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2 Motivation

• Stable, accurate and robust methods for simulating mechanical

contact are extremely important in computational solid mechanics

➢ Example scenarios where contact arises: touching surfaces, 

sliding, tightened bolts, impact, …

Above: gears in contact within MEMS 
device.  From sandia.gov/media

Below: oblique cylinder impact simulated 
using Sandia’s ALEGRA code.
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6 Motivation

• Stable, accurate and robust methods for simulating mechanical

contact are extremely important in computational solid mechanics

➢ Example scenarios where contact arises: touching surfaces, 

sliding, tightened bolts, impact, …

Two-step process to the computational simulation of contact:

1. Proximity search: computer science problem, has received much 

attention due to importance in video game development ☺

2. Contact enforcement step: existing methods (penalty, Lagrange 

multiplier, augmented Lagrangian) suffer from poor performance 

➢ Long simulation times 

➢ Lack of accuracy 

➢ Lack of robustness 

Above: gears in contact within MEMS 
device.  From sandia.gov/media

This talk: new approach for simulating multi-scale mechanical 

contact using the Schwarz alternating method.

Below: oblique cylinder impact simulated 
using Sandia’s ALEGRA code.



7 Schwarz Alternating Method for Domain Decomposition

▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:

▪ Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

▪ Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 

just obtained for Ω1.

▪ Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping
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9 Schwarz Alternating Method for Domain Decomposition

▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:

▪ Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

▪ Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 

just obtained for Ω1.

▪ Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

2Lions, 1990. 3Zanolli et al., 1987. 

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs1 if Ω1⋂ Ω2≠ ∅.

Non-overlapping Schwarz: convergent with Robin-Robin2 or alternating Dirichlet-Neumann3

transmission BCs.  

z: convergent with Robin-Robin2 or alternating Neumann-Dirichlet3 transmission BCs.  1Schwarz, 1870; Lions, 1988.  2Lions, 1990.  3Zanolli et al., 1987. 

non-overlapping

Basic Schwarz Algorithm



How We Use the Schwarz Alternating Method10



11 Overlapping Schwarz for Multi-Scale Coupling in Solid Mechanics

The Schwarz alternating method has been developed/implemented for concurrent multi-

scale quasistatic & dynamic modeling in Sandia’s Albany/LCM* and Sierra/SM codes.

Displacement Velocity

1Mota et al., 2017; Mota et al., 2022.

• Coupling is concurrent (two-way)

• “Plug-and-play” framework: couples different 

meshes, element types, solvers, integrators

• No nonphysical artifacts 

• Theoretical convergence properties1

• Easy to implement in existing HPC codes

• Scalable, fast, robust

CPU times # Schwarz 
iters

Single Ω 3h 34m −

Schwarz 2h 42m 3.22

*https://github.com/sandialabs/LCM

https://github.com/sandialabs/LCM


Solid Mechanics Problem Formulation

Kinetic Energy:

Potential Energy:

Lagrangian:

Action Functional:

12

Euler-Lagrange 
Equations:

𝑴 ሷ𝒖 + 𝒇int(𝒖, ሶ𝒖) = 𝒇ext

Semi-Discrete 
Problem:

𝒖 0 = 𝒖0
ሶ𝒖 0 = 𝒗0

FEM



Traditional Solid Mechanics Contact Formulation

Kinetic Energy:

Potential Energy 
Augmented with 
Contact Constraint:

Lagrangian:

Action Functional:

13

Indicator function for 
admissible set 𝒞:

𝒞: The set of admissible configurations 𝝋 in 

which interpenetration does not occur

Contact constraint can be enforced 

strictly or approximately

• Strict enforcement: Lagrange 

multiplier methods

• Approximate enforcement: 

penalty methods



Non-Overlapping Schwarz Contact Formulation

Can use different integrators 
with different time steps

within each domain!

• Ingredients:

➢ Domain decomposition

➢ Discretization and time-stepper in Ω1 (red)

➢ Discretization and time-stepper in Ω2 (green)

➢ Controller time-stepper (blue): defines global time-

steps 𝐼0, 𝐼1, … at which subdomains are synchronized

14
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Non-Overlapping Schwarz Contact Formulation

• Ingredients:

➢ Domain decomposition

➢ Discretization and time-stepper in Ω1 (red)

➢ Discretization and time-stepper in Ω2 (green)

➢ Controller time-stepper (blue): defines global time-

steps 𝐼0, 𝐼1, … at which subdomains are synchronized

• Problem is solved without any Schwarz iteration in 

time intervals 𝐼0 and 𝐼2, as there is no contact.

• Non-overlapping Schwarz algorithm only applied in 

control time interval 𝐼1, when contact is detected. 

Contact Criteria

• Overlap: interpenetration of 

subdomains

• Compression: positive normal traction

• Persistence: was in contact previous 

step

16



Non-Overlapping Schwarz Contact Formulation

• Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact

➢ Alternating Dirichlet-Neumann (traction) Schwarz iteration is applied once 

interpenetration has been detected, to correct the interpenetration.

17

There are no contact constraints!

