Exceptional service in the national interest

Large-scale Deterministic Inversion and Bayesian Calibration in Land-Ice Modeling

I. Tezaur¹, J. Jakeman¹, M. Eldred¹, M. Perego¹, S. Price², A. Salinger¹

¹ Sandia National Laboratories, Albuquerque, NM and Livermore, CA, USA.

² Los Alamos National Laboratory, Los Alamos, NM, USA.

USNCCM 2017 Montreal, Quebec July 17-20, 2017

NANSSE Sa National Nuclear Security Administration OV

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-6948C

Outline

- 1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

Outline

- 1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

PISCEES Project for Land-Ice Modeling

"PISCEES" = Predicting Ice Sheet Climate Evolution at Extreme Scales 5 year SciDAC3 project began in June 2012; proposal for 5 year continuation project submitted to SciDAC4 call.

<u>Sandia's Role in the PISCEES Project</u>: to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes equations \rightarrow Albany/FELIX*

Requirements for Albany/FELIX:

- Unstructured grid finite elements.
- Scalable, fast and robust.
- Verified and validated.
- *Portable* to new architecture machines.
- Advanced analysis capabilities: deterministic inversion, calibration, uncertainty quantification.

As part of **ACME** *DOE Earth System Model*, solver will provide actionable predictions of 21st century sea-level change (including uncertainty bounds).

PISCEES Project for Land-Ice Modeling

"PISCEES" = Predicting Ice Sheet Climate Evolution at Extreme Scales 5 year SciDAC3 project began in June 2012; proposal for 5 year continuation project submitted to SciDAC4 call.

<u>Sandia's Role in the PISCEES Project</u>: to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes equations \rightarrow Albany/FELIX*

Requirements for Albany/FELIX:

- Unstructured grid finite elements.
- Scalable, fast and robust.
- Verified and validated.
- *Portable* to new architecture machines.
- Advanced analysis capabilities: deterministic inversion, calibration, uncertainty quantification.
 This talk

As part of **ACME** *DOE Earth System Model*, solver will provide actionable predictions of 21st century sea-level change (including <u>uncertainty bounds</u>).

Outline

1. Background.

- PISCEES project for land-ice modeling.
- Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

Quasi-static model with momentum balance given by "First-Order" Stokes PDEs: "nice" elliptic approximation* to Stokes' flow equations.

Ice behaves like a very *viscous shear-thinning fluid* (similar to lava flow).

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, & \text{in } \Omega \end{cases}$$

Viscosity μ is nonlinear function given by "*Glen's law"*:

$$\mu = \frac{1}{2}A(T)^{-\frac{1}{n}} \left(\frac{1}{2}\sum_{ij} \dot{\epsilon}_{ij}^{2}\right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

- Relevant boundary conditions:
 - Stress-free BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = 0$, on Γ_s
 - Floating ice BC: $2\mu \dot{\epsilon}_i \cdot \boldsymbol{n} = \begin{cases} \rho g z \boldsymbol{n}, \text{ if } z > 0 \\ 0, & \text{ if } z < 0 \end{cases}$, on Γ_l
 - Basal sliding BC:

$$2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} + \beta(x, y)u_i = 0$$
, on Γ_{β}

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

$$\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\boldsymbol{\epsilon}}_{11} + \dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{13})$$
$$\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{11} + 2\dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{23})$$
$$\dot{\boldsymbol{\epsilon}}_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

• Ice behaves like a very **viscous shear-thinning fluid** (similar to lava flow).

 Quasi-static model with momentum balance given by "First-Order" Stokes PDEs: "nice" elliptic approximation* to Stokes' flow equations.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \text{ in } \Omega \end{cases}$$

$$\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\boldsymbol{\epsilon}}_{11} + \dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{13})$$
$$\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{11} + 2\dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{23})$$
$$\dot{\boldsymbol{\epsilon}}_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

• Viscosity μ is nonlinear function given by "*Glen's law"*:

$$\mu = \frac{1}{2}A(T)^{-\frac{1}{n}} \left(\frac{1}{2}\sum_{ij} \dot{\epsilon}_{ij}^{2}\right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \quad (n = 3)$$

- Relevant boundary conditions:
 - Stress-free BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = 0$, on Γ_s
 - Floating ice BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = \begin{cases} \rho g z \boldsymbol{n}, \text{ if } z > 0 \\ 0, & \text{ if } z < 0 \end{cases}$, on Γ_l
 - Basal sliding BC:

$$2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} + \beta(x, y)u_i = 0$$
, on Γ_{β}

