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THE SCHWARZ ALTERNATING METHOD FOR MULTISCALE
CONTACT MECHANICS

JONATHAN HOY∗, IRINA TEZAUR† , AND ALEJANDRO MOTA‡

Abstract. Contact is an important research topic in the study of mechanical systems. State-of-
the-art computational methods for simulating mechanical contact are prone to numerical difficulties,
leading to poor performance (in terms of simulation time and accuracy) and a lack of robustness.
Here, we describe and evaluate a novel approach for simulating contact based on the Schwarz alter-
nating method. With this method, contact constraints are replaced with boundary conditions that
are applied iteratively on the contact boundaries. Results from a canonical impact problem with
an exact analytical solution suggest that the new Schwarz methodology has the potential to offer a
significant improvement to established approaches.

1. Introduction. An important aspect of simulating mechanical systems, whe-
ther engineered or natural, is understanding a given system’s behavior when subjected
to contact under normal or abnormal environments (e.g., touching surfaces, sliding,
tightened bolts, impact, etc.). Whereas the methods and tools for simulating the bulk
behavior of mechanical systems are well-developed and mature, the same cannot be
said for contact mechanics. This situation is due to the complexity of the contact
phenomenon itself and associated numerical difficulties. Traditionally, for computa-
tional simulation, the contact problem is divided into two steps: a proximity search,
and the enforcement of contact constraints (introduced to prevent interpenetration of
objects coming into contact). The proximity search is primarily a computer science
problem, and has received much attention due to its paramount importance in other
fields such as video game development. In relative terms, less attention has been
devoted to the enforcement step, a multiscale physics phenomenon due primarily to
the microscopic and macroscopic features of contact surfaces. Existing computational
methods available for enforcement suffer from poor performance, both in terms of
simulation timeand solution accuracy, and can lead both to long wait times and to
physically incorrect predictions. Although traditionally, most of the computational
expense in contact simulations is associated with the proximity search, there is also
room for improvement when it comes to the efficiency of enforcement algorithms.

This paper introduces and evaluates numerically a fundamentally new approach
to simulating mechanical contact based on the domain decomposition-based Schwarz
alternating method [18]. The new approach leverages our previous work in Schwarz
multiscale coupling [15, 16] and addresses two well-known problems in computational
simulation of contact: (1) the accuracy of the contact constraint enforcement, and
(2) the multiple scales involved. Rather than introducing contact constraints into the
variational form of the problem, as done in conventional contact techniques, e.g., the
penalty method [11, 6], the Lagrange multiplier method [3, 1] and the augmented
Lagrangian method [1, 20, 26], the Schwarz alternating method decomposes the prob-
lem domain into two or more subdomains and prevents interpenetration by applying
transmission (boundary) conditions in an iterative and alternating fashion on the sub-
domain boundaries. As shown in our earlier work [15, 16], the Schwarz alternating
method has a number of desirable qualities, including its ability to use different ele-
ment topologies and time integrators in different subdomains. We demonstrate herein
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that these advantageous properties carry over to the contact variant of the method.
Toward this effect, the remainder of this paper is organized as follows. Section

2 describes the variational formulation of the generic solid mechanics problem con-
sidered herein, and details its spatio-temporal discretization. Section 3 presents our
new Schwarz alternating contact formulation, which relies on non-overlapping subdo-
mains and alternating Dirichlet-Neumann boundary conditions. Numerical results on
a one-dimensional (1D) impact problem with an exact analytical solution are given
in Section 4. The use of the 1D problem allows the investigation of the Schwarz
algorithm as a viable contact method, circumventing other issues that are common
to most contact algorithms, such as projection of fields from one contact surface to
another. In addition to the Schwarz alternating method, we evaluate the performance
of three conventional contact algorithms: the implicit and explicit penalty methods
[11, 6], and the explicit Lagrange multiplier method (also known as the forward incre-
ment Lagrange multiplier method) [3]. Although the augmented Lagrangian method
[1, 20, 26] is a popular approach for simulating mechanical contact, we do not consider
this method in the present work. Our results demonstrate that the Schwarz alternat-
ing method predicts various quantities of interest (e.g., the contact point displacement,
the impact and release time, the system energies) and conserves total energy better
than the conventional contact methods, but introduces some oscillations in the con-
tact point velocity and contact point forces. Ideas for minimizing these oscillations
and general avenues for future work are discussed in Section 5.

