

The Schwarz Alternating Method for Multi-Scale Contact Mechanics

Alejandro Mota¹, **Irina Tezaur**¹, Daria Koliesnikova¹, Jonathan Hoy² ¹Sandia National Laboratories, ²University of Southern California

Congress on Numerical Methods in Engineering (CMN) 2022 Las Palmas de Gran Canaria, Spain September 12-14, 2022 SAND2022-11528C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - Example scenarios where contact arises: touching surfaces, sliding, tightened bolts, impact, ...

Above: gears in contact within MEMS device. From sandia.gov/media

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - Example scenarios where contact arises: touching surfaces, sliding, tightened bolts, impact, ...

Two-step process to the computational simulation of contact:

- 1. Proximity search
- 2. Contact enforcement step

Above: gears in contact within MEMS device. From sandia.gov/media

- Stable, accurate and robust methods for simulating mechanical contact are extremely important in computational solid mechanics
 - Example scenarios where contact arises: touching surfaces, sliding, tightened bolts, impact, ...

Two-step process to the computational simulation of contact:

- 1. Proximity search: computer science problem, has received much attention due to importance in video game development ③
- 2. Contact enforcement step

Above: gears in contact within MEMS device. From sandia.gov/media

- Stable, accurate and robust methods for simulating mechanical contact are extremely important in computational solid mechanics
 - Example scenarios where contact arises: touching surfaces, sliding, tightened bolts, impact, ...

Two-step process to the computational simulation of contact:

- 1. Proximity search: computer science problem, has received much attention due to importance in video game development ③
- 2. Contact enforcement step: existing methods (penalty, Lagrange multiplier, augmented Lagrangian) suffer from poor performance 😕
 - \succ Long simulation times \mathfrak{S}
 - ➤ Lack of accuracy ⊗
 - ➤ Lack of robustness ⊗

Above: gears in contact within MEMS device. From sandia.gov/media

- Stable, accurate and robust methods for simulating mechanical contact are extremely important in computational solid mechanics
 - Example scenarios where contact arises: touching surfaces, sliding, tightened bolts, impact, ...

Two-step process to the computational simulation of contact:

- 1. Proximity search: computer science problem, has received much attention due to importance in video game development ③
- 2. Contact enforcement step: existing methods (penalty, Lagrange multiplier, augmented Lagrangian) suffer from poor performance 😕
 - \succ Long simulation times \otimes
 - ➤ Lack of accuracy ⊗
 - ➤ Lack of robustness ⊗

This talk: new approach for simulating multi-scale mechanical contact using the Schwarz alternating method.

Above: gears in contact within MEMS device. From sandia.gov/media

- ⁷ Schwarz Alternating Method for Domain Decomposition
- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 . Iterate until convergence:
- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .

- 8 Schwarz Alternating Method for Domain Decomposition
- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 . Iterate until convergence:
- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .

- Schwarz Alternating Method for Domain Decomposition
- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 . *Iterate until convergence:*
- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs¹ if $\Omega_1 \cap \Omega_2 \neq \emptyset$.

Non-overlapping Schwarz: convergent with Robin-Robin² or alternating Dirichlet-Neumann³ transmission BCs.

¹Schwarz, 1870; Lions, 1988. ²Lions, 1990. ³Zanolli *et al.*, 1987.

¹⁰ How We Use the Schwarz Alternating Method

Overlapping Schwarz for Multi-Scale Coupling in Solid Mechanics

 Ω_1

The Schwarz alternating method has been developed/implemented for concurrent multiscale quasistatic & dynamic modeling in Sandia's Albany/LCM* and Sierra/SM codes.

¹Mota *et al.*, 2017; Mota *et al.*, 2022.