Contact constraints replaced with BCs

applied iteratively at contact boundaries.



18 Numerical Results: 1D Impact Problem1

• Impact of two 1D identical linear elastic prismatic rods discretized using 𝑁𝑥 = 200 linear 

elements with exact analytic solution [Carpenter et al., 1991] 

• Schwarz alternating method compared to three conventional contact algorithms with a zero gap 

contact constraint

➢ Implicit and explicit penalty method with penalty parameter 𝜏 = 7.5 × 104

➢ Forward increment (explicit) Lagrange multiplier (LM) method [Carpenter et al., 1991]

• Time stepper: Newmark-beta 

➢ Schwarz couplings included Explicit-Explicit, Implicit-Explicit and Implicit-Implicit

➢ Δ𝑡 = 1.0 × 10−7 used for all methods except Implicit-Explicit Schwarz, which uses Δ𝑡 = 1.0 ×
10−8 in explicit domain.  

1Hoy et al., 2021; Mota et al., 2022 (under review).



19 Numerical Results: 1D Impact Problem1

• Penalty methods overpredict contact point location 

between impact and release times

• Explicit LM method under-predicts release time

• Schwarz methods capture release time to an accuracy 

of ≈0.1%.

Contact point position: of the right-most node of left bar (Ω1) as a function of time

1Hoy et al., 2021; Mota et al., 2022 (under review).



20 Numerical Results: 1D Impact Problem1

Mass-averaged velocity: of the left bar (Ω1) as a function of time

• Similar conclusions can be drawn from mass-averaged 

velocity

• Schwarz variants calculate mass-averaged velocity to 

a sufficiently greater accuracy than any of the 

conventional methods, especially near the time of 

release
1Hoy et al., 2021; Mota et al., 2022 (under review).



21 Numerical Results: 1D Impact Problem1

Total energy relative error: for the left bar (Ω1) as a function of time

Total energy should 

be conserved for 

this problem

• Total energy error is 

negative for all 6 

methods ⟹ all 

methods are stable.

• All three 

conventional methods 

exhibit total energy 

loss of up to 9% 

following contact.

• Unlike conventional contact methods, Schwarz achieves an 

error of at most 0.25% in the total energy!

➢ Explicit-Explicit Schwarz gives most accurate total 

energy, followed by Implicit-Implicit Schwarz and 

Implicit-Explicit Schwarz

1Hoy et al., 2021; Mota et al., 2022 (under review).



22 Numerical Results: 1D Impact Problem1

Contact point force: for the left bar (Ω1) as a function of time

• Three conventional methods exhibit some undesirable artifacts in contact point force but deliver in 

general a smooth solution

• Schwarz solutions exhibit oscillations following instantiation of contact ⟶ “chatter” problem

➢ Schwarz method with largest total energy loss (Implicit-Explicit) exhibits least amount of chatter

➢ Energy dissipation is necessary for establishment of persistent contact [Solberg et al., 1998]

❖ Chatter problem can likely be mitigated through addition of numerical dissipation

1Hoy et al., 2021; Mota et 

al., 2022 (under review).

WIP: mitigating 

chatter problem.



23 Numerical Results: 1D Impact Problem1

Convergence of Schwarz methods

1Hoy et al., 2021; Mota et 

al., 2021 (under review).

Mesh convergence of kinetic energy for left bar 

(Ω1) when Δ𝑡 = 1.0 × 10−8
# Schwarz iterations required for 

convergence (𝑁𝑥 =200, Δ𝑡 = 1.0 × 10−7)

• Convergence rates are comparable to published results [Tezaur et al., 2021]

• At most 5 Schwarz iterations are needed for convergence

➢ Explicit-Explicit Schwarz variant requires fewest # iterations for convergence



24 Summary & Future Work

Summary:

• The Schwarz alternating method has shown promise as a novel technique for simulating multi-scale 

mechanical contact

➢ Contact constraints are replaced with transmission BCs applied iteratively on contact boundaries

➢ Schwarz method delivers substantially more accurate solution than conventional contact approaches in 

contact point displacement, mass-averaged velocity, impact time, release time, and kinetic, potential 

total energies

➢ An unfortunate consequence of the method’s ability to conserve energy so well appears to be the 

introduction of chatter in contact point velocity and force.

Ongoing/future work:

• Introduction of dissipation and/or numerical relaxation to mitigate chatter problem.

• Robin-Robin transmission condition formulation of non-overlapping Schwarz → promising preliminary 

results!

• Introduction of additional or alternate contact conditions into Schwarz formulation

• Implementation/evaluation of the Schwarz alternating method in multi-D

➢ Requires the development of operators for consistent transfer of contact traction BCs using concept of 

prolongation/restriction
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Two-step process to the computational simulation of contact:

1. Proximity search: computer science problem, has received much 

attention due to importance in video game development ☺

2. Contact enforcement step: existing methods (penalty, Lagrange 

multiplier, augmented Lagrangian) suffer from poor performance 

➢ Long simulation times 

➢ Lack of accuracy 

➢ Lack of robustness 

27 Motivation

• Large scale structural failure frequently originates from small scale 

phenomena (e.g, defects, microcracks, inhomogeneities), which 

grow quickly in unstable manner

➢ Concurrent multiscale methods are essential to capture 

correctly the multiscale behavior!