2. Solid mechanics problem formulation. Consider the Euler-Lagrange
equations for a generic dynamic solid mechanics problem in its strong form:

DivP + ρ0B = ρ0ϕ̈ in Ω× I. (2.1)

In (2.1), Ω ∈ Rd for d ∈ {1, 2, 3} is an open bounded domain, I := {t ∈ [t0, t1]} is
a closed time interval with t0 < t1, and x = ϕ(X, t) : Ω × I → Rd is a mapping,
with X ∈ Ω and t ∈ I, P denotes the first Piola-Kirchhoff stress, and ρ0B : Ω→ R3

is the body force, with ρ0 denoting the mass density in the reference configuration.

The over-dot notation denotes differentiation in time, so that ϕ̇ := ∂ϕ
∂t and ϕ̈ := ∂2ϕ

∂t2 .
Embedded within P is a constitutive model, which can range from a simple linear
elastic model to a complex micro-structure model, e.g., that of crystal plasticity.

Suppose that we have the following initial and boundary conditions for the partial
differential equations (PDEs) (2.1):

ϕ(X, t0) = X0, ϕ̇(X, t0) = v0 in Ω,
ϕ(X, t) = χ on ∂Ωϕ × I, PN = T on ∂ΩT × I.

(2.2)

In (2.2), it is assumed the outer boundary ∂Ω is decomposed into a Dirichlet and
traction portion, ∂Ωϕ and ∂ΩT , respectively, with ∂Ω = ∂Ωϕ ∪ ∂ΩT and ∂Ωϕ ∩
∂ΩT = ∅. The prescribed boundary positions or Dirichlet boundary conditions are
χ : ∂Ωϕ × I → R3. The symbol N denotes the unit normal on ∂ΩT .

It is straightforward to show that the weak variational form of (2.1) with initial
and boundary conditions (2.2) is∫

I

[∫
Ω

(DivP + ρ0B − ρ0ϕ̈) · ξ dV +

∫
∂T Ω

T · ξ dS

]
dt = 0, (2.3)

where ξ is a test function in V :=
{
ξ ∈W 1

2 (Ω× I) : ξ = 0 on ∂ϕΩ× I ∪ Ω× t0∪
Ω× t1}.
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Discretizing the variational form (2.3) in space using the classical Galerkin finite
element method (FEM) [10] yields the following semi-discrete matrix problem:

Mü+ f int = f ext. (2.4)

In (2.4), M denotes the mass matrix, u := ϕ(X, t) −X is the displacement, ü is
the acceleration, f ext is a vector of applied external forces, and f int is the vector of
internal forces due to mechanical and other effects inside the material. In the case of a
problem with mechanical contact that is formulated with traditional contact methods,
f ext includes a contact contribution derived from a contact constraint, which must
be enforced effectively.

A fully discrete problem is obtained by applying to (2.4) a time-integration
scheme. A popular choice of time-integration scheme for solid mechanics problems
such as those considered herein is the Newmark-beta method [17]. This scheme can
be either first or second order accurate, depending on the values of its parameters β
and γ. Additionally, it can be either implicit (and therefore unconditionally stable)
or explicit, again depending on the values of β and γ.

3. The Schwarz alternating method. The purpose of the present work is
to introduce and evaluate a new approach for simulating mechanical contact. This
new approach is based on the Schwarz alternating method, an iterative domain
decomposition-based approach that was first proposed in 1870 by Schwarz [18]. As
mentioned earlier, in [15] and [16], the authors developed the Schwarz alternating
method as a means for enabling continuum-to-continuum coupling in quasistatic and
dynamic solid mechanics, respectively. In these works, the physical domain Ω is de-
composed into two or more overlapping subdomains (Figure 3.1(a)), and the govern-
ing PDEs are solved within each subdomain in an iterative fashion, with information
propagating through Dirichlet boundary conditions on the so-called Schwarz bound-
aries (Γ1 and Γ2 in Figure 3.1(a)). The method was shown to have a number of
advantages over classical monolithic discretizations, enabling the seamless coupling
in a plug-and-play manner of different mesh resolutions, different element types, and
even different time integration schemes without introducing spurious errors or arti-
facts. Additionally, the method was shown to have a provable convergence guarantee
[15, 16].

(a) Overlapping (b) Non-overlapping

Fig. 3.1. Illustration showing overlapping and non-overlapping domain decomposition.