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

The First-Order Stokes Model

- Ice behaves like a very *viscous shear-thinning fluid* (similar to lava flow).
- Quasi-static model with momentum balance given by "First-Order" Stokes PDEs: "nice" elliptic approximation* to Stokes' flow equations.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega \end{cases}$$

$$\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\boldsymbol{\epsilon}}_{11} + \dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{13})$$
$$\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{11} + 2\dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{23})$$
$$\dot{\boldsymbol{\epsilon}}_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

• Viscosity *μ* is nonlinear function given by "*Glen's law*":

$$\mu = \frac{1}{2}A(T)^{-\frac{1}{n}} \left(\frac{1}{2}\sum_{ij} \dot{\epsilon}_{ij}^{2}\right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

- Relevant boundary conditions:
 - Stress-free BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = 0$, on Γ_s
 - Floating ice BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = \begin{cases} \rho g z \boldsymbol{n}, \text{ if } z > 0 \\ 0, & \text{ if } z < 0 \end{cases}$, on Γ_l
 - Basal sliding BC:

$$2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} + \boldsymbol{\beta}(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{u}_i = 0, \text{ on } \Gamma_{\boldsymbol{\beta}}$$

$$\beta(x, y) =$$
basal sliding coefficient

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

Thickness & Temperature Equations

• Model for *evolution of the boundaries* (thickness evolution equation):

$$\frac{\partial H}{\partial t} = -\nabla \cdot (\overline{\boldsymbol{u}}H) + \dot{\boldsymbol{b}}$$

where \overline{u} = vertically averaged velocity, \dot{b} = surface mass balance (conservation of mass).

• Temperature equation (advection-diffusion):

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \rho c \boldsymbol{u} \cdot \nabla T + 2 \dot{\boldsymbol{\epsilon}} \boldsymbol{\sigma}$$

(energy balance).

- **Flow factor** A in Glen's law depends on temperature T: A = A(T).
- Ice sheet *grows/retreats* depending on thickness *H*.

Outline

- 1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

Qol in Ice Sheet Modeling: total ice mass loss/gain during 21^{st} century \rightarrow *sea level change prediction*.

Qol in Ice Sheet Modeling: total ice mass loss/gain during 21^{st} century \rightarrow *sea level change prediction*.

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- Basal friction (β).
- Ice sheet thickness (*h*).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

Qol in Ice Sheet Modeling: total ice mass loss/gain during 21^{st} century \rightarrow *sea level change prediction.*

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- Basal friction (β).
- Ice sheet thickness (*h*).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

As a first step, we focus on effect of uncertainty in β only.

Qol in Ice Sheet Modeling: total ice mass loss/gain during 21^{st} century \rightarrow *sea level change prediction.*

As a first step, we focus on effect of uncertainty in β only.

Sources of uncertainty affecting this QoI include:

- Climate forcings (e.g., surface mass balance).
- Basal friction (β).
- Ice sheet thickness (*h*).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

Qol in Ice Sheet Modeling: total ice mass loss/gain during 21^{st} century \rightarrow *sea level change prediction.*

As a first step, we focus on effect of uncertainty in β only.

Qol in Ice Sheet Modeling: total ice mass loss/gain during 21^{st} century \rightarrow *sea level change prediction.*

As a first step, we focus on effect of uncertainty in β only.

Outline

- 1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

Estimation of Ice Sheet Initial Condition

Available Data & Assumptions

Available data/measurements:

- ice extent and surface topography.
- surface velocity.
- surface mass balance (SMB).
- ice thickness *h* (sparse measurements).

Fields to be estimated:

- ice thickness h (allowed to vary but weighted by observational uncertainties).
- basal friction β (spatially variable proxy for all basal processes).

Modeling Assumptions:

- ice flow described by nonlinear first-order Stokes equations.
- ice close to mechanical equilibrium.

Sources of data: satellite infrarometry, radar, altimetry, etc.

Deterministic Inversion

First-Order Stokes PDE-Constrained optimization problem for initial condition*:

minimize $_{\beta,h} m(\beta,h)$ s.t. FO Stokes PDEs U: computed depth averaged velocityh: ice thickness β : basal sliding friction coefficient τ_s : surface mass balance (SMB) $\mathcal{R}(\beta, h)$: regularization term

$$m(\beta, h) = \int_{\Gamma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds \qquad \text{surface velocity mismatch}$$
$$+ \int_{\Gamma} \frac{1}{\sigma_\tau^2} |div(\mathbf{U}h) - \tau_s|^2 ds \qquad \text{SMB mismatch}$$
$$+ \int_{\Gamma} \frac{1}{\sigma_h^2} |h - h^{obs}|^2 ds \qquad \text{thickness mismatch}$$
$$+ \mathcal{R}(\beta, h) \qquad \text{regularization terms}$$

* Perego, Stadler, Price, JGR, 2014.

