defined for some constant δ

Hδ(fi) =

{
f2i if |fi| < δ,

2δ(|fi| − δ) if |fi| ≥ δ. (2.13)

In IRLS, this is accomplished by changing the weight matrix to

Wii =

{
1 if |fi| < δ,

2δ/(|fi|) if |fi| ≥ δ. (2.14)

As in [2], we let δ = 1× 10−6 max (1.0, ‖f‖∞).
Finally, the `1 norm is also not dimensionally consistent for a dimensional residual. The

`1 norm is not defined in terms of an inner product, but we can change the definition of the
residual slightly to have a problem that is better scaled. The diagonal and entropy weight
matrices defined so far are SPD, so we can take their Cholesky factorization as W = LTL.
Then we can minimize the weighted residual Lf . In practice, this is not much different
than how the weighted `2 minimization is implemented.

2.2.3. Residual minimization: constraints. In addition to modifying the norm,
we can add constraints to the optimization statement that can enforce structure within the
ROM. Unlike the finite volume-based FOM on which they are based, the ROMs described
so far do not inherently satisfy conservation laws.

This property can be enforced with the conservation constraint first derived in [9] with
the introduction of conservative LSPG, or C-LSPG. It is expressed with an equality con-
straint that encodes conservation violations with a constant matrix C ∈ R5×N

x̂ = arg min
ẑ∈Rp

‖Af(x0(µ) + Φẑ;µ)‖q (2.15)

s.t. Cf(x0(µ) + Φẑ;µ) = 0. (2.16)

The use of C-LSPG resulted in fast and accurate ROMs in hypersonics in [6]. When C-LSPG
was applied to problems with sparser training data however, it suffered from robustness
issues [11]. We take an approach suggested in [9] to deal with potential infeasibility of the
constraint by recasting the equality constraint as a penalty

x̂ = arg min
ẑ∈Rp

‖Af(x0(µ) + Φẑ;µ)‖q1 + ν‖Cf(x0(µ) + Φẑ;µ)‖q2 (2.17)

for some constant ν. We will refer to this method as C(ν)-LSPG.
We note that q1 and q2 can be different of norms. Since C is a dimensionless matrix,

the arguments regarding dimensional inconsistency also apply to the penalty term and q2
should be weighted appropriately to ensure dimensional consistency. Without the weighted
norm choice, the penalty method always diverges in the following examples due to large
magnitudes in the energy component.

Since all of our considered norms can be expressed as weighted `2 norms, we can solve
this problem with Gauss-Newton. If q1 is a `2 norm weighted with W1 and q2 is a `2

norm weighted with W2 and each weight matrix has a respective Cholesky factorization
W1 = LT1 L1 and W2 = LT2 L2, then (2.17) can be written as

x̂ = min
ẑ∈Rp

∥∥∥∥
(

L1Af(x0(µ) + Φẑ;µ)
L2
√
νCf(x0(µ) + Φẑ;µ))

)∥∥∥∥
2

(2.18)

Note that while the strict constraint provably restores conservativity, the penalty method
has no such guarantees.
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3. Results. We consider the accuracy of the above formulations on two test cases
with parametric-dependent discontinuities in the flow field. The first example is used for
visualizations of the different ROM methods while we perform an error analysis on the
second case over a range of parameters. The ROMs considered are specifically LSPG with
diagonal scaling and entropy scaling, `1 with diagonal and entropy scaling, and C(ν)-LSPG.
The entropy weighting is constructed with the same entropy variables described in the
appendix of [22]. A solver with `1 and a conservative penalty was implemented and tested,
but the results are not shown here as they were more or less identical to the penalized LSPG
method.

3.1. Double wedge. The first example is a double wedge geometry of the type often
used to study shock-boundary layer interactions. The FOM uses a mesh with 122,880 cells.
The parameter set µ consists of a single quantity, the free-stream Mach number, Ma. We
use a small parameter range running from Ma = 4 to Ma = 5 and use 6 equally-spaced
training points with intervals of 0.2. The ROM uses a POD basis with p = 6 and is run
until the residual decreases 6 orders of magnitude. Each ROM is evaluated at Ma = 4.3 and
visualized in Figure 3.1. Even for this mild parameter variation, the minimization statement
has a noticeable impact on the ROM solution.

(a) FOM (b) LSPG, Wdiag (c) LSPG, Went (d) L1 (e) C(ν)-LSPG

Fig. 3.1: Sample visualizations of a double wedge problem comapring the FOM to several
minimization formulations. Minor changes in the minimization statement can have qualita-
tive effects on the ROM solution

3.2. Single wedge. This is a repeat of the first example from [11], which considers
laminar ideal gas flow over a 2D blunt wedge geometry. The FOM is run on a mesh with
100,000 cells and pseudo-time stepping is employed until the residual decreases by 7 orders
of magnitude. The flow has a fixed free-stream temperature of T∞ = 216.66K and a baseline
Reynolds number of Re = 1.5e7. Parametric variations occur in the free-stream density ρ∞
and the free-stream velocity in order to vary the free stream Mach number. The free-stream
density ranges from 0.03 to 0.09 while the Mach number goes from 3.0 to 10.0. See Figure
3.2 for sample visualizations of fixed mesh and grid tailored solutions.

To construct the ROM, we use training points at

µtrain = ρtrain ×Matrain = [0.04, 0.06, 0.08]× [3.0, 5.0, 7.0, 9.0].

Due to the poor performance of the POD basis shown in [11], the basis is a dictionary with
p = 8 and RBF interpolation for the initial guess. Each ROM minimization routine is run
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(a) Fixed mesh (b) Grid tailored

Fig. 3.2: Sample visualization of the blunt wedge with ρ∞ = 0.05 and Ma∞ = 5.0 comparing
fixed mesh and grid tailored solutions. The tailored solution iteratively deforms the mesh
in order to have a mesh aligned with the bow shock.

for 100 iterations or until a relative residual tolerance of 1e-6 is reached. We consider the
same three error metrics considered in [11]. First, the standard `2 state error:

εx(µ) =
‖xFOM(µ)− xROM(µ)‖2

‖xFOM(µ)‖2
. (3.1)

We also check the convergence of two scalar quantities of interest (QoI): axial force Fx and
wall heat flux Qwall. Each ROM is also evaluated for relative errors in these two quantities,
denoted as εFx

and εQwall
. It was demonstrated empirically in [11] that lower state errors do

not always correspond to lower QoI errors. While ROMs can naturally lower the state error
by increasing p, errors for particular QoIs are often of greater practical interest. Accuracy
is calculated on a regular grid in parameter space. We exclude the training set and include
small regions of extrapolation. When reporting the mean errors, we discard the cases with
the lowest and highest errors to eliminate outliers.

3.2.1. Fixed mesh. The average errors for state, axial force, and integrated heat
flux are given in table 3.1. We note first that that the errors for all cases are quite large,
especially for the integrated heat flux. This was observed in [11] and motivated the use of the
grid tailored ROMs. The entropy-weighted LSPG ROMs on average result in very slightly
improved state and integrated heat flux errors while the error in the axial force is increased
marginally. A similar pattern occurs with `1 minimization, where slight improvements are
seen with in state errors and integrated heat flux with the entropy weighting, but the axial
force becomes less accurate. The lowest errors in all three metrics are achieved with the
conservative penalty.

To get a better idea of where the errors are effected, we plot the errors for each tested
parameter. Figure 3.3 shows the effect of the weight matrix on the state error for LSPG.
The fixed mesh ROM struggles to capture the flow in between the Mach numbers used in
the training set. The introduction of the entropy-based weight matrix slightly improves
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Method mean εx mean εFx mean εQwall

LSPG, Wdiag 0.08859 0.03916 0.19221
LSPG, Went 0.05248 0.04268 0.16729
`1, Wdiag 0.12001 0.03113 0.21810
`1, Went 0.09648 0.04186 0.18696

C(ν)-LSPG 0.03979 0.01776 0.07308

Table 3.1: Average state and QoI errors for the fixed mesh ROMs

error in the higher Mach numbers, Ma = 8 and Ma = 10. Figure 3.4 shows that the there
is a small improvement of the integrated heat flux in this region while the axial force is less
accurate here.

(a) LSPG, Wdiag (b) LSPG, Went

Fig. 3.3: State errors for LSPG with different choices of weight matrix on a fixed mesh.
Training cases denoted by black X symbols.

The `1 ROMs state errors are shown in Figure 3.5 and the QoI errors are shown in
Figure 3.6. The ROMs still struggle to reach acceptable state errors in between the Mach
numbers used for training. The `1 norm with diagonal scaling results in a noticeably more
accurate prediction of axial force in the high Mach number range, though large errors are
still observed when the Mach number is small.

The state errors for the C(ν)-LSPG are shown in Figure 3.7 while the QoIs are shown
in Figure 3.8. Improvements are seen almost uniformly across the parameter range. Both
weight matrix choices give very similar results, so only errors with the entropy weighting are
shown. There are still regions of high error, particularly for low Mach numbers and some
regions outside the convex hull of the parameter set, but the addition of the conservative
penalty greatly expands the region where the ROMs can be considered reasonably accurate.
This effect is particularly large the QoIs, with significant improvements seen in the heat flux
measurements. We do note that the quality of the ROM does depend the choice of ν. See
Figure 3.9 for a demonstration of the impact ν has on heat flux errors. In this case, larger
values of ν tend to result in more accurate ROMs.

3.2.2. Grid tailoring. The same experiments are repeated with the grid tailored
ROMs. We note that the FOMs themselves are more accurate with grid tailoring. The
average errors are reported in table 3.2. Consistent with previous studies, the use of mesh
adaption greatly increases the accuracy of the ROM. For both LSPG and `1 minimization,
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(a) LSPG, Wdiag , axial force (b) LSPG, Went, axial force

(c) LSPG, Wdiag , heat flux (d) LSPG, Went, heat flux

Fig. 3.4: QoI errors for LSPG with different choices of weight matrix on a fixed mesh.

(a) `1,Wdiag (b) `1,Went

Fig. 3.5: State errors for `1 with different choices of weight matrix on a fixed mesh.

the entropy-based weighting results in greater accuracy for the state and axial force with
minor loss of accuracy in the heat flux. The addition of the conservative penalty lowers the
state and axial force errors. Interestingly, the average integrated heat flux error is slightly
increased, while for fixed mesh C(ν)-LSPG resulted in dramatic improvements for integrated
heat flux errors.

As before, we plot the pattern of the different errors across the range of parameters.
All of the state errors are shown in Figure 3.10, the axial force errors in Figure 3.11, and
the heat flux errors in Figure 3.12. There are fewer discernable patterns than in the fixed
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(a) `1, Wdiag , axial force (b) `1, Went, axial force

(c) `1, Wdiag , heat flux (d) `1, Went, heat flux

Fig. 3.6: QoI errors for `1 with different choices of weight matrix on a fixed mesh.

Fig. 3.7: State errors for C(ν)-LSPG with ν = 10

mesh case. In general, C(ν)-LSPG provides the lowest errors around the edges of the graph,
hinting at a potential for better extrapolation properties. Note that for grid tailoring we
found that increasing ν did not increase the solution quality as it did for the fixed mesh
case. This points to a sensitivity of this method to its penalty parameter. This method will
require tuning of the penalty parameter, and more study is required to narrow down what
order of magnitude the parameter should lie in.

The relative gain of using these alternative minimization statements seems greater for
the fixed mesh case. While improvements in ROM accuracy can still be obtained, the
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(a) Axial force error (b) Heat flux error

Fig. 3.8: QoI errors for C(ν)-LSPG with ν = 10 on a fixed mesh

Fig. 3.9: Heat flux errors for the conservative penalty method with different choices of ν.

alignment of features is a powerful enough tool such that the details of the minimization
statement are less relevant.

4. Conclusions. This work analyzed the importance of different ROM minimization
statements on a hypersonic flow problem with sharp features and limited data. Different
choices of norms and a penalty constraint were introduced and applied to problems that had
challenged more standard ROM routines in past works. A few conclusions can be reached.
First, defining a ROM in terms of the entropy-based norm can result in lower state errors
with minimal computational effort. That said, in this case it did not lead the same level of
improvement that was seen in the unsteady problems studied in [22]. This could be due to
the differences in these hypersonic problems compared to those considered in that work, or
it could be that the entropy norm has less potential impact in a steady problem. The impact
on QoIs is not consistent. This is an issue across all of the ROMs considered, emphasizing
the conclusion from [11] that the best choice of ROM may be problem and QoI dependent.

The `1 solver used here, while effective for certain QoIs in certain parameter ranges,
seems to provide less of an advantage than in previous works like [2, 21], where the `1 ROM
is deemed consistently better. The implementation can likely be improved by examining
the choice of δ for the Huber norm or by considering different regularizations.

The most accurate ROM studied here was the penalized variant of C-LSPG. In particular
on the fixed mesh, C(ν)-LSPG was more accurate in a large section of parameter space. It
is important to determine how to choose the parameter, or whether the penalized or strictly
enforced constraint should be used.

Since the goal of these ROMs are to speed up computational studies, a definitive con-
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Method mean εx mean εFx mean εQwall

LSPG, Wdiag 0.00723 0.01632 0.07467
LSPG, Went 0.00519 0.01317 0.07557
`1, Wdiag 0.00697 0.01369 0.07455
`1, Went 0.00476 0.01007 0.07710

C(ν)-LSPG 0.00397 0.00564 0.08580

Table 3.2: Average state and QoI errors for grid tailored ROMs
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(c) `1 diag, Wdiag
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(d) `1 entropy, Went
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(e) C(ν)-LSPG, ν = 0.001

Fig. 3.10: State errors for all ROM variants with grid tailoring

clusion on the overall effectiveness of each ROM must consider computational cost. Fur-
thermore, all of the ROMs considered here should be tested on different hypersonic test
cases. It could be that this flow, with a single bow shock and not many secondary effects,
is particularly prone to causing conservation violations when expanded in a reduced ba-
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(d) `1, Went
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(e) C(ν)-LSPG, ν = 0.001

Fig. 3.11: Axial force errors for all ROM variants with grid tailoring

sis. It is worth reevaluating these methods with more complicated flow-fields, such as flows
with interacting shocks or nonequilibrium effects. While speedups can be achieved without
hyper-reduction for steady ROMs, the extension to unsteady hypersonic test cases will likely
require combining these ROMs with hyper-reduction.
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MONOLITHIC ALGEBRAIC MULTIGRID PRECONDITIONERS FOR
STOKES SYSTEMS

ALEXEY VORONIN∗, RAYMOND S. TUMINARO† , LUKE N. OLSON‡ , AND SCOTT

MACLACHLAN §

Abstract. We investigate a novel monolithic algebraic multigrid solver for the Stokes problem dis-
cretized with stable mixed-finite elements. In this work, we build upon a previously published methodology
of using geometric multigrid based on the QQQ1isoQQQ2/Q1 discretization as a preconditioner for a higher-order
discretization such as QQQ2/Q1[26]. We introduce a robust algorithm to construct a smoothed aggregation
algebraic multigrid solver utilizing independent coarsening of the velocity and pressure fields (the unknown
approach) that does not require any geometric information about the system. The effectiveness of this
preconditioner is verified for the PPP2/P1 (Taylor-Hood) discretization in two and three dimensions.

1. Introduction. Numerical solution of saddle point problems lies at the heart of
many scientific and engineering applications. One such problem of interest arises from the
finite-element discretization of the Stokes equations, which is used to model viscous fluid
flow [6, 4]. Discretization of the Stokes system using stable finite-element pairs usually leads
to a 2 × 2 block structure in which the lower-right diagonal block is a zero matrix. The
indefiniteness of such a system and the coupling between the two different unknowns pre-
vents a straightforward application of the classic algebraic and geometric multigrid methods.
Monolithic geometric multigrid approaches have been shown to achieve robust convergence
for such systems once a successful coupled relaxation scheme and coarsening approach are
devised.

Many popular and well understood monolithic multigrid solvers for Stokes problems
utilize geometric coarsening of pressure and velocity fields on a nested sequence of increas-
ingly coarser meshes, connected by canonical interpolation operators for each field [2, 1, 5,
25, 17, 20, 14, 13, 7, 11, 16]. Geometric multigrid (GMG) approaches preserve the spatial
relationship between the pressure and velocity unknowns and, therefore, the stability of
coarse-grid re-discretizations. These approaches are not easily adaptable to algebraic multi-
grid methods due to the irregular nature of algebraic coarsening. In addition, most inf-sup
stable finite-element discretizations of the Stokes equations utilize higher-order basis func-
tions in constructing the discrete operators. The stiffness matrices assembled using these
higher-order bases are generally not M-matrices, for which AMG methods were originally
intended. As a result, the convergence rates of AMG solvers suffer as the order of such
discretizations is increased. Many AMG approaches attempt to bypass the coarsening is-
sues related to higher-order bases by creating algebraic coarsening that mimics the fine-level
spatial relationship between the unknowns (for example, maintaining the ratio between the
number of degrees of freedom for the two unknowns). These methods frequently rely on
some geometric knowledge of the system, such as the location of the unknowns or on which
element cells they reside [27, 28, 12, 22, 19].

In this paper, we outline an unknown-based smoothed-aggregation AMG algorithm,
where scalar AMG algorithms are applied to each physical unknown individually, in con-
junction with Vanka-based relaxation that yields satisfactory convergence rates even for
the higher-order Taylor-Hood discretizations of Stokes systems. To combat increased cycle
complexity and iteration growth associated with AMG based on higher-order discretizations,
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we build upon the “double discretization” or “defect correction” scheme that leverages an
PPP1isoPPP2/P1 re-discretization of the original problem, which we discuss in Section 2.1, to
construct an effective preconditioner [26]. The work in [26] demonstrates that the related
QQQ1isoQQQ2/Q1 discretization can be used to build an effective GMG preconditioner for the
QQQ2/Q1 system. The main contribution of this paper is extending this approach to the al-
gebraic multigrid context and demonstrating its effectiveness in preconditioning the PPP2/P1

Taylor-Hood discretized systems on structured and unstructured grids.
In Section 2 we introduce the Stokes equations and the accompanying discretizations.

Section 3 describes a monolithic algebraic multigrid framework and how it is used to assemble
preconditioners for the PPP2/P1 discretization of the Stokes equations. In Section 4 we present
the main contribution of this paper: AMG convergence results for various Stokes problems
and a comparison of the computational cost between the PPP1isoPPP2/P1-based and PPP2/P1-based
AMG preconditioners. Section 5 provides concluding remarks and potential future research
directions.

2. Discretization of the Stokes Equations. In this paper, we consider the steady-
state Stokes problem on a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3} with boundary
∂Ω = ΓN ∪ ΓD, given by

−∇2u+∇p = f in Ω (2.1a)

−∇ · u = 0 in Ω (2.1b)

u = w on ΓD (2.1c)

∂u

∂n
− np = s on ΓD, (2.1d)

where u is the velocity of the fluid, p is the pressure, f is a forcing term, n is the outward
pointing normal to ∂Ω, w and s are given boundary data, and ΓD and ΓN are disjoint
Dirichlet and Neumann boundaries, respectively. In cases where velocity is specified every-
where along the boundary, requiring

∫
∂Ω

w · n = 0, the pressure solution is unique only up
to a constant. The suitable trial space for pressure is Q := L2

0(Ω). When |ΓN | > 0, the
typical choice of boundary data satisfying (2.1d) is s = 0. The resulting solution is always
unique under the suitable trial space for pressure, Q := L2(Ω) [6].

We define finite dimensional spaces (Vw
h ,Qh) ⊂ (H1

g(Ω),Q), where Vw
h satisfies the

Dirichlet boundary conditions specified by (2.1c). The resulting discrete weak formulation
of (2.1) is: find u ∈ Vw

h and p ∈ Qh such that

a(u,v) + b(p,v) = F (v) (2.2a)

b(q,u) = 0, (2.2b)

for all q ∈ Qh and v ∈ V0
h. Here, a(·, ·) and b(·, ·) are bilinear forms and F (·) is a linear

form given by

a(u,v) =

∫

Ω

∇u : ∇v, b(p,v) = −
∫

Ω

p∇ · v, F (v) =

∫

Ω

f · v +

∫

ΓN

s · v.

From here on out, we overload the notation and use u and p to denote the discrete velocity
and pressure unknowns. Given an inf-sup stable choice of finite-dimensional spaces (V0

h,Qh),
we obtain a saddle-point system of the form

K

[
u
p

]
=

[
A BT

B 0

] [
u
p

]
=

[
f
0

]
= b, (2.3)

where matrix A corresponds to the discrete vector-Laplacian, and B represents the negative
of the discrete divergence operator.
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2.1. Finite Element Discretizations and Meshes. We focus on two different but
related discretizations for the finite-dimensional spaces (Vh,Qh) on d-dimensional simplexes
(Th). The first discretization is the Taylor-Hood (TH) PPPk/Pk−1 discretization, which uses
continuous piecewise polynomials of degree k for the velocity space Vh and continuous
piecewise polynomials of degree k−1 for the pressure space Qh. The TH element-pair is inf-
sup stable for k ≥ 2 on any given mesh Th obtained by triangularization (tetrahedralization)
of the domain Ω. For the remainder of this paper, we use k = 2 for the TH (PPP2/P1) element
pair, which corresponds to a piecewise quadratic approximation of the velocity components
and a piecewise linear approximation of the pressure. This discretization is used to assemble
the discrete Stokes system, Equation (2.3), which we are interested in solving. However, the
preconditioning approach described in Section 3 can easily be extended to higher-order TH
(k > 2) discretizations.

The second discretization used in this paper is the PPP1isoPPP2/P1. It replaces the P2 space
for velocities with an P1 approximation on a uniform refined mesh, Th/2 while keeping the
same pressure space and mesh (Th). Th/2 is obtained by overlaying the higher-order nodes
(P2) with a lower-order mesh (Th/2), which is depicted by dotted lines in Figure 2.1(b).
PPP1isoPPP2/P1 discretization is also inf-sup stable [8] but is not as well-known due to its rela-
tively low accuracy and computational efficiency.

(a) PPP2/P1 (b) PPP1isoPPP2/P1

Fig. 2.1. Meshes and degrees of freedom for the PPP2/P1and PPP1isoPPP2/P1 discretizations. Dark circles
correspond to the velocity locations (two velocity components per marker), and red squares correspond to
the pressure locations.

3. Monolithic Multigrid. This section proposes an algorithm for constructing a
monolithic AMG solver for the Stokes system Kx = b described in Section 2. This approach
follows the familiar multi-level error-reduction strategy present in all multigrid methods.
At the foundation of successful multigrid methods lies robust relaxation schemes and com-
plementary interpolation operators. The relaxation scheme must quickly reduce the high-
frequency error associated with the initial solution guess, leaving the near-null space modes
mostly unaffected. The interpolation operator is then used to represent the residual equa-
tion on a coarser set of unknowns (coarse grid), where the correction is easier to compute.
The coarse-level solution is interpolated to the original (fine-level) grid and is used to correct
the initial guess.

For a linear system Kℓxℓ = bℓ on level ℓ of the multigrid hierarchy, we define the
relaxation scheme as a fixed-point iteration

xj+1
ℓ = (I − ωℓM

−1
ℓ Kℓ)x

j
ℓ + ωℓM

−1
ℓ bℓ,

where Mℓ is an inexpensive approximation to Kℓ, whose inverse is easy to apply. The
(I − ωℓM

−1
ℓ Kℓ) term is the error-propagation operator for relaxation on Kℓ with a damp-
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ing parameter ωℓ. Combing one pre- and one post-relaxation sweeps with the coarse-grid
correction operator, we obtain the following two-grid error-propagation operator

Gℓ = (I − ωℓM
−1
ℓ Kℓ)(I − PℓK

−1
ℓ+1RℓKℓ)(I − ωℓM

−1
ℓ Kℓ), (3.1)

where the Pℓ is the interpolation between levels ℓ + 1 and ℓ, and Kℓ+1 is the coarse-grid
operator computed via Galerkin coarsening Kℓ+1 = PT

ℓ KℓPℓ. The hierarchy is usually
recursively extended until K−1

ℓ+1 is small enough to be computed directly via the Moore-
Penrose pseudo-inverse or sparse LU decomposition.

3.1. Low-Order Preconditioning. Voronin et al. [26] demonstrate that the
QQQ1isoQQQ2/Q1 finite-element discretization can be used to construct a robust geometric multi-
grid (GMG) preconditioner for the higher-order QQQ2/Q1 finite-element discretization of the
Stokes equations. The paper utilized a multigrid defect-correction approach where the
higher-order (QQQ2/Q1) finite-element system was preconditioned with GMG based on the
lower-order system (QQQ1isoQQQ2/Q1). In this paper, we leverage these results in developing a
defect-correction method based on a monolithic AMG solver.

This defect-correction approach follows the same notation described in [26]. Let K0

and K1 be the Stokes operators assembled using a higher-order (PPP2/P1) and lower-order
(PPP1isoPPP2/P1) discretization. P0 and R0 are the grid transfer operators between higher-order
and lower-order discretization, which are to be defined later. Since the K1 system is still
the same size linear system, we form a monolithic AMG hierarchy based on K1, denoted
G1, to help accelerate its convergence. Adding ν1 pre- and ν2 post- relaxation sweeps on
the K0 system results in the defect-correction method

E =
(
I − ω0M

−1
0 K0

)ν2
(
I − τ(I −Gγ

1)K
−1
1 K0

) (
I − ω0M

−1
0 K0

)ν1
, (3.2)

whereM0 is a relaxation operator based in the K0 system and ω0 is the respective relaxation
parameter.

The grid transfer operator, P0, between higher-order and lower-order discretization can
be represented as a block-diagonal matrix

P0 =

[
Pu

Pp

]
, (3.3)

where Pu and Pp correspond to velocity and pressure field interpolation operators, respec-
tively. The velocity field operators in the Stokes equations discretized by P2 and P1isoP2

elements on corresponding meshes are of the same size, and their DoFs are collocated in
physical space. We can, thus, take Pu = I, where I is a square-matrix identity operator.
The same is true for the pressure-field grid-transfer operator for the PPP2/P1 and PPP1isoPPP2/P1

discretizations, Pp = I. This implies that K1 is a non-Galerkin coarse-grid approximation
of K0. However, the coarser levels of the hierarchy Kℓ>1 contained within G1 are Galerkin
coarse-grid operators built from K1.

3.2. Coarse-level Stokes by Smoothed Aggregation. This subsection outlines
an algorithm for constructing a smoothed aggregation (SA) based AMG hierarchy for the
Stokes system. This AMG hierarchy is equivalent to the multi-level operator Gℓ described
in (3.1). Algorithm 1 is an unknown-based approach where interpolation operators are
formed for each unknown field by performing SA for each matrix-block corresponding to
the unknown field. Algorithm 1 relies on the user’s ability to access individual blocks of
the Stokes systems, Equation (2.3), or infer what those discrete operators are based on the
knowledge of the total number of unknowns in each field. Notice in Algorithm 1 that a
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pressure stiffness matrix, Ap, is also supplied in addition to the Stokes operator. Ap is used
to construct the pressure interpolation operator. However, if the pressure-stiffness matrix
is unavailable, it can be approximated by a post-processed Âp = BBT operator, where the
stencil width is trimmed to match the one of Ap [22].

SA is applied to each scalar field independently to form the grid-transfer operators.
Algorithm 1 outlines velocity-field coarsening in a component-wise fashion, which requires
breaking up the velocity vector-Laplacian, A, into its components, Ax and Ay. However, this
is not strictly necessary in practice. In the case of the velocity field, its scalar components are
invariant subspaces, which means SA can be applied directly to vector-Laplacian, given that
the supplied near-nullspace modes contain two (three) linearly-independent constant modes
corresponding to each block of the 2D (3D) vector-Laplacian, which can be represented as

Nv =

[
Nx

Ny

]
, (3.4)

where Nx and Ny are two constant vectors of size n(v), corresponding to the total number
of velocity nodes. For the pressure field, SA is applied directly to the pressure-stiffness
matrix, Ap, or its approximation along with a constant near-nullspace mode, Np, of size
n(p) corresponding to the total number of pressure nodes.

After the interpolation operators for each field (velocity and pressure) are formed, they
are combined as a block-diagonal matrix into a single monolithic interpolation operator,
Pℓ. Algorithm 1 describes an AMG algorithm for a 2D Stokes system, which can easily
be extended to 3D by simply adding the z-component of velocity interpolation (P z) to the
block-diagonal interpolation operator Pℓ.

Algorithm 1 SA-AMG Hierarchy Setup for Stokes System

1: Input: K1 =

[
A BT

B

]
, Stokes system where B ∈ Rn(p)×(d·n(v))

2: Ap, pressure stiffness matrix
3: Output: K1,. . . ,Kℓmax

, Grid hierarchy
4: P1,. . . , Pℓmax−1, Interpolation Operators
5:

6: Ax, Ay = split(A) // Split vector-Laplacian component-wise
7: Nx = Ny = 1n(v) // Near-nullspace velocity mode
8: Np = 1n(p) // Near-nullspace pressure mode
9: {P x

ℓ } = sa amg(Ax,Nx) // interpolation for x-component of velocity
10: {P y

ℓ } = sa amg(Ay,Ny) // interpolation for y-component of velocity
11: {P p

ℓ } = sa amg(Ap,Np) // interpolation for pressure
12: ℓmax = min(size({P x

ℓ }), size({P y
ℓ }), size({P

p
ℓ })) + 1

13: for ℓ = 1, ..., ℓmax − 1 do

14: Pℓ =



P x
ℓ

P y
ℓ

P p
ℓ


, // assemble monolithic interpolation operator

15: Kℓ+1 = PT
ℓ KℓPℓ // Compute coarse-grid operator

16: end for

While the smoothed aggregation of each field (lines 9-11 in Algorithm 1) is not explicitly
coordinated (as in most traditional monolithic MG methods), it is crucial to maintain a
similar ratio between velocity and pressure DoFs throughout the hierarchy to improve the
stability of the coarse-grids operators. This can be achieved by matching the coarsening
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rates for each field approximately. The coarsening rates are determined by the strength of
connection (SoC) measures, which determine the matrix graph edges that should be ignored
during the coarsening algorithm. We have found that this approximate matching does not
tend to occur with traditional SoC measures. Instead, we employ an evolution SoC that
we discovered does much better at maintaining a consistent coarsening rate across velocity
and pressure grids than the more standard symmetric SoC. Evolution SoC produces more
accurate interpolation by integrating the local knowledge of algebraically smooth error with
the local behavior of interpolation [21]. Evolution SoC results in better convergence rates
across different sets of problems in a parameter-independent fashion, unlike the symmetric
SoC-based hierarchies, whose results are significantly more sensitive to the drop-tolerance
parameter.

3.3. Relaxation. The final piece of the monolithic AMG method for Stokes is the
coupled relaxation method M−1

ℓ . In this section, we drop the operator subscript ℓ since the
relaxation operator construction is the same on all levels of the multigrid hierarchy.

For this paper, we use the algebraic version of the additive Vanka method [24], but
other coupled relaxation schemes should also work here. Vanka relaxation is an additive
Schwarz-type relaxation method for saddle-point systems. It breaks up the global saddle-
point system K into many small (overlapping) saddle-point systems, denoted Kloc

i , that
need to be solved exactly and whose solutions are summed back up into a global update
vector.

We construct a Vanka patch Kloc
i around each one of n(p) pressure DoFs. For each

pressure DoF (pi), we select the algebraically connected velocity DoFs set ({vi}n
(v)
i

i=0 ), which
can be identified using the sparsity pattern of the divergence matrix’s row corresponding to

pi. The global sparsity pattern (n
(v)
i column indices) of the local divergence operator Bloc

i

is then used to extract the velocity coefficients from the global vector-Laplacian to form
a local vector-Laplacian operator, Aloc

i . The coefficients of the local divergence operator,
Bloc

i , correspond to the non-zero values of B’s row i. Local divergence and vector-Laplacian
operators form a local saddle-point problem

Kloc
i =

[
Aloc

i (Bloc
i )T

Bloc
i 0

]
. (3.5)

Figure 3.1 depicts what typical patches look for the PPP2/P1 and P1isoP2 discretizations on
the fine-level of the hierarchy.

The injection operator V T
i is an mi × m binary matrix that extracts the subset of

the global saddle point DoFs coinciding with the ith patch. Here, m is the number of

rows/columns of K while mi is n
(v)
i + 1, the number of DoFs contained in Kloc

i . It follows
that Kloc

i = ViKV
T
i and therefore is the sub-matrix of K associated with the ith patch.

A single sweep of Vanka relaxation can then be expressed as

M−1 =

n(p)∑

i=1

V T
i Wi

(
ViKV

T
i

)−1
Vi,

where the diagonal weighting matrix Wi is a partition of unity, where each diagonal entry
is equal to the reciprocal of the number of patches that contain the associated degree of
freedom.

In the context of this paper, the solution of each patch Ki is performed using the
Moore-Penrose pseudo-inverse of a matrix. For some patch sparsity patterns, sparse LU
factorization can result in faster setup and solution time. To minimize the number of
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(a) PPP2/P1 (b) PPP1isoPPP2/P1

Fig. 3.1. On the left, construction of a Vanka patch for the PPP2/P1 discretization. On the right,
construction of a Vanka patch for the PPP1isoPPP2/P1 discretization. Both patches include a single pressure
DoF (red square) and all the velocity DoFs directly algebraically connected to that pressure DoF (black
circles). These patches have an element/mesh interpretation on the finest mesh, while on algebraically
coarsened levels, there is no simple element/mesh interpretation.

potential optimization strategies in this paper, we always use the pseudo-inverse for the
patch-system solution.

3.4. Relaxation Parameter Space Reduction. Vanka relaxation methods are of-
ten relatively sensitive to the choice of damping-parameter ω, which is needed for each level
within the AMG hierarchy. Fourier analysis has often been used to choose this damping pa-
rameter when Vanka is employed within a GMG scheme [9]. As Fourier analysis is generally
restricted to structured mesh computations, the traditional Fourier space approach is not
possible for the algebraically generated irregular coarse meshes. Two possible alternatives
based on polynomial preconditioning ideas come to mind to address the damping parameter
choice in an algebraic setting.

The first idea is based on the Chebyshev polynomials, while the second is based on
the GMRES polynomial [18]. In the case of Chebyshev polynomials, one needs to have
an estimate for the largest and smallest magnitude eigenvalues of KM−1, which can be
problematic. Often a fixed fraction of the largest magnitude eigenvalue can be used for the
smallest magnitude eigenvalue estimate when the Chebyshev polynomial is used as a multi-
grid smoother. As an alternative, we consider an approach analogous to the Chebyshev it-
eration to determine an appropriate damping parameter. Instead of performing k-iterations
of Vanka relaxation with a fixed damping parameter ω, we construct a residual-minimizing
polynomial based on the right-preconditioned Krylov-subspace of size n,

Kn(KM
−1, r0) = {KM−1r0, . . . , (KM

−1)nr0}, (3.6)

whereK is the Stokes system,M−1 is a single sweep of stationary Vanka relaxation, and r0 is
the initial residual. This automatic approach requires no particular eigenvalue calculations
as it is fully equivalent to n iterations of FGMRES preconditioned with a single sweep
(k = 1) of Vanka. GMRES can also be used here in place of FGMRES. For the remainder
of the paper, we fix k = 1 relaxation steps per Krylov step and n = 2 FGMRES steps per
relaxation.

The Chebyshev iteration and FGMRES methods have unique advantages and disadvan-
tages when it comes to improving the relaxation convergence rates. The Chebyshev method
requires the user to provide eigen-bounds for the preconditioned K matrix. In contrast, the
FGMRES-based approach computes the eigen-bounds implicitly and forms an interpolating
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polynomial that is optimal from the perspective of residual minimization. However, the
FGMRES-based polynomial may not be optimal from the multigrid point of view. Multi-
grid relaxation methods are generally optimized to reduce the high-frequency error range
while leaving the slow-to-converge modes for the coarse-grid correction. Chebyshev iteration
allows for relaxation-range tuning, resulting in stricter convergence bounds, while GMRES
does not allow for this type of tuning.

The additional computational cost associated with wrapping Vanka relaxation with
FGMRES is negligible relative to the cost of Vanka relaxation. However, from the high-
performance computing standpoint, Chebyshev iteration can be seen as more efficient be-
cause it avoids additional inner products, which FGMRES needs. For this paper, we simply
use FGMRES to automate the choice of Vanka’s damping parameter, ω.

4. Numerical Results. In this section, we evaluate the effectiveness and the relative
computational cost of the monolithic AMG preconditioners constructed using Algorithm 1
and the defect-correction approach (3.2). We compare the iterations to the convergence of
FGMRES preconditioned with AMG for the structured and unstructured 2D and 3D PPP2/P1

systems. Use of both PPP2/P1 and PPP1isoPPP2/P1 operators is explored in the construction of the
AMG hierarchy based on (3.1). The PPP2/P1 and PPP1isoPPP2/P1 systems are assembled with the
help of Firedrake (version 0.13.0) [23, 15]. While Firedrake does not currently provide the
capability to directly construct PPP1isoPPP2/P1 matrices, they can be formed by assembling the
PPP2/P1 discretization on a once refined mesh and then coarsening-in-order the velocity field
and coarsening-in-space to the pressure field. The AMG preconditioners are implemented
in the custom codebase by utilizing multigrid functionality offered by the PyAMG library
(version 4.2.1) [3] to combine Algorithm 1 with Vanka relaxation methods. The recorded
iteration counts correspond to the total FGMRES iterations required to reduce the l2 norm
of the residual by a factor of 10−10. The reported times to solution are based on the lowest
time from 5 different measurements.