3.1. Formulation. Motivated by the earlier work [15, 16] and the observation
that a contact problem can be viewed as a coupled problem while two or more bodies
are in contact, we propose herein to transform the Schwarz alternating method into
a fundamentally new approach for simulating mechanical contact. A typical contact
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configuration is shown in Figure 3.1(b). The reader can observe that the configu-
ration of interest involves two non-overlapping domains, connected by the contact
boundary, denoted by Γ in this figure. Extending the Schwarz alternating method to
contact problems hence requires extending the method’s formulation to the case of
non-overlapping subdomains. As first demonstrated in the late 1980s by Lions [13]
and Zanolli et al. [25], obtaining a provably-converging Schwarz method for the case
of non-overlapping domains requires specialized transmission conditions. Specifically,
whereas Dirichlet-Dirichlet transmission conditions ensure convergence in the case of
overlapping domains, a convergent formulation in the non-overlapping domain case
can be obtained by prescribing either Robin-Robin [13, 9, 8, 5, 14] or alternating
Dirichlet-Neumann [25, 7, 4, 12] boundary conditions on Γ (Figure 3.1(b)). In the
present formulation, we consider the latter approach, which translates to alternating
displacement-traction boundary conditions for the mechanical problem (2.3).

Consider, without loss of generality, a problem involving two subdomains, denoted
by Ω1 and Ω2, that have come into contact, as depicted in Figure 3.1(b). Once contact
has been detected using a global search algorithm based on specified contact conditions
(described in Section 3.2), we begin the Schwarz iteration process. Following the
Schwarz alternating method for transient solid dynamics [16], the present Schwarz
alternating formulation includes the notion of a so-called “controller time stepper”,
which defines a set of global time-steps, denoted by 4T , at which the subdomains
are synchronized (for more details, see Section 2.2 of [16]). For the specific case of
(2.3), two subdomains and a controller time interval IN , the Schwarz iteration takes
the form:

M1ü
n+1
1 + f int;n+1

1 = f ext;n+1
1

ϕn+1
1 = χ, on ∂ϕΩ1\Γ,
ϕn+1

1 = ϕn2 , on Γ,


M2ü

n+1
2 + f int;n+1

2 = f ext;n+1
2

ϕn+1
2 = χ, on ∂ϕΩ2\Γ,

T n+1
2 = T n+1

1 , on Γ.
(3.1)

In (3.1), n = 0, 1, 2, ... denotes the Schwarz iteration number and N denotes the con-
troller time-step number. We select to develop the alternating Dirichlet-Neumann
formulation of the non-overlapping Schwarz method over the Robin-Robin formula-
tion, as Dirichlet and Neumann (traction) boundary conditions are readily available
in most solid mechanics codes, e.g., Sandia’s Sierra/Solid Mechanics (Sierra/SM) code
[19]. Alternate formulations, such as the formulation with Robin-Robin transmission
conditions and various formulations involving numerical relaxation (see [22] and the
references therein), may be considered in future work. The iteration (3.1) continues
until convergence is reached. It is emphasized that the formulation (3.1) does not
require that a conformal discretization be used within the various subdomains; as for
the multiscale Schwarz alternating method [15, 16], different discretizations, element
types and even time-integration schemes can be used in different subdomains.

3.2. Contact criteria. An important part of any contact algorithm is defining
a set of criteria to determine when contact has occurred. Herein, we consider the
following set of contact criteria.

1. Overlap condition: triggered when two or more objects/domains have begun
to overlap/penetrate each other.

2. Push condition: triggered when both of the following properties hold
(a) Compression: the tractions at the interface are compressive.
(b) Sustainability : there was contact in the previous time step.
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Specifically, two or more bodies are determined to be in contact if either the overlap
condition or the push condition hold.

The contact conditions enumerated above are roughly equivalent to the well-
known Karush-Kuhn-Tucker (KKT) conditions [24, 26] appearing in traditional me-
chanical contact formulations. It is noted that, unlike traditional contact formulations
(penalty [11, 6], Lagrange multiplier [3, 1], augmented Lagrangian methods [1, 20]),
our Schwarz-based does not require the definition of contact constraints into the prob-
lem formulation.

4. Numerical results. The main contribution of this paper is the numerical
evaluation of the Schwarz alternating method described in Section 3, as compared
to several state-of-the-art contact approaches. Section 4.1 succinctly summarizes the
methods evaluated herein. Following this discussion, we describe the benchmark
problem on which these methods are studied (Section 4.2) and present numerical
results for several variants of this problem (Sections 4.3–4.4).

4.1. Summary of contact methods evaluated. We restrict our attention
herein to three classes of methods: (1) the penalty method [11, 6], (2) the Lagrange
multiplier method [3, 1], and (3) the Schwarz alternating method (Section 3).

