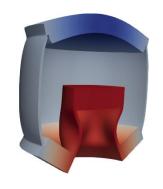
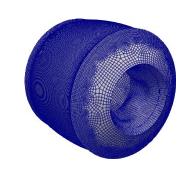
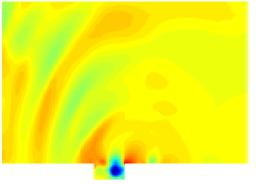


Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models for Fluid and Solid Mechanics Problems







Payton Lindsay¹, Jeff Fike¹, **Irina Tezaur**¹, Kevin Carlberg²

¹Sandia National Labs, ²Meta Research Labs/U Washington

ECCOMAS 2022

June 6-9, 2022

Oslo, Norway

SAND2021-11141C

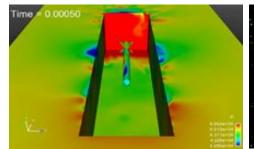
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

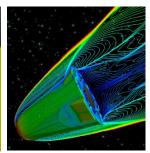
Motivation

Despite improved algorithms and powerful supercomputers, "high-fidelity" models are often too expensive for use in a design or analysis setting.

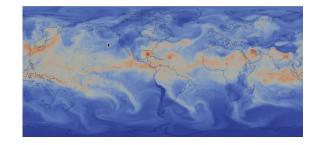
Sandia application areas in which this situation arises:

• Captive-carry and re-entry environments: Large Eddy Simulations (LES) runs require very fine meshes and can take on the order of weeks.

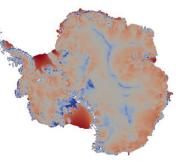




Fastener failure modeling: modeling fastener behavior in a full system presents meshing and computational challenges, which limits the number of configurations that can be studied.

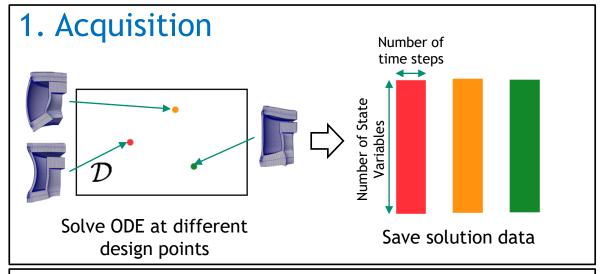


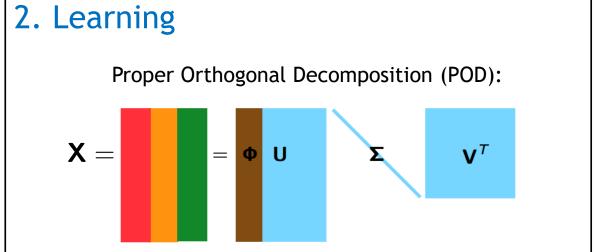
 Climate modeling (e.g., land-ice, atmosphere): high-fidelity simulations too costly for uncertainty quantification (UQ); Bayesian inference of high-dimensional parameter fields is intractable.

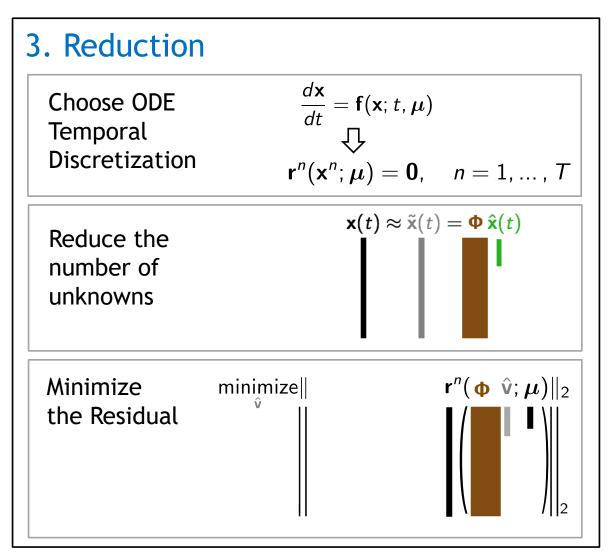


POD/LSPG* Approach to Model Reduction

Full Order Model (FOM) = Ordinary Differential Equation (ODE): $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$



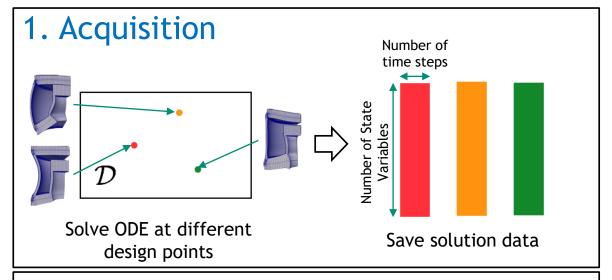


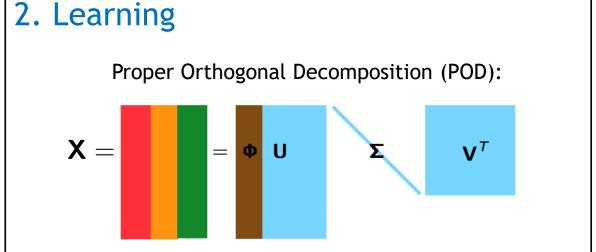


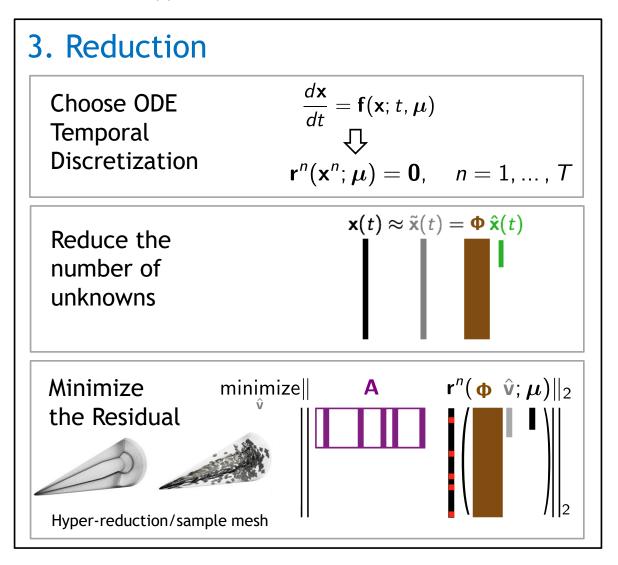
*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al., 2011; K. Carlberg et al., 2017]

POD/LSPG* Approach to Model Reduction

Full Order Model (FOM) = Ordinary Differential Equation (ODE): $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$







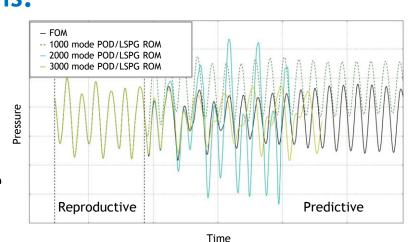
*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al., 2011; K. Carlberg et al., 2017]

Advantages of POD/LSPG projection:

- Computes a solution that minimizes the l_2 -norm of the time-discrete residual arising in each Δt
 - > Ensures that adding basis vectors yields a monotonic decrease in the least-squares objective function defining the underlying minimization problem [Carlberg et al., 2011]
- Possesses better stability and accuracy than POD/Galerkin for certain classes of problems (e.g., compressible flow) [Carlberg et al., 2013; Carlberg et al., 2017; Tezaur et al., 2018].

