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2 Motivation

The past decades have seen tremendous investment in simulation 

frameworks for coupled multi-scale and multi-physics problems.  

• Frameworks rely on established mathematical theories to couple physics components.

• Monolithic (Lagrange multipliers)

• Partitioned (loose) coupling

• Iterative (Schwarz, optimization)
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Traditional + Data-Driven Methods

• PINNs

• Neural ODEs

• Projection-based ROMs, …

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to 

handle plug-and-play integration of non-traditional, data-driven models!

• There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.



• Alternating Schwarz-based coupling

• Optimization-based coupling

• Coupling via generalized mortar methods

5 Flexible Heterogeneous Numerical Methods (fHNM) Project

Principal research objective: 

• Discover mathematical principles guiding the assembly of standard and data-driven numerical models 

in stable, accurate and physically consistent ways. 

Principal research challenges: we lack mathematical and algorithmic understanding of how to

• “Mix-and-match” standard and data-driven models from three-classes

➢ Class A: projection-based reduced order models (ROMs)

➢ Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

➢ Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

• Ensure well-posedness & physical consistency of the resulting heterogeneous models.

• Solve such heterogeneous models efficiently.

Three coupling methods:

This talk

This talk

Talk by A. DeCastro



1. Overview of the Schwarz Alternating Method 

for Concurrent Coupling

2. Overview of Projection-Based Model Order 

Reduction

3. Extension of Schwarz Alternating Method to 

FOM-ROM and ROM-ROM coupling

4. Numerical Results

5.  Summary and Future Work
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8 Schwarz Alternating Method for Domain Decomposition

▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:

▪ Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

▪ Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 

just obtained for Ω1.

▪ Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

▪ Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 

to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for 

solving multi-scale or multi-physics partial differential equations (PDEs).



9 Spatial Coupling via Alternating Schwarz

Overlapping Domain Decomposition

Non-overlapping Domain Decomposition
• Relevant for multi-material and multi-

physics coupling 

• Alternating Dirichlet-Neumann 

transmission BCs [Zanolli et al., 1987]

• Robin-Robin transmission BCs also lead 

to convergence [Lions,1990] 

• 𝜃 ∈ 0,1 : relaxation parameter (can 

help convergence)

• Dirichlet-Dirichlet transmission 

BCs [Schwarz, 1870; Lions, 1988]

Model PDE:



Step 0: Initialize 𝑖 = 0 (controller time index).

𝑇0 𝑇1

10 Time-Advancement Within the Schwarz Framework
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solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

𝑇0 𝑇1
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Integrate using 𝛥𝑡2

Interpolate 
from Ω1 to Γ2
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Time integrator for W1
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.

𝑇0 𝑇1
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Step 3: Check for convergence at time 𝑇𝑖+1.
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.

➢ If unconverged, return to Step 1. 

➢ If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1

Can use different integrators with 

different time steps within each domain!

15 Time-Advancement Within the Schwarz Framework
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Model PDE:



• Coupling is concurrent (two-way).

• Ease of implementation into existing massively-

parallel HPC codes.

• Scalable, fast, robust (we target real engineering 

problems, e.g., analyses involving failure of bolted 

components!).

• Coupling does not introduce nonphysical artifacts.

• Theoretical convergence properties/guarantees.

16

• “Plug-and-play” framework:

➢ Ability to couple regions with different non-conformal meshes, different element types

and different levels of refinement to simplify task of meshing complex geometries.

➢ Ability to use different solvers/time-integrators in different regions.