We introduce notation Mh and Mph to distinguish between multigrid preconditioners
corresponding to G0 and E operators, respectively. The Mh preconditioners result from
applying Algorithm 1 directly to the higher-order discretization (K0: PPP2/P1). The defect-
correction approaches (E) which apply Algorithm 1 to the lower-order discretization (K1:
PPP1isoPPP2/P1) are denoted as Mph, whose subscripts indicate coarsening in order (p) and
followed by coarsen in space (h). In case of Mph preconditioners we explore three different
fine-level (K0 and K1) relaxation approaches that are abbreviated as Mωi>0

ph , Mω0=0
ph , and

Mω1=0
ph . Mωi>0

ph performs pre- and post-relaxation on each level of the hierarchy (ωi =
1 for i ∈ [0, nlvls)), except for the coarsest-level (nlvls), where exact-solve takes place.
Mω0=0

ph skips the relaxation on the K0 system, but performs pre- and post-relaxation on the

remaining levels (ωi = 1 for i ∈ [1, nlvls)). M
ω1=0
ph skips the relaxation on theK1 system, but

performs relaxation on the K0 system and the remaining levels of the PPP1isoPPP2/P1 hierarchy
(ωi = 1 for i ∈ [0] ∪ [2, nlvls)).

The optimal τ , PPP1isoPPP2/P1-cycle damping parameter is selected for each problem type
using brute-force parameter scan, where τopt corresponds to the smallest number of iterations
to convergence for the largest (most-refined) problem.

We consider 2D and 3D structured and unstructured meshes for the test problems with
two types of boundary conditions. The first type of boundary conditions corresponds to lid
driven-cavity flow boundary problem [6], illustrated in Figure 4.1(c). The second type of
problems consists of parabolic inflow boundary conditions and natural outflow (Neumann)
boundary condition, displayed in Figures 4.1(a), 4.1(b) and 4.1(d). The structured meshes
are constructed using Firedrake, and the unstructured meshes are constructed using the
Gmsh meshing software [10].
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(a) 2D Structured (b) 2D Unstructured

(c) 3D Structured (d) 3D Unstructured

Fig. 4.1. Meshes used to construct the Stokes problems. The boundaries are marked with three colors
(red, blue, and black), corresponding to three types of velocity field boundary conditions. Red corresponds
to non-zero Dirichlet boundaries. Blue corresponds to Neumann boundary conditions. Black indicates zero
Dirichlet boundary condition.

4.1. Preconditioning PPP2/P1 Systems. In this section, we examine the performance
of the preconditioners on the PPP2/P1 discretizations of the Stokes problems described above.
Figure 4.2 summarizes the convergence data collected with damping parameters τ displayed
in Table 4.1. First, consider the preconditioner based on the PPP2/P1 hierarchy of grids,
Mh. For most problems, Mh exhibits minor growth in iteration count as the problems are
refined. Since we expect the convergence to degrade in the case of higher-order Taylor-Hood
discretizations (not shown here), we also evaluate defect-correction approaches (Mph) based
PPP1isoPPP2/P1 discretization, which consists of more amicable linear finite-element bases.

Mω1=0
ph , which effectively replaces Mh’s coarse-grids with PPP1isoPPP2/P1 coarse-grids, con-

verges in a similar number of iterations as the Mh-based solvers. Since the Mω1=0
ph coarse-

grids are sparser than Mh’s, the relative cost of the solution is slightly cheaper, which can
be seen in the middle and bottom rows of Figure 4.2. However, the times to solution are
still pretty similar for Mh and Mω1=0

ph , because the overall solve time is dominated by the

relaxation cost on the finest level. In the case of Mω0=0
ph , relaxation on the K0 system is

skipped and replaced by the relaxation on the K1 system. The convergence ofMω0=0
ph -based

solvers suffers for all problem types, which can be seen in the top row of Figure 4.2. This
effect is particularly drastic for 3D problems. Despite having smaller cost per iteration than
Mh, the increase in iteration count makesMω0=0

ph less computationally effective thanMω1=0
ph

and Mh. This can be seen in the last two columns of Figure 4.2. The last preconditioner,
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Mωi>0
ph , performs relaxation on all levels of the hierarchy. While Mωi>0

ph -based solver con-
verges in fewer iterations for most problem types, there is a possible decrease in robustness
or asymptotic approach to Mω1=0

ph ’s convergence as the problem size is refined. Due to the
doubling in the number of relaxation sweeps on fine levels K0 and K1, the time to solution
for this approach is significantly longer than for the Mh approach.
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Fig. 4.2. Iterations to convergence, relative time to solution, and relative time per iteration. The
timings are relative with respect to Mh solver. The x axis gives the number of degrees-of-freedom.

Table 4.1
Optimal τ damping parameters used in the preconditioners.

Mesh Type
Structured Unstructured

Preconditioner 2D 3D 2D 3D

Mω1=0
ph 0.84 1.00 0.90 0.95

Mω0=0
ph 1.00 1.00 1.00 1.00

Mωi>0
ph 0.79 0.95 0.81 0.89

Convergence and timings results inFigure 4.2, especially forMω0=0
ph andMω1=0

ph , demon-
strate conclusively that the relaxation on the original problem (K0) should not be skipped
when designing a defect-correction type AMG preconditioner. Additional relaxation on the
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K1 system can sometimes help improve the convergence further but at a much higher com-
putational cost. This conclusion is supported by the numerical results for the GMG-based
defect-correction approach published in [26].

5. Conclusion. This report develops a novel algorithm for constructing monolithic
AMG preconditioners for the Stokes problem discretized with PPP2/P1 elements. We demon-
strate that this algorithm can be applied directly to the PPP2/P1 to produce a robust solver.
We also explore a defect-correction approach where we assemble a monolithic AMG solver
based on the lower-order PPP1isoPPP2/P1 discretization to precondition the higher-order system.
Both methods demonstrate a relatively steady iteration count for various Stokes problems
on structured and unstructured meshes in 2D and 3D. In future work, we intend to use the
defect-correction using P1isoP2 discretization to construct robust preconditioners for the
higher-order Taylor-Hood and Scott-Vogelious discretizations.
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II. Software & High Performance Computing

Articles in this section discuss the implementation of high performance computing (HPC)
and productivity software. In many cases, performance improvements and portability are
demonstrated for many-core architectures, such as conventional multicore CPUs, the Intel
Many Integrated Core coprocessor (MIC), and graphical processing units (GPUs).

1. Almgren-Bell, Moore and Gallis implemented and tested the performance and ac-
curacy of Bird’s transient adaptive subcell collision method in SPARTA, an open-
source parallel Direct Simulation Monte Carlo code.

2. Gordon and Pedretti ported the Kitten lightweight kernel to RISC-V to enable
co-design for high-performance computing workloads.

3. Grayson and Milewicz investigate the use of theories of technology adoption such
as the Perceived Characteristics of Innovation model to explain why scientific soft-
ware developers adopt certain tools and practices and to help tool creators better
understand their target audience.

4. Li, Phipps and Kolla develop a new algorithm for computing the Tucker decom-
position of streaming tensors via an incremental SVD and blocked tensor-matrix
multiplication.

5. Logan and Lofstead evaluate DOAS, a state-of-the-art distributed storage system
optimized for high-performance storage and networking hardware.

6. Parrish, Ciesko and Olivier leverage MPI Continuations to integrate user-level
threading with MPI in Sandia’s QThreads runtime.

7. Spigarelli and Davis improve a satellite scheduling software user interface using a
human predictive performance model called CogTool.

8. Viens, Hart and Phillips use mixed-integer programs to solve scheduling problems
for Sandia testing facilities.

S.K. Seritan
J.D. Smith

November 11, 2022



COLLISION-PARTNER SELECTION SCHEMES IN DIRECT
SIMULATION MONTE CARLO METHODS

JAMES ALMGREN-BELL ∗, STAN MOORE † , AND MICHAEL GALLIS ‡

Abstract. Modern Direct Simulation Monte Carlo (DSMC) methods as detailed by Bird in 1994 are
considered the primary method for the modeling of rarefied gas flows [1]. Since then, substantial research
efforts have gone into proving the theoretical correctness and accuracy of DSMC as well as improving the
numerical and computational methods involved. SPARTA is an open-source parallel DSMC code developed
at Sandia with the goal of efficient large-scale simulation on cutting edge computer architectures. One of the
most complex steps of DSMC simulation is the collide kernel, in which gas-phase collisions and chemistry
occur within each cell. Collision partner selection methods can play a major role in improving problem
runtimes. Here, we present an implementation of Bird’s transient adaptive subcell (TASC) collision method
in SPARTA along with discussions of accuracy as well as performance with MPI and KOKKOS.

1. Introduction. Although Monte Carlo algorithms have been around for over 50
years, modern Direct Simulation Monte Carlo (DSMC) methods for modeling rarefied gas
flows were truly introduced by Graeme Bird in 1994 [1]. With modern computational
capabilities enabling high precision DSMC simulations, substantial work has been done to
improve the theoretical, numerical, and computational aspects of DSMC methods. Unlike
molecular dynamics, DSMC methods track representative particles, or simulators, which are
used to statistically represent groups of particles. In certain physical regimes, in particular
where the Navier-Stokes equations are not applicable, DSMC can often offer more physical
precision than continuum models by accurately capturing kinetic effects.

While DSMC methods can be incredibly powerful tools, they are not without their
drawbacks. The particle representations used in DSMC require many more unknowns than
standard continuum methods, and as a result high fidelity DSMC simulations are very
computationally demanding. It is not uncommon to use billions of particles, each of which
must be tracked and updated at each timestep. For the collision step of DSMC to be
physically correct, locality of collisions between particles must be enforced. That is, a
particle should only be able to collide with other particles that are sufficiently close. This
maximal distance is the mean free path, the mathematical average distance a particle travels
before experiencing a collision. Standard DSMC collision partner selection is done randomly
from within the same grid cell. As a result, the cell size in each dimension must be smaller
than the mean free path; in practice, cell size is often set to be a factor of 3 or 4 smaller
than the mean free path. Problems with a large spatial domain can require hundreds of
millions of grid cells. Within each of these cells, simulator density must be sufficiently high
to accurately represent collision dynamics. Some problems may consider densities as low as
approximately 20 simulators per cell; others may use over 1,000. As an additional numerical
constraint, the timestep must be sufficiently small such that the probabilistic collision kernel
does not misrepresent true collision statistics.

One way of reducing the cost of DSMC simulations is to increase the grid cell size; of
course, the collision partner distance limit must still be enforced. The transient adaptive
subcell (TASC) method introduced by Bird accomplishes both of these tasks through the
computation of an additional grid structure within each cell at each timestep [3]. Collision
partners are then chosen according to their distance within this subcell structure. By doing
so, the TASC method allows for larger cell sizes, leading to an overall need for fewer simu-
lators. In this paper, we describe our implementation of the TASC method into SPARTA

∗University of Texas at Austin, jalmgrenbell@utexas.edu
†Sandia National Laboratories, stamoor@sandia.gov
‡Sandia National Laboratories, magalli@sandia.gov
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and discuss its performance and accuracy relative to other collision partner schemes.

2. SPARTA. SPARTA, short for Stochastic PArallel Rarefied-gas Time-
accurate Analyzer, is a parallel DSMC code developed at Sandia designed for perform-
ing simulations of low-density gases [6]. A timestep for a parallel DSMC simulation with
SPARTA can be summarized by the following steps

1. Create: create particles at simulation-box or surface boundaries.
2. Move: advect each particle, surface collisions and chemistry may occur.
3. Communicate: migrate particles to new owning processors.
4. Sort: group particles by grid cell.
5. Collide: perform gas-phase collisions and chemistry within each grid cell.
6. Stats: tally values on a particle, grid-cell, or surface-element basis.

In this paper, discussion is limited to Step 5, the collision kernel, which is often the second
most computationally expensive step after the Move step. For high precision large scale
simulations with a high number of simulated particles, the collision step can dominate
runtime. For this reason, it is essential to place focus on improvements to the methods and
implementations within the collision kernel. A detailed discussion of this kernel is presented
below.

3. Collisions in DSMC. DSMC methods model collisions between simulated particles
within each grid cell. The number of possible collisions at each timestep is a function of
all possible particle pairs, giving it O(N2) computational complexity (for N the number
of particles in the cell). The industry standard collision scheme is the no-time-counter
method, which computes the number of collision attempts Nc at each timestep as

Nc =
1

2

N(N − 1)FN (σT cr)max∆t

Vc
(3.1)

where N is the number of simulators in the cell, FN is the ratio of real molecules to sim-
ulators, (σT cr)max is the maximum of the product of the total collision cross section and
particle velocity, ∆t is the timestep size, and Vc is the volume of the cell. We note that,
for computational efficiency, the value of (σT cr)max is rarely computed at each timestep; it
is often approximated or infrequently recomputed. For each of the Nc collision pairs, two
particles i, j are chosen and a collision probability Pij is computed as

Pij =
(σT cr(i,j))

(σT cr)max
(3.2)

where σT is the cross section for the collision, cr(i,j) is the magnitude of the relative velocity
of the two particles, and (σT cr)max is as before. The collision is then either accepted (and
performed) or rejected depending on the value of a random number drawn compared to Pij .
But how are the two particles i, j in each of the Nc pairs chosen?

4. Partner Selection Methods. Typically, each of these Nc collision pairs are chosen
by selecting two random particles i, j from within the cell. As previously mentioned, one way
to increase the accuracy of a DSMC simulation is by selecting a random particle i but using
careful selection of the partner particle j (as opposed to true randomness). One method of
selecting the partner particle is using the nearest neighbor method. For a collision with
primary particle i, a search is done over the cell to select the nearest neighbor to particle i.
While this does perform collisions with the closest pairs of particles, this search can be very
computationally expensive, as each collision partner search must consider all particles within
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the cell An adaptation of this method is to truncate the search after a certain number of
potential partners and choose an approximate nearest neighbor from among those particles.
What is gained in runtime, however, is lost in accuracy. A notable downside to the nearest
neighbor method is that bias can be introduced, as the loss of randomness in the partner
selection can hurt the accuracy of the simulation. Because DSMC separates the move kernel
from the collision kernel, the nearest neighbor method can only select the nearest neighbor
partner at the end of the particle’s spatial move. Particles that could be collided with during
the particle’s trajectory during that step are missed. This bias is particularly noticeable for
high velocity particles.

The transient adaptive subcell (TASC) method for partner selection offers an
improvement to the nearest neighbor method [3]. At each timestep, each cell is refined with
an additional grid structure, such that we expect to have approximately one simulator per
grid subcell. The number of subcells in each direction is given by n

1
d , where n is the number

of simulators in the cell and d is the dimensionality of the problem. For a primary particle
i, the collision partner j is selected at random from the set of particles in subcells at the
closest possible radial distance to the subcell of particle i. This distance refers to distance
between subcells on the grid and is thus an integer; exact distance between particles is never
considered. A noteworthy difference between the method implemented and the method
originally described by Bird. Bird’s method selects a random subcell from this minimal
distance and then selects a random particle from within that random subcell. Our method
counts all particles at this distance and selects randomly from them without the selection of
a random subcell as an intermediate step. In this way, we avoid introducing any spatial bias
which would arise if neighboring subcells had highly variable particle densities. The TASC
method can be seen as an approximation to the nearest neighbor approach, but in a more
efficient manner. There is an overhead to setting up the subcell structure, but repeatedly
finding partners is much more efficient as this step can reuse information, unlike the nearest
neighbor setup. Further, the randomness as a part of the TASC method in which a particle
is chosen randomly from a given grid distance helps to reduce the spatial bias built in to
the nearest neighbor method, which can only select the exact nearest neighbor rather than
other close particles.

5. Performance Analysis. The computational cost of the TASC method can be
broken down into two major steps. The first step is the setup of the subcell structure,
which includes establishing the necessary data structures and mapping each particle to its
corresponding subcell. The second step is the partner selection, in which the subcell grid
structure must be traversed and a collision partner selected. The computational cost of the
first step has exact O(n) scaling, as all simulators must be mapped to their corresponding
subcell. The second step, however, scales solely with the number of collisions performed,
which itself is dependent on both the number of simulators in the problem as well as the
simulation physics. While we do not present a detailed breakdown of the two steps here,
it is worth noting that physical parameters of a given problem will likely have an effect on
relative performance of the TASC method compared to the other collision partner methods.
For example, problems that require high simulator density but low collision frequency will
perform particularly poorly with the TASC method due to overheads. We now present
timing data for the TASC method compared to the nearest neighbor methods (full and
truncated) as well as the original partner selection method for both a small test problem
and a large application problem.

5.1. Hardware. All simulations presented here were done on Sandia SRN HPC pro-
duction clusters. The test problem, both in serial and using KOKKOS, was run on Attaway,
featuring compute nodes with 36 cores each with 2.3 GHz Intel Xeon Gold 6140 processors.
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These simulations were done on a single node. For the vortex shedding problem the compute
cluster Manzano was used (for easier access to more nodes, as each simulation was run using
32 nodes). Compute nodes on Manzano feature 48 cores each with 2.9 GHz Intel Cascade
Lake 8268 v4 processors.

6. Test Problem. We consider the test problem of a closed 3D cube with side length
L = 0.1mm decomposed into 1,000 grid cells and filled with Argon gas of number density
approximately 7× 1022 1

m3 at temperature T = 273K. The particles move, collide with each
other, and reflect off the boundaries. 1,000 timesteps are taken of size ∆t = 7× 10−9s.

We compare the base DSMC collision scheme with fully random partner selection to
the TASC method and the full nearest neighbors method. As previously discussed, we also
consider the truncated nearest neighbor method, in which the nearest neighbor search is
truncated after a certain number of partner trials. This is labeled below as NN-30 (limit of
30 particles searched per collision). For the test problem, we assume all methods can be run
using the same timestep and the same cell size. While assumption is useful here for timing
purposes, the TASC and nearest neighbor methods typically use larger cells and smaller
timesteps in practice. This is further discussed in Section 7 when we examine a practical
problem.

Timings presented measure the full collision kernel time during the simulation as a
function of the average cell density. Timings were averaged over two runs for confirmation,
although variance between runs was shown to be negligible. The results are shown in Table
6.1. The results confirm that the TASC method substantially outperforms the nearest
neighbors method, even by almost a factor of two for high densities. Surprisingly, the TASC
method outperforms the truncated NN-30 method even at high particle densities.

Simulator Density Base TASC NN-30 NN

10 0.30 0.5 0.4 0.4
20 1.1 1.6 1.6 1.6
40 4.3 5.5 6.5 6.6
80 17.1 20.2 25.4 28.9
160 67.7 79.8 102.3 125.9
320 277.4 324.1 414.2 569.7
640 1083.6 1315.7 1696.9 2523.8

Table 6.1
Runtimes (seconds) of collision kernel for 1,000 timesteps in 2-D collisions test problem. Scaling study

done as a function of simulator density (particles per cell).

7. Application Problem. The primary application problem we consider models 2-
d gas flow around a circular cylinder experiencing vortex shedding, in which an inflow
boundary condition on the left side of the domain generates low-pressure zones on the
downwind (right) side of the cylinder. This phenomenon results in a fluctuating force in the
transverse direction to the flow, which is discussed later. The vortex shedding behavior can
be seen in the transverse flow velocity fields shown in Figure 7.1. This problem is drawn
from prior work by Gallis and Torczynski, where extensive discussion of the physics involved
can be found [4] [7]. In this paper, this problem is used for exploring both performance and
accuracy for the TASC method.

We model an Argon gas flow with Mach number 0.3 and Reynolds number of 100 (and
thus Knudsen number of Kn = 0.0048). A full parameter list is provided below:

• Problem domain: 15m (streamwise) by 10m (transverse)
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• Cylinder diameter: D = 1m
• Molecular mass: m = 66.3× 10−27kg
• Specific heat ratio: γ = 5

3
• Viscosity: µ = 2.117× 10−5Pa s
• Temperature: T = 273.15K
• Freestream velocity U = 92.37m

s

• Density ρ = 2.292× 10−5 kg
m3

• Number density n = 3.457× 1020 1
m3

• Mean free path λ = 0.0048m
Collisions between the molecules are performed using the hard-sphere collision model. Molecule-
surface reflections are performed using a probabilistic combination of diffuse and specular
reflection governed by an accommodation coefficient α. Diffuse reflection off of the cylinder
occurs with probability α and specular reflection occurs with probability 1−α. In this work,
we limit discussion to the α = 0 case, which corresponds to the fully specular limit.

Fig. 7.1. Transverse flow velocity field at t = 1.31s: evidence of vortex shedding

7.1. Accuracy. To verify the accuracy of the TASC method, the primary data output
of interest is the transverse component of the force, a product of vortex shedding. When
the problem is initialized with the inflow conditions, the transverse force is almost zero; over
time, this force grows and demonstrates oscillatory behavior. While the exact times in the
simulation do not necessarily overlap between different runs, we can use a slight temporal
shift in order to compare the oscillatory frequency and amplitude of the transverse force
between runs. Reference exact solution data is provided by Gallis from a high precision
simulation done with the base collision method [4]. We run simulations using the nearest
neighbor and the TASC methods for comparison to the exact solution. The results are
presented in Figure 7.2. We observe strong agreement of the subcell and nearest neighbor
methods with the exact solution, a confirmation that the TASC method is working as
intended. The increased noise compared to the exact solution is a result of reduced precision
due to lower particle density compared to the exact solution.

7.2. Performance. We now turn our discussion to the performance of the different
collision methods with this problem. As previously discussed, the base method has a more
restrictive cell size due to the potential distance between collision partners. On the other
hand, the nearest neighbor and TASC methods require a more restrictive timestep due to
the locality of collision partner selection in large cells. That is, partners are chosen based
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Fig. 7.2. Transverse force measurements over time

off of particle location after the advection step. If the timestep is too large, this introduces
a substantial bias to partner selection. For this reason, base method is run with 4 cells per
mean free path (in each direction) and a timestep of approximately 1.3×10−5s. The subcell
and nearest neighbor methods are run with 1 cell per mean free path (in each direction)
and a timestep of approximately 1.3× 10−6s; they run with 16× fewer cells but 10× more
timesteps. The timing results shown in Table 7.1 were done with 32 nodes and to a time
horizon of approximately 2.6× 10−2s (2,000 and 20,000 timesteps, respectively).

Simulator Density Base Subcell NN
100 2,285 1,138 985

1,000 40,992 19,788 16,867
Table 7.1

Collision kernel runtimes in vortex shedding problem

Unlike the test problem, this vortex shedding problem shows better performance for the
nearest neighbors method compared to the TASC method. We note that this behavior is
unexpected given the timing results from the test problem, in particular for the high particle
density case. However, there are a number of differences that may explain the discrepancy.
In particular, we have here a much larger problem size run across multiple nodes. Here,
the domain is split into hundreds of millions of grid cells with tens of billions of particles.
Unlike the collisions test problem which featured a uniform box, our domain here has flow
around the circle, leading to uneven particle densities and flow conditions. Ongoing research
is being done to resolve this runtime discrepancy to fully understand the effect of problem
details on collision kernel run times, as expectations are that the TASC method should be
outperforming the nearest neighbors method.

8. Other SPARTA Development.

8.1. Kokkos Implementation. Kokkos is a C++ performance portability program-
ming model that allows the user to write one code base that is mapped onto different
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back-end languages for varied hardware. This includes languages such as CUDA or HIP for
GPUs as well as OpenMP that can be used on CPUs [8]. Almost all of SPARTA’s features
are implemented in KOKKOS, an the TASC method implemented in the standard version
of SPARTA was also implemented into the KOKKOS version.

Performance validation for the Kokkos implementation of the TASC method can be
done in the same way as the serial version. We consider again the collision test problem as
detailed in Section 6, with all parameters the same. Here, the problem size is fixed at an
average cell density of 200 particle. Performance is measured as a function of the number of
OpenMP threads used by Kokkos to confirm that the TASC method scales beyond the serial
case. The timings are shown in Table 8.1 and demonstrate similar behavior as the serial
case. The TASC method outperforms both the full and 30-limit near neighbor methods as
well as shows acceptable performance in comparison to the base method.

Threads Base Subcell NN-30 NN

1 43.6 78.5 78.4 123.6
2 16.9 28.9 33.8 57.2
4 8.4 14.3 17.1 28.7
8 4.4 7.5 9.1 15.3
16 2.6 4.3 5.2 8.7
32 1.4 2.2 2.7 4.3

Table 8.1
Collision kernel runtimes in test problem using KOKKOS

8.2. Majorant Collision Frequency Method. As previously discussed, the stan-
dard method for determining number of collisions within a timestep is the no-time-counter
(NTC) method. One alternative is the majorant collision frequency (MCF) scheme [5]. With
this scheme, first computed is the majorant frequency vmax. Collision particle pairs are then
drawn using any partner scheme (base, subcell, nearest neighbor). For each collision pair, a
local timestep δt is randomly sampled from an exponential distribution for this pair. That
is, for R a uniform random number between 0 and 1,

δt = − logR

vmax
(8.1)

Collisions are performed and values of δt are repeatedly drawn until
∑
δt > ∆t, the overall

timestep. In this way, the MCF method has similarities to the time-counter method, which
assigns timesteps to collision pairs. The MCF method also shows similarities to the NTC
method, but with some improvement. The NTC method reproduces the average collision
time, but only for sufficiently large sample sizes. MCF reproduces the exact Poisson distri-
bution of collision time and also reproduces the correct average collision time, however it
can do so more effectively with smaller sample sizes.

We implemented the MCF method into SPARTA with capabilities of using the base,
nearest neighbor, and subcell collision methods. Preliminary testing has been done to
confirm expected runtimes and accuracy for the collisional test problem previously detailed.
Future work will look to pair the majorant collision frequency method with the TASC
method for large scale problems such as the presented vortex shedding flow problem. The
goal will be to explore if the combination of the MCF and the TASC methods provides
additional solution accuracy for a fixed problem size or allows for a larger timestep to be
taken.
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9. Conclusion. In this paper, we have presented contributions and testing using
SPARTA centered around the transient adaptive subcell method. While this method shows
great potential in test problems, the computational performance proved to be subpar in the
application problem. Theoretical estimates suggest that the TASC method should experi-
ence better scaling than the nearest neighbor method for simulations with a higher number
of simulators [2]. Further, the TASC method holds more true to the desired randomness of
partner selection in DSMC than does the nearest neighbor selection method. As a result,
ongoing work continues to be done with the expectation of improving the subcell implemen-
tation to resolve the performance issues experienced in the full-scale simulation.
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PORTING THE KITTEN LIGHTWEIGHT KERNEL OPERATING
SYSTEM TO RISC-V

NICHOLAS GORDON∗ AND KEVIN PEDRETTI†

Abstract. Hardware design in high-performance computing (HPC) is often highly experimental. Ex-
ploring new designs is difficult and time-consuming, requiring lengthy vendor cooperation. RISC-V is an
open-source processor ISA that improves the accessibility of chip design, including the ability to do hard-
ware/software co-design using open-source hardware and tools. Co-design allows design decisions to easily
flow across the hardware/software boundary and influence future design ideas. However, new hardware de-
signs require corresponding software to drive and test them. Conventional operating systems like Linux are
massively complex and modification is time-prohibitive. In this paper, we describe our port of the Kitten
lightweight kernel operating system to RISC-V in order to provide an alternative to Linux for conducting
co-design research. Kitten’s small code base and simple resource management policies are well matched
for quickly exploring new hardware ideas that may require radical operating system modifications and re-
structuring. Our evaluation shows that Kitten on RISC-V is functional and provides similar performance
to Linux for single-core benchmarks. This provides a solid foundation for using Kitten in future co-design
research involving RISC-V.

1. Introduction. Today, hardware/software co-design is typically performed by profil-
ing and analyzing applications running on current computing systems, conducting software-
based simulation studies using high-level architectural models and simplified application
proxies or motifs, and by collaborating with vendors to influence their product roadmaps.
Within the HPC community, this model has worked well and it will continue to do so. How-
ever, this approach can be slow, taking years to impact the hardware that can be purchased
and deployed in supercomputers. Additionally, complete operating systems are usually not
considered in co-design research, in part because software-based simulation tools are too
slow or do not contain significant fidelity to support them.

The emerging RISC-V ecosystem promises to change this situation by greatly simplifying
the task of hardware development by applying modern software development practices and
agile methods [23]. Academia and industry have rallied around RISC-V [6] and generated a
rich set of open-source tools and open-source hardware components [4,9,10,17,27]. It is now
possible for individual researchers and small teams to rapidly construct prototype system-
on-chip (SoC) designs using open-source RISC-V processor core and accelerator designs.
These designs can then be instantiated as FPGA prototypes, which may run at 100’s of
MHz, as cycle-accurate FPGA-accelerated simulations [19], which may run at a reasonable
fraction of real-time (e.g., simulate a 3.2 GHz SoC design at 65 MHz, or 1/50th real-time),
or as physical hardware taped out using open-source tools [2, 3, 16,29].

These capabilities are revolutionary for co-design. The speed of FPGA-based instan-
tiations is fast enough to boot full operating systems and evaluate real workloads running
for trillions of instructions, far exceeding the capabilities of software-based simulation tools.
It is now possible to instantiate a custom RISC-V SoC design on a cloud-based FPGA in
a matter of minutes, boot Linux on it, and then interactively login and run common HPC
benchmarks such as STREAM, HPCG, HPL, and GUPS. Based on the observed results,
both hardware and software can then be quickly modified and re-tested, providing rapid
iteration.

A gap in the RISC-V co-design ecosystem, however, is that while there are many RISC-
V core designs available to experiment with, Linux is the primary OS used for evaluation
purposes. This situation is understandable, as Linux is a general-purpose OS that is widely
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used. However, it is also unwieldy, consisting of millions of lines of code, and requires
considerable expertise to modify. It also takes a long time to build.

In this paper, we address this gap by porting the Kitten [21] lightweight-kernel oper-
ating system to RISC-V to provide another option for performing co-design research with
RISC-V. Kitten specifically targets the needs of HPC workloads and is the most recent in a
series of lightweight kernels that have been successfully deployed on production supercom-
puters [20, 26, 31]. The small code base of Kitten (approx. 20K lines of code in the Kitten
core) together with its simple resource management policies provides benefits compared
to Linux for conducting hardware/software co-design that requires implementing new OS
functionality.

We envision leveraging Kitten on RISC-V to explore novel memory subsystem and
tightly-coupled network hardware capabilities that will require modifications to both hard-
ware and operating system software. In some cases, once proven out, these capabilities can
be implemented in Linux with further effort. In other cases, the assumptions that Linux
makes about hardware may make it difficult or impossible to implement support, in which
case Kitten could be used to support the new hardware capabilities by running in a virtual
machine hosted by Linux.

In the remainder of this paper, we describe the port of Kitten to RISC-V in more detail
and demonstrate that it can provide performance comparable to Linux on emulated and
real RISC-V hardware. This work provides a solid foundation for using Kitten in co-design
research involving RISC-V. Kitten is available as open-source software and runs on x86 64,
Arm, and now RISC-V architectures [1].

2. The Design Barrier and Co-Design.

2.1. The Design Barrier. What we call the design barrier is a semantic gap between
hardware and software that allows development of one to proceed without consideration for
the other. However, this gap also means that when a change must be made in one for the
sake of the other it is difficult.

Conventional computer design is generally done hardware-first, regardless of the speci-
fications of the system. It is expected that software will catch up to accommodate whatever
hardware is developed. From experimental, cutting-edge supercomputers to ultra-low power
embedded systems, hardware dictates the design of systems. This paradigm is unsurprising,
but the intense focus on hardware often results in neglecting the corresponding software.
For example, Intel’s Itanium very-large instruction word (VLIW) architecture provided an
interesting and powerful processor, but without a corresponding compiler to generate the
plan of execution the hardware was difficult to use and struggled with poor adoption.

Additionally, the continued development of the Linux kernel and its enduring and in-
creasing ubiquity has pushed the system to become more general and less hardware-specific.
Indeed, Linux must not become hardware-specific. Naturally, this limits the degree to which
software can be tailored to hardware.

This scheme of development, where hardware and software are developed independently,
has permitted kernels such as Linux to become enormously featureful and sophisticated and
for hardware to become highly optimized. However, work must be continuously done to knit
the edges of each domain back together.

Similarly, the process abstraction has been standard in operating systems for many
decades, but only recently has research investigated hardware acceleration. The XPC project
by Du shows that substantial gains can be made by extending the underlying hardware to
accelerate IPC, which has been a stable abstraction for quite some time [15].
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Fig. 2.1: Co-design allows design decisions to flow across the “design barrier.”

2.2. Co-design. Co-design is a design strategy that intentionally lowers the design
barrier, reducing the semantic gap, and allowing for software and hardware to develop in
consideration of each other. Previously, the long design times for hardware and software
required design isolation and independence. Developing hardware required sending designs
to chip fabs and waiting for production, and then evaluating test units. The introduction
of high-productivity open-source hardware design tools and field-programmable gate arrays
(FPGAs) simulator platforms have dramatically reduced the time and cost needed to pro-
totype new hardware designs. This approach, coupled with on-demand cloud resources to
accelerate build and testing times, has shortened the duration of a design iteration. Design
cycle times and labor requirements can now be on the order of weeks and tens of engineers,
rather than years and hundreds of engineers.

This new design timeline means that experimental designs both in hardware and soft-
ware are less risky and the size of the explorable design space for a given timeline has in-
creased substantially. Intentionally changing both hardware and software at the same time
and by the same team can yield substantial benefits and should be seriously considered,
especially in a co-design research context.

3. LWKs and RISC-V. Two factors come together to encourage research using co-
design: lightweight kernels and open hardware. Lightweight kernels (LWKs) are specialized,
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simplified kernels used in high-performance computing (HPC), intended to replace general-
purpose kernels like Linux [28]. These kernels are explicitly designed with performance
in mind, eschewing wide-scale hardware support or an abundance of features. These cir-
cumstances are suited to HPC due to the unique combination of hardware and workloads
enabling these trade-offs.

The Kitten LWK is designed to support HPC workloads running on massively parallel
supercomputers. It has a Linux-compatible ABI and provides a low-noise, non-preemptive
environment for executing tightly-coupled HPC workloads running across tens of thousands
of compute nodes. Kitten makes use of simplified resource management policies, such as pro-
viding physically contiguous memory allocation and performing round-robin task scheduling.

Kitten’s simplified nature makes development considerably easier, ranging from design
advantages such as a less-abstracted hardware and resource management layer to practical
considerations such as build time. The iterative nature of co-design accentuates the im-
portance of these traits; quick kernel development enables quick evaluation and a greater
number of total iterations available to explore a design. Additionally, a simpler kernel de-
sign and small code base allows us to easily change policies or entire kernel mechanisms as
experimental hardware requires.

An important distinction is that Kitten is not just an experimental kernel. Research
kernels are abundant and developed very quickly, but can become abandonware and their
results difficult to generalize or reproduce. Although research kernels are extremely useful,
extending a production-targeted LWK OS such as Kitten is an important component of
evaluating designs in realistic circumstances.

RISC-V is an open-standard hardware ISA initially developed by the University of
California, Berkeley, with an active community of researchers and contributors. Although
only first released in 2010, the ISA has gained considerable traction as a new avenue for
hardware design due to its open nature. The RISC-V ISA supports multiple word-lengths
and a number of instruction set extensions including atomics, quad-precision floating point,
and compressed instructions. The ISA is modular and extensible, allowing a compliant chip
to support only the instruction set extensions needed for a particular use case.

Many toolchains have been developed to both target the architecture as well as develop
it. Hardware simulators such as Verilator [30] and the FPGA-accelerated FireSim [19] are
popular for developing and evaluating designs. Many projects exist to provide development
frameworks and implementation languages. Cornell has developed the PyMTL [24] project,
and Berkeley has developed the Chipyard [4] project which specifically targets RISC-V.
Additionally, many hardware description languages (HDLs) can target these RISC-V plat-
forms, including Chisel [8], Clash [7], and PyMTL itself. There are a large number of
academic RISC-V designs ranging from conventional superscalar out-of-order CPUs like the
BOOM [33] project to many-core designs like Manticore [32].

The foregoing discussion highlights that the combination of an easily-extended LWK
with the infrastructure of the growing RISC-V ecosystem can provide a good platform to
break the design barrier and facilitate hardware and software co-design.

4. Design, Implementation, and Evaluation. In this paper, we describe initial
work to explore the co-design space using LWKs and RISC-V by porting the Kitten LWK
to a set RISC-V platforms. As part of this effort we have initially targeted the common
software emulator QEMU for ease of development, and have also implemented support for
the HiFive Unmatched development board by SiFive [11]. We have furthermore conducted
an early evaluation to demonstrate functional correctness on both the QEMU and HiFive
platforms, as well as performance comparisons between Linux and Kitten.
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4.1. Porting Kitten. Our port of Kitten currently supports a single CPU core and is
able to run basic HPC benchmarks. All of the major subsystems have been implemented,
including context switching, timers, multi-process scheduling, system calls, signals, and
interrupts. Symmetric multi-processor (SMP) support is not yet functional, but it is under
active development and should be straightforward to implement using RISC-V’s Supervisor
Binary Interface (SBI) abstractions.

Porting an operating system kernel primarily involves adapting the assembly code that
interfaces with hardware directly, however higher-level components of the kernel are often
completely untouched, such as the scheduler and memory allocation policies. To reduce
maintenance burden and maintain broad Linux compatibility, we borrow code from Linux
wherever possible and adapt it for Kitten.

To establish and contain a development environment we use Podman [13], Red Hat’s
container software that is compatible with Docker. Now widely used, containers and VMs
alike constrain developer system variability, allowing many developers to easily share a single
development environment. Inside of our Podman container we use Buildroot [12], a project
for bootstrapping an entire system from compiler and toolchain to a working Linux kernel
image with a root filesystem. Buildroot can target several architectures including RISC-V
and supports RISC-V’s many toolchain binary configurations. For testing and development
we use version 6.2.0 of QEMU targeting 64-bit RISC-V configured with 1 GB of memory
and a single CPU, also contained in the Podman container. This containerized environment
allows development, building, and testing to occur quickly and in a reproducible way that
is distributable to others.