Room for improvement for realistic predictive applications:

- Accuracy for **predictive problems** can be inadequate
- Method may **fail to converge** for some realistic problems run in the predictive regime
- Method may struggle when applied to problems with disparate scales [Washabaugh, 2016]



Mitigation: introduction of preconditioning into LSPG ROM formulation.

LSPG Formulation:

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{y} \in \mathbb{R}^M}{\operatorname{argmin}} ||\boldsymbol{r}(\boldsymbol{\Phi} \boldsymbol{y})||_2^2$$

Optimization problem

$$\begin{split} \delta \widehat{\boldsymbol{x}}_{\text{PG}}^{(k)} &= \underset{\boldsymbol{y} \in \mathbb{R}^{M}}{\operatorname{argmin}} || \boldsymbol{J}^{(k)} \boldsymbol{\Phi} \boldsymbol{y} + \boldsymbol{r}^{(k)} ||_{2}^{2} \\ \widehat{\boldsymbol{x}}_{\text{PG}}^{(k)} &= \widehat{\boldsymbol{x}}_{\text{PG}}^{(k-1)} + \alpha_{k} \delta \widehat{\boldsymbol{x}}_{\text{PG}}^{(k)} \\ \widehat{\boldsymbol{x}}_{\text{PG}}^{(k)} &= \boldsymbol{\Phi} \widehat{\boldsymbol{x}}_{\text{PG}}^{(k)} \end{split}$$
 Gauss-Newton iteration

Normal equations

$$J_{PG}^{(k)}\delta\widehat{\boldsymbol{x}}_{PG}^{(k)} = -\boldsymbol{r}_{PG}^{(k)}$$

$$J_{PG}^{(k)} := \boldsymbol{\Phi}^T \boldsymbol{J}^{(k)T} \boldsymbol{J}^{(k)} \boldsymbol{\Phi}$$

$$\boldsymbol{r}_{PG}^{(k)} := \boldsymbol{\Phi}^T \boldsymbol{J}^{(k)T} \boldsymbol{r}^{(k)}$$

Preconditioned LSPG Formulation:

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{y} \in \mathbb{R}^M}{\operatorname{argmin}} ||\boldsymbol{Mr}(\boldsymbol{\Phi} \boldsymbol{y})||_2^2$$

Optimization problem

$$\begin{split} \delta \widehat{\boldsymbol{x}}_{\text{PPG}}^{(k)} &= \underset{\boldsymbol{y} \in \mathbb{R}^{M}}{\operatorname{argmin}} || \boldsymbol{M}^{(k)} (\boldsymbol{J}^{(k)} \boldsymbol{\Phi} \boldsymbol{y} + \boldsymbol{r}^{(k)}) ||_{2}^{2} \\ \widehat{\boldsymbol{x}}_{\text{PPG}}^{(k)} &= \widehat{\boldsymbol{x}}_{\text{PPG}}^{(k-1)} + \alpha_{k} \delta \widehat{\boldsymbol{x}}_{\text{PPG}}^{(k)} \\ \widehat{\boldsymbol{x}}_{\text{PPG}}^{(k)} &= \boldsymbol{\Phi} \widehat{\boldsymbol{x}}_{\text{PPG}}^{(k)} \end{split}$$
 Gauss-Newton iteration

Normal equations

$$J_{PPG}^{(k)} \delta \hat{\boldsymbol{x}}_{PG}^{(k)} = -\boldsymbol{r}_{PG}^{(k)}$$

$$J_{PPG}^{(k)} := \boldsymbol{\Phi}^T \boldsymbol{J}^{(k)T} \boldsymbol{M}^{(k)T} \boldsymbol{M}^{(k)} \boldsymbol{J}^{(k)} \boldsymbol{\Phi}$$

$$\boldsymbol{r}_{PPG}^{(k)} := \boldsymbol{\Phi}^T \boldsymbol{J}^{(k)T} \boldsymbol{M}^{(k)T} \boldsymbol{M}^{(k)} \boldsymbol{r}^{(k)}$$

Preconditioned LSPG ROMs

Adding preconditioning to the POD/LSPG formulation can improve not only ROM efficiency but also ROM accuracy.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

• Upper limit on ROM accuracy is obtained by taking solution increment computed by FOM, $\delta x^{(k)}$, at each time step k and projecting it onto the POD basis:

$$\delta \widetilde{\boldsymbol{\chi}}^{(k)} = \boldsymbol{\Phi} (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \delta \boldsymbol{\chi}^{(k)}$$
 (1)

- Ideal preconditioned ROM $(M^{(k)} = (J^{(k)})^{-1})$ gives rise to "projected solution increment" (1).
- As quality of preconditioner is improved $(M^{(k)} \to (J^{(k)})^{-1})$, ROM solution approaches most accurate ROM solution possible for a given basis Φ .

Preconditioning can get different residual components on approximately the same scale.

- Minimizing the raw (unweighted) residual r can be problematic for systems of PDEs where different variables have drastically different magnitudes (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].
- Adding a preconditioner can scale the ROM residual to get all the equations to be roughly of the same order.

Preconditioning LSPG formulation changes the norm defining the residual minimization.

• Norm change can improve residual-based stability constant bounding ROM solution's error (κ_0 , $\kappa_1 \to 1$).

$$\frac{1}{\kappa_0}||r(\widetilde{w})||_2 \le ||w - \widetilde{w}||_2 \le \frac{1}{\kappa_1}||r(\widetilde{w})||_2$$

Numerical Examples: Albany and SPARC codes

multi-physics finite element code

- Open-source¹, parallel, C++ code
- Component-based design for rapid development
- Contains a wide variety of constitutive models for mechanical/thermo-mechanical problems.
- Makes extensive use of libraries from the opensource Trilinos project², including preconditioners from the Ifpack library

Problems tested: quasi-static mechanical and thermo-mechanical with prediction across material parameter space³.

SPARC⁴ Flow Solver

- Next-generation transonic and hypersonic C++ CFD code developed at Sandia
- Simulates compressible flow
- Used for analyses involving captive carry and reentry vehicles
- Primary discretization is cell-centered finite volume method
- Leverages libraries from the Trilinos project²

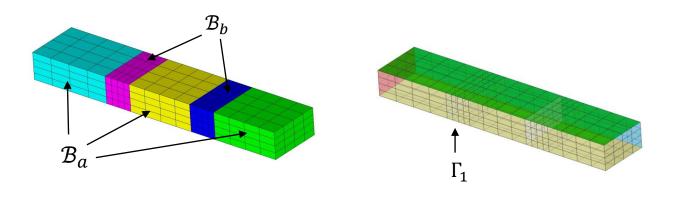
Problems tested: transient compressible laminar flow over an open cavity with prediction in time

⁴Sandia Parallel Aerodynamics and Reentry Code

¹https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end ²https://github.com/trilinos/trilinos

³P. Lindsay et al., IJNME, 2022 (accepted), https://arxiv.org/abs/2203.12180

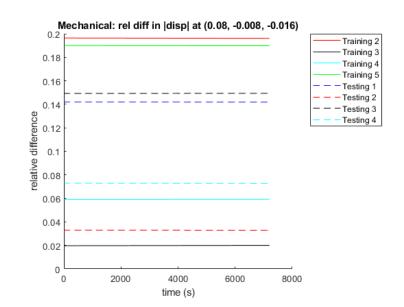
Table 2. Parameters in block \mathcal{B}_b for mechanical beam problem.