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for Multi-scale FOM-FOM Coupling in Solid Mechanics1

1 Mota et al. 2017; Mota et al. 2022.
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18 Projection-Based Model Order Reduction via the POD/Galerkin
Method

18

Full Order Model (FOM): 𝑴
𝑑2𝒙

𝑑𝑡2
+ 𝒇int 𝒙 = 𝒇ext

Proper Orthogonal Decomposition (POD):

Solve ODE at different 

design points
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Hyper-reduction/sample mesh
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20 Schwarz Extensions to FOM-ROM and ROM-ROM Couplings20

Enforcement of Dirichlet boundary conditions (DBCs) in ROM at indices 𝒊Dir
• Method I in [Gunzburger et al. 2007] is employed 

Choice of domain decomposition

• Error-based indicators that help decide in what region of the domain a ROM can be viable       

should drive domain decomposition (future work) [Bergmann et al. 2018]

𝒅(𝑡) ≈ ഥ𝒅 + 𝜱𝒅(𝑡),   𝒗(𝑡) ≈ ഥ𝒗 + 𝜱ෝ𝒗(𝑡), 𝒂(𝑡) ≈ ഥ𝒂 + 𝜱ෝ𝒂(𝑡)

➢ POD modes made to satisfy homogeneous DBCs:  𝜱 𝒊Dir, ∶ = 𝟎

➢ BCs imposed by modifying ഥ𝒅, ഥ𝒗, ഥ𝒂:  ഥ𝒅 𝒊Dir ← 𝝌𝑑, ഥ𝒗 𝒊Dir ← 𝝌𝑣, ഥ𝒂 𝒊Dir ← 𝝌𝑎

Snapshot collection and reduced basis construction

• Ideally, generate snapshots/reduced bases separately in each subdomain Ω𝑖 [Hoang et al. 2021]

• POD results presented herein use snapshots obtained via FOM-FOM coupling on Ω = 𝑖ڂ Ω𝑖

For nonlinear solid mechanics, special hyper-reduction methods need to preserve Hamiltonian 

structure, e.g., Energy-Conserving Sampling and Weighting Method (ECSW) [Farhat et al.  2015]

• Results here are for linear problem, so hyper-reduction is not required
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22 Numerical Example: Linear Elastic Wave Propagation Problem22

• Linear elastic clamped beam with Gaussian initial condition.

• Simple problem with analytical exact solution but very stringent test for discretization/coupling 

methods.

• Couplings tested: FOM-FOM, FOM-ROM, ROM-ROM, implicit-explicit, implicit-implicit, explicit-

explicit.

Above: 3D rendering of clamped beam with Gaussian initial condition.  

Right: Initial condition (blue) and final solution (red).  Wave profile is 

negative of initial profile at time  T = 1.0e-3.

• ROMs are reproductive and based on the

POD/Galerkin method.

➢ 50 POD modes capture ~100% snapshot 

energy



23

Coupling delivers accurate solution if each subdomain model is reasonably accurate, 

can couple different discretizations with different 𝚫𝒙, 𝚫𝒕 and basis sizes.

Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

Single Domain FOM 3 overlapping subdomain     

ROM1-FOM2-ROM3

2 non-overlapping subdomain 

FOM4-ROM5 (𝜃 = 1)

Ω1
Ω2

Ω3

0 0.5
1

0.750.25

Ω1
Ω2

0 0.3

0.3 1

Ω0 1

1Implicit 40 mode POD ROM, ∆𝑡=1e-6, ∆𝑥=1.25e-3
2Implicit FOM, ∆𝑡 =1e-6, ∆𝑥 =8.33e-4
3Explicit 50 mode POD ROM, ∆𝑡 =1e-7, ∆𝑥 =1e-3

5Implicit FOM, ∆𝑡 =2.25e-7, 

∆𝑥 =1e-6
4Explicit 50 mode POD ROM, 

∆𝑡 =2.25e-7, ∆𝑥 =1e-6



24 Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

disp MSE6 velo MSE acce MSE

Overlapping ROM1-FOM2-ROM3 1.05e-4 1.40e-3 2.32e-2

Non-overlapping FOM4-ROM5 2.78e-5 2.20e-4 3.30e-3

1Implicit 40 mode POD ROM, ∆𝑡 =1e-6, ∆𝑥 =1.25e-3
2Implicit FOM, ∆𝑡 =1e-6, ∆𝑥 =8.33e-4
3Explicit 50 mode POD ROM, ∆𝑡 =1e-7, ∆𝑥 =1e-3
4Implicit FOM, ∆𝑡 =2.25e-7, ∆𝑥 =1e-6
5Explicit 50 mode POD ROM, ∆𝑡 =2.25e-7, ∆𝑥 =1e-6

6MSE=

Coupled models are reasonably accurate w.r.t. FOM-FOM coupled analogs and convergence 

with respect to basis refinement for FOM-ROM and ROM-ROM coupling is observed.