Porting Kitten highlights engineering trade-offs associated with porting software to new
hardware. While a full discussion of this engineering is a better fit for a technical report,
we share a few examples. Compared to x86 64, RISC-V has an abundance of registers for
storing kernel state. However, RISC-V has fewer such registers than ARM64. To access
per-CPU data on ARM64, the correct pointer is stored in the tpidr el1 register, and the
current running task’s information is kept on the stack. However, the ARM64 architecture
can use this approach because the kernel retains the kernel stack pointer in the form of
sp el1. The RISC-V ABI lacks an analogous register and must retrieve the kernel stack
pointer on entry. For the RISC-V port, we overcome this obstacle by following Linux’s
example and storing in the tp register a direct pointer to the task struct. Then the stack
pointer can be retrieved. This lack of bankable system registers forces us to rely on having
a pointer to the entire task state instead.

4.2. Performance Evaluation. We evaluated performance on several platforms, in-
cluding QEMU, the Unmatched development board, and partially on the FireSim simulator,
not included here. We use HPCG [14], the high-performance conjugate gradient descent
benchmark, as our evaluation workload for this work-in-progress.

The Unmatched board has a supervisor core and four general-purpose application cores.
Linux and Kitten run on the general-purpose cores and do not make use of the supervisor
core. The application cores are RISCV64IMAFDC, often shortened to RISCV64GC, where
G is for “general”, including integer, multiply, atomic, and single- and double-precision
floating point. The C extension is for compressed instructions, which can be leveraged to
produce smaller binaries. The cores also support the RISC-V architecture’s three-privilege
model, firmware runs in machine (M ) mode, the operating system in supervisor (S ) mode,
and user programs in user (U ) mode. The board has two levels of cache, a core-local L1 and a
shared 2 MB L2 cache, and 16 GB of RAM. RISC-V supports many different memory address
widths, including 39-, 48-, and 57-bit standards and a specification for full 64-bit address
widths is under development. The specification requires that unused bits in each address are
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non-canonical and must be set the same as the last canonical bit. The Unmatched board is
equipped with the SV39 MMU which implements 39-bit addresses. The computer we used
for development and emulator benchmarks is a Dell Precision Power 3420 with an 3.2 GHz
i5-6500 CPU with 16 GB of system memory. HPCG was built with "-O2" optimization
flags and statically-linked. HPCG is a common performance benchmark used to evaluate
HPC systems, providing a good balance of compute- and memory-intensiveness. We set the
problem size input parameter to "80 80 80" for all tests. HPCG is useful as a first-order
approximation to see performance characteristics of different platforms. To be a valid run
of the benchmark, the problem size must be configured to exceed the machine’s cache size.
Accordingly, the benchmark especially highlights memory bandwidth constraints.

We ran HPCG under both QEMU and the HiFive Unmatched board, with the results
shown in Figure 4.1. The results show, interestingly, that the QEMU tests show nearly
a 2x speedup over the Unmatched development board. We speculate that this difference
is attributable to the Unmatched board’s lack of an L2 cache prefetcher, strongly limiting
overall memory performance. Our experience has been that building software under QEMU
is generally faster than building software natively on the Unmatched board. For comparison
purposes, we also show the performance of HPCG running under FireSim for a single Rocket
core configuration in Figure 4.1. We plan to have Kitten running under FireSim in the near
future.

On both platforms, Kitten provides a speedup over Linux. This speedup is due to
Kitten’s policy of allocating user memory contiguously using large pages, defaulting to a
2 MB page size. These changes improve TLB performance and can improve cache prefetch
performance. Particularly on the Unmatched board, raw floating point performance does
not show a difference between Linux and Kitten; the performance arises from the differences
in the kernel memory systems.

To determine memory performance both on QEMU and the Unmatched board, we used
two memory benchmarks found in the HPC challenge benchmark suite [25]: STREAM and
RandomAccess. We tested memory bandwidth using the STREAM benchmark. STREAM
evaluates memory performance across four streaming kernels to characterize the memory
subsystem performance of a system. The results in Figure 4.2 show a significant performance
advantage for QEMU in this benchmark. As with HPCG, we suspect that the lack of L2
prefetcher severely hinders performance.

We ran RandomAccess with a 128 MB table size. Results in Figure 4.3 continue to show
a slight advantage of Kitten over Linux, but interestingly the Unmatched board outperforms
QEMU in this benchmark. We suspect the high TLB costs associated with QEMU’s em-
ulated memory subsystem may be limiting its performance, allowing the otherwise-slower
Unmatched board’s memory subsystem to outperform here, but additional investigation is
required to confirm.

4.3. Potential Co-Design Targets. In this section we outline several potential av-
enues of exploration that could be pursued using Kitten on RISC-V.

Global Address Spaces. A large portion of the 64-bit address width on a RISCV64
system is unused and thus extra information could be put there instead. This technique
is already employed in software in the form of tagged pointers, often used in program
verification; some architectures like x86 64 ignore some bits of a given memory address.
An extension to the MMU to use tag bits in a memory access to route requests to remote
hosts addressed by those tag bits is a natural fit for Partitioned Global Address Space
(PGAS) workloads. Remote memory accesses using RDMA are common and extending
this paradigm upward into general userspace code allows for remote host memory to be
added to the structural “memory hierarchy” that already contains cache and local system
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Fig. 4.2: STREAM Benchmark Results

memory. Further, previous research such as Infiniswap has already demonstrated the utility
of transparent remote memory accesses [18].

Unmatched Supervisor Core. As projects like Manticore suggest, development in the
RISC-V space will not be just on traditional computer organization models centered around
a small number of CPUs with a strong interconnect. Not just extremely parallel many-core
architectures, but also increasingly system-on-chip (Soc) architectures resemble distributed
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systems with significant functionality, such as power and peripheral management, being
exposed to the “real” OS as a defined interface via memory-mapped IO. However convenient,
this points to a deeper issue that the design of conventional kernels such as Linux are not
well-suited for these SoCs.

The Unmatched board is equipped with five cores, four of which are application cores.
However, the supervisor core is not used by Linux. This supervisor core could be used
analogously to a kernel thread and act as a service core; it lacks floating point operations
and an MMU, both things operating systems typically only need to provide to userspace.
A shim kernel could be split off of Kitten and run underneath each of the cores to provide
system services via message passing between the application cores and service core.

Unmatched Scratchpad and L2 Memory. The Unmatched board has a 2 MB L2 cache
organized into 16 ways, 15 of which are non-reserved. However, this memory is reconfig-
urable, referred to as “loosely-integrated memory” by SiFive. When ways are disabled, they
are accessible as directly mapped memory instead, providing low-capacity, high-speed access
for guaranteed “cache hits.” This memory is also accessible as scratchpad. The memory
subsystem of Linux has no convenient way to expose this memory, but the simpler memory
model of Kitten allows us to expose this memory to applications, e.g. by placing application
heap there or exposing mmap flags to prefer it.

Though the board only has approximately 2 MB of this memory, this reconfigurability
is not tolerated well by Linux, but is straightforward to accommodate with Kitten. This
advantage highlights the agility Kitten has in development compared to Linux. Additionally,
this reconfigurable memory could be used as a message-passing buffer, greatly accelerating
message-passing between cores.

5. Related Work. Considerable architecture research exists exploring RISC-V. How-
ever, much of this research focuses on hardware design and defaults to using Linux as the
driving operating system.

Prior work has ported Kitten to other processor architectures and supercomputer plat-
forms. Lange ported Kitten to ARM64 [22] to explore using Kitten as a management kernel
to drive Hafnium, a secure hypervisor. This work supports the notion that a simpler kernel
like Kitten can provide performance improvements over Linux in specialized situations.
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Work exists porting kernels to RISC-V for the purpose of exploring or driving primarily
software-targeted design. As mentioned before, XPC [15] investigates accelerating IPC
by integrating it into hardware, using RISC-V as a target platform. The CHERI project
introduces capabilities into the hardware itself. Initially released as an ARM64 board, the
Morello platform, recently RISC-V has been targeted as well [5]. Hardware capabilities move
a substantial portion of the operating system’s role, managing userspace access control, into
hardware by way of capabilities, which are opaque hardware tokens that the operating
system grants to userspace.

6. Future Work. As mentioned in the evaluation section, this paper presents prelim-
inary work in porting Kitten to RISC-V and is not yet feature complete. While the current
state of the port is sufficient to test functionality and obtain preliminary benchmark results,
use on emerging RISC-V hardware will certainly require SMP support. We will add SMP
support to Kitten while exploring some of the ideas mentioned in Section 4.3.

In its current state, Kitten will likely boot on any “typical” RISC-V chip that supports
the RISC-V three-privilege model. However, we discovered during porting to the Unmatched
board an issue similar to that encountered in the Arm ecosystem. Namely, that hardware
topology is exposed through a device tree which must be parsed and used for configuration.
Unfortunately, the structure of these device trees is not fully consistent, being notably
different between QEMU and the Unmatched board. We anticipate that although most
chip implementations will feature similar if not identical hardware, it will be necessary to
provide platform drivers. Hardware design work will necessarily begin in a simulator like
Verilator or FireSim, and we plan to provide drivers for these platforms in the future.

7. Conclusion. We have described our port of the Kitten lightweight kernel operat-
ing system to the RISC-V architecture. Our evaluation demonstrated the port running on
two different platforms, QEMU and the SiFive Unmatched development board, with per-
formance comparable to and generally slightly better than Linux. This project lays the
groundwork for using Kitten in future co-design research involving RISC-V, with potential
speed and agility advantages compared to Linux. We outline several potential directions for
co-design research in the OS kernel and hardware domains that we plan to pursue in the
future leveraging Kitten on RISC-V.
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USING PERCEIVED CHARACTERISTICS OF INNOVATION TO DESIGN
SOFTWARE TOOLS FOR SCIENTISTS

SAMUEL GRAYSON∗ AND REED MILEWICZ†

Abstract. Many scientists need to develop or modify software for their research. However, these
scientists often lack the software engineering skills necessary to write maintainable software. Software
tools, such as workflow systems, can simplify this process, making their software more maintainable and
improving their productivity simultaneously, but those tools see sparse adoption in the scientific community.
Sociological theories driving technology adoption, specifically the Perceived Characteristics of Innovation
(PCI), can help tool-makers design software that becomes widely used by the scientific community. To
support this claim, we analyze interviews from potential users about two software tools from the lens of
PCI. Finally, we use PCI to identify recommended practices for tool-makers to consider.

1. Introduction. Computing has become increasingly important to modern science.
Two-thirds of researchers say their research would not be possible without it, and more than
half develop their own as part of their research [13]. Now, more than ever, software quality
is a major factor of research quality.

One promising approach to maintaining software quality with low effort is to “automate”
low-level aspects of software quality into tools that automatically enforce or inform some
aspect of software quality. Not only this, using the tool can indirectly teach the user better
practices in the process of improving one’s code. This work studies how to encourage
researchers to adopt such tools.

Lenberg et al. argue from their systematic literature review that studying behavioral
elements of software engineering is the low-hanging fruit [14]. Hannay et al. argue likewise
from their systematic literature review that the field of software engineering could benefit
from incorporating empirically-based theories [11]. Therefore, this work looks towards so-
ciological theories of technology acceptance to explain how potential users choose to adopt
software tools, hoping to extract insights towards influencing that process. The Perceived
Characteristics of Innovation (PCI), in particular, is specifically relevant to the problem of
software quality tools. The features, characteristics, marketing, and documentation of soft-
ware tools influence the constructs of PCI, so PCI can be used to analyze design decisions.

In this work, we examine prior work in technology adoption models (Section 2), then we
find prior interviews relating to tools for software engineering quality in research (Section 3),
re-contextualize the results through the lense of PCI (Section 4), and compile recommenda-
tions for tool-developers targeting a research audience (Section 5).

2. Technology adoption models. “Adoptability” is an opaque term; therefore, one
should look to prior literature on why computer systems are adopted to elucidate this.
Sociology and information science literature define several technology adoption models which
seek to answer that question. These models build a qualitative theory that can quantitatively
predict which tools will be adopted based on a questionnaire submitted by users.

Davis proposed Technology Acceptance Model (TAM) based on the Theory of Reasoned
Action (TRA). TRA posits subjective norms and attitudes influence behavioral intent, which
influences behavior [8]. TAM adds perceived ease of use and perceived usefulness as factors
influencing attitudes [6]. Numerous extensions to TAM have been proposed which either add
extra influences to attitudes, add moderating variables, or add other influences to behavioral
intent [16].
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Model Year Basis

TAM [6] 1986 TRA [8]
TAM ext. [16] 1989 – 2013 TAM
PCI [18] 1991 DI [23]
UTAUT [25] 2003 TAM, PCI, and others

Table 2.1
Origin of quantitative technology-adoption models

Model Direct Variablesa Moderating
Variables

Vars Items

TAM ease of use, usefulness 3b 12c

TAM ext. experience, self-efficiency gender, cultural

background

many many

PCI relative advantage, ease of use,

compatibility, trialability, result

demonstrability, visibility, image,

voluntariness

0 9 27d

UTAUT effort expectancy, performance ex-

pectancy, social influence, experi-

ence, facilitating conditions

gender, age, vol-

untariness, experi-

ence

42e

aAll of these constructs should be understood as their ”perceived” version, e.g. ”perceived ease of use.”
bSee Figure 4.1 in Davis [6]. Note that more variables are listed, but only this many are needed to

predict user behavior from the constructs.
cTAM studies use many different sets. The most common in Table 7 by Davis [7].
dThere were originally 43 items proposed by Moore and Benbasat [18], but Gounaris and Koritos [9]

successfully use 27 items.
eSee Table 17 by Venkatesh [25].

Table 2.2
Details of well-known quantitative models of technology-adoption

Diffusion of Innovations (DI) is a theory that explains how new technologies and ideas
spread throughout the community developed by Rogers [23]. It identifies relative advantage,
complexity, compatibility, observability, and trialability. Rogers intends these as subjective
“perceived” qualities, not absolute qualities.1 Moore and Benbasat adapt these for the spe-
cific problem of technology adoption by comparing these to TAM, testing them empirically,
and adding their own [18]; the result is called the Perceived Characteristics of Innovation
(PCI). Relative advantage is similar to TAM’s perceived usefulness according to Moore,
which is retained in PCI. Complexity is similar but inverted to TAM’s ease of use, and they
recommend TAM’s terminology in PCI, making PCI a superset of TAM. Compatibility and
trialability are retained in PCI. However, Moore and Benbasat found that observability
statistically factors into two characteristics they call visibility and result demonstrability.
Further, Moore and Benbasat isolate ‘image,’ which Rogers treated as a part of relative ad-

1Note that compatibility refers to the innovation being perceived as compatible with the existing values,
needs, and past experiences, not a strictly technological sense of compatibility. See Section 4 for exact
definitions.
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vantage and add a novel construct corresponding to voluntariness. See Section 4 for exact
definitions of PCI characteristics.

Venkatesh et al. proposed a popular extension of TAM called the Unified Theory of
Acceptance and Usage of Technology (UTAUT) [25]. In addition to weighting each principal
factor, UTAUT weights the interaction of principal factors with one or two moderating
factors. For example, there is a coefficient for the product of effort expectancy, gender, and
age.

• Compared to TAM, PCI has a slightly better fit [20, 9] and its constructs are a
superset of TAM, which means it give more direction for tool-makers. On the other
hand, TAM is slightly simpler and takes fewer items to assess. Note that relative
advantage in PCI is similar to perceived usefulness in TAM, so PCI has a superset
of the variables in TAM.

• Compared to extensions of TAM, PCI is more well-studied and most extensions will
have more variables to fit. The inputs to extensions of TAM are often direct effects
of properties of the user, such as experience and self-efficiency, which are less useful
than PCI inputs which are properties of the tool.

• Compared to UTAUT, PCI is far less complex; UTAUT has five constructs and four
moderating variables. Counting two-way and three-way interactions that Venkatesh
et al. find significant yields 42 different variables to fit. PCI has just eight constructs
and eight variables to fit. Even with this complexity, UTAUT does not always
explain as well as TAM [21].

Therefore, PCI is most applicable for this work.

3. Methodology. In this work, we examine whether PCI as an innovation adoption
model can be useful in the context of studying tool and practice adoption in scientific
software development contexts. To that end, we provide a qualitative analysis of adoption
drivers in computational science and engineering projects. Our analysis of PCI is based on
interviews conducted to gather data relating to two workflow-related projects:

1. The Engineering Common Model Framework (ECMF) project at Sandia Na-
tional Laboratories is an effort to develop a common platform for storing and sus-
taining science and engineering workflows developed at the labs. While workflows
are tremendously useful in expressing computational experiments, they need to be
stored in an accessible way and regularly tested to guard against regressions, and
the data that they generate must also be archived along with provenance tracking
the history of that data as the underlying computational models evolve. The vi-
sion for ECMF is one in which cyberinfrastructures support the adoption and use
of workflow technologies, and that those workflows are sustained as an enduring
institutional resource, promoting sharing, collaboration, and reusability of compu-
tational experiments across the enterprise.
Interview methodology: One of the authors conducted semi-structured inter-
views with individual or paired participants according to predefined questions but
with freedom to explore points that came up. The subjects were selected from po-
tential users of the ECMF family of workflow-related tools. The interview questions
were chosen to explore how the analyst community uses computational models to
solve problems and how a system like ECMF could help make analysis tasks easier.

2. The ExaScale Additive Manufacturing (ExaAM) project, an application within
the Exascale Computing Project, seeks to develop an exascale-capable multi-physics
simulation environment for additive manufacturing [24]. ExaAM is a multi-lab effort
to make high-fidelity microscale simulations of additive manufacturing available
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Fig. 3.1. An overview of the methodology used in the development of this report. The authors selected
a theoretical lens (PCI) to study the adoption of innovations in scientific software development, applied
this lens to data drawn from science and engineering projects with respect to workflow adoption (ExaAM
and ECMF), and used these results to derive actionable guidelines for tool developers seeking to support
scientific software development.

to industry2. The ExaAM project has been working towards adopting workflow
technologies (specifically using the ExaWorks workflow management system [1]) to
reduce their time to science and provide reproducible and reusable computational
experiments for the benefit of the research community.
Interview methodology: The authors and two other researchers interviewed two
ExaAM team members. The interview subjets were principal investigators of the
ExaAm project, who are overseeing the adoption of workflows. The interview ques-
tions were selected to study the experiences and best practices of workflow adoption
in practice.

In the case of ExaAM, the authors of this report recently interviewed the ExaAM team
for an upcoming workshop paper where PCI was used as a theoretical lens to analyze the
interview results [15]. We extend that work by reanalyzing previously unpublished ECMF
interviews performed as part of requirements gathering with analysts to surface innovation
adoption factors with regards to workflows and enabling technologies for workflows. We
compare both results to explore the degree to which PCI captures relevant phenomena of
interest in the adoption of workflow technologies. Finally, we use these results to provide
recommendations to tool developers seeking to apply theoretical models like PCI to better
understand how those factors can be measured and used to inform decision-making.

4. Results. For each construct of PCI, we compiled interview responses that relate
to that construct. Overall, the constructs, except for visibility and voluntariness, are well-
supported from these interview responses.

4.1. Relative Advantage. PCI defines relative advantage as “the degree to which
using an innovation is perceived as being better than using its precursor” [18]. In research
software, relative advantage is the underlying technical benefit of using a software tool.
Often, relative advantage is the primary concern for tool-makers, since it is the most obvious.
The ExaAM interviewees illustrate their rationale for adopting workflows by describing a
relative advantage to prior methods, arguing that workflows can streamline the operation
of simulation scripts in a way that makes both use and reuse easier:

Jacob3 (ExaAM): It [before adopting workflows] would require the man-
ual operation of scripts that do each piece of the analysis, with manual

2See https://www.exascaleproject.org/research-project/exaam/
3The names have been changed to protect the privacy of the sources.
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manipulation between stages. . . It’s less amenable to being used to do new
things.

The notion of advantage being relative is key here. For Jacob, the overhead of manually
executing scripts in succession is acceptable for performing a single task with those scripts.
Where workflows shine, according to Jacob, is that they are easy to reconfigure to perform
new and different tasks. Among our ECMF interviewees, we found similar sentiments with
regards to workflows:

Oliver (ECMF): That’s why I’m very excited about SAW NGW4 because
it has proven its mettle. It is possible to make thing modular and reusable.
Like my big scripts, do you think I can understand them a year from now?
Hell no. Clarity of communication and archival of thought is a big part of
workflows.

Oliver shares Jacob’s desire for reusability of simulation scripts and adds that the “self-
documenting” nature of workflows reduces the cognitive overhead involved in reuse. That is,
running everything manually implies that the user must retain knowledge of how to run the
scripts or to document that information externally. Takeaway: There are different ways in
which workflow technologies confer relative advantage, and careful case-study analysis can
draw out what is most salient to prospective users.

4.2. Compatibility. PCI defines compatibility as “the degree to which an innovation
is perceived as being consistent with the existing values, needs, and past experiences of
potential adopters” [18]. In research software, one can consider compatibility in a technical
sense, like how the Debian-Almquist shell is compatible with POSIX, or in a social sense, like
how git is aligned with the values of decentralized community-building held by Linux kernel
developers. The ethos of science holds reproducibility of experiments as a core tenant [17];
tools that align with this mission may see greater adoption. In the case of ExaAM, Jacob
argues that workflows help ensure that the simulation capabilities developed for the project
remain used and useful in the long term:

Interviewer: How compatible are these practices to project goals for Ex-
aAM for successful implementation?
Jacob (ExaAM) : It’s essential. The deliverable needs to be usable by
other projects and other problems. . .We could satisfy ECP’s goals without
it, but it would not be a long-term success.

That is, for Jacob, workflows are desirable not only because they meet the immedi-
ate objectives of the project, but also because they serve the team’s ethos to make their
work widely accessible. Conversely, innovations that lack compatibility with users’ existing
ways of working and thinking may be seen as unattractive to users, even if they could be
advantageous otherwise. As Simon, an analyst interviewed for ECMF, explains:

Simon (ECMF): Most analysts have a way that works for them. By
switching over to this new method, they will take a performance hit. It will
take them longer to answer questions. I could imagine that turning people
away.

Takeaway: One must balance the relative advantage of a new tool with compatibility of
the old way of doing things to see adoption.

4.3. Ease of Use. PCI defines ease of use as “the degree to which [using an innovation
is perceived as being]5 free of physical or mental effort” [18]. Some software tools, like git,

4SAW NGW (Sandia Analysis Workbench Next Generation Workflows) is a workflow used in-house at
Sandia National Labs.

5The wording within the brackets was changed for consistency’s sake
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are easy for software engineers to understand, but not necessarily for researchers who do
not have a background in software engineering; in this sense, ease of use must be considered
relative to an intended audience. For the ExaAM project, interviewees SAW workflows as
being particularly valuable for encouraging use by industry partners with limited experience
with command-line scripts, even though academic researchers may not care as much:

Cameron (ExaAM): They [industry partners] don’t want to have to dig
into the guts of all the components. Maybe they’re not a sophisticated
programmer, but these workflows allow them to “program” a problem.
They benefit moreso than people in labs and universities who may be more
adept in computational science.

Interviewees for ECMF, likewise, emphasized the need for workflow system developers
to prioritize consistency and ease of use:

Ellen (ECMF): I think [ECMF is] a really great idea and I hope it starts
to be picked up. The most important feature is that it should be stable
from the start. Like NGW is experiencing this issue where you created a
workflow in the beginning, and now it doesn’t run in the newest version.
To earn people’s trust, these tools need to be trustworthy from the very
beginning. You can’t have everything changing every day.

Takeaway: Ease of use is not a static property of software tools but one that evolves
dynamically over time; usability requires a commitment to keeping the software in line with
user expectations.

4.4. Result Demonstrability. PCI defines result demonstrability as the degree to
which using an innovation is amenable to demonstration6 [18]. In research software, result
demonstrability implies the user can explain in simple terms what the software helps them
with. With regards to ExaAM and scientific workflows, workflows abstract away all the
minutiae of running their codes, and this is readily apparent and explainable:

Interviewer: One more question here about not having to dig into the
codes, that workflows act as an interface?
Cameron (ExaAM): Exactly. Not having to know about all the internals
and how to run the codes individually, that helps a lot.

Workflow abstractions provide tangible benefits, which makes it much easier for Cameron
to sell using workflows to his peers. In an interview for ECMF, Oliver concurred on this
point:

Interviewer: If I understand you correctly, you’re saying we need to show
that the workflows are still working and that we can be confident that they
won’t fail when you run them at scale.
Oliver (ECMF): Yes, yes. This is where the NGW pipeline comes to your
help. We break up the workflow into many, many small pieces. Usually,
it’s hierarchic. Three to four levels of hierarchy. The links in this hierarchy,
these are all supremely unit-testable.

Takeaway: Being able to break down complex workflows via these abstractions into sim-
pler, testable steps helps build confidence in the software.

4.5. Visibility. PCI defines visibility as the degree to which an innovation is perceived
as being used by others7 [18]. Researchers want to be unique in their approach, but not
in their methodology. If a certain tool or practice is commonly used by others, that votes
in favor of the tool working, providing advantage, and having a community where one can

6Moore and Benbasat do not give a verbatim definition.
7Moore and Benbasat do not give a verbatim definition.
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seek help. Workflows have already have high-profile users such as Pegasus at LIGO [2] and
vibrant communities like workflows.community8. However, we did not find direct references
for visibility in the interviews.

4.6. Image. PCI defines image as “the degree to which an innovation is perceived
to enhance one’s image or status in a social system” [18]. Publishing well-written, usable
code can increase the reputation of a researcher. If software tools can claim to improve the
public perception of a researchers project, it can accelerate their adoption. Whether or not
it makes the project reproducible, there is a perception that having a Dockerfile means the
authors are sophisticated enough to think about reproducibility. The ExaAM interviewees
did not explicitly mention image as a motivation for adopting workflows. However, workflows
inherently aid in the perception that their project is well-written and reproducible and thus
gives credence to the group that created it.

On the other hand, as one analyst interviewed for ECMF explains, having such a com-
putational model may imply obligations to maintain that model, and teams may be hesitant
to make that commitment:

Edvaldo (ECMF): The only person right now who is [nominally respon-
sible for a computational simulation] is the lead analyst on the system
itself. But the reality is that the model is owned by the system organi-
zation itself. There’s a disconnect there, because they try to stay clear of
getting too involved with the analysis itself, they’re more concerned with
the result. I don’t think that they purposefully try to divorce themselves
from this process, it’s that there’s always this thought that “if I commit to
it, I have to provide some monetary support. . . ” There is a cost because
they must make someone accountable to respond to questions about that
product/system.

Takeaway: Maintaining social “image” may come at a cost, and how teams perceive the
image conferred by adopting an innovation can be nuanced and complex.

4.7. Trialability. PCI defines trialability as “the degree to which [one perceives that]9

an innovation may be experimented with before adoption” [18]. In research software, it
should be possible to adopt a tool in a piecemeal. This is especially important for potential
users creating an adoption schedule. For example, Mypy10 is a static type-checker for
Python that supports progressive typing : if the user writes type-annotations in their code,
it can statically detect type errors. Mypy cannot detect errors on un-annotated code, but
it at least does not crash on un-annotated code. A user can start using Mypy on their
pre-existing unannotated code and progressively add annotations in future iterations.

In the case of ExaAM, the team learned how to use workflows over time, as Jacob
explains:

Jacob (ExaAM): You learn by doing. It’s awkward initially when you
first adopt something, but overtime you become comfortable with it. We
started with manual scripts, and built up towards workflows over time. . . In
terms of ExaAM, the team has never had to create a ”meta-program” like
this, and we’re learning as we go. How do we build these workflows? How
do we make them all compatible and able to be managed by a workflow
manager. It’s a learning process, an educational process.

That is, if adopting workflows were an all-or-nothing proposition, the learning curve
would be too steep for the team to consider using them. Rather, workflows are attractive

8See https://workflows.community
9The bracketed text has been added for consistency. These are intended to be perceived characteristics.

10See http://www.mypy-lang.org/
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because the team can get useful results by assembling workflows for individual tasks and sub-
components, building upon each success, and gaining confidence in the technology. Bryan,
an analyst interviewed for the ECMF project, shared these same sentiments:

Bryan (ECMF): I’m in a transition period right now where I try to con-
vert everything to NGW. So I don’t think the NGW models I’ve been
building are ready for prime time, but I’m getting them there. I’m trying
them out on dummy problems and gaining confidence.

Takeaway: The ability to acquire competency over time with workflows, applying them
to progressively greater challenges, is attractive and a significant factor in his decision to
adopt them.

4.8. Voluntariness. PCI defines voluntariness as “the degree to which use of the
innovation is perceived as being voluntary or free of will” [18]. This is usually outside
the control of tool-makers. However, there are some examples of voluntariness affecting
adoption, such as when well-used journals like Nature require software to be available to
the reader.11 One can imagine journals requiring a sharing contract [5] or an OSI license.
Voluntariness, however, did not come up in the ExaAM interviews or the ECMF interviews.

5. Recommendations. In all, through our exploratory analysis of ExaAM and ECMF
as workflow adoption use cases, we found support for seven of the eight innovation factors
described by the PCI model. We note that complete coverage is not expected; depending
on the innovation and user community involved, some innovation characteristics may be
especially important and others not at all. But this does show that formal theories of
innovation adoption can be used to elucidate different drivers influencing the decision to use
(or not use) a software development tool or practice.

Table 5.1
PCI Characteristics Attested In Interviews with ExaAM and ECMF Stakeholders.

Innovation Characteristic Present in ExaAM interviews Present in ECMF interviews

Relative Advantage ! !

Ease of Use ! !

Compatibility ! !

Trialability ! !

Result Demonstrability ! !
Visibility

Image !
Voluntariness

While computational science and engineering benefits from modern software engineering
technologies used in mainstream industry (e.g., version control, continuous integration [12]),
there is a need for innovative solutions that can meet the specific needs of scientific software
development teams. Scientific workflows are a prime example of the research community
seeking to develop “native” software tools to advance the state of practice. However, the
development of these tools should be viewed as a research challenge. As noted by Bernholdt
et al., “Although many scientists have extensive intuition about the principles and dynamics

11This was the policy at the time of writing https://www.science.org/content/page/science-journal

s-editorial-policies#TOP-guidelines on 23 August 2022.
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of how their community develops, uses, and sustains its software products, research is needed
to develop a deeper and broader understanding of software’s role in scientific processes” [3].
As with the science these tools enable, systematic investigation is necessary to build out
theoretical and empirical bases around the engineering of these tools.

In this report, we have shown how social science theories like PCI can help disentangle
the complex needs of the workflow user community. However, PCI is a theory for analysis
and understanding not one of design and action, in Gergor’s taxonomy of information system
theories [10]. PCI cannot prescribe solutions, but it can provide a basis for evidence-based
decision-making in tool design and development. In this section, we outline strategies for
how the results we present can be used productively:

• Use of Theory in Conceptualization: Developers of software tools for the scien-
tific software community are frequently part of that same community. While having
rich knowledge of the domain is useful in understanding potential user needs, tool
developers can easily fall into the “tacit assumption tar pit” — assuming their at-
titudes towards their own tool reflect the attitudes of the broader community [4].
The use of well-defined theoretical models like PCI in the design and conceptual-
ization of tools can help to draw out and critique those assumptions. With that in
mind, we recommend that tool developers articulate how and whether each of the
innovation characteristics described in the PCI model are significant to themselves
and their potential users.

• Use of Theory in User Engagement: Theories such as PCI can guide tool-
makers on how to engage with their user community. This is illustrated in our
report: PCI gives us a lens through which we can more closely examine what
workflow users need and value in workflow technologies. Interview questions should
seek to elucidate where the tool falls on the eight PCI characteristics, and how each
can be furthered.

• Use of Theory in Tool Analysis: Finally, PCI can help tool-makers quantita-
tively and qualitatively analyzing the capabilities of their tools, as a way of guiding
their future evolution. For scientific workflow tools, we found compatibility with
existing norms, values, and experiences was a significant factor in the decision to
adopt. As such, it would be prudent to consider how scientific workflow tools can
better serve those use cases such as reuse and shareability.

There are many varied reasons why users may want to adopt software tools, and different
sets of priorities (e.g., relative advantage, ease of use) may lead to different requirements
for the design of the tool. This can go together with other ideation techniques meant
to put the developer “in the shoes” of their potential users. For instance, Mundt et al.
suggests conducting design thinking workshops and using persona-based techniques to better
understand how scientific software developers relate to and understand their software [19,
22].

5.1. Threats to Validity. This study does not show the superiority of PCI compared
to other methods, just that PCI does relate to scientific software development and is deserv-
ing of further research. We do not test whether PCI is exhaustive (there could be important
aspects of adoptability that fall outside of PCI), just that it covers important aspect of the
selected responses. This motivates its use in recommendations and in future work.

6. Conclusion. PCI can be a useful lens to help tool-makers create tools that are
widely used by the community. Those tools could improve the quality of software engineering
done by scientists, which would lead to better research.
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6.1. Future Work. As this report is exploratory, follow-up work could evaluate PCI
against other technology adoption models rigorously. One would want to know if PCI
captures all relevant considerations for adoption, or just some. Similarly, one might study
if any PCI attributes are less relevant in the specific case of scientific software.

One might re-assess the factor loadings of survey questions used to measure PCI con-
structs in the domain of scientific software. The original survey instrument uses terms such
as “outside this organization” to define visibility that do not necessarily translate into re-
search software. What should this term mean for a small academic lab and how is that
different for a federally funded research and development lab? The factor loadings could be
different for those working on research software.

Finally, one might pursue action research of applying the PCI-based analysis to up-and-
coming software tools such as ECMF, ExaFlow, SAW, DataSEA, PSI/J, Dask, Pegasus,
NextFlow, CWL, or others. One can be studying the general application of PCI while
simultaneously developing a first-class workflow manager or other scientific software tool.
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EFFICIENT FACTOR UPDATE FOR STREAMING TUCKER
DECOMPOSITION WITH INCREMENTAL SVD

ZITONG LI∗, ERIC PHIPPS† , AND HEMANTH KOLLA‡

Abstract. The Tucker decomposition of a static tensor has been studied extensively. However, there
are fewer studies on computing the Tucker decomposition of streaming tensors. In this paper we propose
a new algorithm for this problem. More specifically, we assume that the input tensor has fixed sizes for all
but its last mode. The last mode is assumed to be the time dimension and grows indefinitely. At any time
step, we expect to obtain the Tucker decomposition of the data accumulated thus far. The main challenge
of this problem is to limit the memory usage and computation complexity as the tensor grows. In our
proposed algorithm, we take advantage of the Tucker decomposition of the previous time steps to update
the factor matrices when a new slice of the tensor becomes available. In addition, we use blocked matrix
tensor multiplication to reduce the cost of updating the core. As a result, our algorithm is much more
efficient for computing the Tucker decomposition of a streaming tensor than the algorithms proposed for
static tensor.

1. Introduction. There is a wealth of literature on computing the Tucker decompo-
sition of a static tensor [5][1]. However, in many cases, the dataset is not static and is
constantly changing or growing in size. This streaming scenario poses challenges to algo-
rithms designed for static tensors because the cost of computation and storage increases
rapidly as the tensor becomes larger. An overview of the recent developments in tensor
decomposition can be seen in this survey paper [7]. In this work, we consider the problem of
efficiently computing the Tucker decomposition of a d-way tensor that has a fixed size for its
first d− 1 modes and is growing in its last mode. This corresponds to real-world problems
where the tensors are growing as time goes on. A good example would be a simulation of a
physics phenomenon over many time steps.

To make our problem more specific. We assume that our d-way data set X is of size
{I1, I2, . . . , Id} where Id increases by 1 at each time step. In other words, a new slice of data
will appear at each time step. Now at any time step n, we denote the previously available
tensor as X and the new slice as Y, and the new tensor is formed by concatenating X and Y

along mode d (see the left half of Fig. 1.1 for an example). We also assume that the Tucker
decomposition of X has already been obtained.

2. Background.

2.1. Notations and definitions. In this work, we treat tensor as simply as a multi-
dimensional array. We use a capital letter in script font (e.g. X) to denote a tensor. To
specify a subset of the tensor we use the Matlab notation. For example, the first element of
a 3-way (or 3D) tensor X is denoted as X(1, 1, 1); the first mode-1 fiber of X is denoted as
X(:, 1, 1); the first frontal slice of X is denoted as X(:, :, 1). The letters I1, . . . , Id are reserved
to denote the size of a tensor. Similarly, the letters R1, . . . , Rd is reserved to denote the
n-rank of a tensor. It is sometimes useful to convert a tensor into a matrix. A typical way
to do this is to unfold the tensor along a certain mode. We denote the mode-n unfolding of a
tensor as X(n). The tensor times matrix (TTM) operations is another important operation.
We define and denote the multiplication of tensor X and matrix U along the n-th mode of
X as the following:

X×n U = UX(n) (2.1)

For more detailed definitions, notations, and basic tensor operations we refer readers to [6].

∗University of California Irvine, zitongl5@uci.edu
†Sandia National Laboratories, etphipp@sandia.gov
‡Sandia National Laboratories, hnkolla@sandia.gov
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I1

I3

I2

X

Y

= Z

Z(1)P1 = X(1) Y(1)

Z(2)P2 = X(2) Y(2)

Z(3) =
X(3)

Y(3)

1

Fig. 1.1. Tensor unfolding of the new tensor on each mode. P1 and P2 are permutation matrices

2.2. Tucker tensor decomposition. The Tucker decomposition of a d-way tensor is a
low-rank representation of a large tensor as a smaller tensor multiplied with d factor matrices.
An example is shown in Fig. 2.1. More often instead of an exact low-rank representation,

X
R1

I1

= U1 G

U2

R2

I2

U3

I3

R3

1

Fig. 2.1. Tucker decomposition of a 3-way tensor X with size I1 × I2 × I3 and n-rank R1 ×R2 ×R3

we want an approximation. One way to compute such a low-rank approximation is known
as the higher order singular value decomposition (HOSVD) [8]. The pseudocode of which is
shown in Algorithm 1. This algorithm takes as an input the error tolerance ε and produces
a G such that

‖X− (G×1 U1 ×2 U2 × · · · ×d Ud)‖F
‖X‖F

< ε
√
d. (2.2)

In this paper we will refer to the size of this core tensor G as the n-rank of X.