11

- Coupling is **concurrent** (two-way)
- "Plug-and-play" framework: couples different meshes, element types, solvers, integrators
- No nonphysical artifacts
- Theoretical convergence properties¹
- Easy to implement in existing HPC codes
- Scalable, fast, robust

	CPU times	# Schwarz iters
Single Ω	3h 34m	-
Schwarz	2h 42m	3.22

*<u>https://github.com/sandialabs/LCM</u>

¹² Solid Mechanics Problem Formulation

Kinetic Energy:

Potential Energy:

$$egin{aligned} T(\dot{oldsymbol{arphi}}) &:= rac{1}{2} \int_{\Omega}
ho_0 \dot{oldsymbol{arphi}} \cdot \dot{oldsymbol{arphi}} \; \mathrm{d}V, \ V(oldsymbol{arphi}) &:= \int_{\Omega} A(oldsymbol{F},oldsymbol{Z}) \; \mathrm{d}V - \int_{\Omega}
ho_0 oldsymbol{B} \cdot oldsymbol{arphi} \; \mathrm{d}V - \int_{\partial_T \Omega} oldsymbol{T} \cdot oldsymbol{arphi} \; \mathrm{d}S, \end{aligned}$$

Lagrangian:

$$L(\boldsymbol{arphi}, \dot{\boldsymbol{arphi}}) := T(\dot{\boldsymbol{arphi}}) - V(\boldsymbol{arphi}),$$

Action Functional:

$$S[\boldsymbol{\varphi}] := \int_{I} L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) \, \mathrm{d}t.$$

Euler-Lagrange Equations:

Div
$$P + \rho_0 B = \rho_0 \ddot{\varphi}$$
 in $\Omega \times I$,
 $\varphi(X, t_0) = x_0$ in Ω ,
 $\dot{\varphi}(X, t_0) = v_0$ in Ω ,
 $\varphi(X, t_0) = v_0$ in Ω ,
 $\varphi(X, t) = \chi$ on $\partial_{\varphi} \Omega \times I$,
 $PN = T$ on $\partial_T \Omega \times I$.
FEM
Semi-Discrete
Problem:
 $M\ddot{u} + f_{int}(u, \dot{u}) = f_{ext}$
 $\dot{u}(0) = u_0$
 $\dot{u}(0) = v_0$

13 Traditional Solid Mechanics Contact Formulation

Kinetic Energy:

Potential Energy Augmented with Contact Constraint:

Lagrangian:

Action Functional:

 \mathcal{C} :

Indicator function for admissible set C:

$$T(\dot{arphi}) := rac{1}{2} \int_{\Omega}
ho_0 \dot{arphi} \cdot \dot{arphi} \; \mathrm{d}V,$$

$$V(\boldsymbol{\varphi}) := \int_{\Omega} A(\boldsymbol{F}, \boldsymbol{Z}) \, \mathrm{d}V - \int_{\Omega} \rho_0 \boldsymbol{B} \cdot \boldsymbol{\varphi} \, \mathrm{d}V + \int_{\Omega} I_{\mathcal{C}}(\boldsymbol{\varphi}) \, \mathrm{d}V - \int_{\partial_{\boldsymbol{T}} \Omega} \boldsymbol{T} \cdot \boldsymbol{\varphi} \, \mathrm{d}S.$$

 $L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) := T(\dot{\boldsymbol{\varphi}}) - V(\boldsymbol{\varphi}),$

 $S[\boldsymbol{\varphi}] := \int_{I} L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) \, \mathrm{d}t.$

The set of admissible configurations $\boldsymbol{\varphi}$ in which interpenetration does not occur

$$I_{\mathcal{C}}(oldsymbol{arphi}):=egin{cases} 0, & ext{if}\ oldsymbol{arphi}\in\mathcal{C},\ \infty, & ext{if}\ oldsymbol{arphi}
otin\mathcal{C}, \end{pmatrix}$$

Contact constraint can be enforced strictly or approximately

- *Strict enforcement*: Lagrange multiplier methods
- Approximate enforcement: penalty methods

14 Non-Overlapping Schwarz Contact Formulation

Non-Overlapping Schwarz Contact Formulation 15

- Domain decomposition
- \succ Discretization and time-stepper in Ω_1 (red)
- \blacktriangleright Discretization and time-stepper in Ω_2 (green)
- Controller time-stepper (blue): defines global timesteps $I_0, I_1, ...$ at which subdomains are synchronized
- Problem is solved without any Schwarz iteration in time intervals I_0 and I_2 , as there is no contact.

Can use *different integrators* with *different time steps* within each domain!

