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Motivation for Concurrent Multiscale 
Coupling
▪ Large scale structural failure frequently 

originates from small scale phenomena such 
as defects, microcracks, and inhomogeneities, 
which grow quickly in unstable manner.

▪ Failure occurs due to tightly coupled 
interaction between small scale (stress 
concentrations, material instabilities, cracks, 
etc.) and large scale (vibration, impact, high 
loads and other perturbations).

Roof failure of Boeing 737 aircraft due to 
fatigue cracks. From imechanica.org
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Concurrent multiscale methods are 
essential for understanding and predicting 

the behavior of engineering systems when a 
small scale failure determines the 
performance of the entire system.

Surface flaw in pressure 
vessel: interacts with 

microstructure, which may 
or may not lead to failure.



Requirements for Multiscale Coupling Method
o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement.

➢ Ability to use different solvers/time-integrators in different regions.

o Coupling does not introduce 
nonphysical artifacts.

o Theoretical convergence 
properties/guarantees.



Schwarz Alternating Method for Domain 
Decomposition
▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

Initialize:

▪ Solve PDE by any method on W1 w/ initial guess for Dirichlet BCs on G1.

Iterate until convergence:

▪ Solve PDE by any method (can be different than for W1) on W2 w/ 
Dirichlet BCs on G2 that are the values just obtained for W1.

▪ Solve PDE by any method (can be different than for W2) on W1 w/ 
Dirichlet BCs on G1 that are the values just obtained for W2.

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

▪ Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.

Requirement for convergence: Ω1⋂ Ω2≠ ∅

Novel idea: using the Schwarz alternating as a discretization method for 
solving multiscale partial differential equations (PDEs).

Basic Schwarz Algorithm
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Schwarz Alternating Method for Dynamic 
Multiscale Coupling
▪ In the literature the Schwarz method 

is applied to dynamics by using space-
time discretizations.

Overlapping non-matching meshes and 
time steps in dynamics.

Pro ☺: Can use non-matching meshes 
and time-steps (see right figure).

Con : Unfeasible given the design of our 
current codes and size of simulations.

Our objective: formulate dynamic Schwarz 
method for standard (non-space-time) 

discretizations (discretize in space, march 
forward in time).



Schwarz Alternating Method for Dynamic 
Multiscale Coupling

Controller time stepper

Time integrator for W1

Time integrator for W2
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Step 0: Initialize 𝑖 = 0 (controller time index).

Controller time stepper = convenient 
checkpoint to facilitate implementation  
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
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time-step 𝛥𝑡2, using solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 
➢ If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

Controller time stepper
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Time integrator for W2
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Ω2 to Γ1

Controller time stepper = convenient 
checkpoint to facilitate implementation  

Can use different integrators 
with different time steps

within each domain!



Schwarz Alternating Method for Dynamic 
Multiscale Coupling: Theory

• For quasistatics, we derived a proof of convergence of the alternating Schwarz 
method for the finite deformation problem, and determined a geometric 
convergence rate [(Mota, Tezaur, Alleman, CMAME, 2017) and previous talk].  

• Quasistatic proof extends naturally assuming conformal meshes and the same 
time step is used in each Schwarz subdomain.

• Some analysis of Schwarz for evolution problems was performed in (Lions, 1988) 
and may be possible to leverage.

• Our numerical results suggest theoretical analysis is possible. 

Extending these results to dynamics is work in progress.
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Implementation within Albany Code

▪ Component-based design for rapid development of 
capabilities.

▪ Contains a wide variety of constitutive models.

▪ Extensive use of libraries from the open-source Trilinos
project.

▪ Use of the Phalanx package to decompose complex 
problem into simpler problems with managed 
dependencies.

▪ Use of the Sacado package for automatic 
differentiation.

▪ Use of Tempus package for time-integration*.

▪ Parallel implementation of Schwarz alternating method 
uses the Data Transfer Kit (DTK).

▪ All software available on GitHub.

https://github.com/trilinos/trilinos

https://github.com/gahansen/Albany

https://github.com/ORNL-
CEES/DataTransferKit

The proposed dynamic alternating Schwarz method has been 
implemented within the LCM project in Sandia’s open-source 

parallel, C++, multi-physics, finite element code, Albany.