2.3. Incremental SVD . Incremental SVD is a technique that allows us to reduce
cost in our streaming Tucker algorithm. Given the SVD of a rank-r matrix A ∈ Rm×n :

A = MSWT,

and that Z =
[
A b

]
where b ∈ Rm, this technique computes the SVD of Z by leveraging

the SVD of A. (we deviate from the normal UΣVT notation to avoid confusion in the
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Algorithm 1 HOSVD

1: function HOSVD(X, ε)
2: for n = 1 to d do
3: [U,Σ,∼] = SVD(X(n)) . right singular vectors not computed

4: Rn = min
{
R|∑In

i=Rn+1 σ
2
i ≤ ε2‖X‖2/d

}
. determine rank

5: Un = U(:, 1 : Rn) . nth factor matrix
6: end for
7: G = X×1 UT

1 ...×d UT
d

8: return (G,U1, . . . ,Ud)
9: end function

following discussions).
We adopt the method proposed in [3] and [4] by Brand. In this method, when given b,

we first find the component of b that is orthogonal to the range of U and the norm of this
component:

e = b−MMTb, p = |e|, and ẽ =
e

|e| (2.3)

Then using the following identity:

[
M ẽ

] [S MTb
0 p

] [
W 0
0 1

]T
=
[
A b

]
, (2.4)

Since
[
M ẽ

]
and

[
W 0
0 1

]
both have orthonormal columns, we can form the SVD of Z by

computing the SVD of the middle matrix in Eq. (2.4):

NΣVT =

[
S MTb
0 p

]

Now Eq. (2.4) can be rewritten as the following:

Z =
[
A b

]
=
[
M ẽ

]
NΣVT

[
W 0
0 1

]T
, (2.5)

By updating M, S, and W as M =
[
M ẽ

]
N, S = Σ, and W =

[
W 0
0 1

]
V, we have the

SVD of Z = MSWT . The same process applied when a new vector arrives.
This method avoids computing the SVD of the entire Z which is m×(n+1) and instead

only compute the SVD of

[
S MTb
0 p

]
which is (r + 1)× (r + 1).

2.4. Loss of orthogonality. Updating M as
[
M ẽ

]
N and W as

[
W 0
0 1

]
V can

cause M and W to lose orthogonality over many updates due to numerical error. A solution
proposed in [4] is to avoid these multiplications and keep Z represented as the product of 5
matrices, namely:

Z = MNSVTWT
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This way we only have to update the smaller N and V with matrix multiplications, thus
making the loss of orthogonality much slower.

In addition to losing orthogonality from the matrix multiplications, appending ẽ to
M can also causes M to lose orthogonality as noted in [10] by Zhang. Following Zhang’s

solution, we project ẽ again by (I −MMT) once
∥∥∥ẽTM(:, end)

∥∥∥ becomes larger than a

threshold value around machine epsilon.
Another issue that arises from numerical error or when computing the truncated SVD

of Z with the above method is that when b is mostly in the range of U, due to noise in the
data and numerical error, p might not be exactly 0. This will cause the rank to increase
when it shouldn’t. To address this issue [4] proposes to set a tolerance around the machine
epsilon or the noise level. If p is less than said tolerance, p is set to 0. This way the rank will
not increase. In addition, M and W will remain unchanged. However, in our experiments,
we find that for matrices that are not exactly low rank or when the singular values decay
more slowly, how to determine the appropriate tolerance for p becomes less clear. The
incremental SVD algorithm we use is shown in Algorithm 2.

3. Algorithm. We continue our discussion in this section with the notations used in
Fig. 1.1 in mind. Without taking advantage of the Tucker decomposition of X, we can carry
out the HOSVD algorithm on Z. As we have discussed before, computing the SVD of each
unfolding of the tensor makes up a significant portion of the total cost of HOSVD. As more
and more updates arrive indefinitely, the unfolding of Z grows indefinitely. Thus computing
the SVD of those unfoldings becomes infeasible eventually. Our solution to this problem,
for the first d− 1 modes, is to use the Gram-SVD as shown in Algorithm 3. The right half
of Fig. 1.1 shows the relationship between the unfolding of the new tensor Z and those of
X and Y on each mode in the 3D case. As we can see, for the first 2 modes, the unfolding
of Z is formed by concatenating the unfoldings of X and Y horizontally. For the first d− 1
modes, the Gram matrix of Z(n) can be computed as follows:

G = Z(n)Z
T
(n) = X(n)X

T
(n) + Y(n)Y

T
(n)

Notice that X(n)X
T
(n) would have been computed in the previous time step. In addition,

since we assume each update Y has the same size, Y(n)Y
T
(n) have the same cost for each

update.
On the other hand, for the last mode, Z(d) is formed by concatenating X(d) and Y(d)

vertically. This makes the Gram-SVD method less suitable since the Gram matrix of Z(n)

would grow in size as updates stream in. Therefore we adopt the incremental SVD method
introduced in Section 2.3. Note that the incremental SVD method that we summarized
assumes the update is a column vector while Y(d) is a row vector. To address this we

simply compute the incremental SVD of ZT
(d) and use its right singular vectors instead of

left singular vectors as the factor matrix. For the tolerance of p, we used ε ‖Y‖. Note
that in Line 10 we take the leading r singular vectors to form the last factor matrix Ũd

while not discarding the trailing singular vectors. We find that in practice this improves the
accuracy while increasing the computational cost. Another potential way to do truncation
is to increase the tolerance for p so that iSVD() can filter out the less significant singular
vectors so that Line 10 becomes unnecessary. However, in practice, we find this to cause
the accuracy of the iSVD() to deteriorate over updates quickly.

To update the core tensor without having to access the whole Z, we employ the blocked
tensor times matrix method proposed by Xiao et al. in [9]. The main result that we will use
is the following: Let X = G×1Ũ1×2Ũ2×· · ·×dŨd where the size of X is I1×I2×· · ·×Id. Let
Y be a I1×I2×· · ·×n tensor (n is any positive integer) and Z be the result of concatenating
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Algorithm 2 Incremental SVD

1: function iSVD(M, N, S, V, W, b, tol)
2: t = MTb
3: d = NTt
4: e = b−Mt
5: p = |e|
6: ẽ = e

p
7: if p > tol then

8: if
√
|ẽTM(:, end)| < tol then

9: ẽ = ẽ−M(MTẽ) . Reorthogonalize ẽ if needed
10: ẽ = ẽ

|ẽ|
11: end if

12: S =

[
S d
0 p

]

13: [Ũ, S̃, Ṽ] = svd(S)
14: M =

[
M ẽ

]

15: W =

[
W 0
0 1

]

16: N =

[
N 0
0 1

]
Ũ

17: S = S̃

18: V =

[
V 0
0 1

]
Ṽ

19: else
20: S =

[
S d

]

21: [Ũ, S̃, Ṽ] = svd(S)
22: N = NŨ
23: S = S̃ without its last column
24: Remove the last column of Ṽ

25: Ṽ =

[
Ṽ1

Ṽ2

]
. Split Ṽ into its last row and the rest.

26: V = VṼ1

27: W =

[
W

Ṽ2V
+

]

28: end if
29: return M,N,S,V,W
30: end function

X and Y along mode d. Then we have:

Z×1 U1 × · · · ×d Ud = (G×U1Ũ1 × · · · ×d Ud1
Ũ) + (Y×1 U1 × · · · ×d Ud2

) (3.1)

where Ui ∈ RRi×Ii for i ≤ d− 1 and Ud ∈ RRd×(Id+n). Ud2
and Ud1

are the last n rows of
Ud and the rest of its rows, respectively.

Our proposed update algorithm is shown in Algorithm 4. To clarify the notations, let
the previously available tensor be X and X = G×1 U1×2 U2×· · ·×d Ud and Gi = X(i)X

T
(i)

for i ∈ [1, d − 1]. The ε input parameter is the desired reconstruction error of the Tucker
decomposition. Algorithm 5 shows the how the problem is initialized and how Algorithm 4
will be used.
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Algorithm 3 Gram-SVD

1: function Gram-SVD(X)
2: G = XXT

3: [E,Λ] = eig(G)
4: return G, E, Λ
5: end function

Algorithm 4 Update

1: function Update(G, {U1, . . . ,Ud}, {G1, . . . ,Gd−1},M,N,S,V,W, ε,Y)
2: for n = 1 : (d− 1) do
3: Gn = Gn + Y(n)Y

T
(n)

4: [E,Λ] = eig(Gn)

5: r = argminr

∑In
i=r+1 λi < ε2(‖X‖2 + ‖Y‖2)/d

6: Ũn = E(:,1:r)

7: end for
8: y = Y(:) . Convert the update tensor into a vector
9: [M,N,S,V,W] = iSVD(M,N,S,V,W,y, ε ‖y‖)

10: r = argminr

∑In
i=r+1 S2

(i,i) < ε2(‖X‖2 + ‖Y‖2)/d

11: Ũd = WV(:,1:r)

12: Ũd =

[
Ũd1

Ũd2

]
. Let the last row of Ũd be Û2 and the rest be Û1.

13: G = G×1 Ũ
T

1U1 ×2 Ũ
T

2U2 × · · · ×d Ũ
T

d1
Ud + Y×1 Ũ

T

1 ×2 Ũ
T

2 × · · · ×d Ũ
T

d2

14: return G, {U1, . . . ,Ud}, {G1, . . . ,Gd−1},M,N,S,V,W
15: end function

3.1. Complexity. In this section, we analyze the complexity of our update algorithm
as shown in Algorithm 4. For simplicity, we assume that the input tensor has the same size,
I, for its first d − 1 modes and size Id for its last mode. We also denote the rank of X(n)

as rn for n ∈ [1, d]. Note that r can increase as updates arrive. For n ∈ [1, d − 1], rn is
bounded above by I while we consider rd to have no upper limit.

For the first d − 1 Gram-SVD, computing Y(n)Y
T
(n) dominates the cost with its cost

being O(2Id).

For the incremental SVD algorithm, we list the costs of important steps of the algorithm
in Table 3.1. As we can see, projecting the update vector b will be the more expensive cost
when r � I, but as the rank of X(d) increases, the cost of computing the SVD and pseudo-
inverse will become significant. The other major cost expense is updating the core tensor.

Operation Cost/

MTb O(2rId−1)
b−Mt O(2rId−1)

Update N and V O(2r3)
svd(S) O(r3)

Computing V+ O(r3)
Table 3.1

Cost of iSVD

Computing the first half of Line 13 costs O(2
∏d

n=1 r
2
nI + 2rd+1). Computing the second

half costs O(2r1I
d−1).
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Algorithm 5 Streaming Tucker decomposition

1: function s-Tucker(X, {Y1, . . . ,Ym}, ε) . Yi = update tensor at time step i
2: for n = 1 : (d− 1) do
3: [Gn,E,Λ] = Gram-SVD(X(n))

4: r = argminr

∑In
i=r+1 λi < ε2 ‖X‖2 /d

5: Un = E(:,1:r)

6: end for
7: [M,S,W] = svd(X(d))

8: r = argminr

∑In
i=r+1 S2

(i,i) < ε2 ‖X‖2 /d
9: S = S(1:r,1:r)

10: Ud = M = M(:,1:r)

11: W = W(:,1:r)

12: N = V = I . I is r × r identity matrix
13: G = X×1 UT

1 ×2 UT
2 × · · · ×d UT

d

14: for i = 1 : m do
15: [G, {U1, . . . ,Ud}, {G1, . . . ,Gd−1},M,N,S,V,W] =
16: Update(G, {U1, . . . ,Ud}, {G1, . . . ,Gd−1},M,N,S,V,W, ε,Yi)
17: end for
18: end function

Note that the cost of all three phases of our update algorithm do not involve Id and
instead depends on r. This entails that as updates arrive, the cost of computing each update
will increase much slower or stay the same.

4. Numerical experiments. To examine the accuracy of our algorithm and its per-
formance, we run our s-Tucker() algorithm on the Homogeneous Charge Compression
Ignition (HCCI) dataset [2]. This data is generated from a numerical simulation of a com-
bustion process. The entire dataset is 627×627×33×626 where the first 2 modes represent
a 2D spatial grid and the third mode represents different variables and the last mode rep-
resents 626 time steps. In this experiment, we only use the 29th variable and the 200th to
400th time step. The resulting tensor is 627×627×200. We choose the 200-250th time step
as our initial input tensor. Starting from the 251st time step, each update contains only 1
time step. We used 150 updates in total. The tolerance is set to ε = 10−4.

We tracked the reconstruction error of the Tucker representation computed by our
algorithm in Fig. 4.1. The reconstruction error is computed as the following:

err =
‖Z− G×U1 × · · · ×Ud‖

‖Z‖ . (4.1)

We can see that the error initially increases but decreases eventually to satisfy our specified
tolerance.

Another interesting value to track is the rank of Z(3) after each update. As we have
mentioned in the previous section, the rank of Z(3) computed by the incremental SVD
method might not be the same as the number of columns of U3 which can also differ from
the rank of Z(3) returned by the truncated Gram-SVD of the full Z(3). In Fig. 4.2, we record
the three values after each update. At the end of 150 updates, the size of S reaches 88,
which is significantly better than no truncation. However, when compared to the actual
rank computed by the Gram-SVD, this rank is still a significant overestimation. We can
also see that by doing a truncation on S (Line 10 of Algorithm 4), we can get a relatively
accurate estimate of the rank of Z(3).
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Fig. 4.1. Reconstruction error after each update

Fig. 4.2. Rank of Z(3) after each update

The time spent on each update is shown in Fig. 4.3. We break down each update
into roughly 3 phases: updating the factor matrices of the first d − 1 mode with Gram-
SVD (blue), updating the factor matrix of the last mode with incremental SVD (orange and
yellow), updating the core, and others. As we can see, the time spent on updating the factor
matrices for the first d − 1 modes stays constant even as more and more updates arrive.
The time spent on iSVD fluctuates with a slowly increasing trend. For the incremental SVD
algorithm, in this case, most of the time (yellow bar) is spent on projecting the update
vector as represented in Line 2 and Line 4 of Algorithm 2. The spikes in iSVD time in
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certain iterations are caused by the reorthogonalization that happens in Line 9. Finally, we
can see that the time spent on updating the core increases but at a slow pace as well. The
general increasing trend of the cost of the whole algorithm is caused by the increase of the
rank of Z(3). We believe that when given a streaming tensor whose rank of the last mode
stops increasing at some point, the cost of each update will stop increasing as well.

Fig. 4.3. Total time spent for each update.

5. Discussion. In this section we list some of the questions left unanswered in this
paper and discuss potential solutions as future research directions.

As we have mentioned, how the tolerance of p changes the accuracy of the incremental
SVD when the singular values decrease gradually is unclear. In our implementation, we
used ε|b|, the reconstruction error tolerance times the norm of the update vector. As we
have seen in the previous section, the reconstruction error turns out to satisfy the tolerance
we specified. However, this is at the cost of having a larger S. In our experiments, once we
increase this tolerance of p (we tried ε|Z|), the size of S decreases as expected. On the other
hand, the accuracy of incremental SVD starts to deteriorate as the updates stream in.

Another limitation of this algorithm comes from the fact that we use Gram-SVD to
compute and update the first d− 1 factor matrices. As we know, Gram-SVD is not numeri-
cally stable and has trouble computing the smallest singular values when the singular values
have high variance. This sets a limit on the reconstruction error tolerance we can achieve
with this algorithm.
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RE-ARCHITECTING
STORAGE SYSTEMS FOR MODERN HARDWARE: IS IT WORTH IT?

LUKE LOGAN AND MENTOR JAY LOFSTEAD∗

Abstract. Traditionally, distributed storage systems have relied upon the interfaces provided by the OS kernel
to interact with storage hardware. However, much research has shown that OSes impose serious overheads on every
I/O operation, especially on high-performance storage and networking hardware (e.g., persistent memory and
200GBe). Thus, distributed storage stacks are being re-designed to take full advantage of this modern hardware by
utilizing new hardware interfaces which bypass the kernel entirely. However, the impact of these optimizations
has not been well-studied at the distributed level on real hardware. In this work, we provide a comprehensive
evaluation of DAOS: a state-of-the-art distributed storage system which re-architects the storage stack from scratch
to optimize for high-performance hardware. We compare the various storage and networking backends provided by
DAOS and demonstrate that by utilizing optimal interfaces to hardware, performance improvements of up to 15x
can be observed in real scientific and machine-learning applications.

1. Introduction. HPC systems have traditionally suffered from an I/O bottleneck due to
the gap between storage and CPU performance [1]. To lower this gap, HPC centers are adopting
high-performance storage (e.g., PMEM) and networking (e.g., 200GBe) hardware. This hardware
is typically organized in a hierarchy [1–5], where data is initially buffered in a high-performance
tier and then flushed to a high-capacity tier. This improvement in hardware provides substantial
benefits to overall application performance. However, while performance benefits can be observed,
many storage systems were designed under the assumption that I/O is significantly slower than
compute. This assumption is no longer true, with many works noting significant performance
loss caused by software overheads [6–8] and context switching [9, 10] under various workloads.
To fully take advantage of the low latency and high bandwidth provided by this hardware, the
design and implementation of storage systems are being thoroughly reconsidered.

One source of performance degradation is caused by the storage and networking stacks
provided by OS kernels. The Linux I/O stack, for example, is well-tested and provides strong data
consistency guarantees, while maintaining acceptable performance for general users. However,
many high-performance storage systems rely on the Linux I/O stack for interacting with storage.
Many works have demonstrated that the Linux I/O stack causes significant performance loss
due to its lengthy I/O path [11–13], interrupts [9, 10], and context switches [9, 10]. To improve
this, new kernel-bypass storage stacks [11, 14, 15] have been developed to take full advantage of
the characteristics of modern hardware. One such work is the SPDK [15], an NVMe driver that
utilizes userspace function calls and polling instead of system calls and interrupts to interact with
hardware. Many single-node storage systems (e.g., filesystems [12, 13] and key-value stores [8, 11])
have been developed on top of these kernel-bypass stacks and have demonstrated significant
improvements to I/O performance in terms of latency. However, the evaluations of these works
are only at the single-node.

Due to the significant performance impacts of kernel-bypass and hardware optimization
on single-node storage stacks, distributed storage stacks are also emerging that aim to fully
utilize modern hardware. Many well-established storage systems are being patched to better
support modern hardware. One such system is CephFS [16], a distributed filesystem that recently
replaced kernel-level filesystems for storing metadata in NVMe and PMEM with kernel-bypass
technologies [17]. However, since existing systems were already largely designed towards slower
storage mediums, other works decided to re-architect the storage stack completely [18–20]. For
example, the Distributed Asynchronous Object Store (DAOS) [18] by Intel is a state-of-the-art
storage system which re-architects the I/O path entirely, bypassing I/O paths which are known
to be slow.

∗Sandia National Laboratories, gflofst@sandia.gov

238 CSRI Summer Proceedings 2022



While many distributed storage stacks have been proposed to take advantage of modern
hardware, the impact of these different optimizations has not been well-evaluated. For the most
part, evaluations of storage systems that incorporate kernel-bypass technologies are limited to
single-node cases, and many of these evaluations are over emulated hardware [12, 13, 21, 22] or
outdated software versions. For example, to the best of our knowledge, there has been no published
benchmarks of DAOS 2.0, nor has there been any comparison of DAOS against other storage
systems over the same hardware configuration and software stack. In addition, all known published
benchmarks of DAOS assume its optimal configuration, and do not demonstrate the performance
impacts of the various kernel-based and kernel-bypass networking and storage backends provided
by DAOS. Overall, from the existing work, it is not clear the extent to which re-desigining storage
stacks for modern hardware has affected the performance of distributed scientific applications.

In this work, we aim to quantify the extent to which re-architecting storage stacks for modern
hardware truly impacts the overall performance of modern distributed scientific applications.
To do this, we provide a comprehensive evaluation of DAOS 2.0: a state-of-the-art distributed
storage stack that has been built from scratch to maximize the benefits of modern storage
and networking hardware. We quantify the performance impacts of DAOS’s diverse software
stack optimizations compared to traditional kernel-based approaches over modern storage and
networking hardware, including NVMe and PMEM. We demonstrate that DAOS outperforms
traditional storage systems, such as OrangeFS, by as much as 15x under various real workloads
on high-performance storage hardware.

2. Background & Related Work. There has been growing interest in optimizing storage
stacks to maximize the bandwidth and latency potential of storage. This effort has spanned
from OS-level changes to device drivers to entire distributed storage system designs. Various
works have proposed new storage stack designs, and some work has been done to evaluate the
implications of these new designs at the distributed level.

2.1. Single-Node Storage Stacks. Traditionally, storage devices are protected by the
OS kernel through system calls. Therefore, applications interact indirectly with storage devices
using I/O system calls which typically involves interrupts and context switching between user
processes and the kernel. However, this approach has been shown to cause significant performance
degradation [8, 9, 11, 15, 23] on high-performance storage hardware. Modern storage systems
have aimed to bypass these overheads by offering alternative approaches for interacting with
hardware through the use of userspace drivers and memory mapping. Many single-node storage
systems have been developed on top of these new mechanisms that offer performance much closer
to the theoretical characteristics of the hardware.
Hardware APIs: The Storage Performance Development Kit (SPDK) [15] is an Intel open-source
project that provides a set of tools and libraries for writing userspace storage applications for
NVMe devices. SPDK leverages the NVMe specification that allows the mapping of the PCI Base
Address Register (BAR) into user applications. Similarly, LightNVM [24] is a userspace driver
for OpenChannel SSDs that enables the programming of the Flash Translation Layer (FTL)
and submission of I/O requests to OpenChannel SSDs entirely in userspace. The Dataplane
Development Kit (DPDK) [25] provides a userspace polling API to a variety of networking cards
and has been shown to minimize latency for networking operations. File Direct Access (DAX) [26]
is a methodology for treating PMEM as regular memory through the use of memory mapping,
avoiding context switching and metadata management overheads. Lastly, the Demikernel [27]
provides an abstraction over most of the aformentioned kernel-bypass accelerators in order to
improve storage system development speeds.
Filesystems & Key-Value Stores: To provide general users a simple, high-performance
interface to hardware, various storage systems (e.g., POSIX filesystems) have been built on top
of these userspace drivers to maximize performance. Nova [12] is a log-structured filesystem
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that is designed to minimize latency and maximize scalability of PMEM devices. SplitFS [13]
is another PMEM filesystem that utilizes the production-ready EXT4 filesystem for metadata
management, but uses memory-mapped I/O in userspace, avoiding the overhead of system calls
typically incurred by the EXT4 filesystem. Another work, Simurgh [28], proposes a PMEM
filesystem that implements all I/O functionality within a single library while protecting against
buggy, but not necessarily malicious, code. This approach avoids software overhead of the kernel
entirely for PMEM. For NVMe, uFS [29] proposes a filesystem that dedicates CPU resources
to handle filesystem threads to minimize latency on NVMes while also maintaining security
guarantees. While many of these storage stacks have been proposed, they were designed only for
single-node applications and were therefore evaluated primarily at the single node. The impact
of the optimizations proposed in these works are not well-understood at a distributed level.

2.2. Distributed Storage Stacks. While many changes have been made to the design of
single-node storage stacks, the impacts of these changes must also be understood at the distributed
level. Due to the success of single-node I/O stack optimizations, distributed storage stacks are
also evolving to optimize for the high-performance of modern storage hardware. Some storage
systems are being patched to utilize these new interfaces while making minimal changes to their
overall design, whereas other systems have been developed entirely from scratch.

Traditional Storage Stacks: OrangeFS [30] and BeeGFS [31] are both traditional high-end
computing storage systems. OrangeFS has shipped with the Linux kernel since 4.6 and provides
a userspace FUSE plugin for performing I/O. BeeGFS comes with a custom kernel module that
acts as a kernel-level filesystem. When performing I/O, OrangeFS and BeeGFS divide data into
stripes and distributes them among storage servers. The locations of stripes are managed by the
metadata servers. In both systems, metadata can be partioned across a set of metadata servers
(servers can be spread across nodes) to achieve scalability. It is up to the user to decide which nodes
contain metadata servers and storage servers. Both systems currently utilize the I/O interfaces
provided by the OS, and have not been specifically optimized to support high-performance modern
hardware, outside of RDMA capabilities.

Patched Storage Stacks: CephFS [16] is a POSIX-compliant filesystem built on top
of Ceph’s distributed object store, RADOS. CephFS endeavors to provide a state-of-the-art,
multi-use, highly available, and performant file store for a variety of applications, including
traditional use-cases like shared home directories, HPC scratch space, and distributed workflow
shared storage. CephFS has recently replaced kernel-level filesystems for storing metadata with
BlueStore, which utilizes kernel-bypass technologies [17], including the SPDK and DAX. The
work demonstrated significant performance improvement of their kernel-bypass storage backend.
The evaluation of this work was primarily over a 16-node cluster using RAM and HDD, and was
not evaluated over PMEM. Other works have benchmarked CephFS over NVMe [32]. CephFS
is also developing SeaStore [33], which currently focuses solely on NVMe optimizations, primarily
using the zoned-namespace APIs provided by modern NVMes. PMEM optimizations are not
yet considered in this work.

Modular Storage Stacks: Recent efforts have been aiming to provide modularized storage
stacks in order to combat software overheads caused by the OS kernel and provide workload- and
hardware-specific customization. Mochi [34] provides a diverse set of building blocks, which can be
composed by users to rapidly build highly customized distributed storage systems. LabStor [11]
proposes an extensible platform to facilitate the rapid development of new, hardware-optimized,
workload-specific storage stacks. Users can develop a wide variety of storage modules, ranging
from per-node I/O schedulers to distributed storage systems, which can then be composed to
form highly optimized I/O stacks. The evaluations of these works were primarily over emulated
hardware and NVMe.

DAOS: The Distributed Asynchronous Object Store (DAOS) [18] is a state-of-the-art storage
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system developed by Intel to take full advantage of modern hardware, such as NVMe and PMEM.
DAOS requires the existence of either NVMe or PMEM for acting as a persistent cache to
metadata. For NVMe, the SPDK can be used for interacting directly with NVMe while bypassing
the kernel. For PMEM, DAX can be used for mapping PMEM directly into DAOS’s address
space, minimizing kernel overheads.

DAOS has two storage concepts: pools and containers. A DAOS pool abstracts over the
storage hardware for a subset of storage nodes. A pool can contain a variety of different storage
hardware. The storage in a DAOS pool is tiered based off of the type of storage (e.g., NVMe
vs PMEM). A DAOS container, which is a transactional object store, can be allocated from a
DAOS pool. A DAOS container can represent many different storage systems. For example, a
container can be exposed as a filesystem or a key-value store. There can be up to a few hundred
containers. By default, DAOS recommends 6% of a container’s allocated space be PMEM/NVMe
while 94% be allocated to mass storage (e.g., HDD). This ensures that all metadata will be
stored in high-performance tiers, while all data operations are stored in slower, high-capacity
tiers. Metadata is required to be stored in either PMEM or DRAM, and it is assumed that a
user’s pool will contain a sufficient amount of space to store metadata.

DAOS is intended to scale to hundreds of thousands of nodes. In this case, it is expected
that there will be no more than a few hundred pools, and no more than a few hundred containers
per-pool. Each container can store billions of objects (e.g., files). While these are not hard limits,
going above these recommendations may cause performance issues.

DAOS provides a variety of interfaces for interacting with containers, including POSIX,
MPI-IO, HDF5, Spark and Hadoop. For POSIX, both a FUSE filesystem and an interceptor
(which can be loaded using LD PRELOAD) are provided. The filesystem interceptor is intended
to reduce the overheads imposed by FUSE. Unlike a typical parallel filesystem such as OrangeFS,
DAOS stores variable-sized blobs of information and does not use fixed-sized striping. This avoids
high-latency accesses for I/O operations smaller than the stripe size.

Using PMEM and NVMe, DAOS 1.0 was able to achieve top marks on the IO500 list at
sc19 [35]. Currently, there are no published benchmarks of DAOS 2.0.
The Future of Modern Hardware: Recently, Intel announced that their Optane PMEM [36]
product line has been discontinued. However, this doesn’t ruin the future of DAOS, nor the
future of PMEM. While Intel is not marketing this specific product anymore, new technologies
such as Compute Express Link (CXL) storage and memory [37] are emerging, which have similar
properties to PMEM. In addition, DAOS has significant optimization for NVMe, which is already
well-established.

2.3. Motivation. While many proposals have been made to change the way storage
systems are designed to incorporate the high-performance of modern storage hardware, it is not
well-understood how these design choices have impacted the performance of distributed applications
over real modern hardware. Evaluations of single-node storage stacks have primarily been in a
single-node setting, where network costs are avoided entirely. Evaluations that show distributed
impacts are typically conducted over emulated hardware or only NVMe. To truly understand
the performance impacts of optimizing storage stacks for modern hardware, an evaluation across
a state-of-the-art system and a traditional system over real hardware is necessary.

3. Evaluations. Hardware: We ran all our experiments on a 3-node cluster. Each node
contains 512GB RAM, 8x 256TB of Intel Optane DC Persistent Memory, and 16x 4TB NVMes.
Each node uses Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz. Each CPU has 24 cores and 48
threads, and there are two CPUs per-node. In total, there are 144 cores and 288 threads. The
network interconnect is 100GBe.

Software: For our experiments, we use Centos8 with kernel 4.18. We install DAOS 2.1.104-tb,
OrangeFS 2.9.8, and BeeGFS 3.7.1. For benchmarks, we use IO500 (isc’22 branch) and DLIO
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(commit: 2a5ed47). We use mpich 3.3.2 for all experiments. Each experiment is executed 3 times
and the average is reported.

Experiment Setup: In each experiment, we run the workload generator with 128 processes.
In each test, we co-locate the application with the storage/metadata servers. Caches are cleared
before every experiment. We use the default configuration for OrangeFS and BeeGFS in all
experiments. For OrangeFS, a 64KB stripe size is used and libaio is used as the I/O backend.
BeeGFS is configured with a 512KB stripe size. BeeGFS automatically scales I/O threads
depending on the current workload. We use up to 1x NVMe per-node for these tests. For both
OrangeFS and BeeGFS, we deploy one storage and metadata server on each node. For DAOS,
the sample configuration dedicates a single core for handling I/O operations to the hardware.
This parameter could be configured to better utilize hardware parallelism. More detail about
experimental setup is in each evaluation.
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Fig. 3.1. IO500 over various hardware and storage systems. DAOS outperforms OrangeFS and BeeGFS by
at least 10x in every workload.

3.1. IO500. In this evaluation, we measure the performance benefits of utilizing storage
systems that have been re-architected from scratch for modern hardware. To do this, we use the
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IO500 [38], which is a community benchmark designed to stress storage systems. We compare
DAOS, OrangeFS [30], and BeeGFS [31] running over RAM, PMEM and NVMe, each using
RDMA-capable networks. For OrangeFS and BeeGFS, we use EXT4 as the filesystem for
interacting with storage (for PMEM, DAX is enabled). A stripe size of 64KB is used and data
is distributed among the metadata servers in a round-robin fashion. Metadata and data servers
are co-located. For DAOS, we use the SPDK for storing data on NVMe and DAX for storing
data on PMEM. For the NVMe case, DAOS is configured with 50GB of PMEM and 5TB of
NVMe; the majority of I/O will be to the NVMe instead of the PMEM. We run the IO500 for
5 minutes for each test. We measure I/O bandwidth and metadata throughput for the various
workloads executed by the IO500. We also measure the theoretical bandwidth and throughput of
the underlying hardware using the dd tool over the device file for the PMEM and NVMe devices
per-node. The measurement of theoretical bandwidth does not account for network impacts. For
bandwidth, we used a 1MB block size for dd. For throughput, we used 4KB as the block size. The
sample configuration of DAOS uses a single I/O thread per-server, which is why single-threaded
dd was used instead of a multi-threaded benchmark.

From Figure 3.1, it can be observed that DAOS provides performance benefits across the
different benchmarks. In terms of bandwidth reported in the IO500-Easy experiment, DAOS
outperforms OrangeFS by 10x over NVMe and by 15x over PMEM. IO500-Easy performs a
workload which is optimal towards parallel filesystems such as OrangeFS, making large, sequential,
and aligned I/O. However, although it is the best-case scenario for OrangeFS, DAOS’s leaner
I/O stack still provides significant performance improvements.

IO500-Hard performs a less optimal workload, which generates small and unaligned I/O. In
this case, DAOS outperforms both BeeGFS and OrangeFS by 8x on NVMe and 10x over PMEM.
There are two reasons for performance differences. First, IO500-Hard stresses metadata and
small-I/O performance significantly more, which accrues significant overheads due to the kernel
I/O stack. Second, BeeGFS and OrangeFS perform I/O in units of stripes (64KB). For I/O which
is smaller than this and when boundaries are misaligned, an increased amount of I/O occurs.

For the mdtest-easy and mdtest-hard workloads, DAOS performs at least 18x faster than
OrangeFS on both NVMe and PMEM. This is because DAOS uses a minimalistic I/O path for
storing and querying metadata. Both BeeGFS and OrangeFS rely on the kernel’s I/O stack.
OrangeFS is a FUSE filesystem running atop EXT4, and BeeGFS is a kernel-level filesystem
also running atop EXT4. While metadata queries don’t (typically) go directly to disk, they must
travel through multiple levels of software and network in order to complete. This leads to a long,
expensive I/O path for every metadata access.

Overall, it can be observed that by re-architecting the storage stack from scratch for
modern hardware, significant performance benefits can be observed for both bandwidth and
latency-sensitive applications.
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Fig. 3.2. HPC workloads over different hardware and storage systems. DAOS improves performance
significantly over other other storage system types.
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3.2. HPC. In this evaluation, we quantify the benefit of an optimized storage stack on
typical checkpoint-restart workloads experienced in HPC. To do this, we run two common HPC
workloads: VPIC [39] and BD-CATS [40]. VPIC is a particle simulation code where each process
produces particle data and writes them at each time step. VPIC writes 8 million particles where
each particle is a vector of 8 floating point values. We run VPIC for 16 time steps. BD-CATS
reads the data generated by VPIC to perform a parallel clustering algorithm. Both VPIC and
BD-CATS primarily perform large, aligned I/Os to HDF5 files.

From Figure 3.2, it can be observed that, for both VPIC and BD-CATS, DAOS is at least
6x faster than both OrangeFS and BeeGFS over NVMe and PMEM. This performance benefit
is mainly due to the fact BeeGFS and OrangeFS have a significant metadata cost to keep track
of all the 64KB stripes, which are distributed and queried among servers during reads and writes.
Their lengthy, kernel-based I/O path causes significant software overhead on the metadata servers,
which is where performance degradation arises. Overall, traditional HPC workloads can experience
great performance benefits by using hardware-optimized storage stacks.
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Fig. 3.3. CosmicTagger for various storage and networking configurations of DAOS. The storage backend
varies between SPDK, Linux block layer, and the EXT4 filesystem. SPDK performs up to 30% faster than others
as the storage backend.

3.3. Machine Learning. In this evaluation, we specifically quantify the extent to which
different storage APIs impact I/O performance. To do this, we run CosmicTagger [41] through
the DLIO [42] benchmark, which is a convolutional neural net for separating cosmic pixels,
background pixels, and neutrino pixels. The training dataset contains 430,000 samples, where
each sample contains three images of size 1280x2048. The overall dataset size is roughly 400GB.
The samples are stored in an HDF5 dataset sparsely. At each iteration, 32 images are read from
the dataset and preprocessed. Most I/Os are between 20 and 50KB in size. DAOS is configured
to have 50GB of PMEM and 5TB of NVMe. We configure the NVMe to use either SPDK, Linux
block layer, or the EXT4 filesystem as the storage backend.

From Figure 3.3, we see significant variations in overall performance due to the choice of local
storage backend. When comparing different storage backends, it can be seen that SPDK performs
14% faster than the Linux kernel block layer and 30% faster than the EXT4 filesystem. Both
kernel-level filesystems and the Linux block layer have been noted to impose several overheads [11],
such as memory allocations, interrupts, and context switches. By using a leaner storage stack,
significant performance benefits are observed in the distributed layer.

3.4. Future Work. One limitation of this work was the limited test environment. HPC
systems typically have separate nodes for compute and storage. In a future work, we could explore
the networking effects of having dedicated storage nodes and the effects of different network
topologies. Another future work could be a deep profiling of the different storage systems to
determine the exact areas of their code where performance was lost.

4. Conclusions. In this work, we quantified the value of re-architecting distributed storage
systems to support the high-performance and low-latency of modern hardware. We performed a
comprehensive benchmark of a state-of-the-art storage system (DAOS) and a traditional storage
system (OrangeFS) using a variety of workloads over both persistent memory and NVMe. We
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demonstrated that traditional storage systems which do not optimize for modern hardware
can experience performance degradation of as much as 15x under a variety of synthetic and
HPC workloads. In addition, we also quantify the performance benefits caused by utilizing
kernel-bypass storage and networking interfaces. We demonstrated that by using storage and
networking interfaces which specifically optimize for modern storage hardware, performance
improvements of up to 30% can be gained for real distributed workloads. Overall, re-architecting
storage stacks for modern hardware was well worth the effort.
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LEVERAGING CONTINUATIONS TO INTEGRATE MPI WITH USER
LEVEL THREADING

JOHN T. PARRISH∗, JAN CIESKO† , AND STEPHEN L. OLIVIER‡

Abstract. Modern HPC systems rely on both inter-node and intra-node parallelism to achieve re-
quired performance. User-level threading (ULT) enables asynchronous intra-node parallelism, while the
most typical model for inter-node parallelism is the Message Passing Interface (MPI). MPI Continuations is
a proposed extension to MPI that would enable completion notification via callbacks as an alternative to di-
rect polling. MPI Continuations is a uniquely appropriate model for the integration of the ULT task model
and the MPI model because ULT models favor event-driven scheduling over blocking tasks. In this paper, we
present an event-based model for non-blocking MPI Requests using the MPI Continuations extension, with
implementations in both Sandia’s Qthreads ULT runtime and OpenMP using OpenMP’s tasking constructs.
We also present an evaluation of these runtimes that suggests that lower level ULT libraries like Qthreads
are less performant than higher-level tasking libraries when implementing task-based applications. Finally,
we present ideas for how this work with MPI Continuations can be generalized to provide a middleware
API that would allow tasking runtime developers to quickly and easily implement MPI support within their
runtime using MPI Continuations.