25 Linear Elastic Wave Propagation Problem: ROM-ROM Couplings

ROM-ROM coupling gives errors < 𝑶(1e-6) & speedups over FOM-FOM coupling for basis sizes > 40. 

# POD modes in Ω1
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MSE in displacement for 2 

subdomain ROM-ROM coupling
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Average # Schwarz iterations for 2 

subdomain ROM-ROM coupling

CPU times for 2 subdomain ROM-ROM 

coupling normalized by FOM-FOM CPU time

• Smaller ROMs are not the fastest: less accurate & require more Schwarz iterations to converge.

• All couplings converge in ≤ 4 Schwarz iterations on average                                                     (FOM-

(FOM-FOM coupling requires average of 2.4 Schwarz iterations).
Overlapping implicit-implicit coupling 

with Ω1 = 0, 0.75 , Ω2= 0.25, 1



26 Linear Elastic Wave Propagation Problem: FOM-ROM Couplings

FOM-ROM coupling shows convergence with basis refinement.  FOM-ROM couplings are 10-

15% slower than comparable FOM-FOM coupling due to increased # Schwarz iterations.

MSE for 2 subdomain 

FOM-ROM coupling
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Average # Schwarz iterations for 2 

subdomain couplings

Overlapping 
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coupling with 

Ω1 = 0, 0.75 ,
Ω2= 0.25, 1

WIP: 

understanding & 

improving FOM-

ROM coupling 

performance.



Single Domain, 10 mode POD

10 mode POD – 50 mode POD 10 mode POD – FOM

Figures above: Ω1 = 0, 0.75 , Ω2= 0.25, 1

20 mode POD – FOM

10 mode POD – 10 mode POD

Accuracy can be improved by “gluing” 

several smaller, spatially-local models

Single Domain, FOM (truth)

Figure above: Ω1 = 0, 0.3 , Ω2= 0.25, 1 ,  

20 mode POD – FOM

Figure below: Ω1 = 0, 0.26 , Ω2=
0.25, 0.75 , Ω3 = 0.74, 1 , 15 mode POD –

30 mode POD – 15 mode POD 

Inaccurate model + accurate model ≠ accurate model.

Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

Observation suggests need for 

“smart” domain decomposition.
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29 Summary & Future Work

Summary:

• Initial prototyping suggests that the Schwarz alternating method can be effective coupling method that 

enables coupling of conventional and data-driven models (projection-based ROMs). 

• The coupling methodology enables the use of different mesh resolutions, reduced basis sizes, and different 

time integrators with different time steps in different subdomains.

• Preliminary results suggest that the choice of domain decomposition (DD) is critical to accuracy of the 

coupled model.

Ongoing/future work:

• Implementation/prototyping of coupling method on non-linear problems with ECSW-based hyper-reduction.

• Implementation/prototyping of coupling method in multi-D.

• Optimizing FOM-ROM and ROM-ROM coupling code/algorithm.

• Development of error indicators to guide DD in an error-controlling way, e.g., [Bergmann et al. 2018].

• Analysis of proposed coupling approach for FOM-ROM and ROM-ROM coupling.

• Development of snapshot collection approaches that do not require full system simulation [Hoang et al. 2021]

• Extension of the coupling framework to include Physics-Informed Neural Networks (PINNs).

• Extension of coupling method to multi-material and multi-physics problems.
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How We Use the Schwarz Alternating Method32
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Schwarz for Multi-scale FOM-FOM Coupling in Solid Mechanics 
and Contact Dynamics 

The overlapping Schwarz alternating method has been developed/implemented for concurrent 

multi-scale quasistatic1 & dynamic2 modeling in Sandia’s Albany/LCM and Sierra/SM codes.