* Current dynamic Schwarz implementation in Albany requires same Δ𝑡 in different subdomains. 



Example #1: Elastic Wave Propagation

• Linear elastic clamped beam with Gaussian initial condition for the 
𝑧-displacement (see figures to the right and below).

• Simple problem with analytical exact solution but very stringent test 
for discretization methods.

• Test Schwarz with 2 subdomains: Ω0 = 0,0.001 × 0.001 ×
0,0.75 , Ω1 = 0,0.001 × 0.001 × 0.25,1 . 

Left: Initial condition 
(blue) and final solution 

(red).  Wave profile is 
negative of initial profile 

at time  T = 1.0e-3.

Time-discretizations:
Newmark-Beta (implicit, 
explicit) with same Δ𝑡.

Meshes: hexes, tets



Example #1: Elastic Wave Propagation

z-displacement

Table 1: Averaged (over times + domains) relative errors in z–displacement (blue) and z-
velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

LM = Lumped Mass, CM = Consistent Mass

z-velocity

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal hex-hex 2.79e-3 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2

Nonconformal hex-hex 2.90e-3 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3

Tet-hex 2.79e-3 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

Dynamic Schwarz coupling introduces no 
dynamic artifacts that are pervasive in 

other coupling methods!



Example #1: Elastic Wave Propagation

• For clamped beam problem, total energy (TE = 0.5𝒙𝑇𝑲𝒙 + 0.5 ሶ𝒙𝑇𝑴 ሶ𝒙) should be conserved.

• Total energy is calculated in 2 ways: with most of contribution from Ω0 and from Ω1.

Energy Conservation

Total energy is conserved
and matches single-domain 

total energy.



Example #2: Torsion

• Nonlinear elastic bar (Neohookean material model) 
subjected to a high degree of torsion.

• The domain is Ω = (−0.025,0.025) ×
(−0.025,0.025) × (−0.5,0.5).

• We evaluate dynamic Schwarz with 2 subdomains: 
Ω0 = (−0.025,0.025) × −0.025,0.025 ×
−0.5,0.25 , Ω1 = (−0.025,0.025) ×
−0.025,0.025 × −0.25,0.5 .

• Time-discretizations: Newmark-Beta (implicit, 
explicit) with same Δ𝑡.

• Meshes: hexes, composite tet 10s.

Ω0 Ω1 Ωref



Example #2: Torsion Schwarz and single-domain results 
agree to almost machine-precision!  

Conformal Hex + Hex Coupling Ω0 Ω1 Ωref

• Each subdomain discretized using uniform hex mesh with Δ𝑥𝑖 =
0.01, and advanced in time using implicit Newmark-Beta scheme 
with Δ𝑡 =1e-6.

• Results compared to single-domain solution on mesh conformal with 
Schwarz domain meshes.

Ω0

Ω1

Ω1

Ω0

Displacement relative errors at final time (T=0.002)

Velocity relative errors at final time (T=0.002)



Example #2: Torsion
Hex + Composite Tet 10 Coupling

• Coupling of composite tet 10s + explicit Newmark with consistent 
mass in Ω0 with hexes + implicit Newmark in Ω1.

• Reference solution is computed on fine hex mesh + implicit 
Newmark Ωref

Ω0 Ω1 Ωref

Movie of |displacement|
Left: Single-domain,  

Right: Schwarz

No dynamic 
artifacts!

Relative error <1% and 
does not grow in time!



Example #3: Tension Specimen

Ω1

Ω0

+

• Uniaxial aluminum cylindrical tensile 
specimen with inelastic J2 material 
model.

• Domain decomposition into two 
subdomains (right): Ω0 = ends,      
Ω1 = gauge.

• Nonconformal hex + composite tet
10 coupling via Schwarz.

• Implicit Newmark time-integration 
with adaptive time-stepping 
algorithm employed in both 
subdomains.

• Slight imperfection introduced at 
center of gauge to force necking 
upon pulling in vertical direction.



Example #3: Tension Specimen

Average of ~7 Schwarz 
iterations/time step required 
for convergence to Schwarz 

tolerance of 1e-6.

y-displacement Nodal eqps*

*Nodal eqps = equivalent plastic strain computed via weighted volume average.