1. Introduction. User Level Threading (ULT) and Tasking are two related but dis-
tinct models of intra-node parallelism. In both paradigms, code is organized into lightweight
units of work that can be easily swapped on and off one of possibly many kernel-level threads.
Kernel-level are threads that are visible to the operating system [4]. Because kernel threads
are created and managed within the kernel itself, there are significant overheads associated
with thread creation and context switching. For this reason, applications written using
kernel-level threads are often parallelized at a coarse granularity. To be performant, kernel-
level threads should have enough work in them to persist for a long time and should not be
frequently swapped in and out. This makes kernel-level threading a poor choice to execute
fine-grained parallelism [3]. Many applications are logically organized into small tasks that
would naturally be represented as threads, but it is often impractical to create so many
kernel threads of potentially quite limited durations. This is where user-level threading can
be beneficial [3, 4].

Tasking runtimes provide a convenient utility to represent node-local tasks in a depen-
dency graph structure, but HPC systems are typically multi-node systems. The nodes in
these systems are typically linked by a message-passing facility. The most typical frame-
work used in these systems is the Message Passing Interface (MPI). Using MPI, one can
efficiently parallelize applications across these nodes. In MPI, dependencies between nodes
and processes are represented via messages. If node B requires a result from node A to
proceed, then node B will wait on a message from node A containing said result. Using
tasking, we can achieve single-node, multi-threaded DAG parallelism, and, using MPI, we
can construct multi-node, single-threaded DAG parallelism. Issues arise, however, when we
begin to consider how to implement multi-node, multi-threaded task DAGs using both MPI
and local tasking runtimes. This is because using a blocking call (like MPI Wait) will block
the calling kernel thread without regard for any ULT runtime. Standard MPI is unaware
of any user-level threading or tasking that may be utilized on each node, so it will block
the kernel thread where the call was made. This is not ideal because blocked kernel threads
are detrimental to the performance of ULT/tasking applications. Kernel threads in applica-
tions built with ULTs are analagous to CPUs in applications built directly on top of kernel
threads, so blocking at the kernel-thread level paralyzes one of the execution units that
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could normally context switch to a new task. In the worst case, blocking the kernel-level
thread can lead to unexpected deadlocks [8]. This can happen when one user-level thread
depends on another but no additional kernel-level thread is available to schedule the second
ULT. If the blocking of the kernel-level thread had instead been replaced by yielding the
user-level thread, the deadlock would be avoided.

Sandia National Laboratories maintains Qthreads, a ULT runtime with low-level syn-
chronization primitives. In Qthreads, the main synchronization primitive is the full-empty
bit. Users associate a full-empty bit with a memory location and use the bit to synchronize
memory accesses. In this paper, we explore the MPI Continuations extension proposed by
Schuchart et al. [8] can be used to integrate MPI communication with Qthreads and other
ULT/tasking runtimes. We present our implementation of MPI support for OpenMP and
Qthreads using MPI Continuations; our observations about the state of event support in
Qthreads, Argobots, and OpenMP; a performance evaluation of OpenMP and Qthreads
using a Gauss-Seidel heat equation solver benchmark; and our ideas for a portable tasking
+ MPI middleware library built on top of MPI Continuations.

2. Background. Because naively using MPI together with ULT/tasking can lead to
performance and deadlock issues, there is a need for a system that will intelligently integrate
the two paradigms. Previous solutions to this problem have modularized MPI’s threading
support to enable MPI to be compiled in a ULT-aware mode. Evans et al. [2] added support
for the Qthreads and Argobots runtimes to Open MPI. This elevates the blocking from the
level of kernel-level threads to the level of user-level threads, but the completion of an MPI
request still requires some task to block itself and await the completion of the request by
making a blocking call to the MPI library.

Schuhcart et al. [9] have proposed an extension to the MPI standard that provides
callback-based completion notification called MPI Continuations. Using this extension, one
can register a callback with the MPI runtime itself. Requests are associated with a callback
and then grouped under a special request called a continuation request. By polling the
continuation request, the traditional requests with the continuation request are also polled,
thereby making progress. On the completion of one of the traditional requests managed by
the continuation request, the MPI runtime calls the callback function associated with that
request. Our approach uses this continuations API to integrate non-blocking MPI requests
with ULT/tasking runtimes.

Tasking and ULT are closely related concepts, but they have important differences.
Tasks are a higher-level of abstraction over user-level threads. While user-level threads are
typically just the user-space analogue of traditional kernel-level threads, tasks are units of
work which may have dependencies [8] on other tasks. Tasking runtimes are optimized to
organize tasks by dependencies and perform important functions like temporal sequencing
and task throttling. Temporal sequencing means that task schedules are generated based
on when a task is created, so if task A and B both output some dependency D, and task C
waits on that dependency, then task C will only wait on whichever of the two tasks A and
B are created before C. So if the tasks are created in the order A, C, B, then task C will
depend on task A but not task B. This is important because the Gauss-Seidel heat equation
solver–the primary benchmark we used–relies heavily on this temporal sequencing to ensure
correctness. Qthreads is a low-level ULT library that has some facilities for organizing
tasks into a dependency structure, but it lacks the rich feature set that OpenMP provides
through its task pragmas. Our primary benchmark, the Gauss-Seidel heat equation solver
was adapted from an OpenMP-based implementation [5]. Upon porting the benchmark into
Qthreads, we noticed significant overheads associated with the scheduling of the ULTs on
each node. We believe that these results are a direct consequence of the semantic differences

J.T. Parrish, J. Ciesko, and S.L. Olivier 249



between OpenMP’s higher level tasks and Qthreads’ lower level ULTs. These observations
are discussed further in Sections 6 and 7.

3. Implementation. We implemented MPI support using MPI Continuations in
OpenMP, Qthreads, and Argobots. All of our implementations used the version of MPI
Continuations found in Joseph Schuchart’s fork of the Open MPI project at https://

github.com/devreal/ompi [7]. We found OpenMP to be the easiest of the three runtimes
we examined to integrate with MPI Continuations. In OpenMP, tasks are managed using
task constructs, which were added in version 3.0 [11]. We implemented a simple OpenMP
example which is shown in Figure 3.1. It consists of a task which initializes the MPI Irecv

request, a task which waits on the request to complete and then prints the result, and a task
which polls the continuation request. The MPI Irecv request is represented as an OpenMP
event. The event is generated by the detach clause. This clause creates the event handle and
causes the first task to await the completion of the event after running to completion. The
output dependency of the first task will not be satisfied until it has run to completion and the
event has been marked completed. The third task shown is the polling task which polls the
continuation request. A continuation request with no attached work will test as completed,
so the polling task waits to poll the continuation request until comm started flag is set
to 1 to avoid terminating the polling loop prematurely. This example demonstrates the
fundamental idea of our approach to integrating MPI Continuations with tasking: MPI
requests are represented within the tasking runtime as events and upon completion of the
MPI request, the event is marked as fulfilled.

We also joined MPI Continuations with the Argobots [10] and Qthreads [12] frame-
works. Unlike OpenMP, Argobots and Qthreads are lower-level ULT frameworks, so they
do not have the same support for high-level dependency-graph management as OpenMP.
Instead, we had to create and maintain the dependency structures ourselves using Qthreads’
full-empty bit semantics and Argobots’ eventuals (which are like traditional futures). While
we explored both Argobots and Qthreads as potential candidates to join with MPI Contin-
uations, the results in this paper are limited to Qthreads, and MPI Continuations support
in Argobots is left as future work.

The lack of proper tasking semantics in Qthreads proved to be a significant challenge
when implementing more complex programs than the simple example in Figure 3.1 with
more intricate dependency graphs. This became exceptionally problematic when imple-
menting the Gauss-Seidel Heat Equation solver. The synchronization of tasks in Qthreads
is dependent on full-empty bit semantics. These act somewhat like futures, with the asso-
ciated bit being set to full when the data is ready to be used. This simpler system makes
the sequencing of tasks less straightforward, and introduces overhead. In Qthreads, tasks
are created and launched before they yield to wait on their dependencies to be satisfied,
whereas OpenMP tasks are created but not launched until each dependency is satisfied.
Qthreads does provide a way to precondition tasks on a collection of full-empty bits, but
it doesn’t provide a straightforward way to sequence tasks depending on a particular full-
empty bit, as OpenMP does with its input/output dependency structure. To replicate this
pattern in Qthreads, one either has to create an excess number of full-empty bits to model
each dependency or accept that the precondition API cannot be used and perform manual
synchronization with the full-empty bits. In our implementation, we chose to forgo the use
of the precondition API in favor of keeping the number of full-empty bits lower. Our in-
vestigation suggests that in order to properly represent task-based parallelism, task-specific
constructs should be provided. A low-level ULT model like Qthreads is not enough to
efficiently represent large task-graph structures.
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1 // this task runs first to start the MPI request and detaches to wait for the Irecv to complete
2 #pragma omp task depend(out:value) shared(value, comm_started_flag) detach(event)
3 {
4 // the receive request
5 MPI_Request req;
6 // start the Irecv
7 MPI_Irecv(&value, 1, MPI_INT, 1, 425, MPI_COMM_WORLD, &req);
8 // pass the responsibility of the Irecv to the continuation request cont_req
9 MPIX_Continue(&req, &release_event, (void *) event, MPI_STATUS_IGNORE, cont_req);

10 // let the polling task know that the communication has started
11 comm_started_flag = 1;
12 }
13

14 // this task can only run once the data is received from the other rank
15 #pragma omp task depend(in:value) shared(value)
16 {
17 printf("RECEIVED %d\n", value);
18 }
19

20 // this task runs in parallel to ensure MPI progress
21 #pragma omp task shared(comm_started_flag)
22 {
23 // flag will be set to 1 when the request has completed
24 int flag = 0;
25

26 do {
27 // only test the request if a communication request has already been attached
28 if (comm_started_flag) {
29 // poll the communication request and check if the attached request is complete
30 MPI_Test(&cont_req, &flag, MPI_STATUS_IGNORE);
31 }
32 // yield to another task
33 #pragma omp taskyield
34 } while(!flag);
35 }
36

37 /////////////////////////////////////////////////
38

39 // This is the callback that the MPI implementation calls when the MPI_Irecv is ready to complete
40 void release_event(MPI_Status *status, void *data) {
41 // cast the passed pointer to the event handle
42 omp_event_handle_t event = (omp_event_handle_t)(uintptr_t) data;
43 // fulfill the event
44 omp_fulfill_event(event);
45 }

Fig. 3.1: A simple example of completion notification using callbacks

4. Related Work. Task Aware MPI (TAMPI) [6] is a library that integrates OpenMP-
style tasking and MPI. TAMPI has been our primary point of comparison, as the heat
benchmark we have been using comes from an example implementation using TAMPI [5].
TAMPI tracks MPI requests as tickets. Each ticket corresponds to a request. The ticket
keeps track of which task the request belongs to by saving a reference that task’s event
counter to be decremented later. To attach a request to a task, TAMPI adds a function
called TAMPI Iwait. When a request is attached to a task, that task’s event counter is
incremented, and when the request is completed, the event counter is decremented. A task
cannot proceed until its task block has completed execution and its event counter is 0. The
primary advantage of our approach over TAMPI is that our approach tracks the requests
in the MPI runtime itself, using the built-in events from OpenMP tasking or the full-empty
bits from Qthreads. This approach leads to a greater degree of flexibility and extensibility.
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The pattern we use to join tasking constructs with MPI Continuations is general enough
to be applicable to other ULT/tasking runtimes. As long as the runtime provides some
form of event construct, relatively minimal code is required to incorporate MPI using MPI
Continuations.

Evans et al. [2] present an implementation of flexible threading support for Open MPI.
Low level functionality in Open MPI is managed through the Open, Portable Access Layer
(OPAL) and is customizable via Open MPI’s Modular Component Architecture (MCA).
Evans et al. designed an OPAL MCA component architecture to allow the customization
of threading support within MPI by specifying which threading MCA component should
be used at compile time. Using this model, the authors implemented support for Pthreads,
Qthreads, and Argobots. When compiled with Qthreads or Argobots support, Open MPI’s
blocking calls will perform proper user-level blocking, rather than blocking kernel threads.
Our proposal differs from the approach used by Evans et al., in that we support non-
blocking MPI calls by integrating MPI requests as a form of event that tasks can depend
on. The modular threading approach allows the tasking run-time to wait on MPI Requests
implicitly by waiting for a task that is blocked by a blocking MPI call to unblock. Our
approach, however, supports tasks depending on MPI Requests directly. No task is required
to block and wait for completion of an MPI request. Rather, the tasking runtime itself is
made aware of the request as an event, allowing for the runtime to be flexible in how it
handles dependencies on an MPI request compared to dependencies on another task.

Chatterjee et al. [1] present a method of supporting MPI calls within the Habanero-C
language, which they call HCMPI. The authors propose the concept of a Distributed Data-
Driven Future which extends Habanero-C’s concept of a Data-Driven Future to multiple
nodes. These allow users to perform inter-node synchronization using the semantics of fu-
tures. These futures support put, get, and await operations. HCMPI ensures progress in the
MPI runtime by dedicating one of the kernel-level worker threads that the runtime spawns
entirely to polling into the MPI runtime. HCMPI shares many conceptual similarities with
our approach. HCMPI’s DDDF construct is similar to an event in our implementation, and
HCMPI guarantees progress similarly by dedicating a kernel-level thread to polling. Rather
than specifying a request as a future, we handle them as events, which can be awaited but
don’t conceptually support get and put operations. Our implementation also encapsulates
polling as a task within the runtime rather than as a separate entity which runs inside a
different kernel-level thread. The primary difference between our approach and HCMPI is
that our approach, while similar in concept to HCMPI, attempts to be more general. Our
general implementation scheme assumes only a minimal set of capabilities of the underlying
ULT/tasking runtime compared to HCMPI, which is built specifically for the Habanero-C
language.

5. Important Observations. Our study of both simple examples and the heat bench-
mark revealed that the key advantage of using MPI Continuations for this task is that it
allows one to link ULT/tasking runtimes with MPI requests using a minimal set of adaptor
functions. While porting TAMPI to a new runtime would likely require a port of the ticket
system and the event counters, potentially requiring modifications to the runtime itself,
enabling MPI support via MPI Continuations only requires some form of event, the ability
to wait on events, an event fulfillment function, and a method of polling the continuation
request. The first two are present natively in all three of the runtimes we investigated.
OpenMP has the detach clause and the omp event handle t type. Qthreads has the full-
empty bit semantics, and Argobots has its eventuals. Assuming the presence of these first
two features, all that is required to port this continuations-based support into a new runtime
is to write a callback function which satisfies an event and to ensure that the continuation
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request is consistently polled. In our implementations, this last requirement took the form
of a task in charge of polling that was usually untied so that it could freely be run on any
worker/core that became available. In our benchmarks and examples, the polling task was
explicitly declared alongside the application code. The polling task does not need to be
changed between applications, however, so ULT/tasking library writers could easily include
a way to run this polling task automatically.

6. Evaluation. We collected our evaluation data using the Blake cluster at Sandia
National Laboratories. Blake is a 40 node Intel Xeon Platinum (Skylake) 8160, 2.1GHz -
based cluster. It has two sockets per node and 24 cores per socket connected over the Intel
OmniPath interconnect.

To benchmark the various ULT/tasking + MPI Continuations implementations we con-
verted a version of the Gauss-Seidel heat equation solver originally written for TAMPI into
OpenMP + MPI Continuations and Qthreads + MPI Continuations versions. We ran these
versions in addition to the TAMPI version of the code and a blocking version which used
kernel-thread blocking MPI calls within the communication tasks. We ran each version on
1, 2, 4, and 8 nodes (Figures 6.1 - 6.4) using one rank per node and tested grid dimensions of
8192×8192, 16384×16384, 24576×24576, 32768×32768, and 40960×40960. Note that the
grid dimension shown in the figures represents one of the dimensions of the square grid, so a
data point at having a grid dimension of 8192 was run on an 8192× 8192 grid. We ran each
configuration for 300 timesteps. We attempted to run each configuration 3 times, but due
to time constraints, we were unable to complete all 3 runs on certain configurations. Each
running time data point collected is plotted on the graphs, and the lines plotted for each
configuration interpolate between the means of the running times for each grid dimension.

As shown in Figure 6.1, we ran each version on 1 MPI node to get a baseline performance.
We were unable to obtain data on the Qthreads implementation for a single node due
to time constraints, but based on other benchmarks, it seems reasonable to expect that
Qthreads incurs significant overhead compared to the OpenMP models. The three OpenMP
versions all performed almost identically. This result matches expectation because the only
differences between the three versions of the code lies in the communication tasks, of which
there should be none on a single node.

As shown in Figures 6.2 – 6.4, Qthreads shows significant overhead compared even to
the blocking communication version on all configurations. We believe this overhead results
from the way we sequenced the Qthreads using full-empty bits. We created an n × n × 5
grid where each grid square has 5 full-empty bits corresponding to each of the north, south,
east, and west neighbors and the cell itself. Each task awaits these 5 full-empty bits, and
because Qthreads’ precondition routine does not mark the bits empty after the condition is
satisfied, we were unable to properly precondition the tasks using the proper API. Instead,
we had to begin each task and then perform a wait on each of the full-empty bits, clearing
them immediately after each wait with the qthread readFE function. This was necessary to
ensure that only one update was executed on a cell per iteration. Because we were unable
to use the precondition API, each of the n× n× t tasks has to be spawned and then begin
waiting. We believe this creates a significant overhead that scales with the size of the grid,
causing Qthreads to perform the worst of all the implementations tested.

Figure 6.4 shows high variability of TAMPI’s performance on 8 nodes. We measure the
variability of the performance by calculating the range of the 3 running times observed for a
given configuration. The average range for TAMPI on 8 nodes was 152.92 seconds compared
to 0.64 seconds on 2 nodes and 1.25 seconds on 4 nodes. For additional comparison, the
average range on 8 nodes of both the OpenMP and blocking versions combined was 9.38
seconds. While the data we have collected is not able to rule out some form of experimental
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Fig. 6.1: Gauss-Seidel heat equation solver performance results on 1 node

error resulting from the status of the Blake cluster at the time the results were collected, it
is interesting that the increased variability is only observed in the TAMPI results. Further
experiments are required to determine what caused this increased variability.

The OpenMP + Continuations implementation performs on par with the TAMPI version
in every configuration tested, as shown in Figures 6.1 – 6.4. These results show that MPI
Continuations is efficient enough to stand in for the ticket system employed by TAMPI,
validating the idea that MPI Continuations could form the basis for a generalized framework
which can be adapted with relatively low overhead into any runtime with adequate support
for tasking and events. The significantly higher runtimes of the Qthreads implementation,
however, suggest that libraries with lower-level ULT semantics may need the addition of a
dedicated tasking layer to exhibit the performance achieved in OpenMP + Qthreads.

7. Conclusions and Future Work. The development and evaluation of the various
ULT + MPI Continuations implementations yielded several important insights. First, it
proved that MPI Continuations is a viable alternative to the runtime-specific style of frame-
work that is present in the TAMPI API. The speed of the OpenMP + MPI Continuations
heat implementations suggests that no performance is lost by using the facility of continua-
tion requests rather than TAMPI’s ticket system which depends on features specific to the
OmpSs runtime [6].

Second, it showed that, with MPI Continuations, the amount of infrastructure required
from the ULT/tasking side is minimal and consistent. Instead of building an analogous
ticket system in each runtime, developers can pass the management of requests off to the
MPI implementation itself. Then all that ULT/tasking runtime developers will need to add
is the simple callback function and some sort of polling routine for their runtime. This
is possible as long as the runtime supports some concept of events and preconditioning or
blocking ULTs/tasks for event completion.

The sub-optimal Qthreads results demonstrated that the synchronization and depen-
dency semantics in Qthreads are not complete enough to easily emulate the tasking semantics
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Fig. 6.2: Gauss-Seidel heat equation solver performance results on 2 nodes

Fig. 6.3: Gauss-Seidel heat equation solver performance results on 4 nodes

of higher-level runtimes like OpenMP. All of these insights have revealed opportunities for
future work with both MPI Continuations and Qthreads. The semantics required to con-
nect a tasking runtime to MPI Continuations are minimal and consistent across runtimes.
This suggests that a middleware library could be developed to systematize and simplify the
integration of MPI Continuations into tasking runtimes. Runtime developers could specify
functions that create events, fulfill events, and start the polling task. Then with these mini-
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Fig. 6.4: Gauss-Seidel heat equation solver performance results on 8 nodes

mal features specified, the runtime could have access to a library of functions that streamline
the management of MPI requests using MPI Continuations.

The fact that Qthreads struggles to match the performance of OpenMP tasks in the
heat benchmark suggests that there is a performance difference associated with the semantic
difference between ULTs and tasks noted by Schuchart et al. [8]. While there may be better
performing ways to structure the same benchmark using Qthreads, there is an appreciable
gap in the performance of OpenMP and that of Qthreads when it comes to implementing
task-based semantics. The difference in overhead and ease of use between Qthreads and
OpenMP for the task-based heat equation solver suggests that it may be useful to add
tasking semantics on top of lower-level ULT runtimes like Qthreads and Argobots.
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IMPROVING A SOFTWARE USER INTERFACE WITHOUT THE USER

ABIGAIL SPIGARELLI∗ AND JACOB DAVIS†

Abstract.
This project focuses on upgrading operators’ experience using a satellite scheduling software. Improving

its User Interface (UI) will reduce the cognitive load and mistakes made, increase confidence in the system
and understanding of the information displayed, and lastly enhance the onboarding experience. Many UI
evaluations rely on user feedback to improve. Unfortunately, this project doesn’t have access to its users.
Instead, the UI is evaluated for areas of improvement using cognitive models. Initial experimentation
used CogTool (a human predictive performance model), and its accuracy was verified with manual testing.
CogTool measured the cognitive load and timed navigation of the UI. These experiments showed that
applying principles from the metrics reduces time spent on urgent tasks. Future experiments with other
models and tools will need to be performed to measure the quality of the UI.

1. Introduction. Improving the User Interface (UI) is a key aspect of software up-
dates. Usable systems provide “a number of benefits including improved productivity,
enhanced user well-being, avoidance of stress, increased accessibility and reduced risk of
harm”[5]. As a legacy satellite scheduling software is being revamped, improving the UI
is therefore an important concern. A software interface evaluation is dependent on specific
restrictions and applications of the project. This satellite scheduling software consists of
mostly classified work, limiting access to its operators. The software also handles a large
breadth of work, performing numerous complex operations. Lastly, the software has a small
number of users, who use the software everyday for years. An effective UI evaluation will be
appraised by its ability to decrease the time required for critical tasks and overcome these
three challenges: access to its users, its complexity, and its long term effect.

The access to the software’s operators presents a difficult challenge. The software is
used by a small group of operators that, because of the classified nature of the project, have
limited interaction with the software developers. It is possible to receive feedback on design
mockups, but this is conducted through an intermediary and takes many days to receive
a response. A well researched and common approach to improving the UI is a user based
evaluation. Thought to be the bread and butter of UI evaluations, they require access to the
users through short surveys, formal interviews and information collected as they interact
with the software. Without direct access to the users, a user evaluation based approach is
next to impossible for this project.

An alternative solution is to build models and systems to synthetically approximate the
user experience. This technique faces a significant roadblock: the complexity of the software.
This is a very intricate piece of software with many different sub-applications and controls.
The interface is entirely digital, giving each operator a considerable amount of flexibility
with their set up. Additionally, there are a variety of roles individual operators perform
adding another unknown variable. For example, a standard operator typically utilizes two
monitors, but “super” operators use around eight monitors to manage all the information
and tasks they need to perform. The variability in the user’s setup makes building precise
and accurate synthetic models difficult. One technique to overcoming this complexity, is to
break down each of the components of the software into concrete and distinct tasks. By
increasing the levels of abstraction, most unknown variables are eliminated, contributing to
an insightful model.

The customization of the operator’s environment is intentional. The operators asked
for this feature, and it was provided. In fact, the software is built at the request of its
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operators. Contrary to typical commercial software, the funding for this software comes not
at the expense of the users, but on behalf of its users. There is no concern about customer
retention, encouraging the software to overlook short-term aspects, such as it’s learning
curve, and focus on the expert user’s experience. Unfortunately, because internet economy
incentives favor short-term software, the long-term effect of a UI is still largely unstudied
making it difficult to improve associated interfaces[9].

In addition to overcoming those three challenges, an effective UI evaluation will also
need to identify areas where an interface will improve the most. In order to narrow the
evaluation’s scope, the chosen UI analysis will be measured by its impact in task time.
Certain applications of the satellite scheduling software need to handle very time-critical
tasks. The chosen UI evaluation will need to address and fulfill this goal of increased time
efficiency.

Since most UI evaluations focus on user’s feedback and their environment, the lack of
interaction with the software users presents the most difficult challenge. Even if there was
user feedback, the complexity of the software prevents a comprehensive evaluation. Lastly,
the lack of research on the long-term aspects of the UI creates a third roadblock. The satellite
scheduling software requires a UI evaluation that needs minimal user feedback, handles the
software’s complexity, takes into perspective the long term impact, and decreases the time
spent on critical tasks.

2. Finding an Appropriate Evaluation. After identifying the challenges, the fol-
lowing section will compare four UI evaluation methods (cognitive models, usability testing,
system usability score and a heuristic evaluation) in their ability to improve the time esti-
mates for tasks. Two of the evaluations require user feedback and two provide quantitive
results. A method that best addresses the three previously stated challenges and provides
time evaluations of tasks will be chosen.

As stated before, although most heavily researched, a user evaluation based approach
is not possible for this project. This restriction eliminates usability testing and system
usability scores, leaving cognitive modeling and heuristic evaluations. A heuristic based
evaluation, requires training to perform and most importantly doesn’t measure or officially
address improving the time efficiency of particular tasks. The last method, cognitive mod-
eling requires little user involvement, provides time based estimations of the tasks, and
simplifies complex interfaces. Cognitive modeling doesn’t necessarily focus on expert users,
but particular applications of it does. By addressing all three challenges and providing time
estimates of the tasks, cognitive modeling is the best evaluation for this project. Table 2.1
summarizes the differences between the methods.

3. Congitive Modeling. A comprehensive analysis of all available cognitive models,
their underlying theories, and possible applications to this project is beyond the scope of
this paper. However, there is a methodology that address the complexity of the software
and provides a long-term approach to this analysis: KLM (Keystroke-Level Model)[2]. KLM
is the simplest GOMS (Goals, Operators, Methods, and Selection)[10] technique. Defined
over 40 years ago, GOMS provides a top-down approach to decomposing a task, starting at
the user’s goal and breaking the goal down into sub-goals. These goals are then achieved
by applying methods and selection rules. Because of its utilization of abstraction, this
cognitive model easily addresses the complexity of the operator’s environment. KLM also
aims to predict “the time it takes an expert user to preform a given task on a given computer
system”[7]. By focusing on expert users, KLM strengthens the cognitive model’s approach
to improving long-term focused software. KLM is a more restrictive GOMS technique,
“with no parallel activities, no interruptions, and no interleaving of goals”[6]. This requires
that only simplified tasks are modeled. For this application of KLM, this restriction is an
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Strengths Weaknesses

Cognitive Modeling
-Low cost
-No user involvement
-Provides time estimates for tasks

-Might require training
-Requires simple tasks

Usability Testing

-User feedback is often
exceptionally helpful
-Can provide time estimates for
tasks
-Well researched approach

-Requires contact with users
-High cost

System Usability
Score

-Provides quantitive results for
qualitative aspects of the design

-Requires contact with users
-Subjective to evaluator

Heuristic
Evaluation

-No user involvement
-Can be combined with other
evaluations

-Requires trained evaluator
-High cost
-Subjective to evaluator
-Evaluation might find only
minor issues
-No quantitative results

Table 2.1

asset, helping address the issue of the software’s complexity. An additional challenge is
the complexity of the model. This typically contributes to time intensive computations and
formal training to implement and understand. This problem is overcome with Cogulator and
CogTool, two easy to use open source tools that use KLM methods to evaluate interfaces,
requiring only informal training to use. Following an analysis of their differences, applying
the chosen tool in the context of the software will be discussed.

3.1. Cogulator and CogTool. Cogulator[3] and CogTool[1], were tested and comp-
ared against each other in the context of this project. Cogulator provides significantly more
modeling flexibility, allowing both physical and digital components. This contributes to a
steeper learning curve. Since the satellite scheduling software is entirely digital with no
physical aspects, Cogulator’s emphasis on comprehensive modeling isn’t necessary. On the
other hand, CogTool is built to analyze screenshots, a perfect application for the entirely
digital UI. In addition, CogTool is easy to use, produces interesting visualizations of the
model, and encourages comparing UI mockups. For these reasons CogTool was chosen to
create the cognitive models for this UI evaluation. Table 3.1 summarizes the differences
between CogTool and Cogulator.

Cogulator CogTool

Strengths -Model flexibility

-Efficient and fast model building
-Computes a visualization of the model
-Provides ranges for predicted task times
-Easy exploration of alternative UI designs

Limitations
-Steeper learning curve
-Tedious to create models

-Requires a screenshot of the UI
-Inflexible with order of specific tasks
-No feature to model specific cognitive tasks,
such as mental arithmetic or memorization

Table 3.1
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3.2. Research. With CogTool as the chosen cognitive modeling tool, the next step
is using it to research the software’s interface. As stated earlier CogTool is based on the
KLM method, so the first step is identifying a goal or task. Initially four particularly
time-sensitive, but simple tasks were chosen. Next, screenshots of the associated UI were
imported, each signifying a frame or a state of the device. Widgets or “hot spots” were
then highlighted. These represent the interactive controls of the UI and connect each of the
frames together creating a storyboard that outlines the steps to conduct a task. To preserve
the sensitive nature of the project, a completed storyboard from a different project is shown
below.

Fig. 3.1. High-level example of a CogTool Storyboard[8].

After creating the story boards, choosing what would make the most impactful changes
to the UI was difficult. Analyzing a UI is often subjective and dependent on the evaluator.
One way to avoid this is to use established metrics. One study researched the impact of
this approach by creating a web page based evaluator that used a multi-metric solution
relying on a corpus of different formulas[11].Their findings show that general principles and
guidelines, if followed correctly, can create an effective and systematic UI evaluation. In
light of their research, we decided to improve the UI designs according to Fitts’s law, a
formula based metric. Defined in 1954 by Paul Fitts, this law models human movement. It
proves that the time it takes to click an area on a screen is a function of the distance to the
target divided by the size of the target[4]. This metric encourages a simple UI with large
buttons and important features clustered together.

None of the changes made to the improved UIs were drastic, typically involving only
a size-able increase in a particular button. The tasks were already so simplified that there
were limited areas of improvement. Figure 3.2 shows CogTool’s output comparing the
change between the legacy and the improved UI. The task modeled required three clicks.
The difference in the tasks time between the two mockup versions is minimal. Figure 3.3
shows the difference in time between the legacy and mockup for three other tasks, revealing
similar results.
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Fig. 3.2. Comparison between the CogTool timelines for the legacy (top) and improved(bottom) UIs.

Fig. 3.3. Difference in time for legacy and improved designs for 4 specific tasks.

CogTool is a useful cognitive modeling tool, particularly because it provides time es-
timates for its tasks. While, the time estimates were insightful, they were minimal. The
complexity of the software, and the model’s required simplification of the tasks, meant that
each of the tasks were taken largely out of context with the rest of the software. How often
these tasks are conducted in relation to the rest of the possible tasks, could increase the sig-
nificance of the otherwise minimal improvements. Additionally, to test the accuracy of the
time estimates, one author manually timed how long it took to perform the tasks. One task
that CogTool estimated would take 13.8 seconds, only took 10.9s to complete on average.
Granted, CogTool estimations do include time for cognitive processing, which is difficult
to test easily. However, that is a 26% percent difference between the modeled and actual
performance times. Lastly the small improvements in terms of time efficiency came at the
cost of aesthetics. The larger buttons encouraged by Fitts’ law were less visually appealing
to multiple developers than the legacy interface. The required simplification of the software,
manual testing results, and balance between aesthetics and time efficiency, may imply that
the disconnect between reality and cognitive modeling is too great to find any statistically
helpful results.

4. Future Research. While the results from our research were inconclusive, analyzing
the UI with CogTool is only one of many other tools or approaches that can conquer the three
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challenges of the project. Addressing different goals of the software and alternative methods
of data collection could results in significantly more promising results. Time efficiency isn’t
the only thing the interface can be measured by. For example, some satellite scheduling
tasks favor accuracy over speed. There also might be ways to perform user evaluations with
limited impact on the users. Information such as how often operators make mistakes, utilize
UI shortcuts, use certain features, click particular buttons etc., could be collected. This
data would make future software improvements easier to improve, broadening the horizons
of possible areas of analysis. By focusing on different goals and methods of data collection,
the research will be more conclusive and informative.

5. Conclusion. The purpose of this research is to show that even with minimal user
contact, it is possible to analyze and improve a software’s UI. The first step of improving a
UI is analyzing the interface and identifying areas of improvement. Measuring the quality
of the UI requires a tailored approach. In the context of a satellite scheduling software,
this assessment was defined by three challenges: limited user feedback, intricacy of the
software, and the long-term focus of the UI. The success of the approach was measured by
its ability to improve the time to complete critical tasks. A KLM modeling software, called
CogTool, was identified as the chosen approach. CogTool created an evaluation without
access to users, responded well to simplified tasks, and measured all task time estimates
from the perspective of an expert user. Unfortunately, initial research with CogTool failed
to show any significant improvements to the interface. This research used only one solution,
CogTool, and one metric, Fitts’ law. As stated earlier there are other solutions that could
possibly yield even better quantitative results. Following an accurate assessment of the
interface, the next step is to implement the changes and improve the UI. It is expected that
findings from this and future research will be incorporated into the software design.
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REFORMULATING OPTIMIZATION-DRIVEN FACILITY-SCHEDULING
TOOLS FOR SANDIA DEVELOPMENT TESTS

MATTHEW P. VIENS∗, WILLIAM E. HART† , AND CYNTHIA A. PHILLIPS‡

Abstract. Scheduling under resource and time considerations is a common problem across disparate
engineering fields. As a result, scheduling problems have been formulated in many ways for different applica-
tions. We consider a facility scheduling application to support strategic planning and operations for Sandia
nuclear weapons testing facilities. In this application, we select a set of tasks based on priority using a
best-effort approach for fixed time windows. We adapt formulations from the related Resource-Constrained
Project-Scheduling Problem. We express the problem as a mixed-integer program, which we solve using a
commercial solver. We have evaluated this approach using synthetic data sets, and have successfully applied
it to Sandia facility data sets. On Sandia facility data sets, these new formulations can be solved up to 8
times faster than previous methods, and solutions can be generated in ∼2 minutes or less.

1. Introduction. Sandia National Laboratories (Sandia) has many testing and evalu-
ation facilities that support critical mission objectives for United States government stake-
holders. Challenges for effective facility management include long time horizons, competing
priorities for scarce facility resources, and precedence constraints. Facility schedules fre-
quently change to respond to delays in facility operations and critical resources (including
key staff), new work, and to adapt to changing priorities and needs of government stake-
holders.

The customer programs include many different projects that Sandia must handle effi-
ciently. Projects are comprised of sub-components of minimal length called tasks. Histori-
cally, teams of subject-matter experts have manually created facility schedules considering
two major factors: demand (including tasks durations, task requirements, and tasks prior-
ities) and resources (including facility capacities, working days, and staff). Across all pro-
grams, the demand for facility time often exceeds available capacity, so Sandia’s scheduling
activities have focused on maximizing total task throughput, accounting for a prioritization
of programs in consultation with affected customers.

As a manual component in Enterprise Resource Planning (ERP) processes, revising
the schedule for large Sandia facilities can take weeks. By introducing discrete-optimization
methods, schedules - and schedule revisions - can be generated within minutes. This addition
of efficient optimization models to the ERP systems will enable subject matter experts
to quickly assess the impact of changes in facility operations and customer requirements
and evaluate new schedules in real time. Further, this capability will enable the rapid
evaluation of “what if” scenarios to provide customers feedback on the impact of changes in
their programs. Finally, this capability will enable higher-confidence assessments of facility
capabilities, since discrete-optimization methods can provide mathematical bounds that
demonstrate fundamental limitations on facility throughput given available resources. Thus,
facility managers will be able to confidently assess when no possible schedule exists to meet
some program requirements.

We developed an optimization tool called Enterprise Resource-Planning Optimizer
(ERPO). We describe ERPO’s models and formulations. ERPO is a scheduling back-end
that is part of ongoing development of new user-facing ERP tools. The ERPO tool generates
optimal facility schedules using modern Integer Programming (IP) formulations that are
expressed with the Pyomo modeling environment [5, 7] and solved using the Gurobi integer
programming solver [6].

∗University of Wisconsin-Madison Department of Computer Sciences, mviens@wisc.edu
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Our facility scheduling problem is non-preemptive, where scheduled tasks are run to
completion once started. Our formulations are time-indexed integer-programming formula-
tions that discretize the scheduling horizon into daily time intervals. We adapt Artigues’
work [2], from the well known Resource-Constrained Project-Scheduling Problem (RCPSP)
[4], to our facility scheduling problem.

