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PISCEES Project for Land-Ice Modeling

Sandia’s Role in the PISCEES Project: to develop and support a robust and scalable land 
ice solver based on the “First-Order” (FO) Stokes equations → Albany/FELIX*

Requirements for Albany/FELIX: 

• Unstructured grid finite elements.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities: 
deterministic inversion, calibration, 
uncertainty quantification.

*Finite Elements for Land Ice eXperiments

As part of ACME DOE Earth System 
Model, solver will provide actionable 
predictions of 21st century sea-level 

change (including uncertainty bounds).

“PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales
5 year SciDAC3 project began in June 2012; proposal for 5 year 

continuation project submitted to SciDAC4 call.
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The First-Order Stokes Model
• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

• Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice” 
elliptic approximation* to Stokes’ flow equations.
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Albany/FELIX
• Relevant boundary conditions: 

• Stress-free BC: 2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = 0, on Γ𝑠
• Floating ice BC: 

• Basal sliding BC: 
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2𝜇 ሶ𝝐𝑖 ∙ 𝒏 + 𝛽(𝑥, 𝑦)𝑢𝑖 = 0, on Γ𝛽
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Thickness & Temperature Equations

• Model for evolution of the boundaries (thickness 
evolution equation):

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

where ഥ𝒖 = vertically averaged velocity, ሶ𝑏 = surface mass 
balance (conservation of mass).

• Temperature equation (advection-diffusion):

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

(energy balance). 

• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 
𝐴 = 𝐴(𝑇).

• Ice sheet grows/retreats depending on thickness 𝐻.

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)
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Uncertainty Quantification Problem Definition
QoI in Ice Sheet Modeling: total ice mass loss/gain 
during 21st century → sea level change prediction.
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Estimation of Ice Sheet Initial Condition

Stage 3:
Propagate uncertain initial 

condition through ice-sheet 
evolution model

UQ Workflow

Stage 1:
Estimate ice sheet initial 
condition (MAP point).

Stage 2:
Update prior uncertainty in ice 

sheet initial condition 
using observational data
and steady state model

• matches observations (e.g. surface velocity, 
temperature, etc.).

• matches present-day geometry (elevation, 
thickness).

• is in “equilibrium” with climate forcings (SMB).

Goal: find ice sheet initial state that:



β

Ice sheet

ℎ

Ocean

Bedrock

Available Data & Assumptions
Available data/measurements:

• ice extent and surface topography.
• surface velocity.
• surface mass balance (SMB).
• ice thickness ℎ (sparse measurements).

Fields to be estimated:
• ice thickness ℎ (allowed to vary but weighted 

by observational uncertainties).
• basal friction 𝛽 (spatially variable proxy for all 

basal processes).

Modeling Assumptions:
• ice flow described by nonlinear first-order 

Stokes equations.
• ice close to mechanical equilibrium.

Sources of data: satellite 
infrarometry, radar, 

altimetry, etc.



Deterministic Inversion

First-Order Stokes PDE-Constrained optimization 
problem for initial condition*:

minimize 𝛽,ℎ 𝑚 𝛽, ℎ

s.t. FO Stokes PDEs

𝑚 𝛽, ℎ = න
Γ

1

𝜎𝑢
2 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠

+ න
Γ

1

𝜎𝜏
2
𝑑𝑖𝑣 𝑼ℎ − 𝜏𝑠

2𝑑𝑠

+ Γ׬
1

𝜎ℎ
2 |ℎ − ℎ𝑜𝑏𝑠|2𝑑𝑠

+ ℛ(𝛽, ℎ)

surface velocity mismatch

SMB mismatch

thickness mismatch

regularization terms

𝑼: computed depth averaged velocity

ℎ: ice thickness

𝛽: basal sliding friction coefficient

𝜏𝑠: surface mass balance (SMB)

ℛ(𝛽, ℎ): regularization term

* Perego, Stadler, Price, JGR, 2014.
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𝑼: computed depth averaged velocity

ℎ: ice thickness

𝛽: basal sliding friction coefficient

𝜏𝑠: surface mass balance (SMB)

ℛ(𝛽, ℎ): regularization term

Solving FO Stokes PDE-constrained optimization problem for initial 
condition significantly reduces non-physical model transients!

* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion Algorithm & Software

Algorithm Software

Finite Element Method discretization Albany

Quasi-Newton optimization (L-BFGS) ROL

Nonlinear solver (Newton) NOX

Krylov linear solvers AztecOO+Ifpack/ML

• Some details:

• Regularization: Tikhonov.

• Total derivatives of objective functional 𝑚 𝛽, ℎ computed using adjoints and 
automatic differentiation (Sacado package of Trilinos).

• Gradient-based optimization: limited memory BFGS initialized with Hessian 
of regularization terms (ROL) with backtrack linesearch.

First-Order Stokes PDE-Constrained optimization 
problem for initial condition*:

minimize 𝛽,ℎ 𝑚 𝛽, ℎ

s.t. FO Stokes PDEs

Solved via embedded adjoint-based 
PDE-constrained optimization 

algorithm in Albany/FELIX.

* Perego, Stadler, Price, JGR, 2014.



Deterministic Inversion: 1km Greenland 
Initial Condition

|𝒖| observed |𝒖| computed Error in |𝒖| computed
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Bayesian Inference

Stage 3:
Propagate uncertain initial 

condition through ice-sheet 
evolution model

UQ Workflow

Stage 1:
Estimate ice sheet initial 
condition (MAP point).

Stage 2:
Update prior uncertainty in ice 

sheet initial condition 
using observational data
and steady state model

• Naïve parameterization: represent each degree 
of freedom on mesh be an uncertain variable

𝛽 𝒙 = (𝑧1, 𝑧2, … , 𝑧𝑛dof)

Intractable due to curse of 
dimensionality: 𝑛dof = 𝑂 100𝐾 !

Goal: solve inverse problem for ice sheet 
initial state but in Bayesian framework

• To circumvent this difficulty: assume 𝛽 𝒙 can 
be represented in reduced basis (e.g., KLE 
modes, Hessian eigenvectors*) centered around 
mean ҧ𝛽(𝒙):

log 𝛽 𝒙 = log ҧ𝛽 +෍

𝑖=1

𝑑

𝜆𝑖 𝜙𝑖(𝒙)𝑧𝑖

• Mean field ҧ𝛽 𝒙 = initial condition. 

* Isaac, Petra, Stadler, Ghattas, JCP, 2015.

Deterministic inversion is consistent 
with Bayesian analog: it is used to find 

the MAP point of posterior. 



Bayesian Inference Assumptions

• Additive Gaussian noise model: 𝒚obs = 𝒇 𝒛 + 𝜖, 𝜖 ~ 𝑁(𝟎, 𝜞obs)

⇒ Mismatch functional to be minimized: 

𝑚 𝒛 =
1

2
𝒚obs − 𝒇 𝒛

𝑇

𝜞obs
−1 𝒚obs − 𝒇 𝒛

• Gaussian prior with exponential covariance and mean 𝒛𝑀𝐴𝑃 = ҧ𝛽.

* Constantine, Kent, Bui-Thanh, SISC, 2016. 

Notation*:

𝒚obs= observations

𝒛 = random params

𝒇(𝒛) = deterministic 
map from params to 
observables.
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𝒇(𝒛) = deterministic 
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Covariance of Gaussian 
posterior related to 

inverse of misfit Hessian 
at MAP point**.
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𝒇(𝒛) around 𝒛𝑀𝐴𝑃
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* Constantine, Kent, Bui-Thanh, SISC, 2016. **Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 

Notation*:

𝒚obs= observations

𝒛 = random params

𝒇(𝒛) = deterministic 
map from params to 
observables.

Covariance of Gaussian 
posterior related to 

inverse of misfit Hessian 
at MAP point**.

Evaluation of misfit 
Hessian is expensive!

⇒ further approximation 
required.

+ linearization of 
𝒇(𝒛) around 𝒛𝑀𝐴𝑃



Bayesian Inference Workflow

*

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.  