Deterministic Inversion

First-Order Stokes PDE-Constrained optimization problem for initial condition*:

minimize $_{\beta,h} m(\beta,h)$ s.t. FO Stokes PDEs U: computed depth averaged velocity h: ice thickness β : basal sliding friction coefficient τ_s : surface mass balance (SMB) $\mathcal{R}(\beta, h)$: regularization term

$m(\beta,h) = \int_{\Gamma} \frac{1}{\sigma_u^2} \boldsymbol{u} - \boldsymbol{u}^{obs} ^2 ds$	surface velocity mismatch
$+ \int_{\Gamma} \frac{1}{\sigma_{\tau}^2} div(\boldsymbol{U}h) - \tau_s ^2 ds$	SMB mismatch
+ $\int_{\Gamma} \frac{1}{\sigma_h^2} h - h^{obs} ^2 ds$	thickness mismatch
$+ \mathcal{R}(\beta, h)$	regularization terms

Solving FO Stokes PDE-constrained optimization problem for initial condition significantly reduces non-physical model transients!

* Perego, Stadler, Price, JGR, 2014.

Deterministic Inversion Algorithm & Software

First-Order Stokes PDE-Constrained optimization problem for initial condition*:

minimize $_{\beta,h} m(\beta,h)$ s.t. FO Stokes PDEs Solved via embedded *adjoint-based PDE-constrained optimization* algorithm in Albany/FELIX.

Algorithm	Software	
Finite Element Method discretization	Albany	
Quasi-Newton optimization (L-BFGS)	ROL	
Nonlinear solver (Newton)	NOX	
Krylov linear solvers	AztecOO+Ifpack/ML	

- Some details:
 - *Regularization:* Tikhonov.
 - Total derivatives of objective functional $m(\beta, h)$ computed using *adjoints* and *automatic differentiation* (Sacado package of Trilinos).
 - **Gradient-based optimization**: limited memory BFGS initialized with Hessian of regularization terms (ROL) with backtrack linesearch.

* Perego, Stadler, Price, JGR, 2014.

Deterministic Inversion: 1km Greenland Initial Condition

Sandia National

Outline

- 1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

UQ Workflow

Stage 1: Estimate ice sheet initial condition (MAP point).

Stage 2: Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3: Propagate uncertain initial condition through ice-sheet evolution model **Goal:** solve inverse problem for ice sheet initial state but in **Bayesian framework**

UQ Workflow

Stage 1: Estimate ice sheet initial condition (MAP point).

Stage 2: Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3: Propagate uncertain initial condition through ice-sheet evolution model **Goal:** solve inverse problem for ice sheet initial state but in **Bayesian framework**

Naïve parameterization: represent each degree of freedom on mesh be an uncertain variable

$$\beta(\mathbf{x}) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

UQ Workflow

Stage 1: Estimate ice sheet initial condition (MAP point).

Stage 2: Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3: Propagate uncertain initial condition through ice-sheet evolution model **Goal:** solve inverse problem for ice sheet initial state but in **Bayesian framework**

Naïve parameterization: represent each degree of freedom on mesh be an uncertain variable

$$\beta(\mathbf{x}) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to curse of dimensionality: $n_{dof} = O(100K)!$

UQ Workflow

Stage 1: Estimate ice sheet initial condition (MAP point).

Stage 2: Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3: Propagate uncertain initial condition through ice-sheet evolution model **Goal:** solve inverse problem for ice sheet initial state but in **Bayesian framework**

Naïve parameterization: represent each degree of freedom on mesh be an uncertain variable

$$\beta(\mathbf{x}) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to curse of dimensionality: $n_{dof} = O(100K)!$

• To circumvent this difficulty: assume $\beta(x)$ can be represented in *reduced basis* (e.g., KLE modes, Hessian eigenvectors*) centered around mean $\overline{\beta}(x)$:

$$\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{d} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$$

UQ Workflow

Stage 1: Estimate ice sheet initial condition (MAP point).