The penalty method [11, 6] is one of the simplest approaches for mechanical
contact, and applies a contact force that is linearly proportional to the amount of
interpenetration by means of a penalty parameter τ . The penalty method is popular
since it is very easy to implement into existing mechanics frameworks, but has the
downside of having its accuracy and stability properties affected greatly by the choice
of the penalty parameter, for which there is no exact science. If the penalty param-
eter τ is too low, the amount of interpenetration allowed can be too high, yielding
inaccurate results; in contrast, selecting a τ that is too high can affect adversely the
overall numerical stability of the method and can lead to inaccuracies/oscillations in
the contact forces. The penalty method can be run with either an implicit or an
explicit time-stepping scheme, both of which are considered in the present study.

In the Lagrange multiplier method [3, 1], contact constraints are imposed weakly
using Lagrange multipliers; hence, unlike in the penalty method, the contact condi-
tions are satisfied more precisely and there is no empirical parameter to tune. La-
grange multiplier methods present their own challenges, however. Care must be taken
to design the Lagrange multiplier finite element space such that the inf-sup condi-
tion [2] is upheld, and implementing this mixed method in existing high-performance
computing (HPC) codes such as Sierra/SM [19] can be cumbersome. Additionally,
the Lagrange multiplier formulation gives rise to an indefinite discrete saddle point
problem, which can be difficult to solve numerically and may require specialized pre-
conditioning schemes. In [3], Carpenter et al. developed a specific variant of the
Lagrange multiplier method with explicit time-stepping known as the “forward incre-
ment Lagrange multiplier method”, which has been shown to deliver superior results
over implicit Lagrange multiplier formulations for impact problems. For this reason,
we restrict attention herein to the explicit (forward increment) Lagrange multiplier
method, and do not consider the implicit variant of this method.

An important aspect of conventional contact methods such as the penalty and La-
grange multiplier methods is that they require the specification of contact constraints
imposed within their respective formulations. Herein, we impose the so-called zero
gap constraint, which ensures that the gap between a given pair of objects is never
negative and hence the objects do not interpenetrate. We note here that it is not un-
common to impose in place of or in conjunction with the zero gap constraint a second
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constraint, namely that of a zero gap rate [23, 21]. The zero gap rate constraint was
not considered in the numerical study performed herein, but would be an interesting
future endeavor.

The Schwarz alternating method for simulating mechanical contact was described
in Section 3. We evaluate herein three variants of the Schwarz alternating method:
one in which an implicit Newmark-beta time-integration scheme is used in all sub-
domains, one in which an explicit Newmark-beta time-integration scheme is used in
all subdomains, and one in which explicit and implicit Newmark-beta coupling is
performed between the domains.

Table 4.1 summarizes the six methods evaluated in this paper.

Table 4.1
Summary of contact methods evaluated.

Method Time-stepping scheme

Penalty
Implicit Newmark-beta
Explicit Newmark-beta

Forward increment Lagrange multiplier [3] Explicit Newmark-beta

Schwarz
Implicit-Implicit Newmark-beta
Explicit-Implicit Newmark-beta
Explicit-Explicit Newmark-beta

L L

Ω1 Ω2

g g

v0 v0u1 u2

Fig. 4.1. Illustration of 1D impact problem

4.2. One-dimensional impact problem. The Schwarz alternating method de-
scribed in Section 3 and the three existing state-of-the-art contact methods described
in Section 4.1 are evaluated on a simple 1D problem involving the impact of two
identical linear elastic prismatic rods having density ρ, elastic modulus E and cross-
sectional area A moving with equal speed in opposite directions. This test case is a
variant of the problem considered in Section 5 of [3], and has an exact analytical so-
lution. The configuration is depicted in Figure 4.1. The rods are initially undeformed
and the configuration is symmetric about the plane at which the two rod faces impact.
Let v0 denote the initial speed of each rod. Let L denote the length of each rod, and
assume the rods are initially separated by a distance 2g. Per the derivation in [3], it
is straightforward to shows that the position and velocity of the right end of the left
rod are given by

x(t) =


−g + v0(t− t0), t < timp,

0, timp ≤ t ≤ trel,

−v0(t− trel), t > trel,

v(t) =


v0, t < timp,

0, timp ≤ t ≤ trel,

−v0, t > trel,

(4.1)
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respectively, where timp and trel are the impact and release times, respectively. The
analytical values for these times are

timp = t0 +
g

v0
, trel = timp + 2L

√
ρ

E
, (4.2)

where t0 is the starting time of the simulation. Additionally, it can be shown that the
contact force during impact is given by

fcontact = v0

√
EρA, (4.3)

and that the mass-averaged velocity, the kinetic energy (KE) and the potential energy
(PE) take the form

v̄(t) =


v0, t < timp,

v0 − v0
√
E

L
√
ρ (t− timp), timp ≤ t ≤ trel,

−v0, t > trel,

(4.4)