Example #4: Bolted Joint Problem

Ω2

Ω1

• Ω1 = bolts (composite tet 10), Ω2 = parts (hex).

• Inelastic J2 material model in both subdomains.
• Ω1: steel
• Ω2: steel component, aluminum (bottom) plate

• Schwarz solution compared to single-domain 
solution on composite tet 10 mesh.

• BC: x-disp = 0.02 at T = 
1.0e-3 on top of parts.

• Run until T = 5.0e-4 w/ dt = 
1e-5 + implicit Newmark 
with analytic mass matrix 
for composite tet 10s.

Problem of practical scale.



Single Ω Schwarz

Example #4: Bolted Joint Problem

x-displacement



Cross-section of bolts obtained via clip (right) 

Example #4: Bolted Joint Problem

Nodal Equivalent Plastic Strain (eqps)



Schwarz / solver settings

• Relatively loose Schwarz 
tolerances were used:

• Relative Tolerance: 1.0e-3.
• Absolute Tolerance: 1.0e-4.

• Newton tolerance on NormF: 1e-8
• Linear solver tolerance: 1e-5
• MueLu preconditioner

• Top right plot: # Schwarz iterations for each time step.

• After start-up, # Schwarz iterations / time step is ~9-10.  This is not 
bad given how small is the size of the overlap region for this problem.

Example #4: Bolted Joint Problem
Some Performance Results
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Summary

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement.

➢ Ability to use different solvers/time-integrators in different regions.               

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees.

☺



☺

☺

☺

☺

☺

The alternating Schwarz coupling method has been developed and implemented 
for concurrent multiscale dynamic modeling in Sandia’s Albany/LCM code.

☺



▪ Development of theory for dynamic alternating Schwarz formulation. 

▪ Journal article on the work presented in this talk is in preparation.

▪ Extension of Albany/LCM implementation to allow for different time steps 
in different subdomains. 

▪ Application of dynamic Schwarz for problems and test cases of                         
interest to production.

▪ Implementation of alternating Schwarz method for concurrent                    
multiscale coupling in Sandia production codes (Sierra Solid                   
Mechanics), comparison to other methods (e.g., GFEM).

▪ Development of a multi-physics coupling framework based on                    
variational formulations and the Schwarz alternating method.

Ongoing/Future Work
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Appendix.  Schwarz Alternating Method for 
Dynamic Multiscale Coupling

▪ We developed an extension of Schwarz coupling to dynamics using a governing 
time stepping algorithm that controls time integrators within each domain. 

Can use different integrators with different time steps
within each domain (w/o space-time discretization)!

Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0 𝑇1 𝑇2

Ingredients:

• Controller time step Δ𝑇 ⇒ 𝑇0 + 𝑛Δ𝑇 are times at which Schwarz is synchronized
➢ Convenient checkpoint to facilitate implementation

• Discretization + time-integrator for Ω1 with time-step 𝛥𝑡1 (divides 𝛥𝑇)

• Discretization + time-integrator for Ω2 with time-step 𝛥𝑡2 (divides 𝛥𝑇)

Δ𝑇 Δ𝑇
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Appendix. Dynamic Singular Bar (MATLAB)
▪ Inelasticity masks problems by introducing energy dissipation.

▪ Schwarz does not introduce numerical artifacts.

▪ Can couple domains with different time integration schemes (Explicit-Implicit below).



Appendix.  Example #1: Elastic Wave

• Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The 
method does not converge for 0% overlap. If the overlap is 100% then the single-domain 
solution is recovered for each of the subdomains. 

• Right figure shows linear convergence rate of dynamic Schwarz implementation (for small 
overlap fraction of 0.2%).

Some Performance Results



Appendix.  Example #2: Torsion

• Convergence behavior of the dynamic Schwarz algorithm for the torsion problem for small 
overlap volume fraction (2%) in which each subdomain is discretized using a hexahedral 
mesh. The plot shows that a linear convergence rate is achieved.

Some Performance Results



Single Ω Schwarz

Appendix. Example #4: Bolted Joint Problem
y-displacement



Single Ω Schwarz

Appendix. Example #4: Bolted Joint Problem
z-displacement