Regime	Case	$E_b(\times 10^{11}) \text{ [Pa]}$	$ u_b$	$\rho_b \; [\mathrm{kg/m^3}]$
training	1	1.38002	0.28028	9194.74
	2	2.11826	0.332646	7683.22
	3	1.82559	0.395908	6150.4
	4	1.56036	0.350415	9067.35
	5	1.68463	0.256473	7466.27
	1	1.50293	0.244704	6466.96
testing	2	1.54545	0.304329	6774.12
	3	1.47145	0.367092	8362.44
	4	1.703	0.32	7920

- Mechanical problem involving Neohookean material
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material params
 - \triangleright Material parameters in block \mathcal{B}_a are fixed
 - \triangleright Material parameters in block \mathcal{B}_b are varied (see Table 2)
- Linearly varying time-dependent pressure BC is prescribed on Γ_1 ; other boundaries are fixed
- Problem is run quasi-statically to pseudo-time t = 7200s with 1340 dofs
- Training is performed for 6 sets of parameters; testing/prediction is performed for 4 sets of parameters (see Table 2)
 - ➤ **Nontrivial variations** in displacement (up to 20%) are observed with the parameter variations considered (right figure)

 [Lindsay *et al.*, in prep.]

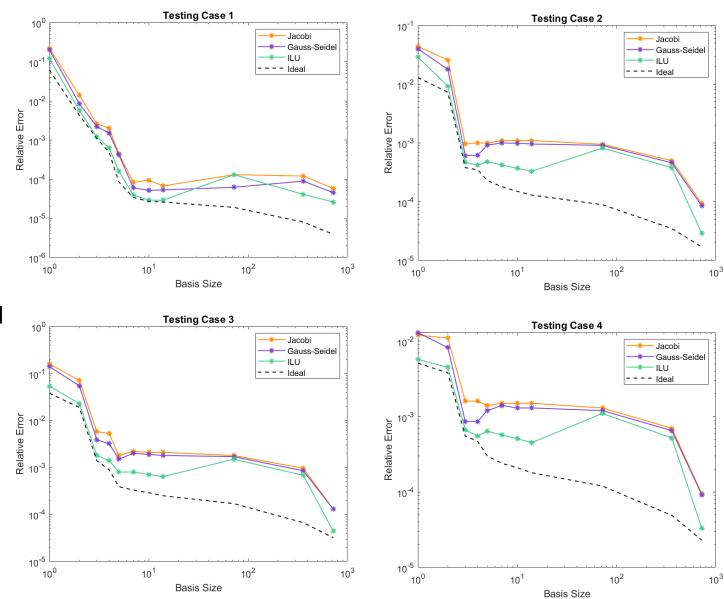


Mechanical Beam (Albany)

• Figure plots **global relative error** in approximate ROM solutions:

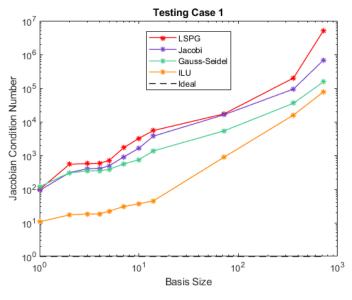
$$\epsilon \coloneqq \frac{\sum_{i=0}^{P} \left| |\boldsymbol{x}_i - \widetilde{\boldsymbol{x}}_i| \right|_2}{\sum_{i=0}^{P} \left| |\boldsymbol{x}_i| \right|_2}$$

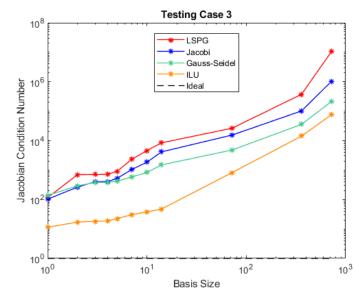
- Preconditioners evaluated: Jacobi, Gauss-Seidel, ILU and $(J^{(k)})^{-1}$ (denoted by "Ideal")
- Nonlinear solver for unpreconditioned LSPG ROM did not converge for any of the basis sizes considered.
- More sophisticated preconditioners deliver smaller errors.

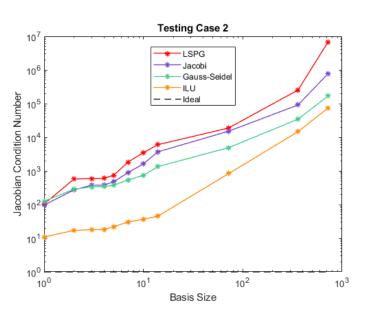


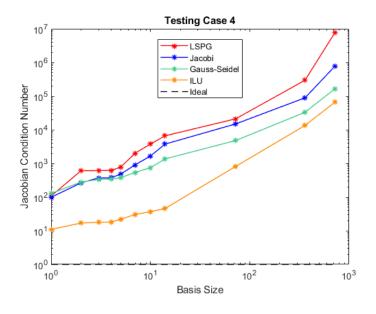
Mechanical Beam (Albany)

- Figure plots condition numbers of reduced Jacobian $(\boldsymbol{J}_{PPG}^{(k)} \text{ or } \boldsymbol{J}_{PG}^{(k)})$ for each ROM.
- A moderate reduction in condition number is obtained through preconditioning strategies.
- Most sophisticated ILU preconditioner gives rise to a reduced Jacobian with the smallest condition number.