KE =


1
2ρALv

2
0 t < timp,

1
2ρALv

2
0 − 1

2

√
ρEAv2

0(t− timp) timp ≤ t ≤ t1,
1
2

√
ρEAv2

0(t− t1) t1 ≤ t ≤ trel,
1
2ρALv

2
0 t > trel,

(4.5)

PE =


0 t < timp

1
2

√
ρEAv2

0(t− timp) timp ≤ t ≤ t1,
1
2ρALv

2
0 − 1

2

√
ρEAv2

0(t− t1) t1 ≤ t ≤ trel,

0 t > trel,

(4.6)

where

t1 = timp + L

√
ρ

E
, (4.7)

is the time at which maximum PE and minimum KE are reached.
For the purpose of evaluating and comparing the various contact methods de-

scribed herein, we have written a MATLAB code that discretizes the 1D impact
problem using the FEM in space and the Newmark-beta time-integration scheme in
time. This code is stored in an internal Sandia git repository. In the remainder of
this document, Nx will denote the number of elements in the spatial discretization of
each rod, and 4t will denote the time-step used in the Newmark-beta time-stepper.

First, in Section 4.3, we verify the implementation of the conventional contact
approaches considered herein (the penalty method and the forward increment explicit
Lagrange multiplier method) on a low speed variant of the 1D impact problem, given
by the parameters provided in the third column of Table 4.2. With this choice of
parameters, the problem is identical to the test case considered in Section 5 of [3] and
direct comparisons can be made for the purpose of verification.

Next, in Section 4.4, we evaluate the six contact methods considered herein, in-
cluding our three Schwarz variants, on a high speed variant of the 1D impact problem,
with parameters given in the fourth column of Table 4.2. This second high-speed vari-
ant of the 1D impact problem is qualitatively similar to the first low-speed variant,
but more representative of typical Sandia applications.
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Table 4.2
1D impact problem parameters for the two variants considered (low speed and high speed impact).

Parameter Units Low speed variant High speed variant

ρ kg/m3 7844 1000
E Pa 206.8× 109 1.0× 109

A m2 6.45× 10−4 1.0× 10−6

L m 0.254 0.25
g m 0.254× 10−3 0.02
v0 m/s 5.136 100
ts s 0.0 −0.2× 10−3

tf s 20.0× 10−5 0.8× 10−3

4.3. Low speed impact variant: method verification. As mentioned ear-
lier, our first task is to verify our implementation of the explicit penalty and explicit
(forward increment) Lagrange multiplier (LM) methods on the low speed variant of
the 1D impact problem. Toward this effect, we select parameters that match those
used in the numerical study of Carpenter et al. [3], but converted to SI units (third
column of Table 4.2). To match the setup of [3] we employed a spatial discretization
having Nx = 20 elements, and a time-step of 2.226 × 10−6 seconds. For the explicit
penalty method, we used the same value of the penalty parameter τ as the one used
in [3], namely the SI equivalent of 7.5 × 106 lb/in. We did not consider the implicit
penalty method, as it was not one of the methods considered in [3].

Figure 4.2 summarizes our main results for the low speed variant of the 1D impact
problem (left column of the figure) compared to the results of Carpenter et al [3]
(right column of the figure). The reader can observe that the solutions computed
in our MATLAB code are qualitatively similar to those of Carpenter et al., which
provides verification of our implementation of these methods.

4.4. High speed impact variant: method comparison. We now evaluate
the contact methods summarized in Table 4.1 on the high speed impact problem
described in Section 4.2. Our main results are summarized in Figures 4.3–4.8 and
Tables 4.3–4.4. In the case of the Schwarz alternating method, each rod represents
its own subdomain (Ω1 and Ω2), as shown in Figure 4.1. Unless otherwise noted, the
bars are discretized using Nx = 200 linear elements. Also unless otherwise noted,
a time-step of 4t = 1.0 × 10−7 is employed in all methods with the exception of
Implicit-Explicit Schwarz. For this Schwarz variant, we utilize a time step of 4ti in
subdomain Ωi with 4t1 = 1.0 × 10−7 and 4t2 = 1.0 × 10−8, so as to illustrate the
Schwarz alternating method’s ability to couple not only different time-integrators but
also different time-steps in different subdomains. It was verified that the time-steps
employed were small enough to ensure satisfaction of the Courant-Friedrichs-Levy
(CFL) condition for the explicit methods. For all the Schwarz methods considered,
a controller time-step of 4T = 1.0× 10−7 is employed. We select very tight relative
and absolute Schwarz tolerances of 1.0 × 10−15 and 1.0 × 10−12, respectively. These
tolerances are applied to the Schwarz convergence criterion, which dictates that the
change of position for all the subdomains at a given Schwarz iteration be less than
these relative or absolute tolerances. For the two penalty methods evaluated, we chose
a penalty parameter of τ = 7.5× 104, as this value yielded the most accurate results.
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Fig. 4.2. Contact point position, contact point velocity and contact point force solutions com-
puted using the explicit Lagrange multiplier and explicit penalty methods in our MATLAB code (left
column) compared to the published solution in [3] (right column) for the low speed impact problem.