The organization for the rest of the paper is as follows. In Section 2, we define the
ERPO facility-scheduling application. This application is formalized in Section 3, where we
describe several integer-programming formulations. In Section 4, we compare the runtime
performance of these formulations on large synthetic data sets. Finally, we summarize
conclusions and discuss future work in Section 5.

2. Problem Details. Our facility-scheduling problem is non-preemptive and best-
effort-based over a fixed time window. Our best-effort approach gives a reward for scheduling
each task while allowing the possibility of not scheduling tasks to avoid infeasible schedules.
We need a best-effort approach, rather than mandatory scheduling, since our task sets can
contain more tasks than are possible with our constraints. We discretize the window into
individual days and consider task durations in positive integer days.

We have resource and task constraints. Resource constraints enforce facility availability
and capacity. Tasks have earliest/latest start dates and precedence constraints. A prece-
dence constraint requires a following task to start after the preceding task completes. All
constraints are hard feasibility constraints.

We pick between tasks using task priority, positive integers where a larger value indicates
higher importance. Task priority is used on our default best-effort objective, or scheduling
goal, called total priority scheduled where we sum the priorities of all of the scheduled tasks.

Our facility-scheduling problem differs from the RCPSP in two major ways: mandatory
scheduling and objectives used. In the RCPSP, all tasks must be scheduled. Our best-effort
approach does not schedule all tasks when it is impossible to do so. Best-effort approaches
always have feasible solutions since scheduling zero tasks is feasible for best-effort. Thus, the
problems have different objectives. The RCPSP uses a makespan objective, i.e. minimize
time to run all the tasks, and we use the total priority scheduled objective. Otherwise,
the problems share most concepts and definitions. Artigues presents the RCPSP in greater
detail.

3. IP Formulations. We created two formulations for the facility scheduling problem
using the multiple formulations discussed by Artigues. The impulse formulation was inspired
by his Disaggregated Discrete Time (DDT) formulation. The step formulation was inspired
by his Step-based Disaggregated Discrete Time (SDDT) formulation. Both formulations are
implemented as Pyomo models in the ERPO tool.
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3.1. Notation. The formulations share many common elements of notation that are
presented below:

Concept Symbol

Facility Set R
Tasks Set J
Tasks in Facility r Jr
Window Set T
Precedence Set E
Task j Feasible Start Set Tj
Task j Feasible Active Set T̂j
Task j Duration nj
Task j Earliest Start Time ej
Task j Latest Start Time lj
Task j Priority πj

3.2. Impulse Formulation. The impulse formulation is presented below:

max
x,y

∑

j∈J

πjyj (3.1)

s.t.
∑

t∈Tj

xjt = yj ∀j ∈ J (3.2)

t−ni∑

τ=0

xiτ −
t∑

τ=0

xjτ ≥ 0 ∀ (i, j) ∈ E,∀t ∈ T (3.3)

∑

j∈Jr

t∑

τ=t−nj+1

xjτ ≤ 1 ∀t ∈ T, ∀r ∈ R (3.4)

xjt ∈ {0, 1} ∀j ∈ J t ∈ Tj
xjt = 0 ∀j ∈ J t ̸∈ Tj
yj ∈ {0, 1} ∀j ∈ J

xjt = 1 means that task j started at time t; a value of 0 means it did not.
yj = 1 means that task j was scheduled; a value of 0 means it was not.
(3.1a) is the total priority scheduled objective. (3.1b) connects task starting time using

xjt to a task being scheduled yj . Specifically yj indicates a job is run if and only if it is
scheduled to start at a feasible time. (3.1c) is the precedence constraint forcing job j to
start after job i completes. If and only if task i ran at τ ≤ t − ni can task j run at time
t. (3.1d) is the resource constraint saying that of all the tasks that use resource r, denoted
Jr, at most one of them could be active at any given time. The second sum is taken over
all start times for job j that would force j to occupy facility r at time t.The rest of the
formulation is domain declarations for the variables and make this a 0-1 (binary) scheduling
formulation.

This formulation is distinct from the DDT formulation in three ways. The first difference
is the use of the best-effort total priority scheduled objective. The second difference is in
(3.1b) where the DDT approach would replace yj with 1, which would require each task to
run. The third difference is in (3.1d) where we rephrase the resource constraint to assume
each facility can only have at most one task at a given time. This matches the client data
and simplifies the expression.
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3.3. Step Formulation. The step formulation is presented below:

max
z

∑

j∈J

πjzj,lj (3.5)

s.t.

zjt − zj,t−1 ≥ 0 ∀j ∈ J ∀t ∈ T (3.6)

zi,t−ni − zjt ≥ 0 ∀ (i, j) ∈ E ∀t ∈ Tj (3.7)
∑

j∈Jr

zjt − zj,t−nj
≤ 1 ∀j ∈ J ∀t ∈ T̂j ∀r ∈ R (3.8)

zjt = 0 ∀j ∈ J ∀t < ej

zjt ∈ {0, 1} ∀j ∈ J ∀t ∈ T

zjt = 1 means that a task j started at or before time t; a value of 0 means it did not.
(3.2a) is the total priority scheduled objective and demonstrates yj = zj,lj across the

formulations. (3.2b) is the step constraint that means if zjt = 1 then zjτ = 1, τ ≥ t. (3.2c)
is the precedence constraint saying if and only if task i started at or before time t− ni can
task j start at or before time t. (3.2d) is the resource constraint saying that of all of the
tasks that use resource r, denoted Jr, at most one of them could be activate at any given
time. The rest of the formulation is domain declarations for the variables and make this a
0-1 scheduling formulation.

This formulation is distinct from the SDDT formulation in 3 ways and modifies the
behavior in a similar way to the differences in the impulse formulation. The first difference
is the use of the best-effort total priority scheduled objective. The second difference is the
absence of a mandatory scheduling constraint like zj,lj = 1,∀j ∈ J . The third difference is
in (3.2c) where we rephrase the resource constraint to assume each facility can only have at
most one task at a given time.

There is one major difference between the formulation and the Pyomo model. The
formulation has zjt defined over all t ∈ T . This leads to the variable count scaling with the
size of the time window. In the Pyomo model, we define zjt over just t ∈ Tj and leverage
two simplifying behaviors: zjt = 0, t < ej and zjt = zj,lj , t ≥ lj . This means that number of
zjt variables, for a fixed task j, scales with Tj rather than T , which prevents the number of
variables from scaling with the overall scheduling window.
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3.4. Initial Formulation. The initial formulation is presented below:

max
a,x,y

∑

j∈J

πjyj (3.9)

s.t.
∑

t∈Tj

xjt = yj ∀j ∈ J (3.10)

ni +
∑

t∈Ti

t · xit ≤
∑

t∈Tj

t · xjt ∀ (i, j) ∈ E (3.11)

∑

s∈{0,...,nj−1}
t−s∈Tj

xj,t−s ≥ ajt ∀j ∈ J, t ∈ T̂j (3.12)

∑

t∈T̂j

ajt = njyj ∀j ∈ J (3.13)

∑

j∈Jr|t∈T̂j

ajt ≤ 1 ∀t ∈ T, ∀r ∈ R (3.14)

xjt ∈ {0, 1} ∀j ∈ J t ∈ Tj
xjt = 0 ∀j ∈ J t ̸∈ Tj
yj ∈ {0, 1} ∀j ∈ J
ajt ∈ [0, 1] ∀j ∈ J, ∀t ∈ T̂j

ajt = 1 if task j was active at time t and ajt = 0 otherwise. It is always integer when
the x and y variables are binary, so we can model it as a continuous variable.

We introduce the initial formulation after the impulse and step formulations since it is a
more complicated. This formulation comes from previous work at Sandia and was the first
formulation implemented in the ERPO tool.

Since we have already presented the other two formulations, we address points of con-
trast rather than describing all behavior. Precedence constraints (3.3c) compare computed
start times. Because the number of precedence constraints (3.3c) does not depend on the
number of time periods, it may scale better as the number of time periods grows compared
to precedence constraints (3.1c) and (3.2c). Constraints (3.3f) use the activity variables
for a resource constraint equivalent to (3.1d). This is redundant when we have the task-
start information in x. Our experiments show that the original formulation takes longer to
solve than impulse and step formulations. The original formulation’s linear-programming
relaxation is likely weaker because of the precedence constraints (3.3c) where the binary x
variables are scaled by potentially large time parameters.

4. ERPO Performance. To compare the performance of our formulations we used
two major categories of tests: real client data tests and synthetic data tests. We compare the
initial, impulse, and step formulations using the real client data. The real client data tests
established that both the impulse and step formulations outperform the initial formulation.
The real client data is only one dataset, which limits the ability to make general statements
about performance on real client data tests. We created a tool, TaskGenerator, to create
many different varieties of task sets to experiment beyond a single client dataset. All of our
tests were done with the most recent versions - as of Summer 2022- of the Gurobi solver
and Pyomo modeling language. Unless otherwise mentioned, we used the default settings
for the Gurobi and Pyomo tools.
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While much of our modifications are inherited from Artigues, we cannot directly leverage
his performance-based formulation comparisons, which are largely inherited from Bianco [3],
since this analysis was specific to RSPCP problems.

4.1. Real Client Data Tests. We had one task set from the client, which did not
include precedence information. We considered several different problems to compare formu-
lation performance. All of the results agreed -within solver tolerances- on objective results,
so the timing results is the major difference. The first problem was to schedule the task set
with the Biased Total Priority objective. The Biased Total Priority objective is the Total
Priority Objective with a penalty term added to promote tasks starting as close to Earliest
Start Time as possible. This objective breaks ties between schedules that have the same
total priority by minimizing delay, which can decrease the number of optimal solutions and
lead to increased problem difficulty. The second problem was to schedule the task set after
changing, adding, and removing some tasks with the Biased Total Priority Objective. The
third problem was the same as the second problem with a larger tolerance setting. The
fourth problem was to schedule the original task set with the Total Priority Objective.

In general, the core statistic our users care about is the end-to-end time, or the wall
clock time between saying run and the ERPO tool returning the schedule. The results of
the end-to-end times, rounded down to the nearest second, on the 4 problems are below:

Problem Initial Impulse Step

1 271 108 99
2 951 90 136
3 111 93 36
4 382 91 90

4.1.1. Real Client Data Analysis. On the most difficult problem for end-to-end
time, problem 2, both the impulse and step formulations were around 8x faster than the
initial formulation with this specific data. This corresponds to the full scheduling problem,
both scheduling the highest priority set of tasks possible and minimizing task start delay.

There was one result from model solve time, that is, the time the Gurobi solver takes to
solve the constructed Pyomo model, that was interesting for feasibility analysis. On problem
4, the impulse and step formulations outperformed the initial formulation on model solve
and end-to-end time. The model solve time here is what would control repeated runs, or
sweeps, of “What If” scenarios, where multiple models with minor variations are solved and
contrasted, since problem 4 used the total priority scheduled objective. This results in 29x
faster (525 vs 11 seconds), on the impulse formulation, for the “What If” sweeps with this
specific data.

We also tested the impact of the Gurobi solver’s presolve settings, since Achterberg et
al. [1] showed the influence of presolve. Default presolve was either comparable or superior
to the other possible presolve settings.

Overall, our impulse and step formulations outperformed in every problem in model
solve and end-to-end times. This demonstrates clear gains from the impulse and step refor-
mulations for our problem with this specific data.
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4.2. Synthetic Data Tests. When we consider synthetic data we can ask two major
questions beyond the real client data tests. The first question is what happens when we
add precedence constraints. The second is how does runtime vary with task properties. All
of the real client data tests used a single set of tasks, modified slightly depending on the
problem, and lack precedence constraints. We expect the ERPO tool to be used to schedule
many different task sets and to have precedence data.

The synthetic data comes from our TaskGenerator utility and leverages Python’s
pseudorandom-generation tools to create task and precedence data from uniform distri-
butions. Since random generation could lead to infeasible tasks or precedence relationships,
we ensure that only feasible tasks and precedence relationships are returned.

We did many different tests varying the number of tasks generated from 50 to 600, and
the length of the scheduling window from 1 to 3 years.

We used the Biased Total Priority scheduling goal, the same as most of the real client
data tests. Priority values came from a uniform distribution of 1 to 10. Precedence con-
straints occurred on approximately 50 percent of the tasks.

We recorded the end-to-end time for each test on both the impulse and step models and
present those times, rounded to the nearest tenth of a second, from an average of 3 tests:

4.2.1. Impulse Formulation Tests.
Tasks 1 Year 2 Years 3 Years

50 2.8 2.4 4.8
100 2.6 5.1 8.7
200 4.7 11.1 18.0
400 10.3 24.3 42.5
600 18.6 39.2 65.5

4.2.2. Step Formulation Tests.
Tasks 1 Year 2 Years 3 Years

50 0.5 0.7 1.0
100 0.9 1.3 1.7
200 1.7 2.5 3.5
400 3.9 4.4 5.4
600 16.4 6.6 10.0

4.2.3. Analysis. After the introduction of frequent precedence constraints, the step
formulation outperforms the impulse formulation. Also, the end-to-end times for the syn-
thetic data are markedly faster than the results from the real client data tests. While it is
hard to exactly compare the problems, there are many factors that could account for this
difference including use of precedence constraints and structure from the TaskGenerator

differing from real client data structure. Between the two elements, we can continue to
expect that the step formulation will outperform the impulse formulation when precedence
relationships are common. We must continue our testing with synthetic data to further
consider changes in number of facilities, task duration, and task priority.
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5. Conclusions. Our ERPO tool provides significant improvements to the facility
scheduling process for Sandia. The decrease in end-to-end scheduling time, over both man-
ual and previous automated methods, provides the ability to quickly schedule on real client
exemplar data in 2 minutes or less. Additionally, our tests on synthetic task data demon-
strate the value and power of including the precedence information in the data inputs, which
simultaneously causes further matching of the ERPO results to manual scheduling behavior
and restricts our feasible solution set causing apparent runtime gains.

We have many avenues for future work on the ERPO falling into two categories: func-
tionality improvements and performance testing. The functionality improvements include
presentation of multiple near-equivalent scheduling options, what-if modeling for facility
capacity variations, and additional solver setting modifications. The performance testing
has two directions: fine-tuning the data generation parameters and runtime testing. For
the data generation parameters, we presently use uniform distributions for all our synthetic
data, but the real data may conform better to other distributions. For the runtime testing,
we showed that it is feasible to quickly schedule hundreds of tests over years. Seeing where
and why the facility scheduling problem goes from easily tractable, with our formulations,
to intractable is of interest to our clients.

Overall, our ERPO tool is capable of marked gains in facility scheduling versus our
previous scheduling automation attempts with gains of up to 8x and 29x on full scheduling
and what-if analysis respectively and serves an ongoing client need for robust and fast facility
scheduling at Sandia as a core component of the ERP application.
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III. Applications

Articles in this section discuss the application of computational techniques to simulate phys-
ical systems. This includes the use of molecular dynamics, multiscale models, or machine
learning to provide insights into materials, high-energy applications, atmospheric phenom-
ena, and structural mechanics.

1. Ma, Karoui, Karoui and Sikorski enhance the process of carbon nanotube charac-
terization by utilizing molecular dynamics to develop a carbon nanotube database
for future machine learning predictive materials work.

2. Reyes, Smith and Severa use recurrent neural networks to determine leading jet
membership in a heavy ion colliding application.

3. Sema and Wood use machine-learned interatomic potentials to simulate molecular
dynamics and predict vapor-liquid equilibria and phase transitions.

4. Torchinsky and Taylor develop new interfaces for the Non-Hydrostatic High-Order
Methods Modeling Environment for global atmosphere modeling, with applications
to a tropical cyclone test case.

5. Wilson and Silling adapt the peridynamic numerical method for simulation of col-
liding objects to use a viscous contact force to avoid interpenetration errors.

S.K. Seritan
J.D. Smith
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THE PROCESS OF RESEARCHING CARBON NANOTUBES AND ITS
PROPERTIES

BRANDON MA∗, ABDENNACEUR KAROUI† , FOZIA SAHTOUT KAROUI‡ , AND EMBER

SIKORSKI§

Abstract. Carbon nanotubes (CNTs), particularly single-walled carbon nanotubes (SWCNTs) in this
case, are tubular nanostructures possessing nanoscale properties that allow the nanostructure to be utilized
in a wide variety of applications. However, traditional experimentation with hybrid piezoelectric composites,
or artificial piezoelectric materials, and their properties such as electric, mechanical, and thermal properties
are costly and time-consuming. Furthermore, there is a scarce amount of complete CNT databases and
publications on CNT’s mechanical properties and the impact of chirality on its mechanical properties. This
leads to the primary goal of this research; to develop a complete, open-source database of CNTs properties
by utilizing molecular dynamics (MD). With MD, the materials and properties of interest can be simulated
and explored without traditional constraints. However, the vast resulting data regarding many materials’
properties are too numerous to be fully analyzed manually hence the adoption of machine learning (ML)
aspect in this research as well as automation. Once the CNT database has been sufficiently populated and
its entries verified, the data will be used to develop a machine-learning model that will predict the CNT’s
electric and mechanical properties with the hopes that it will eventually lead to the development of new
materials or properties.

1. Introduction. Possible applications that CNTs are suitable for are bio-filtering
[6], nano-filtration, water desalination, and sensors. All of which can provide a significant
technological breakthrough. The lack of a reliable and complete CNT database hinders
the engineering and research of the material, expending time and resources. Additionally,
the importance of a CNT’s chirality and how it influences its properties requires more
observation and research. The above-mentioned circumstances and the absence of data on
CNT’s piezoelectric and mechanic properties add further setbacks as those properties are a
crucial aspect of understanding CNTs and their potential.

To address this issue, we turn to molecular dynamics (MD) as our mainstay with the
addition of machine learning to enhance the research. A CNT of varying chirality and
length is generated using a molecular modeling and visualization computer program that
will be used as an input file for LAMMPS. The input file will then be properly prepared and
subjoined by dedicated LAMMPS scripts for that CNT to run through LAMMPS, and the
resulting LAMMPS output files will be extracted and analyzed. This process will repeat
until the data accumulated has been deemed sufficient which the machine learning aspect
can begin. As mentioned earlier, the amount of data that needs to be prepared, processed,
and analyzed is very time-consuming.

To alleviate some of the data intensity, a sequence of our data will be omitted and
subjected to the machine learning model to predict and calculate possible properties of the
CNT. Machine learning (ML) is a field of study where computers are programmed to learn
from the data and subsequently improve as they accumulate experience in performing their
assigned tasks and is a key aspect of the research as it progresses. Initial predictions will
be limited to the likes of mechanical and will progress to other properties like thermal and
piezoelectric. In addition to predicting the material’s properties, the ML model will be
used to generate data that will virtually produce new materials or properties. To develop a
high-accuracy ML model, a large amount of data, computational data-driven methods, and
numerous testing are required to ensure a reliable model.

∗North Carolina Central University, bma@eagles.nccu.edu
†North Carolina Central University, akaroui@nccu.edu
‡North Carolina Central University, fkaroui@nccu.edu
§Sandia National Labs, elsikor@sandia.gov
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The integration of LAMMPS and machine learning will provide the necessary data,
tools, and methods to predict and eventually develop new materials and properties. This will
lead to a pattern detected by the ML model giving insight into what kind of properties a CNT
will have; how certain CNTs of varying chirality and length will produce a specific spectrum
of properties, serving as a guide to determine the properties of a CNT. Precaution must be
taken with the data generated from the ML model and initial training data sets must be
verified for accuracy before they could be entered into the CNT database. Subsequently, the
CNT database will become an open-source database that allows users to access and search
for particular properties of interest to them. Another alleviation of the time consumption
of preparing the data is through automation.

Using Python, an automation script will quickly modify and develop the necessary
scripts and requirements for the data to run in LAMMPS [7]. Additional calculations can
be performed using the automation script such as direct measurement of the CNTs length
and diameter to ensure that the CNT is not too short or long than the estimated projec-
tions. Furthermore, the post-processing of the LAMMPS data after a successful run can be
generated using automation to find the stress-strain curve, size, volume, and temperature.
A comma-separated file (CSV) and graphs of each parameter will be supplementing the
post-processing results, generated by the automation script. All these tools, methods, and
data are an important part of this research leading up to the creation of the CNT database.

This database will allow users to search for particular properties ranging from mechani-
cal properties to thermal properties. At the time of this paper, the machine learning aspect
is still in early development. As such, automation and other subjects will be the most
prevalent in this paper.

2. Creating the prototype. The CNT structure and properties selection will stem
from the chiral indices (n,m), which in turn influence the diameter and length. Both of which
are measured and calculated in nanometers (nm). The CNT diameter, d, is calculated using
the following equation:

d = 0.0783 ∗ (((n+m)2 − n ∗m))0.5 (2.1)

The length, l, is calculated by a simple equation derived from the CNT diameter and
aspect ratio of 10.00:

l = 10.00 ∗ d (2.2)

Another condition to adhere to is that the structure must have at least a chiral index of
4 or it will not be a nanotube. For example, a structure can have the chiral indices of (n,m)
= (1,4), but cannot have chiral indices of (n,m) = (1,1) or (n,m) = (2,3) as these chiral
indices will create a structure that is not a nanotube. Should all the proper conditions be
met, a prototype will be created using Visual Molecular Dynamics (VMD) to create the
structure’s atom coordinates into three file formats: program database (.pdb), XYZ (.xyz),
and a dump file (.dump) that will be modified into a data file (.dat). Both .xyz and .pdb
are recognized and/or universally adopted for data and serve as a reference in the database.
Meanwhile, .dump is converted to .dat which serves as one of the input files for LAMMPS.

2.1. File processing automation. The initial process of converting the .dump file
into a .dat file is a manual process. This extended to the CNT’s directory, input script,
and bash script; all of which were repetitive and tedious to handle manually. Furthermore,
the scripts were to be modified in accordance with the number of atoms, the structure’s
chiral indices, and diameter leaving potential room for human error. To offset the margin
of human errors and streamline the task, automating the process will greatly decrease the
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time and resources expended on the file processing task. A high-level and general-purpose
programming language called Python was chosen to create the automation script as there
is a vast amount of existing and immediate resources for automation using Python [4].

Multiple Python scripts were created with each performing a specific function for ease
of debugging and testing. These scripts possess imports from Python’s existing libraries
such as os [1], sys [3], and shutil [2] for the automation to handle file names, paths, and
directories. All scripts are tested and debugged using various inputs to develop a more
robust automation script that can handle or ignore unexpected and/or incorrect inputs.
These scripts will then be integrated into an encompassing Python script and tested with
each additional function per iteration for any issues before continuing any more integration.
This cycle of testing, debugging, and integration resulted in a suitable Python automation
script that can handle, copy, modify, and relocate files within seconds whereas it would have
taken minutes, possibly an hour to manually process even a handful of files.

2.2. Using automation to resolve issues during LAMMPS. There are occasions
in the research where additional processes are needed to address the issues that have occurred
in the MD simulation. Addressing those issues manually is very time-consuming and error-
prone. Hence, the solutions to these problems are implemented as additional features in
the Python automation scripts. There are two notable problems that the research team
encountered during the research. One such issue is the boundary box holding the structure
will try to close in on the CNT.

Fig. 2.1. CNT(99,99) with a diameter of 13.43 nm is greatly deformed at zero step

However, the ’closing in’ motion can cause the CNT to flatten and a solution was to have
the box boundary size be two angstroms longer than the CNT in the X and Y directions.
To do this, the automation script seeks out the maximum and minimum atom coordinate
in the X and Y directions then adds or subtracts two angstroms to those coordinates and
appends the new box boundaries to the data file. While this solution has resolved numerous
MD simulations, it does not address cases where the structure is already greatly deformed as
seen in Figures 2.1 and 2.2 above. This often occurs in structures containing a large number
of atoms. This behavior is likely due to the properties of carbon atoms, their chirality,
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Fig. 2.2. Deformed CNT (99,99) during tensile test

and/or the CNT simply does not exist in reality.
Determining the true diameter and length of a CNT has also been a center point for

generating the appropriate data for the CNT databases. The formulas, as shown in Section
2, used to calculate the diameter and length of the structure are but an estimate of the
CNT’s true diameter and length due to factors like atomic bond lengths. Therefore, a direct
measurement of the structure is required to confirm whether the diameters and lengths are
accurate enough following the aspect ratio of 10 as dictated by the research team. The
initial solution of utilizing the distance formula was erroneous due to not understanding
the proper approach in a three-dimensional structure. After adjusting the script, it records
the min and max of the X, Y, and Z directions, then calculates the dimensions using the
distance formula.

Once the direct measurements have been calculated, the results are generated into a
text file for reference.

2.3. Post-processing tensile test. After a successful molecular dynamic calculation
in LAMMPS, the output data is to be post-processed for data analysis. The trajectory
file is inputted into a software called OVITO to visualize the CNT being pulled in the Z
direction as seen in 2.3. Previously, the output was manually copied and pasted into Excel
if the simulation did not yield any unusual behaviors. The Excel workbooks performs the
calculations to yield plots of various parameters of interest such as temperature, stress-strain
curve, potential and kinetic energy, size and volume, etc. However, this process is tedious
as it requires manual adjustments of graphs to fit the data and these values can vary greatly
between CNTs.

To make post-processing simpler, a Python script was created to automate the necessary
calculations and plotting. The automation script will create a .csv file in conjunction with
the graphs and compile the files into their respective folders. Figure 2.4 and 2.5 are one
of the many post-processed graphs of a carbon nanotube, particularly a CNT with chiral
index of (1,6) and diameter of 0.51nm.

In certain instances, specific graphs will include a title detailing and highlighting im-
portant information as shown in Figure 2.6. As one can see in most of the post-processing
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Fig. 2.3. CNT visualized and about to be pulled

Fig. 2.4. Plot of CNT potential and kinetic energy

graphs, there is a noticeable uptick or downtick in the plot when the CNT fractures during
the tensile test simulations. A massive drop in potential energy, and a large spike in kinetic
energy and temperature when it fractures; these pivotal moments help the team analyze
and understand the CNT’s properties.

3. Thermal conductivity. LAMMPS does not calculate thermal conductivity di-
rectly and instead provides the necessary data to perform the calculation for thermal conduc-
tivity. There are several methods to calculate thermal conductivity. Using auto-correlation
of the heat flux after the simulation is one method. Another is finding the temperature
gradient to extract and post-process. However, some of the methods require significant
modification with LAMMPS scripts making them ill-suited in these instances.

In this case, we use heat flux and auto-correlation to find the thermal conductivity. Drew
Rohskopf has provided LAMMPS scripts to the research team for calculating the phonon
density of states and heat fluxes, but the post-process aspect required some adjustments to
suit our needs. Instead of post-processing the data through LAMMPS, the calculations are
done in Python as it is quicker and more accessible. Furthermore, we can modify and plot
the data with more ease than in LAMMPS. Collaborating with Drew, the script does the
following. It extracts the heat versus time from LAMMPS output after a successful MD
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Fig. 2.5. Plot of temperature during the simulations

Fig. 2.6. Induced shear stress-strain curve plot

run; plots heat vs time and mean flux to show that the system is in equilibrium; lastly, the
script calculates heat flux autocorrelation to measure the heat flux signal. One of the results
can be seen in Figure 3.1; the heat flux and time of CNT (1,19) with a diameter of 1.53nm.

Fig. 3.1. Graph of the heat flux and time

4. Density functional theory of CNT. While density functional theory (DFT)
has yet to be addressed by the research team, it is an area that will be included in the
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CNT database. To compute the energies and forces of carbon nanotubes, we use SeqQuest,
a general-purpose electronic structure code for computing energies and forces of periodic
surfaces (slabs), solids, and finite molecules to simulate density functional theory [5]. Unlike
previous CNT structures, we limit the number of atoms to around 20-40 atoms as the
structures will be interlocking on top of one another for the simulation. The pseudo-potential
used for the simulation is carbon, particularly carbon long, and the input script is modified
accordingly to the structure such as primitive lattice vectors, grid dimensions, number of
atom types, atom coordinates, etc. Upon completing a successful run, an output file will be
created, providing a detailed list of the occurrence and its results.

5. Results and preliminary analysis of tensile test. The tensile test is a material
characterization where we apply strain on the material in LAMMPS. We then plot the
response of the material and get a graph like Figure 5.1. The data analysis focuses on
mechanical properties where we extract the elastic modulus, yield strength, and fracture
strength as well as other data from the test. However, this data analysis has yet to be
explored in-depth due for the time being. The following is an observation of the data that
has been post-processed.

Post-processing the simulated CNT yields data that has been mostly consistent through-
out all CNT tensile test simulations though the impact of their polymer characterization,
i.e. armchair, zigzag, and chiral, requires more in-depth analysis. The plotting of data
shows that there is a noticeable behavior of CNT with a smaller number of atoms and those
with a large number of atoms. Though what constitutes a small or large system is currently
up for debate, one can make an educated guess by looking at the chirality. The higher the
chirality, the higher the number of atoms there are. Structures containing lesser amounts
of atoms often have a sharp and considerable fluctuation whereas the size variation has a
relatively stable fluctuation in Figures 5.2 and 5.3.

Fig. 5.1. Stress-strain curve of CNT (0,4) with a diameter of 0.31 nm

Fig. 5.2. Volume variation of stress-strain curve of CNT (0,4) with a diameter of 0.31 nm
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Fig. 5.3. Size variation of stress-strain curve of CNT (0,4) with a diameter of 0.31 nm

A similar result can be seen in Figure 5.4 whose structure also has a low count of
atoms. Structures with a higher number of atoms differentiate themselves when observing
the volume and size plots. The plot of volume variation initially starts steeply and fluctuates
gradually. Meanwhile, the plot detailing the variation of size begins with a dramatic flutter
that sharply increases or decreases depending on the structure as seen in Figure 5.5.

Fig. 5.4. Plots of CNT (1,19) with a diameter of 1.53 nm

Once again, the plot of volume and size of CNT (0,90) with a diameter of 7.05 follows a
similar pattern. It is important to note that the size graphs in Figure 5.7 could be regarded
to be remotely opposite of its counterpart in Figure 5.5. The reason for this is currently
unknown at the time of this report and will be discussed as the analysis continues.

Recall Figures 2.1 and 2.2 of a CNT (99,99) with a diameter of 13.43 nm. Because
the CNT starts deformed during the simulations, it has affected the post-processing results.
This oddity is likely because of the general structural properties and chirality as described
in Lu-Chang Qin’s article [5]. Likely, CNT (99,99) might not even be possible to create
hence the strange behavior during the simulation. However, there is not sufficient evidence
for any of the aforementioned, and will require further analysis and tests. The results from
the data analysis of CNT (99,99) can be seen in Figure 5.8

6. Conclusions. Preliminary analysis of the outputs has given mostly consistent re-
sults of how CNT behaves during the tensile test simulations. This is a good sign that
the research is on the correct track, but more testing and analysis of the CNT are needed
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Fig. 5.5. Plots of CNT (1,94) with a diameter of 7.40 nm

Fig. 5.6. Volume variation of stress-strain curve of CNT (0,90) with a diameter of 7.05 nm

Fig. 5.7. Size variation of stress-strain curve of CNT (0,90) with a diameter of 7.05 nm

to solidify research holdings. As it stands, the CNT has a discernible behavior during the
tensile tests. However, there are a few outliers concerning CNT with large systems that
will require further investigation. Once the outliers have been addressed, the research team
should be able to revise their approach and limitations.

The process of researching CNTs and their properties requires several tools and methods
to obtain the desired results. There were several ways to address the lacking areas in this
research. The tools and expertise that are available dictated the direction of the process
and have yielded substantial results. What was once tedious, repetitive, and manual tasks
have been automated to streamline the process within seconds or minutes. Calculations
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Fig. 5.8. Graphs of CNT (99,99) with a diameter of 13.43 nm

that require careful examinations of their inputs can be done during the automation process
and integrated into other series of calculations that influence the simulations.

Although the research is ongoing and far from over, the tools developed to assist in
the research will save time and resources. Time and resources that the research team can
allocate to other crucial work. It also cannot be understated that the room for human errors
has decreased considerably with the introduction of automation tools, thus improving the
accuracy and quality of the data outputted though it will still be reviewed and compared
to existing data. As the research progresses, changes and adjustments are likely to occur
requiring an overhaul of the research team’s approach. These can be adapted into the
automation scripts ensuring that the research continues without significant delays.
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TOWER AND JET PREDICTION USING MACHINE LEARNING, A
HEAVY ION COLLIDING APPLICATION

CLARISSA REYES∗, J. DARBY SMITH† , AND WILLIAM SEVERA‡

Abstract. In heavy ion colliding physics, vast amounts of data are generated rapidly. Storage of all
generated data is not feasible or advised as much data produced is not of interest. Special circuits and
detectors are designed to record only data that is considered of interest. This process, termed jet triggering
and jet finding, can be accelerated through intelligent algorithms. This work seeks to build an initial
machine learning approach toward jet finding through the use of recurrent neural networks. Training on
real experimental ion collision data and on simulated ion collision data, we are able to predict whether cells
detecting energy levels belong to the leading jet in a collision with over 97% accuracy for both types of data.
Additionally, we use total energy as a means to identify an entire jet pattern, finding that our algorithm
correctly picks out the leading jet within 20 GeVs.

1. Introduction. Particle accelerators and colliders have a deep history spanning
nearly a century [18]. The utility of these experiments has been paradigm shifting, re-
sulting in the discovery of various subatomic particles [10] and providing a means to study
the conditions shortly after the big bang [21]. Related to the latter, a primary goal of the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is to produce
and analyze a rare form of matter: the Quark-Gluon Plasma (QGP) . Experiments in this
realm found that some measured properties deviated strongly from prediction based on
the expected underlying theory, perturbative Quantum Chromodynamics (pQCD/QCD),
changing assumptions on the gas state [22].

Quantum chromodynamics, in general, has accelerated understanding of the proton,
driven by the study of its components and how those components contribute toward the
spin of the proton. The spin of a proton is a quantized value (in half-integer multiples of ℏ)
representing the intrinsic angular momentum. Prior to a 1987 experiment by the European
Muon Collaboration, it was expected that the spin of the proton would be carried by its
valence quarks (two up quarks, one down quark). However, the experiment determined that
the quarks carried little-to-none of the proton spin [14].1 Following this discovery, termed
the proton spin crisis, physicists have turned their lens toward the other components of a
proton in search of the missing momentum: gluons and quark/anti-quark pairs. Current
theory suggests that proton spin includes quark or gluon orbital angular momentum [16].

Both our understanding of the transport properties in the pQCD regime and the com-
ponents carrying proton spin are active areas of research. These require data on the gluon
and quark/anti-quark components of a proton in order to study transport properties, like
spin asymmetries and cross sections (a probability measure for particular colliding processes
to occur) [5]. The required experimental data can be challenging to collect. For the pur-
poses of discussion, consider the collision of two protons at RHIC. Beams of protons are
accelerated to relativistic speeds, traveling in opposite directions along a 2.4-mile track. At
intersections along this track, protons traveling in opposite directions will have a chance
to collide. If a collision occurs in just the right way, the quarks and gluons are liberated
and undergo a hadronization process whereby they transform or decay into hadrons. The
distribution of these hadrons are captured by a detector, which can be a hadron calorimeter
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†Sandia National Laboratories, jsmit16@sandia.gov
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1The expectation was that since quark and anti-quark pairs should cancel each other out in terms of

spin, the only remaining contributor to spin should be the valence quarks that aren’t paired. Two ups plus
one down should yield the expected ℏ/2 spin. That this was not the case was a very shocking result.
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or an electromagnetic calorimeter [7, 6, 4]. Data must be able to be acquired at the rate
proton beams pass through the intersection points, which is about 10 MHz, or about 10
million events per second. This is obviously quite extreme and would produce a lot of data
if ran for any amount of time. Not all data taken will come from a collision producing
hadrons. In order to save only the most important data, a trigger is put in place capable of
examining the data and determining whether to send it off for analog-digital conversion and
saving. A so-called fast trigger capable of examining data at 10 MHz is the STAR trigger
[3].

Once data is acquired, energy patterns representing hadrons must be separated from
underlying events. This process is called jet finding, where a jet is an energy pattern
representing one or more hadrons. This process can be visualized as in Figure 1.1. We see a
hypothetical example of a hadron energy pattern where cells are color coded by their energy
level. If the energy of a cell reaches a certain threshold, it is labeled a tower. Prominent
clusters of towers represent jets. The collision can produce several jets at a time. Jet finding
algorithms determine which towers belong to jets and which belong to an underlying event.
A prominent jet finding algorithm is called the anti-kt algorithm [9].

Fig. 1.1. Hypothetical visualization of cell energy levels in GeV. In this illustrative event, we can see
how the data in full event (left) is filtered to retain the most relevant parts through jet finding (right).

The process of data acquisition and jet finding currently happen separately or on dif-
ferent time scales [3]. Ideally, the saving, or triggering, of data and the jet finding could
happen at the same time or could be done with more intelligence, targeting explicit hadrons
of interest. Such an approach would require probabilistic computing and machine learn-
ing approaches. However, any such approach is doomed to fail if machine learning cannot
identify whether towers belong to jets as opposed to underlying events. A successful demon-
stration that a machine learning approach can identify towers is a step towards identifying
jet patterns and providing a machine learning jet finding algorithm.

In this work, we demonstrate such a machine learning approach for determining tower
membership in the jet and lay the groundwork for future jet finding results through statistical
analysis. The remainder of this paper is organized as follows. In Section 2, we discuss the
need for a probabilistic approach for jet triggering and finding, and further motivate our
initial machine learning algorithm. In Sections 3 and 4 we describe and visualize our data,
then detail our jet finding machine learning algorithm and statistical analysis. Finally, in
Section 5, we discuss our future directions.
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2. Jet Finding and the Need for Probabilistic Computing. As previously de-
scribed, jet finding is a complicated process. First, data is taken at the speed of proton
beam crossings (10 MHz). Then, the data must be classified on the fly as to whether or not
it is a gluon or quark jet so that the data can be saved. Then, once data is saved, it must
be analyzed through use of a jet finder algorithm in order to determine which parts of the
saved data constitute jets.