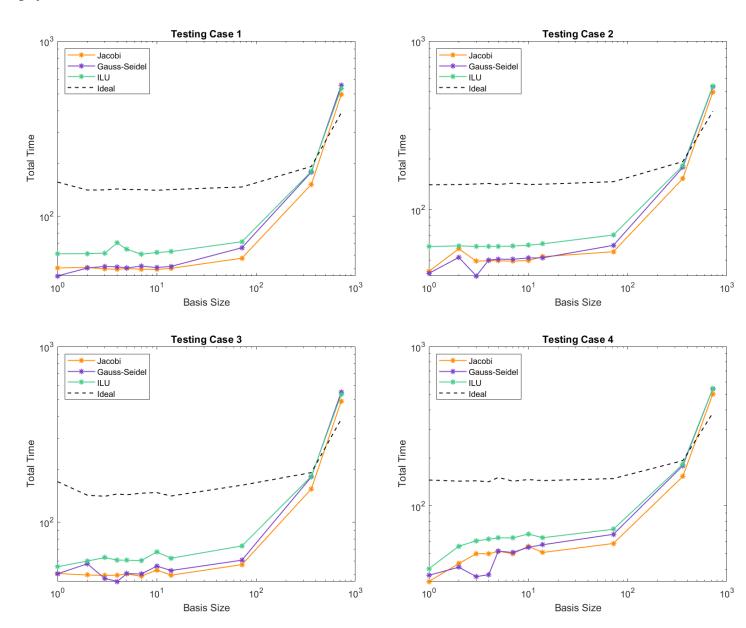






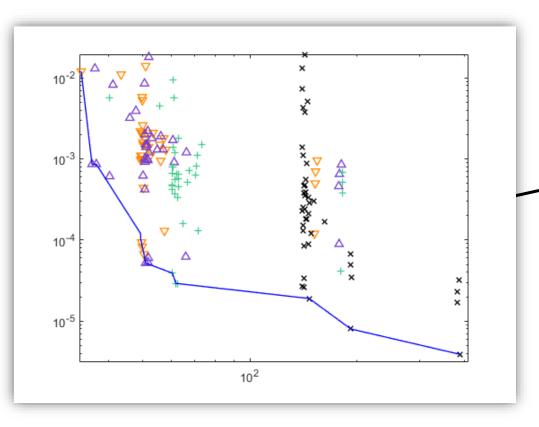
1

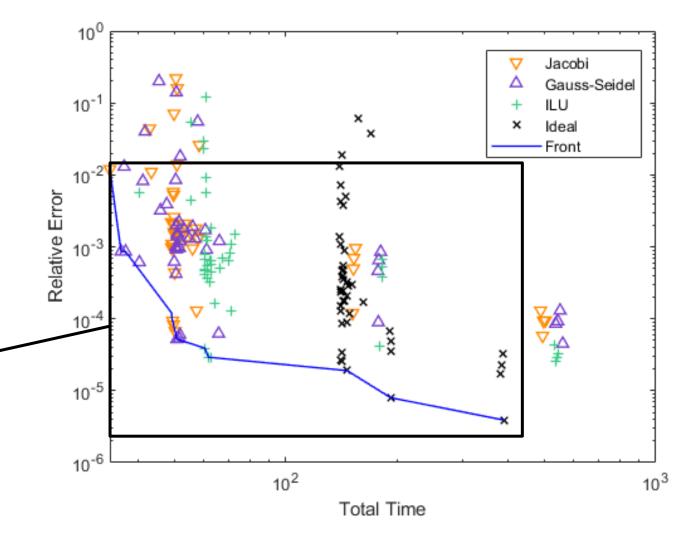
- Figures shows CPU-times for all ROMs considered
- As expected, the projected solution increment is the most expensive to compute

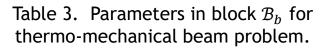


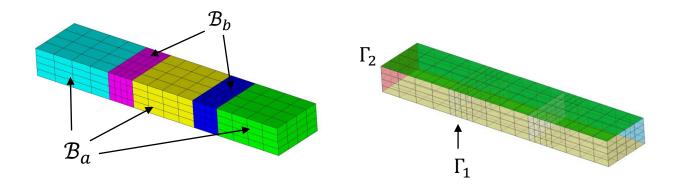
Mechanical Beam (Albany)

The **best preconditioner** given error/CPU-time requirements can be inferred from **Pareto plot** shown here.