4.4.1. Comparison of the Schwarz alternating method to conventional
contact approaches. Figure 4.3 plots the contact point location of the right-most
node of the left bar (Ω1) as a function of time. The reader can observe that both
penalty methods evaluated overpredict the contact point location between the impact
and release times, similar to what was seen for the low speed impact variant of this
problem (Figure 4.2). This behavior is not manifested by any of the Schwarz solu-
tions. Although small oscillations can be observed in the Schwarz solutions while the
bars are in contact, these are a tiny fraction of the exact contact point location. Ad-
ditionally, while all three conventional approaches underpredict the release time, the
Schwarz methods capture this quantity of interest to an accuracy of ≈ 0.01%. Similar
conclusions can be drawn from Figure 4.4, which plots the mass-averaged velocity for
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the left bar as a function of time for the various methods: all three Schwarz variants
calculate the mass-averaged velocity to a sufficiently greater accuracy than any of the
conventional methods, especially near the time of release.

Fig. 4.3. Contact point position for the left bar (Ω1) as a function of time (high speed impact)

Fig. 4.4. Mass-averaged velocity for the left bar (Ω1) as a function of time (high speed impact)

Figures 4.5–4.7 examine the kinetic, potential and total energies for the left bar as
a function of time. It can be seen from Figure 4.5 that all three conventional methods
exhibit noticeable errors in the kinetic energy after contact occurs. Halfway through
the simulation, oscillations are observed in the solutions calculated using these meth-
ods. The explicit Lagrange multiplier and implicit penalty methods exhibit the largest
errors in the kinetic energy following release, whereas the three Schwarz variants and
the explicit penalty method exhibits the smallest error in this quantity. Remarkably,
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unlike any of the conventional methods, the Schwarz method is able to track the ki-
netic energy with great accuracy while the bars are in contact. The Implicit-Implicit
Schwarz variant delivers the most accurate and least oscillatory kinetic energy so-
lution. Similar conclusions can be drawn by inspecting Figure 4.6, which plots the
potential energy of the left bar as a function of time. What is striking about this
figure is the fact that all three conventional methods underpredict the peak potential
energy by approximately 10%. This behavior is not seen in the Schwarz solutions,
which capture the peak potential energy with a relative error of less than 0.1%.

Next, we discuss the ability of the Schwarz alternating method to conserve the
total energy, defined as the sum of the kinetic and potential energies. It is straightfor-
ward to show that the total energy should be conserved for this problem [3]. Figure 4.7
plots the total energy relative error in the left bar as a function of time for the meth-
ods evaluated. It is clear from this figure that the total energy error is negative for all
six methods. This indicates that none of the methods are gaining energy, which could
lead to numerical instabilities. As expected from the potential energy results (Figure
4.6), the three conventional methods exhibit a total energy loss of up to 9% following
the instantiation of contact. The explicit penalty method loses the most energy, fol-
lowed by the implicit penalty method and the explicit Lagrange multiplier method.
Unlike the conventional contact approaches, the Schwarz method achieves an error
of at most 0.25% in the total energy. It can be observed that the Explicit-Explicit
Schwarz variant is the most accurate, followed by the Implicit-Implicit Schwarz and
the Implicit-Explicit Schwarz. Interestingly, the more accurate Schwarz methods ex-
hibit larger amplitude oscillations in the total energy after contact occurs.