¹⁶ Non-Overlapping Schwarz Contact Formulation

- ¹⁷ Non-Overlapping Schwarz Contact Formulation
 - Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact
 - Alternating Dirichlet-Neumann (traction) Schwarz iteration is applied once interpenetration has been detected, to correct the interpenetration.

There are no contact constraints!

Contact constraints replaced with **BCs** applied **iteratively** at contact boundaries.

- ¹⁸ Numerical Results: 1D Impact Problem¹
- Impact of two 1D identical linear elastic prismatic rods discretized using $N_x = 200$ linear elements with exact analytic solution [Carpenter *et al.*, 1991]

- Schwarz alternating method compared to three conventional contact algorithms with a zero gap contact constraint
 - > Implicit and explicit penalty method with penalty parameter $\tau = 7.5 \times 10^4$
 - > Forward increment (explicit) Lagrange multiplier (LM) method [Carpenter et al., 1991]
- Time stepper: Newmark-beta
 - Schwarz couplings included Explicit-Explicit, Implicit-Explicit and Implicit-Implicit
 - > $\Delta t = 1.0 \times 10^{-7}$ used for all methods except Implicit-Explicit Schwarz, which uses $\Delta t = 1.0 \times 10^{-8}$ in explicit domain. ¹Hoy *et al.*, 2021; Mota *et al.*, 2022 (under review).

¹⁹ Numerical Results: 1D Impact Problem¹

Contact point position: of the right-most node of left bar (Ω_1) as a function of time

¹Hoy *et al.*, 2021; Mota *et al.*, 2022 (under review).

- Penalty methods **overpredict** contact point location between impact and release times
- Explicit LM method under-predicts release time
- Schwarz methods capture release time to an accuracy of $\approx 0.1\%$.

²⁰ Numerical Results: 1D Impact Problem¹

Mass-averaged velocity: of the left bar (Ω_1) as a function of time

¹Hoy *et al.*, 2021; Mota *et al.*, 2022 (under review).

- Similar conclusions can be drawn from mass-averaged velocity
- Schwarz variants calculate mass-averaged velocity to a **sufficiently greater accuracy** than any of the conventional methods, especially near the time of release

²¹ Numerical Results: 1D Impact Problem¹

Total energy relative error: for the left bar (Ω_1) as a function of time

- Total energy error is negative for all 6 methods ⇒ all methods are stable.
- All three conventional methods exhibit total energy loss of up to 9% following contact.

- Unlike conventional contact methods, **Schwarz** achieves an error of **at most 0.25**% in the total energy!
 - Explicit-Explicit Schwarz gives most accurate total energy, followed by Implicit-Implicit Schwarz and Implicit-Explicit Schwarz

¹Hoy *et al.*, 2021; Mota *et al.*, 2022 (under review).

- Three conventional methods exhibit some undesirable artifacts in contact point force but deliver in general a smooth solution
- Schwarz solutions exhibit oscillations following instantiation of contact \rightarrow "chatter" problem
 - > Schwarz method with largest total energy loss (Implicit-Explicit) exhibits least amount of chatter
 - > Energy dissipation is necessary for establishment of persistent contact [Solberg et al., 1998]
 - Chatter problem can likely be mitigated through addition of numerical dissipation

²³ Numerical Results: 1D Impact Problem¹

Convergence of Schwarz methods

- Convergence rates are comparable to published results [Tezaur et al., 2021]
- At most 5 Schwarz iterations are needed for convergence
 - Explicit-Explicit Schwarz variant requires fewest # iterations for convergence

¹Hoy *et al.*, 2021; Mota *et al.*, 2021 (under review).

²⁴ Summary & Future Work

Summary:

- The Schwarz alternating method has shown promise as a **novel technique** for simulating **multi-scale mechanical contact**
 - > Contact constraints are replaced with **transmission BCs** applied iteratively on contact boundaries
 - Schwarz method delivers substantially more accurate solution than conventional contact approaches in contact point displacement, mass-averaged velocity, impact time, release time, and kinetic, potential total energies
 - An unfortunate consequence of the method's ability to conserve energy so well appears to be the introduction of chatter in contact point velocity and force.