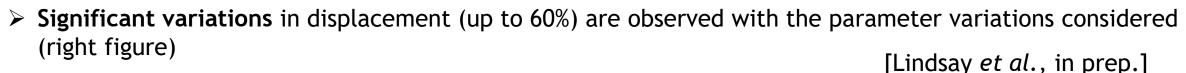


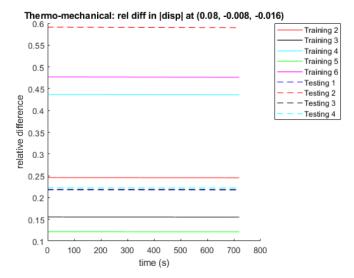


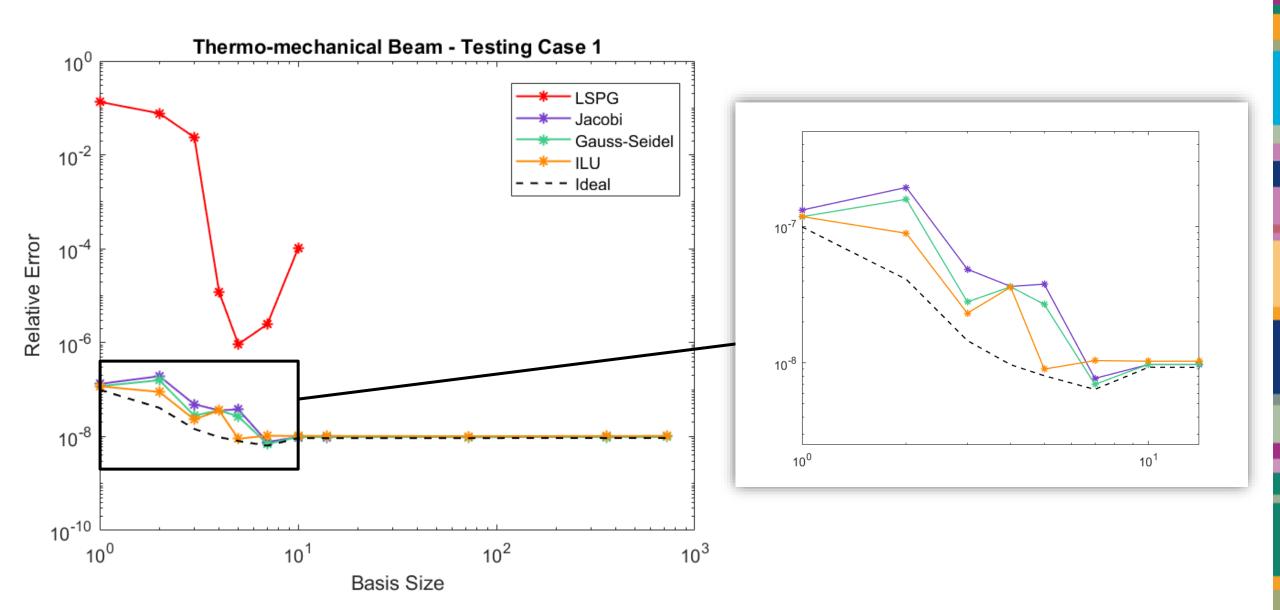


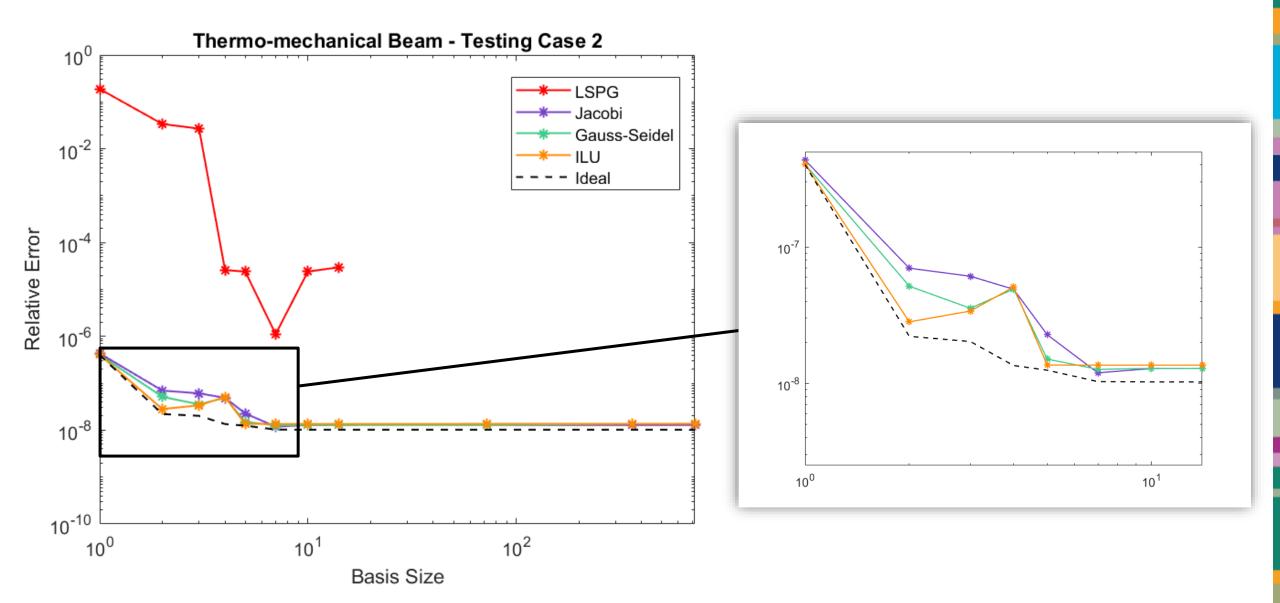
Regime	Case	$E_b(\times 10^9)$ [Pa]	$ u_b$	$\rho_b(\times 10^{-5}) \; [{\rm kg/m^3}]$	$T_{b,\mathrm{ref}}$ [K]
training	1	2.01313	0.285907	7.94827	273.657
	2	1.71637	0.332083	6.93965	318.406
	3	1.96881	0.3478	9.37181	301.406
	4	1.28954	0.29427	9.14636	365.378
	5	1.61326	0.262464	6.32164	223.434
	6	1.54724	0.374118	7.31561	245.778
	1	1.52473	0.27925	8.80694	266.674
testing	2	1.31153	0.345538	7.58234	333.462
	3	1.37015	0.246513	7.73303	345.942
	4	1.703	0.32	7.92	293

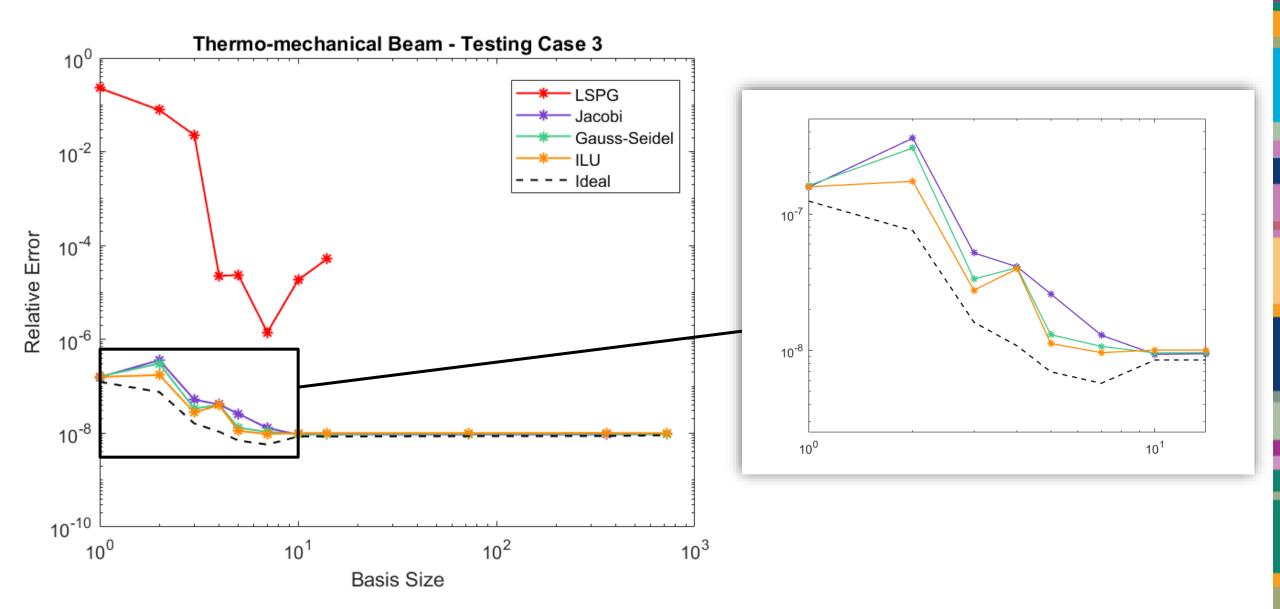
- Coupled thermo-mechanical problem involving Neohookean material
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material params
 - \triangleright Material parameters in block \mathcal{B}_a are fixed
 - \triangleright Material parameters in block \mathcal{B}_b are varied (see Table 3)
- Linearly varying time-dependent pressure and temperature BC is prescribed on Γ_1 and Γ_2 , respectively; other boundaries are fixed
- Problem is run quasi-statically to pseudo-time t = 7200s with 2100 dofs
- **Training** is performed for 6 sets of parameters; **testing/prediction** is performed for 4 sets of parameters (see Table 3)