Fig. 4.5. Kinetic energy for the left bar (Ω1) as a function of time (high speed impact)

In the results presented thus far, the Schwarz alternating method is better than
the three conventional methods. The situation changes slightly when it comes to two
other quantities of interest: the contact point force and the contact point velocity,
plotted in Figures 4.8 and 4.9, respectively. While the three conventional methods ex-
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Fig. 4.6. Potential energy for the left bar (Ω1) as a function of time (high speed impact

Fig. 4.7. Relative error in the total energy for the left bar (Ω1) as a function of time (high
speed impact)

hibit several undesirable artifacts in the contact point force (e.g., an overshoot in the
contact point force at the impact time for the explicit Lagrange multiplier method, os-
cillations in the contact point force around the time of release for the implicit penalty
method, an under-prediction of the release time; see Figure 4.8(a)), these methods
deliver in general a smooth contact force solution while the bars are in contact and
after the bars separate. The same cannot be said of the Schwarz solutions, which
exhibit in some cases significant oscillations following the instantiation of contact
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(Figure 4.8(b)). Similar results are seen in the contact point velocity (Figure 4.9),
and suggest that the Schwarz methods may be suffering from a well-known problem
in the simulation of mechanical contact known as chatter, in which contact is lost
and reestablished, sometimes numerous times (as seen here). Numerical experiments
reveal that the oscillations do not appear to be sensitive to the Schwarz convergence
tolerances. It is interesting to observe that the chatter problem is significantly ame-
liorated by performing Implicit-Explicit Schwarz coupling. This observation suggests
that the amount of chatter may be related to the predictor employed within the
Schwarz coupling time integration scheme. Future work will focus on understanding
the role of this predictor when it comes to the chatter problem, and potentially de-
signing alternate predictors to reduce the amount of chatter present in the Schwarz
solutions. Equally intriguing is the connection between the amount of chatter and the
total energy loss (Figure 4.7). Comparing Figure 4.7 with Figures 4.8 and 4.9, it can
be seen that the method with the largest total energy loss exhibits the least amount
of chatter. This result is consistent with published results demonstrating that energy
dissipation is necessary for the establishment of persistent contact [21], and suggests
that it may be possible to reduce the amount of chatter in the Schwarz solutions by
introducing numerical dissipation either through the Newmark-beta time-integrator
(by selecting different parameters within this time-integration scheme) or directly into
the Schwarz formulation.

(a) Conventional methods (b) Schwarz

Fig. 4.8. Contact point force for the left bar (Ω1) as a function of time (high speed impact)

4.4.2. Convergence studies of the Schwarz alternating method. Having
compared the Schwarz alternating method to our three conventional methods, we
now turn our attention to evaluating the former method’s convergence. We consider
a single quantity of interest (QOI) in this study, namely the kinetic energy in the
left bar. Figures 4.10, 4.11 and 4.12 depict the convergence of the Implicit-Implicit,
Implicit-Explicit and Explicit-Explicit Schwarz methods as the mesh is refined from
Nx = 50 to Nx = 400 elements. For the purpose of studying convergence in space,
the time-step in this study was fixed to 4t = 1.0 × 10−8 in both subdomains in
these calculations. The reader can observe convergence of the computed solution
to the exact analytical solution with mesh refinement for all three couplings. It is
curious to remark that oscillations can be seen in the Schwarz solution calculated using
the finest mesh resolution (Nx = 400) when performing Implicit-Explicit Schwarz
coupling (Figure 4.11). These oscillations begin shortly after the onset of contact and
appear to grow in time, until the bars separate. The nature of these oscillations is
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Fig. 4.9. Contact point velocity for the left bar (Ω1) as a function of time (high speed impact)

currently unknown and will be studied in future work. Figure 4.13(a) depicts the
mesh convergence of the three Schwarz variants considered with respect to the kinetic
energy QOI. All three approaches converge at a rate of ≈ 0.82. This convergence
rate is comparable to the convergence rate observed for a low-speed variant of this
problem simulated using Sandia’s ALEGRA code base, which implements the forward
increment explicit Lagrange multiplier contact method [23]. The Explicit-Explicit
Schwarz method is seen to be the most accurate, but only by a very small margin.

We lastly provide some data on the number of Schwarz iterations required for
convergence, a measure of computational efficiency. Figure 4.13(b) plots the number
of Schwarz iterations required for convergence for the three Schwarz variants when a
spatial resolution of Nx = 200 and a time-step of 4t = 1.0× 10−7 is employed. The
reader can observe that the method converges in between two and five Schwarz iter-
ations, depending on the type of coupling despite our selection of very tight Schwarz
convergence tolerances (a relative tolerance of 1.0×10−15 and an absolute tolerance of
1.0×10−12). Curiously, Explicit-Explicit Schwarz requires the fewest number of itera-
tions to achieve convergence at this resolution (between two and three). As expected,
no Schwarz iterations are required before the bars come into contact and after the
bars separate. Tables 4.3 and 4.4 summarize the maximum and the average number of
Schwarz iterations as a function of Nx (with a fixed time-step of 4t = 1.0×10−8) and
as a function of 4t (with a fixed spatial resolution of Nx = 200), respectively. The
reader can observe that the number of Schwarz iterations increases in general as the
mesh is refined. Additionally, Implicit-Implicit coupling requires the most Schwarz
iterations in general. The number of Schwarz iterations required for convergence does
not change significantly as the time-step is reduced, with the exception of the case in
which the time-step is reduced from 1.0 × 10−7 to 1.0 × 10−8 and Explicit-Explicit
Schwarz coupling is employed (Table 4.4).
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Fig. 4.10. Mesh convergence of the kinetic energy for the left bar (Ω1) as a function of time
computing using Implicit-Implicit Schwarz coupling with a time-step of 4t = 1.0 × 10−8 in both
subdomains (high speed impact).