Two-part dimension 
reduction procedure to 

obtain modes 𝜙𝑖(𝒙)

Procedure for computing 
covariance of normal 

Laplace posterior, 𝜞post

KLE = Karhunen-Loeve Expansion
AS = Active Subspace
PCE = Polynomial Chaos Expansion
MAP = Maximum a Posteriori

*



Karhunen-Loeve Expansion (KLE)

• KLE modes 𝜙𝑖(𝒙) are eigenvectors of assumed exponential                                                              
covariance kernel:

log 𝛽 𝒙 = log ҧ𝛽 +෍
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Best fit ҧ𝛽

𝑂(100𝐾) dimensional inversion problem can be reduced to smaller 
dimensional problem using Karhunen-Loeve Expansion (KLE)

𝐶 𝑟1, 𝑟2 = exp −
𝑟1 − 𝑟2

2

𝐿2
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• KLE modes 𝜙𝑖(𝒙) are eigenvectors of assumed exponential                                                              
covariance kernel:

log 𝛽 𝒙 = log ҧ𝛽 +෍
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𝑂(100𝐾) dimensional inversion problem can be reduced to smaller 
dimensional problem using Karhunen-Loeve Expansion (KLE)
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• Parameters to be selected: correlation length 𝐿, basis size 𝑑.

• 𝐿 and 𝑑 can be estimated “rigorously” by solving LLS problem:

𝑚𝑖𝑛𝐿,𝑑 exp ҧ𝛽𝑜𝑝𝑡(min𝑚(𝛽)) − ҧ𝛽𝑜𝑝𝑡(min𝑚(𝛽, ℎ)) −෍
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d

LLS representation error 
decay is independent of L

⇒ 𝑑 should be 𝑂(1000)
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• KLE eigenvalue analysis suggests 𝑑 = 𝑂(1000) – still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for 
further (and better) data-informed dimension reduction.

• Active Subspace (AS) = directions along which objective function has strongest variability.

• Active subspace approach: mismatch approximated by related function of fewer variables ෝ𝑚:

𝑚 𝒛 =
1
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(𝒅 − 𝒇 𝒛 )𝑇𝜞obs

−1 (𝒅 − 𝒇 𝒛 ) ≈ ෝ𝑚(𝑾1
𝑇𝒛)

𝑾1
𝑇𝒛 = “active variables” 

𝑾1
𝑇 = rotation of coords

* Constantine, Dow, Wang, SISC, 2014.

Example*: 𝑚(𝒛) = exp(0.7𝑧1 + 0.3𝑧2)

(i) Rotate coords s.t. directions of strongest 
variation are aligned with the rotated coords.

(ii) Construct response surface using only most 
important rotated coords.

→ Bivariate function 𝑚(𝒛) is effectively 
univariate in rotated coordinate system

Dimension reduction via AS:
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Idea: combine KLE with Active Subspace (AS) information for 
further (and better) data-informed dimension reduction.

• Active Subspace (AS) = directions along which objective function has strongest variability.

• Active subspace approach: mismatch approximated by related function of fewer variablesෞ𝑚:

𝑚 𝒛 =
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(𝒅 − 𝒇 𝒛 )𝑇𝜞obs

−1 (𝒅 − 𝒇 𝒛 ) ≈ ෝ𝑚(𝑾1
𝑇𝒛)

𝑾1
𝑇𝒛 = “active variables” 

𝑾1
𝑇 = rotation of coords

* Constantine, Dow, Wang, SISC, 2014.

Example*: 𝑚(𝒛) = exp(0.7𝑧1 + 0.3𝑧2)

(i) Rotate coords s.t. directions of strongest 
variation are aligned with the rotated coords.

(ii) Construct response surface using only most 
important rotated coords.

→ Bivariate function 𝑚(𝒛) is effectively 
univariate in rotated coordinate system

Dimension reduction via AS:

• AS identified using gradients of mismatch function 𝛻𝑚: ℝ𝑑׬ 𝛻𝑚 𝑧 𝛻𝑚 𝑧 𝑇𝑑𝜌 𝑧 = 𝑾𝜦𝑾𝑇



Greenland Bayesian Inference via KLE + AS
KLE modes Data-informed (AS) directions (𝑑=73*)

Gradients of mismatch 
function obtained via 

adjoint solve in 
Albany/FELIX.

• Above, left: fewer modes are needed to build the basal friction parameter map when using KLE + 
AS methods than when using straight KLE.

• Above, right: relative clustering of large values towards smaller indices implies KLE coefficients 
corresponding to larger singular values  contribute most to variability in 𝑚(𝒛).

