Large-scale deterministic inversion and Bayesian calibration in land-ice modeling
Bayesian Statistical Inversion in Engineering Mechanics
Irina Tezaur (ikalash) ikalash@sandia.gov
Irina Tezaur (Presenting), John Jakeman, Mauro Perego, Stephen Price,
Mass loss from the polar ice sheets is expected to have a significant contribution to future sea-level changes. Predictions of ice sheet evolution are fraught with uncertainty, which comes from a number of sources, including poorly known model parameters, incomplete knowledge of ice-sheet initial and boundary conditions, uncertain future climate forcing, and sparsity/imprecision of observational data used to constrain ice sheet models. This talk will describe some of our work in quantifying uncertainties in ice sheet model inputs, in particular initial and boundary conditions, using formal methods of optimal parameter estimation and uncertainty quantification (UQ), in conjunction with computational tools that orchestrate these methods. After describing our project for land-ice modeling, known as PISCEES (Predicting Ice Sheet Climate Science Evolution at Extreme Scales) and our FELIX (Finite Elements for Land Ice eXperiments) land-ice simulation tool, we will detail the "end-to-end" workflow we have developed to provide probability distribution functions (PDFs) on ice sheet model outputs of interest (e.g., ice sheet mass loss over time). This workflow consists of three stages: (1) deterministic inversion, (2) Bayesian calibration, and (3) forward propagation of uncertainty. To remain within the scope of this minisymposium, attention is focused on the first two stages. Specifically, we will discuss approaches for estimating the basal friction coefficient, an important high-dimensional parameter used to define the initial and boundary conditions in ice sheet models, under the presence of uncertainty. First, we will describe our approach for inverting for the basal friction by solving a large-scale partial differential equation (PDE)-constrained optimization problem that minimizes the model mismatch with observations of surface ice properties (e.g., surface velocity, surface mass balance). We then turn our attention to solving this inverse problem in a Bayesian setting, that is, determining the PDF of the basal fri
inversion/calibration approaches on several Greenland ice sheet problems with varying resolutions.