Ongoing/future work:

- Introduction of **dissipation** and/or **numerical relaxation** to mitigate chatter problem.
- Robin-Robin transmission condition formulation of non-overlapping Schwarz → promising preliminary results!
- Introduction of additional or alternate contact conditions into Schwarz formulation
- Implementation/evaluation of the Schwarz alternating method in **multi-D**
 - Requires the development of operators for consistent transfer of contact traction BCs using concept of prolongation/restriction

25 **References**

- H. Schwarz, Uber einen Grenzubergang durch alternierendes verfahren, Vierteljahrsschriftder Naturforschenden Gesellschaft in Zurich, 15 (1870), pp. 272-286.
- P.L. Lions. "On the Schwarz alternating method I." In: 1988, First International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia.
- P. L. Lions, On the Schwarz alternating method III: A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, J. P´eriaux, and O. B. Widlund, eds., Society for Industrial and Applied Mathematics, 1990, pp. 202-223
- P. Zanolli, Domain decomposition algorithms for spectral methods, CALCOLO, 24 (1987), pp. 201-240.
- A. Mota, I. Tezaur, and C. Alleman, The Schwarz alternating method, Comput. Meth. Appl. Mech. Engng., 319 (2017), pp. 19-51.
- A. Mota, I. Tezaur, and G. Phlipot, The Schwarz alternating method for transient solid dynamics, Int. J. Numer. Meth. Engng. 1-35, 2022.
- N. J. Carpenter, R. L. Taylor, and M. G. Katona, Lagrange constraints for transient finite element surface contact, International journal for numerical methods in engineering, 32 (1991), pp. 103-128.
- J. Hoy, I. Tezaur, A. Mota. The Schwarz alternating method for multi-scale contact mechanics. CSRI Summer Proceedings, E. Galvan and D. Smith, eds., Technical Report SAND2021-9886C, Sandia National Laboratories, 2021.
- A. Mota, I. Tezaur, J. Hoy. The Schwarz alternating method for multi-scale contact mechanics. Mathematical & Computational Applications (MCA) (under review).
- J. M. Solberg and P. Papadopoulos, A finite element method for contact/impact, Finite Elements in Analysis and Design, 30 (1998), pp. 297-311.
- I. Tezaur, T. Voth, J. Niederhaus, J. Robbins, and J. Sanchez, An extended finite element method (XFEM) formulation for multi-material Eulerian solid mechanics in the Alegra code (in preparation).

Start of Backup Slides

- Large scale structural failure frequently originates from small scale phenomena (e.g, defects, microcracks, inhomogeneities), which grow quickly in unstable manner
 - Concurrent multiscale methods are essential to capture correctly the multiscale behavior!
 - Stable, accurate and robust methods for simulating mechanical contact (touching surfaces, sliding, tightened bolts, impact) are equally important!

Two-step process to the computational simulation of contact:

- 1. Proximity search: computer science problem, has received much attention due to importance in video game development ③
- 2. Contact enforcement step: existing methods (penalty, Lagrange multiplier, augmented Lagrangian) suffer from poor performance (8)
 - ➢ Long simulation times ⊗
 - ➤ Lack of accuracy ⊗
 - ➤ Lack of robustness ⊗

Above: roof failure of Boeing 737 aircraft due to fatigue cracks. From *imechanica.org*

Above: gears in contact within MEMS device. From *sandia.gov/media*

This talk.

- Schwarz Alternating Method for Domain Decomposition 28
- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Iterate until convergence:

Initialize:

 Ω_1

 Γ_2

 Γ_1

 Ω_2

- Solve PDE by any method (can be different than for Ω_1) on Ω_2 w/ transmission BCs on Γ_2 that are the values just obtained for Ω_1 .
- Solve PDE by any method (can be different than for Ω_2) on Ω_1 w/ transmission BCs on Γ_1 that are the values just obtained for Ω_2 .
- Schwarz alternating method most commonly used as a *preconditioner* for Krylov iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a *discretization method* for solving multi-scale partial differential equations (PDEs).