CPU times # Schwarz 
iters

Single Ω 3h 34m −

Schwarz 2h 42m 3.22

1Mota et al., 2017.  2Mota et al., 2022.

We are currently developing a novel contact 

method3 based on non-overlapping Schwarz.

3Hoy et al., 2021; 

Mota et al., 2022.
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Schwarz for Multi-scale FOM-FOM Coupling in Solid Mechanics 
and Contact Dynamics 

The overlapping Schwarz alternating method has been developed/implemented for concurrent 

multi-scale quasistatic1 & dynamic2 modeling in Sandia’s Albany/LCM and Sierra/SM codes.

CPU times # Schwarz 
iters

Single Ω 3h 34m −

Schwarz 2h 42m 3.22

1Mota et al., 2017.  2Mota et al., 2022.

We are currently developing a novel contact 

method3 based on non-overlapping Schwarz.

3Hoy et al., 2021; 

Mota et al., 2022.

Talk by A. Mota
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Coupling delivers accurate solution if each subdomain model is reasonably accurate, 

can couple different discretizations with different 𝚫𝒙, 𝚫𝒕 and basis sizes.

Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

Single Domain FOM 3 overlapping subdomain     

ROM1-FOM2-ROM3

2 non-overlapping subdomain 

FOM4-ROM5 (𝜃 = 1)

Ω1
Ω2

Ω3

0 0.5
1

0.750.25

Ω1
Ω2

0 0.3

0.3 1
1Implicit 40 mode POD ROM, ∆𝑡=1e-6, ∆𝑥=1.25e-3
2Implicit FOM, ∆𝑡 =1e-6, ∆𝑥 =8.33e-4
3Explicit 50 mode POD ROM, ∆𝑡 =1e-7, ∆𝑥 =1e-3

5Implicit FOM, ∆𝑡 =2.25e-7, 

∆𝑥 =1e-6
4Explicit 50 mode POD ROM, 

∆𝑡 =2.25e-7, ∆𝑥 =1e-6

Ω0 1
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Linear Elastic Wave Propagation Problem: FOM-ROM and ROM-
ROM Couplings

Online 

CPU time

Total # 

Schwarz iters

Overlapping FOM1-FOM2-FOM3 68.7s 2972

Overlapping ROM4-FOM2-ROM5 81.6s 4000

Non-overlapping FOM6-FOM7 38.0s 10,516

Non-overlapping FOM6-ROM8 49.8s 13,366

1Implicit FOM, ∆𝑡 =1e-6, ∆𝑥 =1.25e-3
2Implicit FOM, ∆𝑡 =1e-6, ∆𝑥 =8.33e-4
3Explicit FOM, ∆𝑡 =1e-7, ∆𝑥 =1e-3
4Implicit 30 mode POD ROM, ∆𝑡 =1e-6, ∆𝑥 =1.25e-3
5Explicit 50 mode POD ROM, ∆𝑡 =1e-7, ∆𝑥 =1e-3
6Implicit FOM, ∆𝑡 =2.25e-7, ∆𝑥 =1e-6
7Explicit FOM, ∆𝑡 =2.25e-7, ∆𝑥 =1e-6
8Explicit 50 mode POD ROM, ∆𝑡 =2.25e-7, ∆𝑥 =1e-6

WIP: optimizing FOM-ROM and ROM-ROM coupling implementation and devising ways to 

reduce # Schwarz iterations (e.g., through relaxation parameter 𝜃)

ROMs with fewer modes do not always give rise to smaller CPU times.

➢ Less accurate models ⟹ more Schwarz iterations needed for convergence.

Using smaller time steps can decrease # Schwarz iterations.

Ω1 = 0, 0.75 , Ω2= 0.25, 1

CPU-Time 

FOM-FOM: 

7.48e1

CPU-Time 

FOM-ROM: 

1.16e2

CPU-Time 

ROM-ROM: 

7.16e1

FOM-ROM and ROM-ROM couplings often (but not always) increase # 

Schwarz iterations relative to FOM-FOM coupling.

➢ Key to improving efficiency is reducing # Schwarz iterations.

time
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