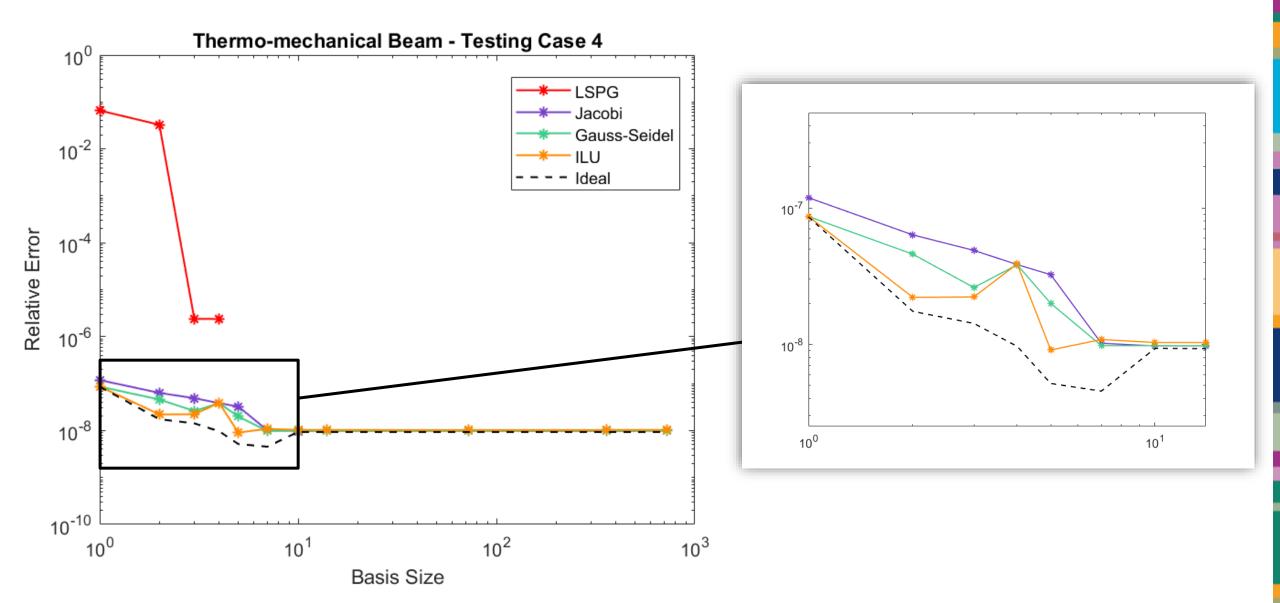




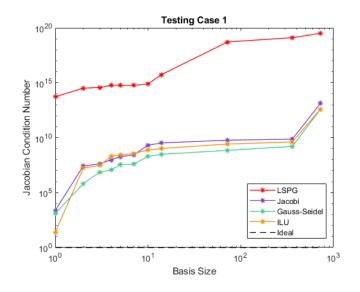


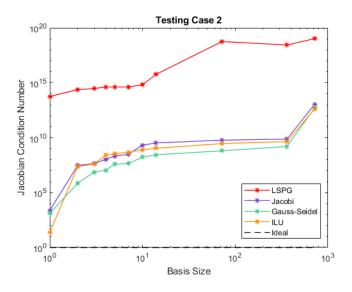


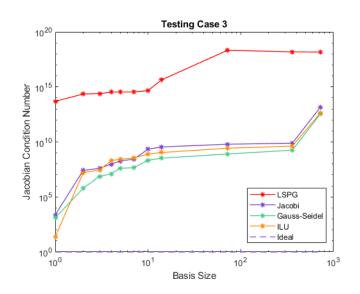


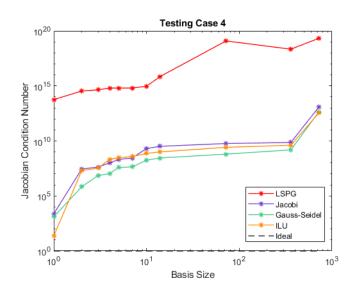


- Figure plots condition numbers of reduced Jacobian $(\boldsymbol{J}_{PPG}^{(k)} \text{ or } \boldsymbol{J}_{PG}^{(k)})$ for each ROM.
- Reduced Jacobians for regular LSPG ROM are very ill-conditioned (> $O(10^{14})$)
 - > Ill-conditioning is due to extreme differences in scale b/w displacement and temperature solutions (9 orders of magnitude)
- Results demonstrate that simple **preconditioning** strategy can reduce condition numbers by as many as 10 orders of magnitude
- As expected, projected solution increment reduced Jacobian has perfect condition number



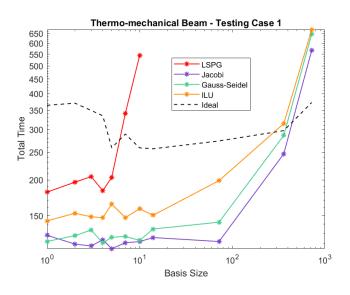


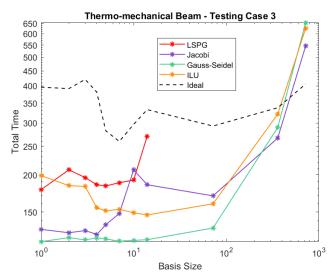


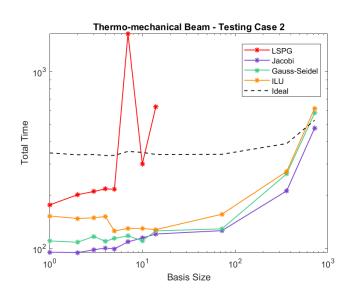


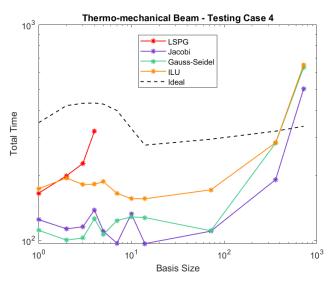
1

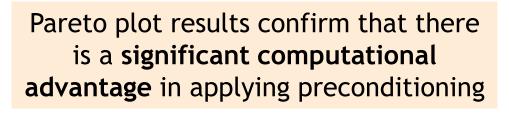
- Figures shows CPU-times for all ROMs considered
- In general, preconditioned LSPG ROMs achieve CPU-times smaller than unpreconditioned LSPG ROM
- As expected, the projected solution increment is the most expensive to compute in general

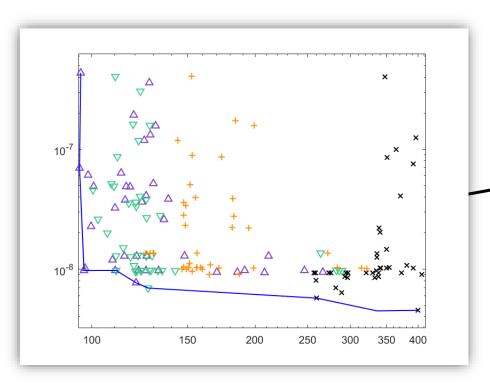


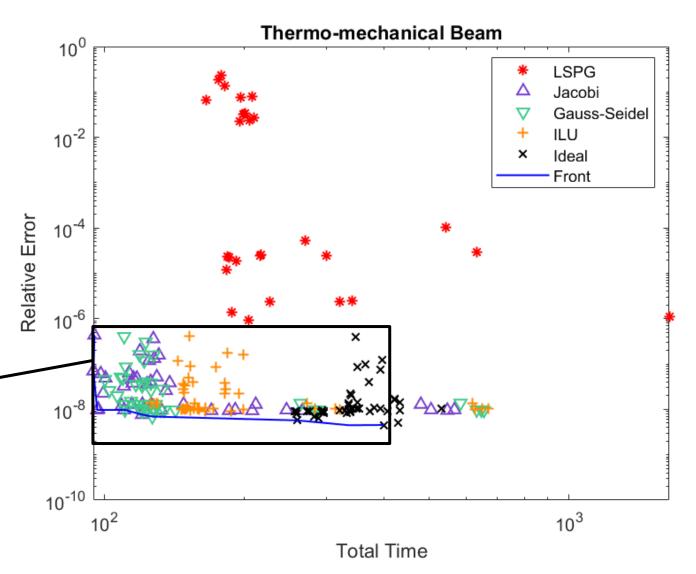












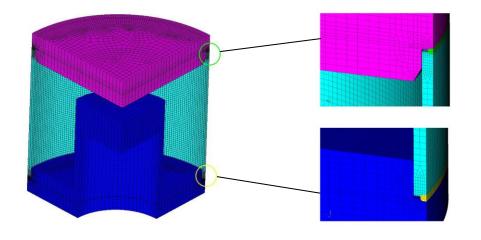
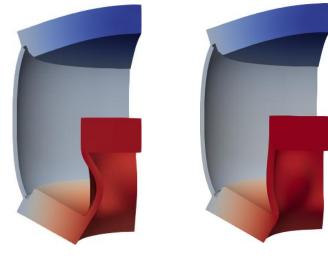


Table 1. Parameters in block \mathcal{B}_b for thermomechanical pressure vessel problem.