67

H. Schwarz (1843 - 1921)

²⁹ Non-Overlapping Schwarz Contact Formulation

³⁰ Non-Overlapping Schwarz Contact Formulation

Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact

Detection of contact: proximity search and application of contact conditions to determine contact

- Overlap condition: triggered when two or more objects/domains have begun to overlap/penetrate each other
- *Compression condition:* positive normal traction
- *Persistence condition:* contact occurred in the previous step

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

$$\begin{cases} \boldsymbol{M}_1 \ddot{\boldsymbol{u}}_1^{n+1} + \boldsymbol{f}_1^{\mathrm{int};n+1} = \boldsymbol{f}_1^{\mathrm{ext};n+1} \\ \boldsymbol{\varphi}_1^{n+1} = \boldsymbol{\chi}, \text{ on } \partial_{\boldsymbol{\varphi}} \Omega_1 \backslash \Gamma, \\ \boldsymbol{\varphi}_1^{n+1} = \boldsymbol{\varphi}_2^n, \text{ on } \Gamma, \end{cases} \quad \begin{cases} \boldsymbol{M}_2 \ddot{\boldsymbol{u}}_2^{n+1} + \boldsymbol{f}_2^{\mathrm{int};n+1} = \boldsymbol{f}_2^{\mathrm{ext};n+1} \\ \boldsymbol{\varphi}_2^{n+1} = \boldsymbol{\chi}, \text{ on } \partial_{\boldsymbol{\varphi}} \Omega_2 \backslash \Gamma, \\ \boldsymbol{T}_2^{n+1} = \boldsymbol{T}_1^{n+1}, \text{ on } \Gamma \end{cases}$$

Non-Overlapping Schwarz Contact Formulation

There are no contact constraints!

Contact constraints replaced with **BCs** applied **iteratively** at contact boundaries.

Detection of contact: proximity search and application of contact conditions to determine contact

- Overlap condition: triggered when two or more objects/domains have begun to overlap/penetrate each other
- *Compression condition:* positive normal traction
- *Persistence condition:* contact occurred in the previous step

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

$$\begin{cases} \boldsymbol{M}_1 \ddot{\boldsymbol{u}}_1^{n+1} + \boldsymbol{f}_1^{\mathrm{int};n+1} = \boldsymbol{f}_1^{\mathrm{ext};n+1} \\ \boldsymbol{\varphi}_1^{n+1} = \boldsymbol{\chi}, \text{ on } \partial_{\boldsymbol{\varphi}} \Omega_1 \backslash \Gamma, \\ \boldsymbol{\varphi}_1^{n+1} = \boldsymbol{\varphi}_2^n, \text{ on } \Gamma, \end{cases} \begin{cases} \boldsymbol{M}_2 \ddot{\boldsymbol{u}}_2^{n+1} + \boldsymbol{f}_2^{\mathrm{int};n+1} = \boldsymbol{f}_2^{\mathrm{ext};n+1} \\ \boldsymbol{\varphi}_2^{n+1} = \boldsymbol{\chi}, \text{ on } \partial_{\boldsymbol{\varphi}} \Omega_2 \backslash \Gamma, \\ \boldsymbol{T}_2^{n+1} = \boldsymbol{T}_1^{n+1}, \text{ on } \Gamma \end{cases}$$

<u>Step 0</u>: Initialize i = 0 (controller time index).

Controller time stepperContController time stepperContCanCanTime integrator for Ω_1 CoupTime integrator for Ω_2 i

Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact

Controller time stepper contactcan be $Time integrator for <math>\Omega_1$ coupledwhile 2+ $Time integrator for <math>\Omega_2$ in coupled

Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact

<u>Step 0</u>: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Controller time stepper Time integrator for Ω_1 in contact Time integrator for Ω_2

Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

34

³⁵ Enforcement of Contact via Alternating Schwarz

Step 0: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

<u>Step 3</u>: Check for convergence at time T_{i+1} .

Controller time stepper Time integrator for Ω_1 Time integrator for Ω_2

Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

- **<u>Step 3</u>**: Check for convergence at time T_{i+1} .
- \succ If unconverged, return to Step 1.

36

<u>Step 0</u>: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

<u>Step 3</u>: Check for convergence at time T_{i+1} .

- If unconverged, return to Step 1.
- > If converged, set i = i + 1 and return to Step 1.