Once jets have been found, physicists would like to categorize the jets as gluons or
various types of quarks. Each category has a particular distribution, but not all are able to
be easily discriminated. For instance, distinguishing between gluons and light quarks can
be quite challenging and has been a focus of research [19, 12].

Ideally, jet triggering, finding, and sorting could occur all at once and at the speed of
data, reducing the need for a multi-step process and perhaps alleviating data woes from
experiments that can produce petabytes of data per year. Since the data is inherently
distributional, any such all-in-one approach would require probabilistic tools.

Researchers have recently noted the need for a new probabilistic computing paradigm
[1, 20, 17]. The current computing stack is engineered to be deterministic to a fault, with
pseudo-randomness injected as an afterthought. As such, random number generation and
use can be surprisingly expensive and/or slow. In addition, 10 million data recordings per
second is an insanely fast rate. New technology must be developed that can take data
at this speed and determine whether or not to save it based on distributions of interest.
A fast, all-in-one, jet detector, finder, and classifier is an ideal application for a future
probabilistic computer. Should a researcher only be interested in gathering gluon data, for
instance, a fast probabilistic trigger could save data that comes from a gluon distribution
with estimates on match. That is, it could save an identified jet with an estimate of 92%
of being a gluon. Such an approach could be realized with appropriate fast triggering along
with a probabilistic machine learning solution that leverages a computer that can compute
with distributions.

Though, it must be stated that if a machine learning algorithm cannot identify
jets or even identify whether or not a tower belongs to the most prominent, or
leading jet, then a probabilistic machine learning approach is doomed to fail.
Without the ability to distinguish jets, no further solution involving distributions will be
viable.

Already, the particle colliding community have begun to look toward machine learning
approaches for jet finding. One such approach treats jets as images and adds color and
intensity based on energy and momentum [15]. Another approach learns a decision tree
using experimental data points [11].

Contrasting these approaches, we utilize data measurements like energy, momentum,
location, and azimuthal angles without converting them into images. We aim to identify
directly, based on these quantities, whether or not a tower belongs to the most prominent
jet in an image. That is, we seek a direct machine learning identification approach rather
than a decision tree process and without the use of image-converted data.

In the next sections, we describe the data we use and detail our tower classification
approach. We then extend our method to identify the entire leading jet given a data point
containing a jet.

3. Understanding the Data. Summarizing the previous discussion, jets are produced
when two particles collide. Jets are recorded as data from a calorimeter, and these data
are often classified as towers based on energy thresholds (see Figure 1.1). Given that a jet
occurred and was recorded (jet triggering), the process of jet finding is determining which
towers belong to individual jets.
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For our application, we target a more specific subtask: identifying which towers belong
to the leading, or most prominent, jet. We had two varieties of data for our application.
One set of data is true experimental data taken from proton-proton collision experiments at
RHIC. The remaining bulk of our data was generated from an identical proton-proton setup
using the simulation software PYTHIA [2]. Out of the 22,392 events in our data set, 980
were obtained through collision experiments and the remaining 21,412 through simulation
software.

In each case the data is separated into events where towers are recorded. Within each
event, towers are listed as belonging to the leading jet. Each tower has specific data listed
(see Table 3.1) and in addition, a summary row is listed for the leading jet containing
aggregate information for the jet. In using a machine learning solution to identify which
towers belong to the leading jet, we focus the bulk of our attention on the tower specific
data and less on the aggregate jet information data.

Table 3.1
Tower and Jet Data Description. † indicates that the value for the aggregate jet information is an

energy weighted average of tower values. The first three values, zvert, nrec, and m1, are given for an entire
data point. The fourth value, m2, is given for each jet within an event. The final three, r, c, and Q, are
not present for aggregate jet information.

Label Description Units

zvert z-vertex of entire event cm

nrec
number of towers and jets
in the event

m1 leading jet number
m2 ID of parton type
px† x-component of momentum GeV/c
py† y-component of momentum GeV/c
pz† z-component of momentum GeV/c
en energy GeV
x† x position cm
y† y position cm

eta
† pseudorapidity, a function of

the polar angle
phi azimuthal angle

modc
calorimeter mode
1 = Electromagnetic
2 = Hadron

r tower row number
c tower column number
Q tower analog-digital-converter value GeV

For data visualization, we conducted exploratory data analysis using reports generated
by the Pandas Profiling module in Python [8]. We were able to observe the variable types,
distributions, counts, correlation matrices, and verify that there should be no missing data
due to initial data cleaning. The histograms generated by the module helped us compare
the observed range and distributions of our variables with their theoretical behaviors based
on physics knowledge. In Figure 3.1, we see a histogram that shows the multimodal distri-
bution of the variable phi. Histograms of other variables like x and y, which are continuous
quantities showed discrete behaviors since they were discretized and binned during collec-

C. Reyes, J.D. Smith, and W. Severa 287



tion. From context, we treated these as continuous variables, though it is critical to note
that the correlation analysis could differ if we treated them as categorical. In subsection 4.1
we discuss different correlation measures and when they are appropriate to use depending
on the type of variable. Figure 3.2 shows a heat map of the Phi-K correlation matrix for
both discrete and continuous data variables. Observing these correlations validated our un-
derstanding of the physics application. It also gave us an initial insight into which variables
may be correlated to event accuracy - which we define as the proportion of towers in the
test set that were correctly classified and will be further addressed in Section 4. We can
see that the heat map shows a slight correlation between event accuracy and the leading jet
number (variable m1).

Fig. 3.1. Histogram showing the frequency distribution of the variable phi (azimuthal angle), we can
see that phi appears to have a multimodal distribution. Our data contained values of phi between -1.4657
and 4.6073.

This report also generated counts for categorical variables, which we were able to com-
pare with the knowledge we have about experimental setup. In performing this comparison,
we discovered only 142 towers were measured with an electromagnetic calorimeter, while
1,075,229 towers were measured by a hadron calorimeter. The experimental setup had sup-
posedly removed the electromagnetic calorimeter away from the jet production region, so
the existence of data on the electromagnetic calorimeter caused concern that those partic-
ular runs were faulty. Hence, the data collected by the electromagnetic calorimeter should
be omitted. Although it was not removed for this analysis, it will be for future analyses.

4. Tower Classification and Prediction Analysis. The ultimate goal of our ap-
plication is to intelligently identify data containing jets (jet triggering) and to save the jet
data (jet finding). So, the task at hand is to use machine learning to identify which towers
belong to the leading jet given a data event that contains a jet. We approach this task by
designing a recurrent neural network (RNN) model to determine whether each tower belongs
to the leading jet. All variables in the tower data set are initially fed as predictors into the
RNN model. The RNN design is the result of a hyperparameter optimization process which
resulted in a 78-dimensional embedding layer followed by 5 bidirectional LSTM units [13].
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Fig. 3.2. Heatmap of the Phi-K correlation matrix for the event data variables. We can reference
Table 3.1 for variable definitions.

The model used 2.3 million parameters, and increasing parameter efficiency is the subject
of on-going work. See Fig. 4.1 for a diagram of our RNN.

Fig. 4.1. RNN model schematic. Data for towers within an event are fed into a dense layer with
Gaussian error activation functions. These pass into 5 bidirectional LSTM units (2 pictured) to produce a
prediction on whether or not towers belong to a leading jet. Model optimization follows a standard procedure,
though optimization and parameter efficiency are the subject of an on-going investigation.

As is standard, our model training method requires both a training (approximately 80%
of all data) and a validation set (10%). Once we have a trained model, we evaluate accuracy
of prediction using the test set (10%). This test set (containing information from 1,075,441
towers) is what we used to conduct the different analyses in this section.

An initial look at our prediction accuracy shows that 98.6% of the towers in the test
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set were correctly classified. In Table 4.1, we can see a comparison of accuracy between
experimental data, which is obtained by colliding the particles, and simulated data, ob-
tained using the PYTHIA software. We can see that simulated data has a slightly higher
accuracy percentage than experimental data. Later in this analysis we will see statistical
tests indicating that the mode of data generation does in fact appear to have an association
with prediction accuracy. The percentage of true positives, sensitivity, appears to have the
smallest difference between experimental and simulated data. Conversely, the percentage of
true negatives, specificity, has the largest difference. This suggests that our classification al-
gorithm has a slightly higher chance of falsely predicting that a tower belongs to the leading
jet, for experimental data compared to simulated data.

Table 4.1
In this side-by-side comparison of accuracy, sensitivity, and specificity for experimental and simulated

data, we see that simulated data has a slightly higher values for all three measures.

Experimental Simulated

Accuracy 97.3% 98.7%
Sensitivity 98.2% 98.9%
Specificity 95.4% 98.2%

In the next subsections we will evaluate the relationship between tower variables and
prediction accuracy, and test the distribution and association between the correctly and
incorrectly predicted subsets of the data.

4.1. Correlations and Associations. In order to better assess correlations in data
with mixed types of variables, it is important to use certain measures when appropriate.
In Table 4.2 we list the different tools that were considered in this analysis, the types of
variables they are appropriate for, and a scope of their purpose.

Table 4.2
Several correlation and association measures were considered when conducting this analysis. This

visual shows which types of data each measure is appropriate for and other information to help interpret
the values of each.

Name
Analysis Value Variable

Purpose
Type Range Type

Pearson’s r Correlation [−1, 1] Continuous
Measures the strength and
direction of linear relationship.

Spearman
Correlation [−1, 1] Continuous

Measures the monotonicity of the
Rank relation between two variables.

Φk Correlation [0, 1] Any
Correlation coefficient that also
captures non-linear dependency.

Cramer’s V Association [0, 1] Categorical
Measures the strength of
association.

Wilcoxon
Test (0, 1] Continuous

Compares distributions and
Rank Sum medians.

Point Biserial Test (0, 1]
Continuous Measures the strength of
vs. Binary association.

Pearson χ2 Test (0, 1] Categorical Assesses independence.

Based on our correlation analysis and tests of association and independence, we found
that there was in fact an association between momentum in the x direction, the mode of data
generation (experimental or simulated), and the label number of the leading jet and tower
prediction accuracy. Since energy is proportional to momentum, this aligns with physical
expectation.
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4.2. Using Total Energy as a Measure for Event Accuracy. For this applica-
tion, we defined event accuracy as the fraction of towers correctly identified as members of
the leading jet. However, subject experts may consider other modes of accuracy more in-
formative and relevant to tower classification. Two such measures are: the fraction of total
energy correctly predicted, and the difference in the actual average location of an event and
the predicted average location of an event. In this work, we explore one of these, namely
the fraction of total energy correctly predicted, defined in the equation below.

Epred

Etotal
=

∑
iϵX′ ei∑
jϵX ej

(4.1)

To define the fraction of total energy correctly predicted, let us first consider the set of
events that are known to belong to the leading jet, we denote this as X. Next, we consider
the set of events in X that were correctly predicted by the model to belong to the leading
jet, and denote this set as X ′. In equation (4.1), we can see that the fraction of total energy
correctly predicted is the ratio of the corresponding sum of energies for the events in each
of these two sets.

Using this as our new target for accuracy, we can see that the more towers that are
accurately classified, the closer our running sum of energy gets to the actual total energy
value. Also taking into consideration that some towers have higher energies than others, we
can then see how it would be more important to accurately predict the membership of these
higher-energy towers—since they make up a higher percentage of the total event energy.
This differs from our previous definition of accuracy, which placed an equal importance on
correctly classifying each tower.

Using this alternate definition of accuracy, we looked at the simple differences and
squared differences in an event’s actual energy value and its predicted energy value. Looking
at a histogram and box plot (see Figure 4.2a) of the simple differences we can see that they
are symmetrically distributed with a mean of zero. We were able to see that 99% of events
had simple differences between −15.8 and 13.9 GeVs. Looking at a histogram and box plot
of the squared differences we can see that they follow a skewed distribution with a long,
narrow tail to the right. In the box plot 4.2b, we can see that after the tail, there are
nine events with much higher squared error than the rest. If we look at the scatter plot of
squared error vs event energy, we can see the same nine outlying observations with much
higher squared error than the rest. However, it is notable that it does not appear that they
have a higher squared error due to overall higher event energy values. The event energy
values for these nine observations range from about 60 to 110 units, which is a typical range
for total event energy. In future analysis, we will characterize these observations and see
how this new knowledge relates to our existing knowledge of the physics application.

5. Conclusion. Conducting exploratory data analysis and a correlation assessment
allowed us to verify known relationships among variables in our physics application, check
for bugs in our data collection process, and identify relationships that we would be interested
in exploring further. This knowledge will help shape the direction of our future areas of
analysis.

Going forward, we will retrain the model after excluding the events captured by the
electromagnetic calorimeter to see the effects on the tower prediction accuracy of our exper-
imental data. Since the amount of such data was small relative to the full data set, removing
the data might not make a measurable difference. However, it is also possible that since all
such observations are part of the experimental data, it may improve the overall accuracy
values for the experimental data.
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Fig. 4.2. a) This box plot of energy prediction error shows the simple error is approximately normally
distributed with a mean at 0 and labels the 99th percentile bounds. b) This box plot of squared energy
prediction error correspondingly shows a skewed distribution with a clear gap between the tail values and
the observations labeled as visual outliers.

In the future, we seek to measure accuracy based on the average location of a jet.
Changing the definition of accuracy may create a different set of outliers. We will be
looking to see which events are outlying in this measure – and how their characteristics
compare to those of the events outlying by total event energy. It is possible that some types
of jets may be more susceptible to misclassification based on the type of accuracy used.
For example, it could be that hadrons are identifiable from gluons in this context. Once
these experiments are complete, we will replicate the analysis with a data set very similar
to, but about twenty times larger than, the one used in this study. Given that the current
experimental data set is small compared to the simulated set, further analysis on new data
will accelerate understanding and insight on critical jet finding tasks.
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PREDICTING VAPOR-LIQUID EQUILIBRIA
AND PHASE TRANSITIONS WITH

MACHINE-LEARNED INTERATOMIC POTENTIALS

D. G. SEMA∗ AND M. A. WOOD†

Abstract. A long-standing goal in classical molecular dynamics is to achieve ‘transferability’ of an
interatomic potential, meaning the model can remain accurate in out-of-domain applications and reproduce
physical properties over a wide range of phase (ρ,T) space. With the increasing popularity and promise
of machine learned interatomic potentials (MLP), this goal is finally within reach and has been recently
demonstrated in extreme environments of carbon and iron. The present work has trained an E(3) equivariant
deep learning model for Al over a wide range of states (0.2−3.0g/cm3 and 933−10, 000K). We demonstrate
the data efficiency of the equivariant atomic representations by reaching quantum-mechanical accuracy in
a small fraction of the dataset and then perform large-scale molecular dynamics simulations to predict the
vapor-liquid phase equilibrium. Predictions of the vapor dome critical point, as well as critical exponents of
this spontaneous phase transition are discussed with respect to model uncertainties. Finally, we focus on the
out-of-domain liquid-solid phase transition and demonstrate the efficacy of these models as truly predictive
simulations.

1. Introduction. Understanding the atomistic structure-properties relation of mate-
rials has been an integral part in computational material science and has accelerated the
advancement of numerous research fields. High-throughput drug discovery, protein folding,
and high technology applications like modeling nuclear fusion reactors and designing high
entropy alloys are some areas that have benefited from accurate modeling of interatomic
interactions [1–3].

Quantum mechanical modeling of molecules and materials rests on the shoulders of
electronic structure computations, commonly carried out within the framework of Density
Functional Theory (DFT). Despite the widespread use of DFT, these first-principle modeling
methods are limited to calculations of hundreds of atoms and short time scales making large
scale fist-principles molecular dynamics simulations of functional materials intractable [4].
On the other hand, interatomic potentials have been commonly based on empirical repre-
sentations of chemical bonds with complex functional forms that are tedious to parameterize
and require extensive domain-level expertise to develop (ReaxFF, MEAM, COMB) [5–7].

In recent years, machine learning has emerged as a promising approach to create inter-
atomic potentials from predominantly data-driven and material agnostic approaches that
bridge length and time scales while still maintaining quantum-accurate interactions. Kernel
based models like the Gaussian Process Regression (GAP) [8], feed-forward neural networks
(DeepMD) [9] and descriptor based models, most notably the spectral neighbor analysis
potential (SNAP) [10] and the atomic cluster expansion (ACE) [11] are built on input fea-
tures that have permutational, rotational and translational invariance. These ML potentials
(MLP) have been developed rapidly and demonstrated to reproduce physically meaningful
atomic interactions and dynamics [12–14]. More recently, the E(3)-equivariant message-
passing graph neural networks (MPGNNs) and deep neural networks (NequIP, Allegro,
GemNet, BOTNet, MACE) [15–19] aim to encode the local atomic environment with both
invariant and equivariant feature representations and have shown great promise to achieve
quantum chemical accuracy and transferability [15, 16, 18, 19]. In the present work, we train
an equivariant deep learning model for Al using Allegro and demonstrate the data efficiency
of these machine-learned interatomic potentials (MLP) by reaching chemical accuracy by
only utilizing a small fraction of the original dataset. Furthermore, we have performed large
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scale molecular dynamics that predict the vapor-liquid phase equilibrium (VLE) as well as
on out-of-domain applications(those that are not captured in training), like melting and
crack formation in slabs.

2. Al Training Set. The Al dataset contained in total of 11529 configurations (each
with 256 atoms) and covered a wide range of the phase diagram, (ρ, T ) = (0.2−3.0g/cm3, 933−
10, 000K). The data were sampled from short AIMD trajectories in NVT(canonical ensem-
ble) and divided into groups for ease of optimization. Examples of these groups include
liquid-vapor slabs and some bulk crystals created from a face-centered cubic structure based
on their density and temperature; there were 11 such groups in total. The calculations were
performed in VASP with a kinetic energy cutoff of 500eV and Gamma-point k-sampling
using the PBEsol functional and Projector Augmented Wave method (PAW) as pseudopo-
tentials, while maintaining a good balance of computational efficiency and accuracy. [20–23]

Fig. 3.1: Mean Absolute Error (MAE) for the forces and potential energy of the Al dataset as
a function of the number of data in each training split. Series in green correspond to the left
vertical axis, while series in blue is plotted against the right vertical axis. The Allegro model
saturates at a very small fraction of the available dataset, requiring 200 configurations.

3. E(3)-equivariant Interatomic Potentials. To assess the data efficiency of these
networks we will begin by training a few Allegro models with small fractions of the available
dataset. All Allegro models were trained using 2 layers (tensor products), 1 feature of even
parity and lmax = 1, this involves scalar and vector features. The 2-body latent MLP
consists of 2 hidden layers with depths [16, 32] and uses the SiLU nonlinearity. We note
that this nonlinearity is analogous to the use of a nonlinear radial basis in descriptor-based
methods like ACE [11]. Allegro models of interatomic interactions are sequentially chained
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networks, each roughly representing some part of the atomic basis functions utilized in
descriptor MLP. A second latent MLP has 1 hidden layer of dimension 32 with a SiLU
nonlinearity. The embedding weight projection MLP also has 1 hidden layer of dimension
32 and SiLU as a nonliearity. The final edge energy MLP that converts the final features
to the atomic pairwise energies consists of 1 hidden layer of dimension 16 and uses the
SiLU nonliearity. Four MLPs are initialized with the Glorot method according to a uniform
distribution such that the weights of each layer have the same variance [24]. We select 8
non-trainable Bessel functions with a polynomial envelope function of degree p = 6 and
a radial local cutoff radius, rcut = 4.7Å. The models were trained jointly on energies and
forces with an importance ratio of 5%/95% in the loss function respectively. This ratio of
loss function wights was chosen after a coarse sampling for model stability in MD[25]. The
Adam optimizer was used with a starting learning rate of 2e-3 and a batch size of 1, while
the on-plateau scheduler was used to reduce the learning rate based on the validation loss
with a patience of 3 epochs and a decay factor of 0.8. [26] The training and evaluation of
the potentials was done on a single V100 GPU.

In order to reduce the compute time spent training these MLP, the dataset was split
into smaller subsets in the following way. For each split, we randomly sample a fraction of
each group of data in order to ensure information from different parts of the phase space is
included and create datasets with 100, 200, 500, 1000 and 2000 configurations. We train the
Allegro models with each of these subsets with a 90/10% split into training and validation
sets. The potentials are then evaluated on the entire dataset of 11529 configurations and
the results are presented in figure 3.1. This demonstrates that Allegro is able to capture
the physical phase space with a very small number of configurations; in this case we observe
that 200 configurations (180 for training and 20 for the validation sets) are enough data to
get a converged potential that has reached an acceptable accuracy for MD since the MAE
error of 70meV/Å is <1% of the maximum forces that appear in these configurations.

We note that the entire process for the development of this potential, including the
generation of the amount of DFT data that is needed as shown from Figure 3.1, training the
potential and starting large-scale production molecular dynamic simulations takes less than
24 hours, thus enabling the development of potentials-in-a-day. This metric of efficiency
is arbitrary, but it represents a significant speed up in the development of interatomic
potentials which for decades have been developed iteratively by domain experts. Alleviating
the bottleneck through select research groups for model development and deployment will
greatly accelerate insight gained through MD simulations in the near future.

4. Vapor-Liquid Phase Equilibrium Prediction. Using the developed potential,
we perform large scale(> 106 atoms ,> 103ps) molecular dynamics simulations to predict
the vapor-liquid phase equilibrium (VLE) of Al. Of interest are the locations of phase
boundaries in this low-density regime of Al as these are states of the material exhibited in
the shock-release experiments performed at the Sandia Z-Machine. Mapping these phase
boundaries from MD would prove a valuable prediction that experimental investigations can
use to guide new experiments and interpret complex instrumentation signals. The peak of
the liquid-vapor phase boundary is known as the critical point, and is inaccessible directly
from DFT calculations, and difficult to identify from experiments. A set of isothermal DFT
simulations can probe the critical point, but are not free of finite size effects. Starting from
a density of ρ = 0.75, which is chosen as it is close to the experimental critical density, we
perform simulations designed to exhibit phase separation in NVT. The starting simulation
box consists of 2 · 105 atoms and was prepared by randomly placing atoms such that they
have ≥ 2Å distance from each neighbor. This condition was chosen based on the radial
distribution function of fcc Al. We start at 2000K with steps of 250K until we reach the
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Fig. 4.1: Density profiles of the liquid (right peaks) and vapor (left peaks) phases as prob-
ability distributions for different temperatures as predicted from phase separation molec-
ular dynamics simulations using the Allegro model. The critical point is predicted to be
(ρc, Tc) = (0.745g/cm3, 5978K) which is in quantitative agreement with the experimental
observations.

conditions at each where the Al has become a supercritical fluid(above the critical point).
Figure 4.1 shows the density distributions at various temperature conditions and the distinct
peaks corresponds to the either vapor and liquid densities. Figure 4.2, shows the prediction
of the liquid-vapor dome in comparison to the EAM potential and linear SNAP. The linear
SNAP model created by Sandia collaborators was trained on the entire Al dataset. This
heatmap represents the density distributions of the two phases for the Allegro model and
showcases the uncertainty of the quantity of interest as we approach the critical point.

The critical point can be estimated from the rectilinear rule and the phase-coexistence
method from equations:

ρl − ρg = A(Tc − T )b ⇒ (ρl − ρg)1/b = A1/bTc −A1/bT, (4.1)

ρl + ρg
2

= ρc + C(Tc − T )⇒ ρl + ρg
2

= ρc + CTc − CT, (4.2)

where A, C are fitting parameters, b ' 0.236 is the Ising critical exponent of a two state
system and (ρc, Tc) is the critical point. Using our computational results from 2000-5850K
we can estimate the critical point by performing a linear fit from 4.1 and then 4.2 to be
at (ρc, Tc) = (0.745g/cm3, 5978K). From our simulations captured in Figure 4.1 and 4.2
we find the theoretical result to be in quantitative agreement and also within 1% of the
experimental critical density and 8% of the experimental critical temperature. These results
are encouraging for future use of Allegro models used in MD as experimentally relevant
predictions can be made from limited amounts of training data.

5. Solid-Liquid phase transition. Now we turn our attention to the section of the
phase diagram that is underrepresented in our training data. We employ our Allegro MLP to
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Fig. 4.2: Vapor-Liquid dome predictions for Allegro, linear SNAP and EAM. The heatmap
represents the density distributions of the two phases for the Allegro model and showcases
the uncertainty of the quantity of interest as we approach the critical point. Both Allegro
(E(3)-equivariant deep neural network) and SNAP (bispectrum descriptors) are able to
predict the vapor-liquid dome with a critical point closer to the experimental observations
than the EAM potential [27].

estimate the melting point of bulk Al at 2.72g/cm3 by performing a simulation with 2.56·105

atoms in NVT. We start at room temperature and gradually ramp the temperature past
the experimental melting point. These Allegro MD simulations predict a melting point at
≈1754K, which agrees with the experimental phase space (Figure 5.1) [27].

Finally, we perform an NVT simulation where we allow the material to undergo a
thermal shock via rapid quenching in order to qualitatively measure the materials physical
behaviour predicted from this MLP. We start from an fcc slab with 1.05 · 105 atoms and
perform a rapid melt-quench process. During heating the slab melts and start to become
amorphous without completely losing its crystalline structure. During the quenching phase,
cracks and nanocrystals start to form throughout the material. As the cracks propagate
through the slab, the nanocrystals merge into bigger ones and rearrange into an fcc orien-
tation (Figure 5.2).

6. Conclusions. In this work, we developed an E(3)-equivariant deep neural network
that is able to predict a wide range of the phase space of Al, including VLE phase equi-
librium, the critical point and supercritical fluid dynamics. These are important result in
Sandia’s effort to provide modeling and simulations capabilities that support the unique
pulsed power experiments done onsite. Mapping phase boundaries from MD aides in pro-
viding viable equations of state to continuum modeling efforts, furthering our predictive
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Fig. 5.1: Prediction of the melting point (rapid rise in Potential Energy) of bulk Al at
2.72g/cm3 by performing an NVT simulation with 256k atoms. The fcc Al(s) transitions
into an amorphous liquid at ≈1754K.

capability via multi-scale modeling. In addition, we showed that Allegro can predict solid-
liquid phase transitions as well as crack formation, propagation and surface reconstruction
in slabs with physically meaningful characteristics.

The data efficiency and chemical accuracy of these MLPs provide a significant milestone
in developing potentials for materials in a day, that have the capability to predict dynamics
and physical quantities of interest in extreme environments where experimental predictions
are inaccessible. Accelerating this critical model development step will enable broadly reach-
ing simulation predictions, and bring valuable comparisons between experiment and theory
efforts.
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(a)

(b)

Fig. 5.2: Crack formation and propagation during a melt-quench process of a slab. (a)
The Al becomes an amorphous liquid and (b) during the quenching process, the slab begins
to crystallize leading to the formation of nanocrystals that merge and rearrange into fcc
structures.
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G. Csányi, “Linear atomic cluster expansion force fields for organic molecules: beyond
rmse,” Journal of Chemical Theory and Computation, vol. 17, no. 12, pp. 7696–7711,
2021.

[15] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari,

D.G. Sema and M.A. Wood 301



T. E. Smidt, and B. Kozinsky, “E (3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials,” Nature Communications, vol. 13, no. 1,
pp. 1–11, 2022.

[16] A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen, M. Kornbluth, and
B. Kozinsky, “Learning local equivariant representations for large-scale atomistic dy-
namics,” arXiv preprint arXiv:2204.05249, 2022.

[17] J. Gasteiger, F. Becker, and S. Günnemann, “Gemnet: Universal directional graph
neural networks for molecules,” Advances in Neural Information Processing Systems,
vol. 34, pp. 6790–6802, 2021.
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THERMODYNAMIC CONSISTENCY OF PHYSICS-DYNAMICS
COUPLING IN THE HOMME ATMOSPHERE DYNAMICAL CORE

JASON L. TORCHINSKY∗, MARK A. TAYLOR† , AND OKSANA GUBA‡

Abstract. Global atmosphere models depend on physical parametrizations to capture sub-grid-scale
processes, such as the formation of clouds and precipitation. These parametrizations are typically devel-
oped independently and later integrated into the global atmosphere model. It is easy to introduce errors
during this integration process; for example, a cloud microphysics parametrization implicitly assumes that
thermodynamic processes occur at constant-pressure while the global climate model assumes they occur at
constant-volume. We develop a general interface that will correctly support both constant-volume ther-
modynamics in a vertical height coordinate and constant-pressure thermodynamics in a vertical pressure
coordinate for the High-Order Methods Modelling Environment. We compare six combinations of physics
interfaces and vertical coordinates using a tropical cyclone test case.

1. Introduction. Modelling the Earth’s atmosphere is an immense task, both mathe-
matically and computationally. Consider the evolution of clouds. There has been great effort
put into understanding how water condenses onto aerosol particles, how those droplets grow
and/or freeze, and eventually fall to the ground. (e.g., [11]) Such a particle-based approach
is not feasible for global atmosphere models, whose resolution is on the order of kilometers,
not microns. (e.g., [4]) Many atmosphere models instead utilize a bulk parametrization of
sub-grid-scale processes. These parametrizations, referred to as the ‘physics’, are typically
formulated and developed independently. They are later coupled to the atmosphere model,
referred to as the ‘dynamics’. Typically, the state is updated according to the dynamics
(the ‘dynamics-update’) and then according to the physics (the ‘physics-update’).

Errors may arise when the presumptions of the physics differ from those of the dy-
namics. For example, when an atmosphere model uses a vertical height coordinate, each
grid cell should have constant volume during the physics-update. The Reed-Jablonowski
cloud microphysics parametrization assumes that the thermodynamic processes occur in a
constant-pressure environment [10]. Hence, the Reed-Jablonowski parametrization should
not be used with an atmosphere model that uses a vertical height coordinate without further
interventions.

The primary purpose of this paper is to investigate the impact of mismatched physics
and dynamics. We provide the mathematical impetus for the significance of such a mismatch
in hydrostatic models (Section 2), which has not been presented before. We demonstrate
the significance by comparing the current physics parametrization used in the High-Order
Methods Modeling Environment (HOMME) with novel constant-pressure and constant-
volume interfaces (Section 3). To make the comparison, we analyze their impact on a tropical
cyclone test case (Section 4). The development and comparison of these new interfaces are
one of our primary contributions.

2. Conservation of Specific Local Energy. In this section, we show that the conser-
vation of specific local energy of an air parcel is different between isobaric (constant-pressure;
Subsection 2.1) and isochoric (constant-volume; Subsection 2.2) processes, and quantify this
difference (Subsection 2.3).

The specific local energy E of an air parcel in a hydrostatic environment is given by the
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sum of its kinetic energy K, potential energy P , and internal energy U

E = K + P + U

=
1

2
u⃗ · u⃗+ ϕ+ (H − pα) . (2.1)

Here, u⃗ is the horizontal velocity of the air parcel, ϕ its geopotential height, H its enthalpy,
p its pressure, and α its specific volume.

The enthalpy is given by the sum of the heat energies associated with: (i) the difference
between the temperature of the air parcel T and a reference temperature Tr and (ii) the
latent heat release of water vapor condensing and freezing,

H = c∗p (T − Tr)︸ ︷︷ ︸
(i)

+(Lvr + Lfr) qv + Lfr ql︸ ︷︷ ︸
(ii)

+ qdRd Tr︸ ︷︷ ︸
(iii)

. (2.2)

The (iii) term simply shifts the zero of H. The thermodynamic constants are the specific
heat of the air parcel at constant pressure c∗p, the gas constant for dry air Rd, the latent
heat of vaporization Lvr at Tr, and the latent heat of freezing Lfr at Tr. Further, qd, qv,
and ql are the ratios of the mass of dry air, water vapor, and liquid water, respectively, to
the total mass of moist air in the parcel [2].

We consider two vertical coordinates: a hydrostatic pressure coordinate π and a height
coordinate z. These vertical coordinates are related by the hydrostatic relation

∂π

∂z
= − g

α
, (2.3)

where g is the acceleration due to gravity.

Using the hydrostatic relation, we may obtain the specific local energy of an entire layer
of air Etot in either vertical coordinate

Etot =

∫ z2

z1

E

α
dz = −1

g

∫ π2

π1

E dπ. (2.4)

To simplify our calculations for the conservation of specific local energy in isobaric (Sub-
section 2.1) and isochoric (Subsection 2.2) processes, we make the following assumptions:

i) the air parcel is in a hydrostatic environment, i.e., the total pressure p is equal to
the hydrostatic pressure π;

ii) the effect of the layer expansion on the kinetic energy of each parcel is negligible,
and;

iii) the pressure-volume work performed by a cell goes into lifting the cells above it. In
an isobaric process, the work done by the cell W is equal to

W = −1

g

∂ [π ϕ]

∂π
. (2.5)

We obtain this equation by calculating the change in potential energy of a cell
undergoing an isobaric process, which is the integral of the work done on the cell

∫ π2

π1

δW dπ = δP = −1

g
(πtop δϕtop − πbot δϕbot) . (2.6)
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2.1. In an Isobaric Process. In an isobaric (constant-pressure) process, the change
in specific local energy of an air parcel is due to the pressure-volume work performed and
the external heating δQ.

To ease our calculations, we rewrite the specific local energy (Eqn. 2.1) using the identity
d [π ϕ] = π dϕ+ ϕdπ

E =
1

2
u⃗ · u⃗+ ϕ+ (H − pα)

=
1

2
u⃗ · u⃗− gW +H. (2.7)

With this, we see that the change in energy δE for an isobaric process is given by

δE|p = 0− g δW |p + δH|p . (2.8)

The first law of thermodynamics states that

δE|p = −g δW |p + δQ|p . (2.9)

Using the definition of enthalpy (Eqn. 2.2), we obtain the isobaric specific local energy
conservation equation

c∗p δT |p + (Lvr + Lfr) δqv|p + Lfr δql|p = δQ|p . (2.10)

2.2. In an Isochoric Process. In an isochoric (constant-volume) process, an air
parcel performs zero pressure-volume work, and so the change in specific local energy is due
entirely to the external heating.

To obtain the equation for conservation of energy of an isochoric process, we note the
equation of state

pα = R∗ T (2.11)

and the relation between the specific heat at constant pressure with the specific heat at
constant volume c∗v

c∗v = R∗ − c∗p, (2.12)

where R∗ is the gas constant for the air parcel [2].
Using these, we rewrite the specific energy as

E =
1

2
u⃗ · u⃗+ ϕ+ c∗v T +

(
qdRd − c∗p

)
Tr + (Lvr + Lfr) qv + Lfr ql. (2.13)

In an isochoric process, both α and the thickness of the layer are constant in time.
Therefore, the change in specific local energy of a z-layer of air undergoing an isochoric
process is given by

δEtot
∣∣
α
=

∫ z2

z1

1

α
δE|α dz. (2.14)

For specific local energy to be conserved for any arbitrary z-layer, the above integrand
must be equal to the external heating applied to the cell. Therefore, assuming that c∗v is
constant, the conservation of specific local energy for an air parcel undergoing an isochoric
process is equivalent to

c∗v δT |α + (Lvr + Lfr) δqv|α + Lfr δql|α = δQ|α . (2.15)
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2.3. Isobaric Versus Isochoric Energy Conservation. Many physics parametriza-
tion schemes assume that the air parcels undergo thermodynamics processes isobarically
(constant-pressure) [5, 6, 7, 10]. This assumption is compatible with a vertical pressure
coordinate; in which each grid cell has a constant pressure. However, this assumption is not
compatible with a vertical height coordinate; in which the pressure of each grid cell changes
and the volume of each grid cell is constant. This naturally leads to the question

Is there some way to convert an isobaric (constant-pressure) physics parametriza-
tion to be isochoric (constant-volume)?

The answer lies in the similarity between the specific local energy conservation relations for
isobaric (Eqn. 2.10) and isochoric (Eqn. 2.15) processes.

For simplicity, we assume that the difference in the phase changes of water and external
heating between an isobaric and an isochoric process are negligible, i.e.,

δqv|p = δqv|α , δql|p = δql|α , and δQ|p = δQ|α . (2.16)

We may then compare Eqn. 2.10 and Eqn. 2.15 to find that

c∗v δT |α = c∗p δT |p . (2.17)

Given a physics parametrization that describes the change in temperature and water content
in an air parcel, we use Eqn. 2.17 to convert the prescribed temperature change from that
of an isobaric process to that of an isochoric one. For example, we would multiply the iso-
baric temperature change by c∗p/c

∗
v ≈ 1.4 to obtain the corresponding isochoric temperature

change.

3. Physics Interface Descriptions. Here we outline the three different physics in-
terfaces we qualitatively examine in Section 4:

(i) the physics interface provided by the 2016 Dynamical Core Model Intercomparison
Project (DCMIP 2016; [16, 17]). This is currently used by the High-Order Methods
Modelling Environment (HOMME) for the DCMIP 2016 test cases. We refer to
this as the ‘original physics’ of HOMME (Subsection 3.1);

(ii) a novel isobaric (constant-pressure) version of (i), which we henceforth refer to as
the ‘isobaric physics’ of HOMME (Subsection 3.2), and;1

(iii) a novel isochoric (constant-volume) version of (i), obtained by applying Eqn. 2.17
to the isobaric temperature change given by (ii), which we henceforth refer to as
the ‘isochoric physics’ of HOMME, (Subsection 3.2).1

3.1. Original Physics of HOMME. The High-Order Methods Modelling Environ-
ment (HOMME) currently utilizes the height vertical coordinate physics interface provided
by DCMIP 2016 (dcmip physics z v1.f90, available at [17]). In short, the physics interface
is composed of three parts:2

1. Large-scale precipitation: Utilize either the Kessler [5] or the Reed-Jablonowski
cloud microphysics parametrization [10] to update the potential temperature and
moisture variables (wet mixing ratio of water vapor, cloud droplets, and rain droplets).3

With these values, calculate the new moist density and pressure.