Regime	Case	$E_b(\times 10^9)$ [Pa]	$ u_b$	$\rho_b(\times 10^{-3}) \; [{\rm kg/m^3}]$	$T_{b,\mathrm{ref}}$ [K]
training	1	1.64424	0.39524	8.33058	311.094
	2	1.77118	0.300065	9.67843	267.396
	3	1.9893	0.32161	7.17625	223.746
	4	1.45551	0.266385	6.67746	331.116
testing	1	2.06416	0.391368	7.79804	252.102
	2	1.703	0.32	7.92	293

- Coupled thermo-mechanical problem involving Neohookean material
 - Multi-physics problem: temperature and displacement solutions differ by 9 orders of magnitude; 370K dofs
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material params
 - \succ Material parameters in block \mathcal{B}_a (magenta, cyan) are fixed
 - \triangleright Material parameters in block \mathcal{B}_b (green, yellow, blue) are varied
- Pressure vessel is **heated** and **pressurized** from the inside
- Problem is run quasi-statically to pseudo-time t = 720s
- Training is performed for 4 sets of parameters; testing/prediction is performed for 2 sets of parameters (see Table 1)



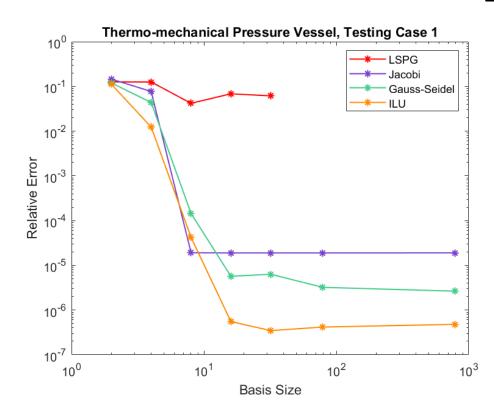
Testing 1 Testing 2

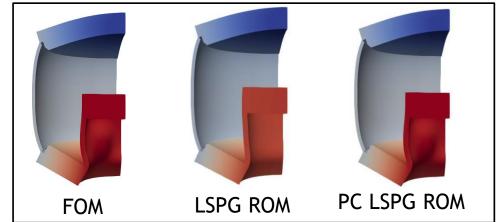
[Lindsay et al., IJNME, 2022 (accepted)]

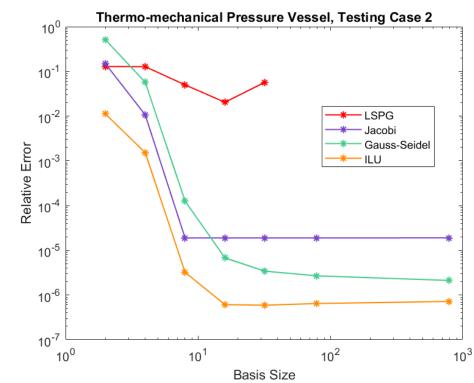
Global relative error:

$$\epsilon \coloneqq \frac{\sum_{i=0}^{P} \left| \left| x_i - \widetilde{x}_i \right| \right|_2}{\sum_{i=0}^{P} \left| \left| x_i \right| \right|_2}$$

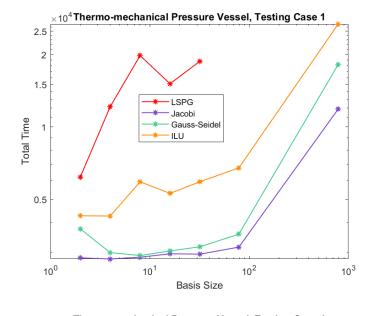
• Seven basis sizes evaluated: 2,4,8,16, 32,79,790

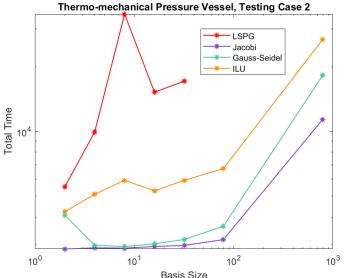




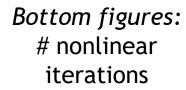


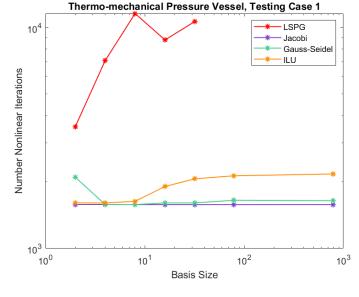
- Preconditioned
 (PC) LSPG ROMs are
 up to 5 orders of
 magnitude more
 accurate than
 LSPG ROMs.
- LSPG ROMs do not converge for larger basis sizes.
- Accuracy is improved by improving the preconditioner.

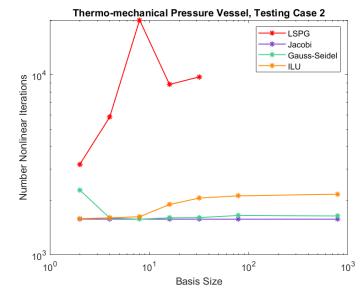




- Preconditioned LSPG
 ROMs are up to 12x
 faster than vanilla LSPG
 ROMs
- More sophisticated preconditioners lead to greater CPU times