Fig. 4.11. Mesh convergence of the kinetic energy for the left bar (Ω1) as a function of time
computing using Implicit-Explicit Schwarz coupling with a time-step of 4t = 1.0 × 10−8 in both
subdomains (high speed impact).

5. Summary. This paper presents a new computational framework for simu-
lating mechanical contact based on the Schwarz alternating method. In this ap-
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Fig. 4.12. Mesh convergence of the kinetic energy for the left bar (Ω1) as a function of time
computing using Explicit-Explicit Schwarz coupling with a time-step of 4t = 1.0 × 10−8 in both
subdomains (high speed impact).

(a) Mesh convergence of the kinetic energy for
the left bar (Ω1) when 4t = 1.0× 10−8

(b) Number of Schwarz iterations required for
convergence (Nx = 200, 4t = 1.0× 10−7)

Fig. 4.13. Convergence metrics for various Schwarz couplings (high speed impact).

Table 4.3
Maximum/average number of Schwarz iterations as a function of Nx with the time-step fixed

to 4t = 1.0× 10−8 for various Schwarz couplings (high speed impact).

Nx Implicit-Implicit Implicit-Explicit Explicit-Explicit

50 4/1.7354 4/1.7483 4/1.7562
100 5/1.9105 4/1.7506 4/1.7569
200 5/2.2184 5/2.0225 5/2.1953
400 6/2.5882 5/2.3142 5/2.2505

proach, contact constraints are replaced with alternating Dirichlet-Neumann bound-
ary conditions that are applied iteratively on the contact boundaries following a non-
overlapping domain decomposition of the problem geometry. After describing the
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Table 4.4
Maximum/average number of Schwarz iterations as a function of 4t with the spatial resolution

fixed to Nx = 200 for various Schwarz couplings (high speed impact).

4t Implicit-Implicit Implicit-Explicit Explicit-Explicit

1.0× 10−7 5/2.447 5/1.8768 3/1.2532
1.0× 10−8 5/2.2184 5/2.0225 5/2.1953
1.0× 10−9 5/2.2195 5/2.0607 5/2.1964

Schwarz methodology, we evaluate the method on a 1D impact problem with an ex-
act analytical solution and compare the method’s accuracy with that of conventional
contact algorithms, namely the penalty method and the Lagrange multiplier method.
We consider three variants of the Schwarz method in which different Newmark-beta
time-integrators are used in different subdomains, so as to demonstrate the method’s
flexibility in coupling different time integrators with possibly disparate time-steps.
Our results demonstrate the the Schwarz alternating method delivers a solution with
substantially better accuracy than the conventional approaches for QOIs such as the
contact point displacement, the mass-averaged velocity, the impact time, the release
time, and the kinetic and potential energies. Additionally, the new method conserves
energy significantly better than the conventional approaches. An unfortunate conse-
quence of the method’s ability to conserve energy so well appears to be the introduc-
tion of oscillations in the contact point velocity and contact point force. Future work
will focus on better understanding the cause of these oscillations and devising ap-
proaches to mitigate them. Preliminary results suggest that the introduction of some
slight dissipation [21] and/or numerical relaxation [22] can ameliorate the problem.

Future work will also include the following additional studies and extensions: (1)
the introduction of additional or alternate contact constraints to those discussed in
Section 3.2 to the Schwarz formulation, (2) a comparison of the Schwarz alternating
method to conventional contact formulations in which a zero gap rate constraint is
used in place of or in conjunction with a zero gap constraint, (3) an investigation
of why the use of Implicit-Explicit Schwarz coupling introduces oscillations in QOIs
such as the kinetic energy when sufficiently fine meshes are employed, and (4) an
implementation and evaluation of the Schwarz alternating method in multiple spa-
tial dimensions. The third of these tasks will require the development of operators
for consistent transfer of contact traction boundary conditions using the concept of
prolongation and restriction, common in multigrid methods.
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