KLE and AS amplitudes AS principal component

index

* Value of 𝑑 was obtained via cross-validation.



Active Subspaces for Inference

Various levels of approximation can be employed:

• Reduce dimension but no surrogate of misfit
• Perform MCMC in active subspace to improve mixing

• Surrogate of misfit with rotation but no dimension reduction
• Leverage increased sparsity induced by rotation

• Surrogate of misfit and dimension reduction
• Combine MCMC in active subspaces with surrogates that 

adaptively target regions of high probability



Quadratic PCE over Active Variables
Idea: approximate misfit 𝑚(𝒛) using quadratic PCE for 

efficient computation of misfit Hessian.

𝑚(𝒛) ≈ ෝ𝑚(𝒛) = quadratic PCE function

• Approximate misfit over active variables using a quadratic function obtained via compressed 
sensing (using 𝑀= 733 samples and a PCE with 20,301 terms)*:

||𝑚 𝒛 − ෝ𝑚(𝒛)||𝑙𝜌2

||𝑚 𝒛 − σ𝑖=1
𝑀 𝑚(𝒛(𝑖)) ||𝑙𝜌2

≈ 0.981

• Approximate misfit with quadratic PCE in rotated 𝑑 = 
200 space:

• Approximate misfit with quadratic PCE in rotated
and truncated 𝑑 = 73 space:

||𝑚 𝒛 − ෝ𝑚(𝑾𝑇𝒛)||𝑙𝜌2

||𝑚 𝒛 − σ𝑖=1
𝑀 𝑚(𝒛(𝑖)) ||𝑙𝜌2

≈ 0.190

||𝑚 𝒛 − ෝ𝑚𝑠=73 (𝑾1
𝑇𝒛)||𝑙𝜌2

||𝑚 𝒛 − σ𝑖=1
𝑀 𝑚(𝒛(𝑖)) ||𝑙𝜌2

≈ 0.136

* Ratios are improvements relative to using  mean of data; want ratio close to 0. 



Low Rank Laplace-Based Covariance*

• Linearize parameter-to-observable map around MAP point:

where 𝑭 = Frechet derivative of 𝒇.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 
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Low Rank Laplace-Based Covariance*

• Linearize parameter-to-observable map around MAP point:

where 𝑭 = Frechet derivative of 𝒇.

• Covariance of Gaussian Laplace posterior given by:

𝜞post = 𝑯misfit
PCE + 𝜞prior

−1 −1

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 

𝒚obs = 𝒇 𝒛 + 𝜖 ≈ 𝒇 𝒛MAP + 𝑭 𝒛 − 𝒛MAP + 𝜖

𝜋pos 𝒛 | 𝒚obs = 𝑁(𝒛MAP, 𝜞post)
𝜞post is dense!    

⇒ prohibitively expensive 
to store & construct.

• Low-rank approximation of 𝜞post obtained 

using Sherman-Morrison-Woodbury formula: 

𝜞post ≈ 𝜞prior − ෩𝑽𝑟𝑫𝑟
෩𝑽𝑟
♢

• ෩𝑯misfit and its EV decomposition can be computed efficiently using a parallel matrix-
free Lanczos method.

• Rank of 𝜞post = # of modes that informed directions of posterior (AS vectors).

Symbols*:

𝑽𝑟 , 𝑫𝑟: eigenvecs, eigenvals of ෩𝑯misfit

෩𝑯misfit = prior-preconditioned Hessian 

of data misfit = 𝜞prior
1/2

𝑯misfit𝜞prior
1/2

𝑯misfit = Gauss-Newton portion of 

Hessian misfit = 𝑭𝄯𝜞obs
−1 𝑭

෩𝑽𝑟 = 𝜞prior
1/2

𝑽𝑟, ෩𝑽𝑟
♢= adjoint of ෩𝑽𝑟

𝜞prior
−1 = 𝑴−1𝑲,𝑲= Laplace stiffness.



Greenland Bayesian Inference via KLE + AS

KLE modes Data-informed (AS) directions (𝑑=73*)

• Above: marginal distributions of Gaussian posterior computed using 
KLE vs. KLE+AS; any shift from mean of 0 is due to observations.

• KLE eigenvectors have variance and mean close to prior.

• Data-informed eigenvectors have smaller variance and are most 
shifted w.r.t. prior distribution (as expected).  