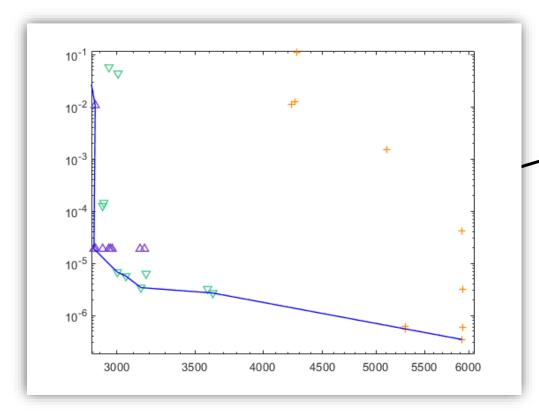


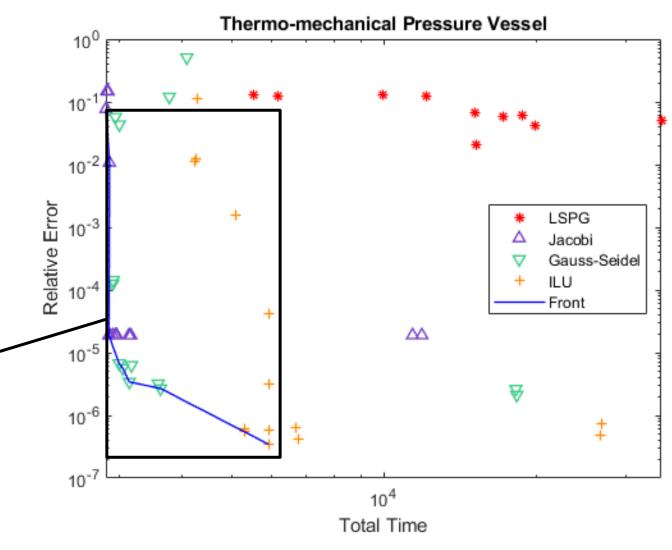




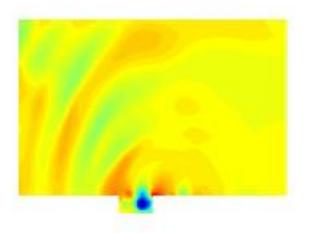
 Speed-ups are largely due to reduction in # nonlinear iterations (by factor of >12x)

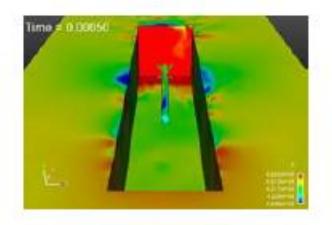
Pareto plot confirms **competitiveness** of preconditioned LSPG ROMs.

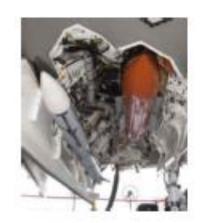




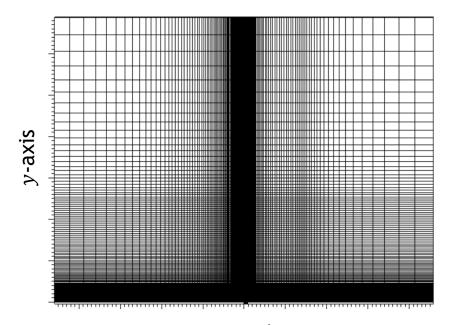
Compressible Cavity Flow (SPARC)





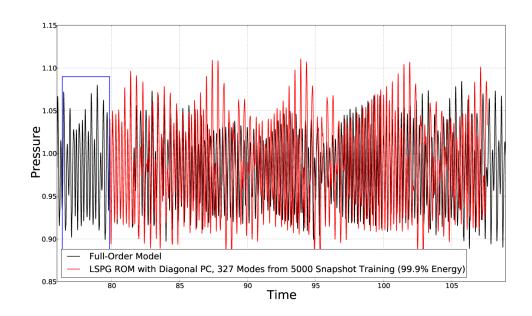


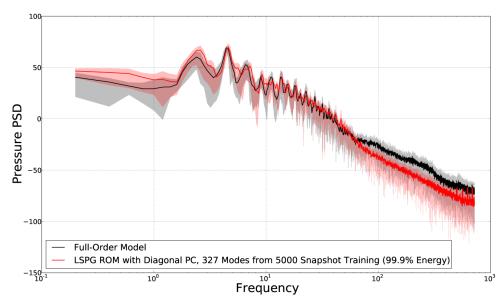
- 2D viscous laminar flow around an open cavity geometry
 - > Simple model for the captive carry scenario
- Mach number = 0.6, Reynolds number ≈ 3000
- Problem is run **non-dimensionally**
- Domain is discretized using 104,500 hexahedral cells (right)
- Of primary interest are long-time predictive simulations
 - > ROM is run at same parameters as FOM but much longer in time
 - > Relevant QOIs: statistics of the flow (e.g., pressure power spectral densities or PSDs)



x-axis [Tezaur et al. 2017; Fike et al. 2018]

Compressible Cavity Flow (SPARC)





- Figure top left: pressure time history for a point halfway up the downstream wall of the cavity for an LSPG ROM having 327 modes with a Jacobi preconditioner
- Figure bottom left: pressure PSD for the signal in the top left figure (solid line is mean PSD, shaded regions indicate range of values used to construct the mean)
- Preconditioned LSPG ROM captures well the pressure PSD, including its peaks (Rossiter modes) and the RMS OASPL¹
- Vanilla LSPG ROM did not run successfully

Method	RMS OASPL ¹ in dB	% Difference from FOM
FOM	66.176	_
Ideal	67.552	2.08%
LSPG	N/A	N/A
LSPG + Jacobi PC	68.033	2.80%

¹Overall sound pressure level

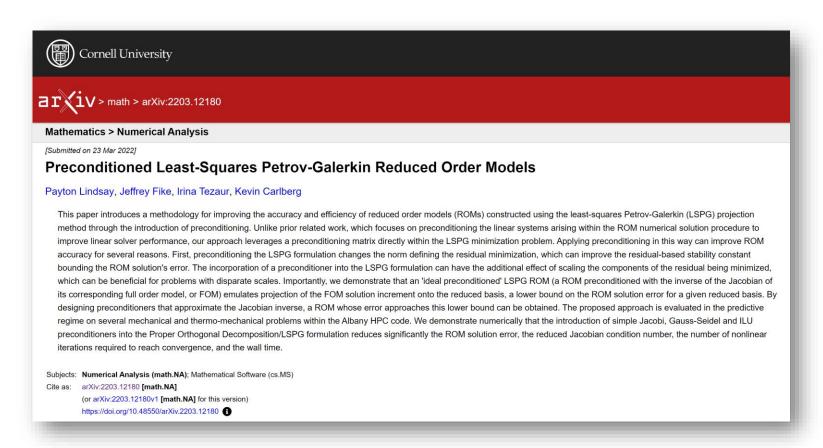
Summary:

- Adding preconditioning to the LSPG formulation gives rise to ROMs with improved accuracy and robustness, especially in the predictive regime
 - > Preconditioning attempts to emulate projection of FOM solution increment onto POD basis (the ROM "best-case scenario" for a given basis)
 - > Preconditioning can ensure all components of residual being minimized are of the same magnitude
 - Preconditioning changes the norm in which the residual is minimized, which can improve residual-based stability constant bounding the ROM solution's error
 - Results on predictive (across parameter space) thermo-mechanical and predictive (in time) compressible flow problems are compelling

Ongoing/future work:

- Manuscript in preparation: J. Fike, P. Lindsay, K. Carlberg, I. Tezaur. "Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models for Compressible Flows", in prep.
- Application of preconditioned LSPG approach to more sophisticated problems relevant to Sandia's mission spaces
 - Preconditioning LSPG ROMs has been helpful for hypersonic aero, thermal/ablation and reacting hypersonic flow problems

For more details (mechanical/thermo-mechanical application), please see the following pre-print, which was just accepted for publication in *IJNME*:



Thank you for your Attention!

Start of Backup Slides