1We refer to isobaric and isochoric versions of the original physical of HOMME as ‘novel’ as they are
new to HOMME. Isobaric or isochoric updates are widely use in models that utilize a pressure vertical
coordinate (e.g., [13]) or a height vertical coordinate (e.g., [12]), respectively.

2In all tests, we reduce the bulk transfer coefficient for water vapor CE and the bulk heat transfer
coefficient CH to one-tenth of their standard value. This is to minimize the effect of the surface flux and
planetary boundary layer parametrizations, as they are essentially the same for each physics scheme tested
here.

3In the main body of this work, we utilize only the Kessler microphysics parametrization. We show
results for both the Kessler and Reed-Jablonowski microphysics parametrizations in Appendix A.
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2. Surface fluxes: Utilize the Reed-Jablonowski surface flux physics parametrization
[10] to update the surface horizontal wind speed, wet mixing ratio of water vapor,
and temperature. Using these values, update the surface dry mixing ratio of water
vapor, moist density, pressure, and potential temperature.

3. Planetary boundary layer: Utilize the Reed-Jablonowski planetary boundary
layer physics parametrization [10] to update the horizontal wind speeds, potential
temperature, and wet mixing ratio of water vapor. With these values, update the
dry mixing ratio of water vapor, moist density, virtual potential temperature, and
pressure.

These new values are used to find the change in horizontal wind speeds, non-hydrostatic
pressure perturbation, temperature, and moisture variables.

Both the Kessler microphysics and Reed-Jablonowski physics parametrizations are for-
mulated to be isobaric, meaning that the final temperature update should be isobaric. It is
unclear to us that the pressure should be re-calculated throughout the physics update.

3.2. Novel Isobaric and Isochoric Physics of HOMME. As opposed to the orig-
inal physics of High-Order Methods Modelling Environment (HOMME), in these versions
we do not update the pressure while calculating the isobaric (constant-pressure) tempera-
ture change and the change in moisture variables (wet mixing ratio of water vapor, cloud
droplets, and rain droplets). In the isochoric (constant-volume) version, the isobaric tem-
perature update is converted to an isochoric temperature update using Eqn. 2.17.

We now describe the physics interface common to both the isobaric and isochoric version,
italicizing where it differs from the original physics.2

1. Large-scale precipitation: Utilize either the Kessler [5] or the Reed-Jablonowski
cloud microphysics parametrization [10] to update the potential temperature and
moisture variables (wet mixing ratio of water vapor, cloud droplets, and rain droplets).3

With these values, calculate the new temperature, moist density, as well as the wet
and dry mixing ratios of water vapor. The new moist density is used to update the
geometric height levels.

2. Surface fluxes: Utilize the Reed-Jablonowski surface flux physics parametrization
[10] to update the surface horizontal wind speed, wet mixing ratio of water vapor,
and temperature. Using these values, update the surface wet and dry mixing ratios
of water vapor, moist density, and potential temperature. The new moist density is
again used to update the geometric height levels.

3. Planetary boundary layer: Utilize the Reed-Jablonowski planetary boundary
layer physics parametrization [10] to update the horizontal wind speeds, potential
temperature, and wet mixing ratio of water vapor. With these values, update the wet
and dry mixing ratio of water vapor, moist density, virtual potential temperature.
The new moist density is used once more to update the geometric height levels.

The final potential temperature and moisture variables are used to calculate the total change
in horizontal wind speeds and moisture variables, as well as the isobaric temperature change.
In the isochoric physics interface, the isobaric temperature change is converted to the iso-
choric temperature change via Eqn. 2.17.

4. Comparison of Physics-Vertical Coordinate Combinations. To compare the
quality of each the original, isobaric, and isochoric physics schemes described in Section 3,
we examine their impact on the tropical cyclone test case of the 2016 Dynamical Core Model
Intercomparison Project (DCMIP 2016; [16]).

The DCMIP 2016 tropical cyclone test case consists of an analytic vortex initialized on
an Earth-size aqua planet in a background environment suited for the growth of tropical
cyclones. We include example output of the surface pressure using the original physics of the
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Fig. 4.1. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
original physics of HOMME and a vertical pressure coordinate (combination O−p). This is the combination
currently used in HOMME. Note that the test case uses an Earth-size aqua planet. We include coastlines
to provide an intuitive visual length-scale.

High-Order Methods Modelling Environment (HOMME) in a Lagrangian vertical pressure
coordinate in Figure 4.1. This is the combination currently used in HOMME. A detailed
description of the test case is available in [16]. Further, we utilized thirty vertical levels,
a horizontal resolution of approximately 3◦ × 3◦, and a maximum time-step size of 200
seconds.

We compare six combinations of physics-vertical coordinate combinations - the original,
isobaric, and isochoric physics in both Lagrangian height and pressure vertical coordinates.
For shorthand, we denote these combinations in the form X − x, where the first letter
represents the physics (O for original, P for isobaric, and V for isochoric) and the second
represents the vertical coordinate (p for pressure, z for height). For example, P−z represents
the combination of isobaric physics and a height vertical coordinate.

As mentioned in Section 3, each physics scheme utilizes the Kessler [5] and/or Reed-
Jablonowski [10] cloud microphysics parametrization, which assume that thermodynamic
processes occur isobarically [5, 10]. The original physics utilize the values obtained from
these parametrizations to update the pressure and use the isobaric temperature update from
the isobaric conservation of specific local energy (Eqn. 2.10). The consistency of the original
scheme is unclear to us.

On the other hand, the novel isobaric physics does not update the pressure. Hence, the
P − p combination is consistent, as each cell in a pressure vertical coordinate has constant
pressure. The V − z combination is likewise consistent, as each cell in a height vertical
coordinate has constant volume.

Using the P − z combination would result in a temperature change approximately 1.4
times less than that of the V − z combination, resulting in a weaker cyclone. In contrast,
using the V − p combination would result in a temperature change approximately 1.4 times
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Fig. 4.2. Evolution of cyclone intensity (maximal surface wind speed) in the DCMIP 2016 tropical
cyclone test case for each physics-vertical coordinate combination. The solid lines represent consistent
physics-vertical coordinate combinations. The dashed and dot-dashed lines represent physics-vertical coor-
dinate combinations which are not consistent. The thin horizontal dotted lines represent the demarcations
of cyclone intensity categories, which are labelled on the left.

greater than that of P − p combination, resulting in a stronger tropical cyclone.

To compare cyclone intensity, we utilize the classification system of the World Meteo-
rological Organization [18]. The system has five categories, although only four are relevant
to our purposes

(ii) Tropical depression: The central position of the tropical cyclone can be identified,
and the maximum sustained surface wind speed does not exceed 33 knots (16.98
ms−1).

(iii) Tropical storm: The maximum sustained surface wind speed is between 34 knots
(17.5 ms−1) and 47 knots (24.18 ms−1).

(iv) Severe tropical storm: The maximum sustained surface wind speed is between
48 knots (24.69 ms−1) and 63 knots (32.41 ms−1).

(v) Typhoon: The maximum sustained surface wind speed is at least 64 knots (32.92
ms−1).

Figure 4.2 shows the evolution of the intensity of the cyclone in each combination over a
20-day period.

As Figure 4.2 illustrates, the choice of physics-vertical coordinate combination can lead
to a tropical storm decaying into a tropical depression or intensifying into a severe tropical
storm.

In both consistent combinations (P − p and V − z), the intensity of the tropical cyclone
remains relatively consistent throughout the simulation. Indeed, the intensities of the cy-
clone in each combination approach each other as time progresses. Figures 4.3 and 4.4 show
the evolution of surface pressure for these combinations.

As expected, the cyclone in the P − z combination is consistently less intense, than the
V − z combination, quickly decaying from a tropical storm to a tropical depression. The
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isobaric physics of HOMME and a vertical pressure coordinate (combination P −p). Note that the test case
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Fig. 4.4. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
isochoric physics of HOMME and a vertical height coordinate (combination O− p). Note that the test case
uses an Earth-size aqua planet. We include coastlines to provide an intuitive visual length-scale.
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cyclone in the V − p combination quickly grows into a severe tropical storm due to the
greater temperature change from the isochoric physics compared to the isobaric.

The cyclone in the O−p combination and the P−p combination have a similar intensity,
as do the cyclone in the O−z and V −z combinations. This suggests that the original physics
of HOMME are a sort of hybrid between the isobaric and isochoric physics interfaces.

5. Related Works. Physics-dynamics coupling in weather and climate modelling is a
highly active area. For a broad overview on physics parametrizations, from soil-vegetation-
atmosphere to cloud microphysics, we recommend [14]. Gross et. al. present a compre-
hensive review of progress in the field in [3]. Lauritzen and Williamson present a thorough
examination of physics-dynamics coupling on energy conservation in the Community At-
mosphere Model in [9, 8]. Zhang et. al. build on this work and compare various physics
parametrization-vertical coordinate combinations in a multiscale dynamical model in [19].

For more information on the Kessler cloud microphysics parametrization, we direct the
reader toward both the original publication [5], as well as the restatement, analysis, and im-
plementation by Klemp et. al. [6, 7]. Although the original parametrization was introduced
over 50 years ago, it continues to be generalized and developed. Recently, Tissaoui et. al.
generalized the Kessler microphysics parametrization to be non-column-based in [15].

The primary reference on the Reed-Jablonowski physics parametrizations is [10]. Reed
and Jablonowski present a mathematical development of the parametrization and analyze
its performance in an idealized tropical cyclone test case.

6. Conclusions and Future Work. Our primary contribution was the introduction
and comparison of novel isobaric (constant-pressure) and isochoric (constant-volume) ver-
sions of the physics interface provided by the 2016 Dynamical Core Model Intercomparison
Project (DCMIP 2016) [17]. We compared each of these three physics interfaces in combi-
nation with a height and a pressure vertical coordinate in a tropical cyclone test case in the
High-Order Method Modelling Environment (HOMME).

We showed that the two ‘consistent’ combinations (isobaric physics with a pressure
vertical coordinate and isochoric physics with a height vertical coordinate) largely agreed on
the predicted intensity of the cyclone. The two ‘inconsistent’ combinations (isobaric physics
with a height vertical coordinate and isochoric physics with a pressure vertical coordinate)
over- and under-estimated the intensity of the cyclone in a predictable manner.

The original physics interface of HOMME produced a cyclone with an intensity similar
to that of the consistent isobaric and isochoric interfaces, regardless of the choice of vertical
coordinate. This suggested that the original physics interface was somewhere between the
consistent isobaric and isochoric interfaces.

There are two predominant future directions to explore:
1. The primary assumption of our work was that of a hydrostatic environment.

How do the physics interfaces affect this quantity? What is the conservation equa-
tion for this energy, and is there a simple way to convert between the expected
isobaric and isochoric temperature changes?

2. During our investigations, we found that the physics parametrization for the plan-
etary boundary layer had a significant impact on the stability of the simulation. In
almost every height-coordinate combination (including one combination involving
the original physics), several smaller cyclones were generated along the equator.
Eliminating these cyclones required reducing the coefficients for the transfer of water
vapor and heat from the sea to the atmosphere by a factor of 10, which is much less
than observed values [1].
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Appendix A. Results for All Physics-Vertical Coordinate Combinations.

For completeness we include the evolution of surface pressure for all physics-vertical
coordinate combinations, including the use of both the Kessler microphysics parametrization
[5] and Reed-Jablonowski microphysics parametrization [10].

We show the evolution of the intensity of the tropical cyclones using the Kessler micro-
physics parametrizations in Figure A.1. Figures A.2, A.3, A.4, A.5, A.6, and A.7 show the
evolution of the surface pressure across a 20-day simulation for all six combinations of these
combinations. In each combination, the tropical cyclone drifts north-northwest and grows
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Fig. A.1. Evolution of cyclone intensity (maximal surface wind speed) in the DCMIP 2016 trop-
ical cyclone test case for each physics-vertical coordinate combination, using the Kessler microphysics
parametrization. The solid lines represent consistent physics-vertical coordinate combinations. The dashed
and dot-dashed lines represent physics-vertical coordinate combinations which are not consistent. The thin
horizontal dotted lines represent the demarcations of cyclone intensity categories, which are labelled on the
left.

in size. The speed at which the cyclone progresses and the amount ii grows is dependent
on the physics-vertical coordinate combination, ranging from the small, slow cyclone in the
P − z combination to the large, fast cyclone of the V − p combination.

We show the evolution of the intensity of the tropical cyclones using the Reed-Jablonowski
microphysics parametrizations in Figure A.8. Figures A.9, A.10, A.11, A.12, A.13, and A.14
show the evolution of the surface pressure across a 20-day simulation for all six combinations
of these combinations. Unlike all other tests, the original physics of HOMME using Reed-
Jablonowski microphysics required the true value of the bulk transfer coefficient for water
vapor CE and the bulk heat transfer coefficient CH to sustain the tropical cyclone [1]. In
each combination, the tropical cyclone drifts north-northwest and grows in size. The speed
at which the cyclone progresses and the amount it grows is dependent on the physics-vertical
coordinate combination, ranging from the small, slow cyclone in the P − z combination to
the large, fast cyclone of the V − p combination.
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Fig. A.2. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing
the original physics of HOMME and a vertical pressure coordinate (combination O − p), with Kessler
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.3. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
original physics of HOMME and a vertical height coordinate (combination O−z), with Kessler microphysics.
Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an intuitive visual
length-scale.
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Fig. A.4. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing
the isobaric physics of HOMME and a vertical pressure coordinate (combination P − p), with Kessler
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.5. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
isobaric physics of HOMME and a vertical height coordinate (combination P−z), with Kessler microphysics.
Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an intuitive visual
length-scale.
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Fig. A.6. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing
the isochoric physics of HOMME and a vertical pressure coordinate (combination V − p), with Kessler
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.7. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing
the isochoric physics of HOMME and a vertical height coordinate (combination V − z), with Kessler mi-
crophysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.8. Evolution of cyclone intensity (maximal surface wind speed) in the DCMIP 2016 tropical
cyclone test case for each physics-vertical coordinate combination, using the Reed-Jablonowski microphysics
parametrization. The solid lines represent consistent physics-vertical coordinate combinations. The dashed
and dot-dashed lines represent physics-vertical coordinate combinations which are not consistent. The thin
horizontal dotted lines represent the demarcations of cyclone intensity categories, which are labelled on the
left.
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Fig. A.9. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
original physics of HOMME and a vertical pressure coordinate (combination O−p), with Reed-Jablonowski
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale. Further, unlike all other combinations, each combination using the original
physics of HOMME with the Reed-Jablonowski microphysics scheme required the true value of the bulk
transfer coefficient for water vapor CE and the bulk heat transfer coefficient CH to sustain the tropical
cyclone.
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Fig. A.10. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
original physics of HOMME and a vertical height coordinate (combination O − z), with Reed-Jablonowski
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale. Further, unlike all other combinations, each combination using the original
physics of HOMME with the Reed-Jablonowski microphysics scheme required the true value of the bulk
transfer coefficient for water vapor CE and the bulk heat transfer coefficient CH to sustain the tropical
cyclone.
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Fig. A.11. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
isobaric physics of HOMME and a vertical pressure coordinate (combination P −p), with Reed-Jablonowski
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.12. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
isobaric physics of HOMME and a vertical height coordinate (combination P − z), with Reed-Jablonowski
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.13. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
isochoric physics of HOMME and a vertical pressure coordinate (combination V −p), with Reed-Jablonowski
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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Fig. A.14. Evolution of the surface pressure in the DCMIP 2016 tropical cyclone test case, utilizing the
isochoric physics of HOMME and a vertical height coordinate (combination V − z), with Reed-Jablonowski
microphysics. Note that the test case uses an Earth-size aqua planet. We include coastlines to provide an
intuitive visual length-scale.
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PERIDYNAMIC CONTACT HANDLING

JACOB WILSON∗ AND STEWART SILLING†

Abstract. In the simulation of colliding objects, the peridynamic numerical method can become
unstable due to contact handling failure. Under unfavorable conditions, material volumes of separate bodies
pass through each other resulting in an unphysical tangling which we refer to as interpenetration. Existing
contact algorithms require tuning parameters that must be carefully tuned to prevent such contact failure.
Here, we explore the implementation of a viscous contact force as a robust solution to interpenetration. The
proposed viscous contact force is tested under a wide range of impact conditions including with variable
impact speed and material properties. The stability and convergence of the viscous contact force is also
examined.

1. Introduction. Proper handling of contact forces is critical in the successful model-
ing of a wide range of phenomena such as particulate erosion, damage due to space debris,
and automotive collisions. Contact algorithms used in conventional structural mechanic nu-
merical methods such as the finite element method (FEM) have been heavily studied [1, 2]
and shown to be successful in reproducing contact response. Contact treatment in peri-
dynamics, a more recent, non-local continuum mechanics formulation, has received far less
attention, a notable exception being [10]. As the contact methods that have been success-
fully applied to the FEM local method cannot be immediately extended to the non-local
peridynamic method, contact handling methods in the context of peridynamic modeling
must be more carefully explored.
The ”short-range force method” may be regarded as the current standard in peridynamic
contact treatment method employed by, for instance, Peridigm, a leading implementation
of peridynamics [4, 5]. In this method, the contact is modeled as a series of massless ”con-
tact springs” placed between two impacting bodies. With the correct spring constant, the
short-range force method can successfully prevent interpenetration, but as this constant is
not strictly physical, it is difficult, if possible, to determine a priori. Instead, a guess-and-
check procedure must be conducted which can be excessively time consuming. This issue
is exacerbated by the fact that new contact spring constants must be identified whenever
simulation parameters such as contact speeds and material properties are modified.
In this work, inspired by the strain rate hardening phenomenon, we investigate the use
of a linear, viscous contact force as a robust contact model for use with the peridynamic
formulation. Implementation of a viscous contact force in peridynamics has been studied
previously [6] though not in the context of impact over a wide range of impact speed that
we study here. Overcoming the main challenge of the short-range contact force model, we
will show that the viscous contact force model successfully prevents the interpenetration
phenomenon over a wide range of impact speeds without the need to carefully tune contact
parameters. We also demonstrate that, unlike the short-range force model, the parameter
required in the viscous contact model can be reasonably predicted a priori which reduces
the need for a time-consuming guess-and-check parameter search process. As the viscous
contact force has not been the subject of comprehensive study in the peridynamic simula-
tion of colliding bodies, we also work to demonstrate the method’s parameter stability and
numerical behavior.

2. Peridynamic Model. Peridynamics is a reformulation of continuum mechanics
developed by Silling in the early 2000s [7, 8] that relies on integro-differential equations
rather than the fully differential governing equations of traditional continuum mechanics.

∗Virginia Tech, jacobow@vt.edu
†Sandia National Laboratories, sasilli@sandia.gov
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With this feature, peridynamics is naturally able to model spatial discontinuities that require
special treatment in the traditional formulation. As opposed to the traditional continuum
mechanics formulation, peridynamics is non-local in nature such that material points interact
with other points in a finite rather than the traditionally infinitesimal neighborhood. Letting
Hx denote the neighborhood of points within a finite distance δ of material point x in body’s
reference configuration, the peridynamic equation of motion of point x at time t is

ρx
∂2x

∂t2
=

∫

Hx

f̂x′x dVx′ + bx (2.1)

where ρx and bx are the mass density and net external body force at material point x
at time t. f̂x′x is the peridynamic pairwise force density due to material point x′ acting on
x where x′ is a material point in the neighborhood Hx. Note that by this definition, f̂x′x

has units of force per squared volume and that the motion of point x automatically satisfies
linear momentum conservation provided that f̂x′x is antisymmetric.

Let x(t) be the position of the material point x at time t. For notational convenience,
let ξxx′(t) be the relative position vector from material point x to x′ at time t, ξxx′(t) =
x′(t)− x(t), and define a peridynamic strain, ε̂xx′ , characterizing the deformation between
points x and x′ as

ε̂xx′ =
|ξxx′(t)| − |ξxx′(0)|

|ξxx′(0)| (2.2)

It has been demonstrated that the constitutive model used in mapping deformation
to f̂x′x can be designed to reproduce any material model from the traditional continuum
mechanics formulation [9]. However, in this work, we focus only on the simplest model, the
prototype microelastic brittle (PMB) material, in which the force density of point x′ in Hx
on x at time t is given by

f̂x′x =
ξxx′

|ξxx′ | k̂ε̂xx′ dVx′ (2.3)

where k̂ is the peridynamic spring constant, the force per squared unit volume per unit
peridynamic strain.

As the pairwise force function f̂x′x is only nonzero for material points x′ in the neigh-
borhood Hx, a separate force term must be added to the peridynamic equation of motion
to model contact forces between points that would not otherwise interact. This additional
force term, call it f̃x′x, is needed to model interactions forces between material points that
are separated in the reference configuration but come within close proximity as the calcula-
tion progresses. The same term also applies to self-contact. With this additional term, the
continuum peridynamic equation of motion becomes

ρx
∂2x

∂t2
=

∫

Hx

[
f̂x′x + f̃x′x

]
dVx′ + bx (2.4)
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Though we shall see it results in practical difficulties, it is common to model the contact
force by a method known as the short-range force method. This method models contact
force as a compression-only spring that is activated when the distance between two material
points satisfies a proximity criterion which we represent using a contact activation parameter
λ1 as follows

λ1 =

{
1 if |ξxx′ | ≤ δ̃
0 otherwise

(2.5)

where δ̃ is the separation distance at which contact between two material points is first
activated. It is determined by

δ̃ = min (α|ξxx′ (0)|,∆xcontact) (2.6)

where ∆xcontact is a constant representing the nominal contact distance, which is typ-
ically greater than the initial grid spacing. The term involving α avoids contact force ap-
plication to material points that are initially close to each other. Defining the peridynamic
contact strain between points x and x′ as

ε̃xx′ =
|ξxx′ | − δ̃

δ̃
(2.7)

the short-range contact force density of point x′ on x at time t is given by

f̃x′x = λ1
ξxx′

|ξxx′ | k̃ε̃xx′ dVx′ (2.8)

where k̃ is the contact spring constant with dimensions of force per squared unit volume
per unit contact strain. In practice, k̃ is often chosen as the average of the peridynamic
spring constants k̂ of the materials in contact.

3. Numerical Implementation of Peridynamic Model. In the numerical imple-
mentation of peridynamic theory, space is discretized without geometric connectivity, and
each node is assigned a fixed volume. At the nth timestep, each individual node i is updated
using the discretized peridynamic equation of motion

ρi
∂2xi
∂t2

=
∑

j

[
f̂xjxi

+ f̃xjxi

]
Vj + bi (3.1)

whereρi and bi are the density and body force acting on node i, f̂xjxi
and f̃xjxi

are
the peridynamic and contact forces from node j acting on node i, and Vj is the volume of
node j. To examine the success of contact force formulations, we chose to model a ballistic
impact test involving an impactor in the shape of a triangular prism striking a planar target
along one of its edges. Due to the relatively small contact area of this impact geometry
and resulting large impact stresses, the test serves as a good indication of contact force
robustness. Figure 3.1(a) shows the discretized geometry. Note that we simulate the impact
in two-dimensions. The triangular prism has a 9 mm height and 18 mm base; the target has
a height of 16 mm and an impact face 32 mm wide. Both geometries have been discretized
using a node spacing of 1 mm. Each body responds via the PMB material model with
properties summarized in Table 3.1(b), and k̃ was taken to be the average peridynamic
spring constant of the two bodies.

324 Peridynamic Contact Handling



(a) (b)

Fig. 3.1. (a) ballistic impact geometry used in evaluation of contact algorithms; (b) Summary of
ballistic impact simulation material properties where K and ν are the bulk modulus and Poisson ratio,
respectively

4. Short Range Contact Force and Interpenetration. In the case of high-speed
impact, the short-range contact force was seen to fail in that it allowed material nodes of
the impactor and target to intersect in a phenomenon we refer to as interpenetration. The
interpenetration numerical phenomenon is clearly not physical as it indicates that material
volumes overlap. To demonstrate interpenetration, the case of the impactor striking the
target at a speed of 5 km/s in the ŷ direction is shown in Figure 4.1.

Fig. 4.1. Interpenetration in the case of an impactor striking the stationary target at 5 km/s.

Aside from the non-physicality of overlapping volumes, interpenetration is also harmful
to the impact simulation fidelity as it leads to the development of unphysical contact forces
when the short-range contact force model is used. Referring to figure 3.1(a), as we neglect
adhesion, the contact force on the impactor nodes due to interaction with the target should
always have a component in the −ŷ direction, resisting target penetration. However, re-
ferring to the short-range contact force expression, with the onset of interpenetration, the
contact force from the target interacting with nodes of the impactor may instead have a
component directed in the +ŷ direction which unphysically accelerates penetration into the
target. The source of this issue is illustrated at the node level in figure 4.2. Note that the
displayed contact force pair is only that associated with interaction between the two nodes
shown.

To further examine the nature of interpenetration, we developed a simple algorithm
for the identification and calculation of the extent of node separation, call it δs, in the
case of ballistic impact involving two bodies. Since the exact direction of possible node
interpenetration is not of interest for present purposes, we treated δs as a signed scalar
rather than a vector with a negative sign indicating that interpenetration has occurred. A
brief description of the δs calculation algorithm follows.First, each node i on the impactor
boundary is paired with the node i′ in the target predicted to be closest to the point at
which node i would intersect the target surface in the absence of contact forces. Let ~ri′i
be the relative position vector from node i′ on the target to i on the impactor at time t.
The node separation magnitude, |δs|, is then defined as the magnitude of the projection of
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Fig. 4.2. Source of unphysical contact forces that can accelerate interpenetration illustration. (a)
nodes of separate bodies approach with a repulsive force that would act against penetration and (b) nodes
have interpenetrated and experience contact forces that would augment penetration.

~ri′i onto the unit vector in the direction of the incident velocity of the impactor relative to
the target, v̂0,rel. Establishing the sign of this node separation requires the specification of
a direction that is ”away” from the target. This is accomplished by the vectors n̂1 and n̂2
defined in figure 4.3(a). The sign of the separation, sgn (δs), between the impactor node i
and target node i′ is then given by

sgn (δs) =

{
+1 if [(n̂1 · ~ri′i > 0) and (n̂2 · ~ri′i > 0)]

−1 otherwise
(4.1)

Altogether, the extent of interpenetration is defined as

δs = min [ sgn (δs) |~ri′i · v̂0,rel| ] (4.2)

where the minimum is taken over all pairs of nodes, one in each material. Note that δs
changes in time as the impactor approaches, strikes, and rebounds from the target. Figure
4.3(b) shows the node separation δs obtained for a sample of impact speeds in the ballistic
impact simulation using the short-range contact force for the ballistic impact simulation
described in section 3. We can see that interpenetration first occurs at around 2.5 km/s and
increased in severity with increasing incident speed. The worsening of interpenetration as a
function of impact speed is not a time step issue but rather an intrinsic issue of the contact
force algorithm.

4.1. Viscous Contact Force Formulation. Demonstrated in the preceding example,
the short-range contact force method results in excessive interpenetration if its associated
contact stiffness parameter is not appropriately tuned. Attempting to solve this issue, we
considered augmenting the contact force by a velocity-dependence term such that the contact
force becomes

f̃x′x =

(
λ1

ξxx′

|ξxx′ | k̃ε̃xx′ − λ2c̃vxx′

)
dVx′ (4.3)

We refer to this two-term expression as the viscous contact force. vxx′ is the velocity of
material point x relative to point x′, and λ2 is the contact activation parameter associate
with the velocity dependent term which restricts the term to act only during the compressive
phase of impact as shown in the following definition

λ2 =

{
1 if

(
|ξxx′ | ≤ δ̃ and d

dt |ξxx′ | < 0
)

0 otherwise
(4.4)
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(a) (b)

Fig. 4.3. (a) Definition of the directions n̂1 and n̂2 used in determining the sign of δs for two arbitrary
nodes i and i′; (b) variation of δs evolution with impact speed. Negative δs indicates interpenetration

Using the viscous contact force, the discretized equation of motion of node i interacting
with node j becomes

ρi
d2xi
dt2

=
∑

j

[
ξij
|ξij |

k̂ε̂ij +

(
λ1

ξij
|ξij |

k̃ε̃ij − λ2c̃vij
)]

Vj + bi (4.5)

We next establish an equation for a peridynamic-equivalent critical damping factor, c̃crit,
to serve as a basis for estimating the parameter c̃ in the viscous contact force. Consider a
simple discretized peridynamic system consisting of just two nodes along an axis, call it the
y-axis, like that illustrated in figure 4.4. Take these nodes to be sufficiently far apart in the
reference configuration such that they interact only via contact forces and assume there are
no external forces. Fix one of the nodes, call it node A, at the position y = 0, and assume
that at time τ the other node, node B, is moving radially toward node A such that λ2 6= 0
(i.e., the full viscous contact force is activated). In this case, the equation of motion of node
B simplifies to

ρB
d2y

dt2
=

[(
k̃ε̃AB − c̃

dy

dt

)]
VA (4.6)

If interpenetration does not occur, that is, the position of node A always satisfies y > 0,
we can see that |ξAB| = y. It’s then straightforward to show that

dy

dt
= δ̃

dε̃AB

dt
and

d2y

dt2
= δ̃

d2ε̃AB

dt2
(4.7)

so that

ρBδ̃
d2ε̃AB

dt2
=

[(
k̃ε̃AB − c̃δ̃

dε̃AB

dt

)]
VA (4.8)

or rearranging things slightly

J. Wilson and S. Silling 327



(
ρBδ̃

) d2ε̃AB

dt2
+
(
VAc̃δ̃

) dε̃AB

dt
−
(
VAk̃

)
ε̃AB = 0 (4.9)

Comparing this with the equation of motion for a simple damped oscillator constrained
to the y−axis

m
d2y

dt2
+ c

dy

dt
+ ky = 0 (4.10)

and recalling that for this classic motion, the critical damping factor of c is given by
ccrit =

√
km, equating coefficients indicates that an expression for a peridynamic-equivalent

critical damping factor is

c̃crit = 2

√
k̃ρB/δ̃ VA (4.11)

Fig. 4.4. Simplified two-node impact used in the derivation of the peridynamic critical damping constant

4.2. Viscous Contact Force Evaluation. Since in this study, we were only inter-
ested in the success of contact forces in preventing interpenetration between separate bodies,
the viscous contact force was taken to be active only between nodes of different bodies. That
is, if Bi(Bj) is the body that node i(j) belongs to, the contact force was taken to depend on
the nature of the interacting node pair as follows:

f̃ij =




Vj

(
λ1

ξij
|ξij | k̃ε̃ij − λ2c̃vij

)
if Bi 6= Bj

Vj

(
λ1

ξij
|ξij | k̃ε̃ij

)
otherwise

(4.12)

Using the damping constant c̃ = c̃crit, the interpenetration time history curves of figure
4.5 demonstrate the ability of the viscous contact force to prevent interpenetration over a
wide range of incident speeds. The minimum target-impactor separation remains positive
in all cases indicating that interpenetration does not occur, and the curves corresponding
to lower impact speeds behave as expected with δs reaching a minimum value before re-
bounding. The evolution of δs in the case of the 10 km/s impact speed is a bit unexpected
in that it exhibits an oscillation. However, this may simply be attributed to the oscillatory
displacement field of a reflected elastic wave interacting with the impactor tip.

To facilitate comparison, the simulation parameters used in obtaining the curves were
taken to be those defined in section 3, and as before, k̃ was taken to be the average peri-
dynamic spring constant of the two bodies. For all impact speeds considered, the impactor
started the same distance from the target surface. However, since the contact was not de-
tected and the contact force was not engaged until after the first time step, the impactor
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moved freely from the first to the second data point such that δs varies with impact speed
in the second reported data point. We note that at the 10 km/s impact speed, two data
points at roughly at 1.5 and 5.8 µs with negative δs were removed as they are assumed to
be a failure of the interpenetration detection algorithm rather than actual interpenetration.
Further, due to limitations of the simple penetration distance algorithm, the penetration
distance history curves are not intelligible at impact speeds much higher than 10 km/s.
However, we can qualitatively evaluate the ability of the viscous contact force to prevent
interpenetration at higher impact speeds by visual examination of the impacts. As shown
in figure 4.6, the viscous force is qualitatively successful in preventing interpenetration at
speeds as high as 50 km/s.

Fig. 4.5. Variation of δs evolution with impact speed with use of the viscous contact force.

Fig. 4.6. Interpenetration prevention in the case of 50 km/s impact speed

4.3. Viscous Contact Force Numerical Behavior and Stability. As the velocity-
dependent contact force term may contribute considerably to total contact stiffness, we
evaluate the extent to which the term influences the numerical stability of the impact sim-
ulation. To accomplish this, we analyzed the total system energy variation with timestep
when the full viscous contact force was activated (λ1 = λ2 = 1) and compare this to the
same simulation but with the velocity-dependent term deactivated (λ1 =;λ2 = 0). Figure
4.7 shows the result of such an analysis conducted using the simulation defined in section
3 with the impactor striking the target at an incident speed of 1 km/s and the damping
constant set to the critical value c̃ = c̃ref. The reported timesteps in figure 4.7 are normal-
ized by an estimate of the time it takes information to travel between nodes in the reference
configuration given by dt = dx/

√
K/ρ where dx is the reference node separation, K is the

bulk modulus, and ρ is the mass density. In the current simulation, this gives dt ≈ 0.28µs.

We take the onset of instability to correspond to the timestep at which the total sys-
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tem energy history grows significantly compared to its evolution using a converged, stable
timestep. By this criterion, the velocity-dependent term seems to reduce the maximum
stable timestep from around 1.4-1.6dt to around 0.2-0.4 dt. Note that with the velocity-
dependent term necessarily leads to energy dissipation such that, as illustrated in figure 4.7,
a stable simulation is expected to experience some level of total energy loss.

In addition to the effect of contact force stiffening, the viscous contact force has a dis-
continuity in time which is thought to affect the numerical behavior of impact simulations.
Unlike the short-range contact force which is a linear function of the contact strain and thus
gradually increases in magnitude with increasing strain, the viscous contact was seen to
jump from zero to its largest magnitude at first contact detection. The discontinuity results
from the lack of contact strain dependence in the velocity-dependent term, and the viscous
contact force likely reaches its maximum value at the first detection of contact due to the
high impact speeds simulated.

To investigate the discontinuity’s effect on the impact simulation, we consider the two-
node impact of figure 4.4 using the material properties outlined in section 3, the critical
damping constant c̃crit, and an incident relative speed of 1 km/s. The viscous contact force
discontinuity in time for this two-node interaction is shown in figure 4.8 along with a com-
parison to the smoother contact force that results from removal of the velocity-dependent
force term.

Because the viscous contact force is maximized at the first point of contact detection, we
found that the simulation contact energy, the potential energy associated with the contact
forces, is sensitive to the node separation distance at which contact between two nodes is
first detected. Call this separation distance ξc,AB. To demonstrate the sensitivity, in figure
4.9(a) we vary the initial node separation ξAB(0) of the previously defined two-node impact
so that, due to the finite timestep, contact detection will occur at different values of ξc,AB.
As the figure shows, variation in ξAB(0) and thus ξc,AB does indeed result in significant
contact energy variation. The simulation timestep used in figure 4.9(a) is 0.2dt, and as
shown in figure 4.10, the simulation does seem to be stable at this timestep. With smaller
timesteps, nodes outside the contact boundary at one timestep cannot travel far past a
contact boundary before being detected in the next timestep, so ξc,AB is always very nearly

δ̃. Figure 4.9(b) shows that with the reduced timestep of 0.05dt and corresponding reduced
variability in ξc,AB, the variation in contact energy is reduced. Interestingly, counter to
what was seen in the many-node impact, the two-node impact seems to have a maximum
stable simulation timestep that is more comparable to that of the many-node non-viscous
impact which from figure 4.7 is about 1.5dt.

5. Conclusion. For many years, peridynamic modelers have struggled with the parameter-
tuning balancing act required in the modeling of high-speed impact via the short-range
contact force method. In this work, inspired by the strain-rate hardening phenomenon, we
have demonstrated that the addition of a velocity-dependent contact force term has the
potential to alleviate this problem. Using a fixed damping parameter with a clear physical
interpretation, we showed that a viscous contact force can prevent interpenetration over a
vast range of impact speeds- from 100 m/s to 10 km/s (and perhaps even as high as 50
km/s). However, it should be noted that this work has reported entirely on simulations
with highly simplified material models (namely, the bond-based PMB model) and simple,
2D geometries. Further work must be done to evaluate the nature of the viscous contact
force behavior in more realistic settings.
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(a)

(b)

Fig. 4.7. Use of total system energy variation with timestep as metric to evaluate stability of the
impact simulation (a) with the velocity-dependent term and (b) without velocity dependence; dt ≈ 0.28µs

The numerical behavior of the proposed viscous contact force was also investigated. With
the understanding that the increased stiffness of the viscous contact force may adversely
affect stability, we compared qualitative estimates of the maximum stable timesteps with
and without the addition of the velocity-dependent force and found the stability criteria to
be influenced by the velocity-dependence- though not drastically. We also found that due to
its discontinuous nature in time, the viscous force method may require a smaller timestep
than that required for stability to converge. This suggests that a more appropriate con-
tact model may involve the product of the contact strain and relative node velocity which
would remove the discontinuity. This method has been explored theoretically [3] and even
applied to peridynamic simulations [6], but does not yet seem to have been studied for use
in high-speed impact.
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Fig. 4.8. Illustration of the discontinuity in contact force history due to the velocity-dependent term.
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(a) (b)

Fig. 4.9. Contact energy sensitivity to ξ0,AB to evaluate ξc,AB sensitivity for (a) 0.2dt timestep and
(b) 0.05dt timestep

Fig. 4.10. Stability of the two-node simulation
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