Stage 2: Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3: Propagate uncertain initial condition through ice-sheet evolution model **Goal:** solve inverse problem for ice sheet initial state but in **Bayesian framework**

Naïve parameterization: represent each degree of freedom on mesh be an uncertain variable

$$\beta(\mathbf{x}) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to curse of dimensionality: $n_{dof} = O(100K)!$

• To circumvent this difficulty: assume $\beta(x)$ can be represented in *reduced basis* (e.g., KLE modes, Hessian eigenvectors*) centered around mean $\overline{\beta}(x)$:

$$\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{d} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$$

• Mean field $\overline{\beta}(x)$ = initial condition.

UQ Workflow

Stage 1: Estimate ice sheet initial condition (MAP point).

Stage 2: Update prior uncertainty in ice sheet initial condition using observational data and steady state model

Stage 3: Propagate uncertain initial condition through ice-sheet evolution model

Deterministic inversion is consistent with Bayesian analog: it is used to find the MAP point of posterior. <u>Goal:</u> solve inverse problem for ice sheet initial state but in *Bayesian framework*

Naïve parameterization: represent each degree of freedom on mesh be an uncertain variable

$$\beta(\mathbf{x}) = (z_1, z_2, \dots, z_{n_{\text{dof}}})$$

Intractable due to curse of dimensionality: $n_{dof} = O(100K)!$

• To circumvent this difficulty: assume $\beta(x)$ can be represented in *reduced basis* (e.g., KLE modes, Hessian eigenvectors*) centered around mean $\overline{\beta}(x)$:

$$\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{d} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$$

Mean field $\overline{\beta}(x)$ = initial condition.

* Isaac, Petra, Stadler, Ghattas, JCP, 2015.

* Constantine, Kent, Bui-Thanh, SISC, 2016.

* Constantine, Kent, Bui-Thanh, SISC, 2016. **Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.

* Constantine, Kent, Bui-Thanh, SISC, 2016. **Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.

O(100K) dimensional inversion problem can be reduced to smaller dimensional problem using *Karhunen-Loeve Expansion (KLE)*

Best fit
$$ar{eta}$$

$$\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{d} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$$

KLE modes $\phi_i(x)$ are eigenvectors of assumed *exponential covariance kernel*:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

KLE modes ϕ_i

O(100K) dimensional inversion problem can be reduced to smaller dimensional problem using *Karhunen-Loeve Expansion (KLE)*

Best fit
$$ar{eta}$$

 $\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{d} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$

• KLE modes $\phi_i(x)$ are eigenvectors of assumed *exponential covariance kernel*:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

• **Parameters to be selected**: correlation length L, basis size d.

O(100K) dimensional inversion problem can be reduced to smaller dimensional problem using *Karhunen-Loeve Expansion (KLE)*

Best fit $\overline{\beta}$

- $\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{n} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$
- KLE modes $\phi_i(x)$ are eigenvectors of assumed *exponential* covariance kernel:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

- **Parameters to be selected**: correlation restored L and d can be estimated "rigorously" by solving **LLS problem**: \int_{a}^{b}

$$min_{L,d} \left\| \exp\left(\bar{\beta}^{opt}(\min m(\beta)) - \bar{\beta}^{opt}(\min m(\beta,h)) - \sum_{k=1}^{d} \sqrt{\lambda_k} \phi_k z_k \right) \right\|$$

LLS representation error 1.5decay is independent of L 1 0.50 5001.0001.5002.000

KLE modes ϕ_i

O(100K) dimensional inversion problem can be reduced to smaller dimensional problem using *Karhunen-Loeve Expansion (KLE)*

Best fit $\bar{\beta}$

- $\log(\beta(\mathbf{x})) = \log(\bar{\beta}) + \sum_{i=1}^{n} \sqrt{\lambda_i} \phi_i(\mathbf{x}) z_i$
- KLE modes $\phi_i(x)$ are eigenvectors of assumed *exponential covariance kernel*:

$$C(r_1, r_2) = \exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

- **Parameters to be selected**: correlation length L, basis size d.
- L and d can be estimated "rigorously" by solving LLS problem: $\prod_{i=1}^{n}$

$$\min_{L,d} \left\| \exp\left(\bar{\beta}^{opt}(\min m(\beta)) - \bar{\beta}^{opt}(\min m(\beta,h)) - \sum_{k=1}^d \sqrt{\lambda_k} \phi_k z_k \right) \right\|$$

 $\Rightarrow d$ should be O(1000)

KLE modes ϕ_i

d

• KLE eigenvalue analysis suggests d = O(1000) -still large for MCMC!

• KLE eigenvalue analysis suggests d = O(1000) -still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for further (and better) *data-informed* dimension reduction.