37

38 Schwarz Algorithm for Contact

1: $k \leftarrow 0$	
2: repeat	▷ controller time stepper
3: Check contact criteria	▷ defined in Section 3.1
4: if contact detected then	
5: $\varphi(\Omega, t_k) \leftarrow \text{solution of Algorithm 2 in } \Omega \times I$	I_k \triangleright contact enforcement
6: else	
7: $\varphi(\Omega, t_k) \leftarrow \text{solution of (9) in } \Omega \times I_k$	⊳ no contact
8: end if	
9: $k \leftarrow k+1$	
10: until $k = N$	\triangleright <i>N</i> is the total number of steps
	_

Algorithm 1: Full simulation workflow with Schwarz-based contact enforcement for the specific case of two subdomains.

Contact criteria:

- **Overlap:** interpenetration of subdomains
- **Compression:** Positive normal traction
- Persistence: Was in contact previous step

1:	$n \leftarrow 1$	
2:	repeat	⊳ Schwarz loop
3:	for <i>i</i> from 1 to 2 do	⊳ subdomain loop
4:	$oldsymbol{arphi}^{(n)}(\Omega_i,t_k) \leftarrow oldsymbol{x}^{(i)}_k$	⊳ position IC
5:	$\dot{oldsymbol{arphi}}^{(n)}(\Omega_i,t_k) \leftarrow oldsymbol{v}_k^{(i)}$	⊳ velocity IC
6:	if $i = 1$ then	⊳ first subdomain
7:	$oldsymbol{arphi}^{(n)}(\partial_{oldsymbol{arphi}}\Omega_{1},I_{k})\leftarrowoldsymbol{\chi}$	⊳ regular Dirichlet BC
8:	$\boldsymbol{\varphi}^{(n)}(\Gamma, I_k) \leftarrow P_{\Omega_2 \to \Gamma}[\boldsymbol{\varphi}^{(n-1)}(\Omega_1, I_k)]$	Schwarz Dirichlet BC
9:	$\boldsymbol{PN} \leftarrow \boldsymbol{T} \text{ on } [\boldsymbol{\partial_T} \Omega_1 \cup \Gamma] \times I_k$	▷ regular traction BC
10:	$\boldsymbol{\varphi}(\Omega_1, I_k) \leftarrow ext{solution of (14)}$	\triangleright solve dynamic problem in $\Omega_1 \times I_k$
11:	else	▷ second subdomain
12:	$oldsymbol{arphi}^{(n)}([\partial_{oldsymbol{arphi}}\Omega_2\cup\Gamma],I_k)\leftarrow oldsymbol{\chi}$	⊳ regular Dirichlet BC
13:	$\boldsymbol{PN} \leftarrow \boldsymbol{T} ext{ on } \partial_{\boldsymbol{T}} \Omega_2 imes I_k$	regular traction BC
14:	$oldsymbol{PN} \leftarrow P_{\Omega_1 ightarrow \Gamma}[oldsymbol{T}^{(n)}(\Omega_2,t_k)]$	Schwarz traction BC
15:	$\boldsymbol{\varphi}(\Omega_2, I_k) \leftarrow ext{solution of (15)}$	\triangleright solve dynamic problem in $\Omega_2 \times I_k$
16:	end if	
17:	end for	
18:	$n \leftarrow n+1$	
19:	until converged	

Algorithm 2: The Schwarz alternating method for contact enforcement during a controller time interval I_k for the specific case of two subdomains.

ħ

A Canonical ID Problem – 2 Colliding Elastic Bars

Impact & release times:

$$t_{\rm imp} = t_0 + rac{g}{v_0}, \ t_{\rm rel} = t_{\rm imp} + 2L\sqrt{rac{
ho}{E}},$$
 Contact force: $f_{\rm contact} = v_0\sqrt{E
ho}A$,

Comparison of Results

- Analytic solution
- Lagrange multiplier method with implicit time integration
- Lagrange multiplier method with explicit time integration
- Penalty method with implicit time integration
- Penalty method with explicit time integration
- Schwarz method with implicit-implicit integration
- Schwarz method with implicit-explicit time integration
- Schwarz method with explicit-explicit time integration

41 **Contact Point Position**

42 Mass-Averaged Velocity

43 Kinetic Energy

44 **Potential Energy**

ħ

46 Contact Force

47 **Contact Velocity**