KLE and AS amplitudes

AS principal component

index

Gradients of mismatch 
function obtained via 

adjoint solve in 
Albany/FELIX.

* Value of 𝑑 was obtained via cross-validation.



Outline

1. Background.
• PISCEES project for land-ice 

modeling.
• Land-ice model.

2. UQ problem definition.

3. Inversion/calibration.
• Deterministic inversion.
• Bayesian inference.

4. Summary & future work.



Summary & future work 

This talk described our workflow for quantifying uncertainties in 
expected aggregate ice sheet mass change and its demonstration

on a Greenland ice sheet problem, focusing on inversion.



Summary & future work 

• Future work:

• Execute full UQ workflow (inversion + forward propagation) on realistic 
Greenland/Antarctic ice sheet problems.

• Squared Laplace covariance operator approach* (no KLE)

• Less expensive than building PCE.
• Allows higher dimensional parameter spaces.

• Incorporate effects of other sources of uncertainty, e.g., surface height, surface 
mass balance.
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Summary & future work 

• Future work:

• Execute full UQ workflow (inversion + forward propagation) on realistic 
Greenland/Antarctic ice sheet problems.

• Squared Laplace covariance operator approach* (no KLE)

• Less expensive than building PCE.
• Allows higher dimensional parameter spaces.

• Incorporate effects of other sources of uncertainty, e.g., surface height, surface 
mass balance.

This talk described our workflow for quantifying uncertainties in 
expected aggregate ice sheet mass change and its demonstration

on a Greenland ice sheet problem, focusing on inversion.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013. 

We are well-positioned to 
do these efforts in parallel!
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Multiphysics Code

• Component-based design for rapid 
development of new physics & capabilities.

• Extensive use of libraries from the open-
source Trilinos project:

• Automatic differentiation.

• Discretizations/meshes, mesh adaptivity.

• Solvers, time-integration schemes.

• Performance-portable kernels.

• Advanced analysis capabilities:

• Parameter estimation.

• Uncertainty quantification (DAKOTA).

• Optimization (DAKOTA, ROL).

• Sensitivity analysis.

Albany = Sandia open-source* parallel, 
C++, multi-physics finite element code.

40+ packages; 120+ libraries

* https://github.com/gahansen/Albany.

The Albany/FELIX land-ice solver is implemented within the Albany multi-physics code.



Computing the Active Subspace
Gradients of mismatch  𝛻𝛽𝑚 can be used to identify subspace that 

controls variation in likelihood function (active subspace)

• Mismatch approximated by related function of fewer variables 𝑔:

𝑚 𝒛 =
1

2
(𝒅 − 𝒇 𝒛 )𝑇𝜞obs

−1 (𝒅 − 𝒇 𝒛 ) ≈ 𝑔(𝑾1
𝑇𝒛)

• Active subspace computed using න
ℝ𝑑
𝛻𝑚 𝑧 𝛻𝑚 𝑧 𝑇𝑑𝜌 𝑧 = 𝑾𝜦𝑾𝑇

• Sample gradient using MC: 𝛻𝑚 𝑧 1 ,…, 𝛻𝑚 𝑧 𝑀 .

• Form Gauss-Newton approx. of Hessian averaged over prior:

𝑪 =
1

𝑀
෍

𝑖=1

𝑀

𝛻𝑚 𝑧 𝑖 𝛻𝑚 𝑧 𝑖 𝑇

• Compute eigenvalue decomposition: 𝑪 = 𝑾𝜦𝑾𝑇

→ eigenvectors 𝑾 define rotation of ℝ𝑀.

• Partition 𝒛 into active and inactive variables:

𝒛 = 𝑾1
𝑇𝒛 +𝑾2

𝑇𝒛, 𝑾 = 𝑾1 𝑾2

Linear transformation (rotation) of coords

Perturbing 𝑚(𝒛) along 
columns of 𝑾1changes 

𝑚(𝒛) more.

𝑾1
𝑇𝒛 = “active 
variables”



Full UQ Workflow: Varying Levels of Approx.

As with Bayesian inference:

• Future work: compare errors as accuracy of approximation is increased to gain insight into 
viability of lower-dimensional approximations.

• Lessons can be learned by avoiding use of highest fidelity model.