➢ Stable, accurate and robust methods for simulating mechanical

contact (touching surfaces, sliding, tightened bolts, impact) are 

equally important!

Above: roof failure of Boeing 737 aircraft 
due to fatigue cracks. From imechanica.org

This talk.

Above: gears in contact within MEMS 
device.  From sandia.gov/media



28 Schwarz Alternating Method for Domain Decomposition

▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

Initialize:

▪ Solve PDE by any method on Ω1 w/ initial guess for Dirichlet BCs on Γ1.

Iterate until convergence:

▪ Solve PDE by any method (can be different than for Ω1) on Ω2 w/ transmission BCs on 

Γ2 that are the values just obtained for Ω1.

▪ Solve PDE by any method (can be different than for Ω2) on Ω1 w/ transmission BCs on 
Γ1 that are the values just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

▪ Schwarz alternating method most commonly used as a preconditioner for Krylov iterative 

methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for 

solving multi-scale partial differential equations (PDEs).



29 Non-Overlapping Schwarz Contact Formulation



30 Non-Overlapping Schwarz Contact Formulation

Before contact: simulation proceeds as usual

Detection of contact: proximity search and application of contact conditions to determine contact

• Overlap condition: triggered when two or more objects/domains have begun to 

overlap/penetrate each other

• Compression condition: positive normal traction

• Persistence condition: contact occurred in the previous step

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs 

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Key idea: a contact problem can be viewed as 

coupled problem while 2+ bodies are in 

contact



31 Non-Overlapping Schwarz Contact Formulation

Before contact: simulation proceeds as usual

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs 

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

There are no contact constraints!

Contact constraints replaced with BCs

applied iteratively at contact boundaries.

Detection of contact: proximity search and application of contact conditions to determine contact

• Overlap condition: triggered when two or more objects/domains have begun to 

overlap/penetrate each other

• Compression condition: positive normal traction

• Persistence condition: contact occurred in the previous step



Step 0: Initialize 𝑖 = 0 (controller time index).

𝑇0
Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1

32 Enforcement of Contact via Alternating Schwarz

Key idea: a 

contact problem 

can be viewed as 

coupled problem 

while 2+ bodies are 

in contact



Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡1 to apply Dirichlet BC.

𝑇0
Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1
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Integrate using 𝛥𝑡1

Interpolate from 
Ω2 to Γ1

Enforcement of Contact via Alternating Schwarz

Key idea: a 

contact problem 

can be viewed as 

coupled problem 

while 2+ bodies are 

in contact



Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡1 to apply Dirichlet BC.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡2 to apply Neumann (traction) BC.

𝑇0
Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1
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Integrate using 𝛥𝑡2

Interpolate 
from Ω1 to Γ2

Enforcement of Contact via Alternating Schwarz

Key idea: a 

contact problem 

can be viewed as 

coupled problem 

while 2+ bodies are 

in contact



Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡1 to apply Dirichlet BC.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡2 to apply Neumann (traction) BC.

Step 3: Check for convergence at time 𝑇𝑖+1.

𝑇0
Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1

35 Enforcement of Contact via Alternating Schwarz

Key idea: a 

contact problem 

can be viewed as 

coupled problem 

while 2+ bodies are 

in contact



Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡1 to apply Dirichlet BC.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡2 to apply Neumann (traction) BC.

Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 

𝑇0
Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇1
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Interpolate from 
Ω2 to Γ1

Integrate using 𝛥𝑡1

Enforcement of Contact via Alternating Schwarz

Key idea: a 

contact problem 

can be viewed as 

coupled problem 

while 2+ bodies are 

in contact



Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡1 to apply Dirichlet BC.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ at times 𝑇𝑖 + 𝑛𝛥𝑡2 to apply Neumann (traction) BC.

Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 

➢ If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1

37 Enforcement of Contact via Alternating Schwarz

Key idea: a 

contact problem 

can be viewed as 

coupled problem 

while 2+ bodies are 

in contact



Schwarz Algorithm for Contact

Contact criteria:

• Overlap: interpenetration of subdomains

• Compression: Positive normal traction

• Persistence: Was in contact previous step

38



A Canonical 1D Problem – 2 Colliding Elastic Bars 

Position and 

velocity of left 

contact point:

Impact & 

release times:
Contact force:

39



Comparison of Results40

• Analytic solution

• Lagrange multiplier method with implicit time integration

• Lagrange multiplier method with explicit time integration

• Penalty method with implicit time integration

• Penalty method with explicit time integration

• Schwarz method with implicit-implicit integration

• Schwarz method with implicit-explicit time integration

• Schwarz method with explicit-explicit time integration



Contact Point Position41



Mass-Averaged Velocity42



Kinetic Energy43



Potential Energy44



Total Energy45



Contact Force46



Contact Velocity47