• KLE eigenvalue analysis suggests d = O(1000) -still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for further (and better) *data-informed* dimension reduction.

• Active Subspace (AS) = directions along which objective function has strongest variability.

• KLE eigenvalue analysis suggests d = O(1000) -still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for further (and better) *data-informed* dimension reduction.

- Active Subspace (AS) = directions along which objective function has strongest variability.
- Active subspace approach: mismatch approximated by related function of fewer variables \widehat{m} :

$$m(\mathbf{z}) = \frac{1}{2} (\mathbf{d} - \mathbf{f}(\mathbf{z}))^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} (\mathbf{d} - \mathbf{f}(\mathbf{z})) \approx \widehat{m}(\boldsymbol{W}_1^T \boldsymbol{z})$$

 $W_1^T z$ = "active variables" W_1^T = rotation of coords

Example*: $m(\mathbf{z}) = \exp(0.7z_1 + 0.3z_2)$

Dimension reduction via AS:

(i) Rotate coords s.t. directions of strongest variation are aligned with the rotated coords.(ii) Construct response surface using only most important rotated coords.

 \rightarrow Bivariate function $m(\mathbf{z})$ is effectively **univariate** in rotated coordinate system

* Constantine, Dow, Wang, SISC, 2014.

• KLE eigenvalue analysis suggests d = O(1000) -still large for MCMC!

Idea: combine KLE with Active Subspace (AS) information for further (and better) *data-informed* dimension reduction.

- Active Subspace (AS) = directions along which objective function has strongest variability.
- Active subspace approach: mismatch approximated by related function of fewer variables \widehat{m} :

$$m(\mathbf{z}) = \frac{1}{2} (\mathbf{d} - \mathbf{f}(\mathbf{z}))^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} (\mathbf{d} - \mathbf{f}(\mathbf{z})) \approx \widehat{m}(\mathbf{W}_1^T \mathbf{z})$$

 $W_1^T z$ = "active variables" W_1^T = rotation of coords

• AS identified using *gradients of mismatch function* $\nabla m: \int_{\mathbb{R}^d} \nabla m(z) \nabla m(z)^T d\rho(z) = W \Lambda W^T$

Example*: $m(\mathbf{z}) = \exp(0.7z_1 + 0.3z_2)$

Dimension reduction via AS:

(i) Rotate coords s.t. directions of strongest variation are aligned with the rotated coords.(ii) Construct response surface using only most important rotated coords.

 \rightarrow Bivariate function $m(\mathbf{z})$ is effectively **univariate** in rotated coordinate system

* Constantine, Dow, Wang, SISC, 2014.

Greenland Bayesian Inference via KLE + AS Sandia Laboratories

KLE modes

Data-informed (AS) directions $(d=73^*)$

150

200

Gradients of mismatch function obtained via adjoint solve in Albany/FELIX.

- **Above, left:** fewer modes are needed to build the basal friction parameter map when using KLE + • AS methods than when using straight KLE.
- **Above, right:** relative clustering of large values towards smaller indices implies KLE coefficients • corresponding to larger singular values contribute most to variability in m(z).

* Value of d was obtained via cross-validation.

Active Subspaces for Inference

Various levels of approximation can be employed:

- Reduce dimension but no surrogate of misfit
 - Perform MCMC in active subspace to improve mixing
- Surrogate of misfit with rotation but no dimension reduction
 - Leverage increased sparsity induced by rotation
- Surrogate of misfit and dimension reduction
 - Combine MCMC in active subspaces with surrogates that adaptively target regions of high probability

Quadratic PCE over Active Variables

Idea: approximate misfit $m(\mathbf{z})$ using quadratic PCE for efficient computation of misfit Hessian.

 $m(\mathbf{z}) \approx \widehat{m}(\mathbf{z})$ = quadratic PCE function

• Approximate misfit over active variables using a quadratic function obtained via compressed sensing (using M= 733 samples and a PCE with 20,301 terms)*:

$$\frac{||m(\mathbf{z}) - \widehat{m}(\mathbf{z})||_{l_{\rho}^{2}}}{||m(\mathbf{z}) - \sum_{i=1}^{M} m(\mathbf{z}^{(i)})||_{l_{\rho}^{2}}} \approx 0.981$$

Approximate misfit with quadratic PCE in rotated d = 200 space:

$$\frac{||m(\mathbf{z}) - \hat{m}(\mathbf{W}^T \mathbf{z})||_{l_{\rho}^2}}{||m(\mathbf{z}) - \sum_{i=1}^{M} m(\mathbf{z}^{(i)})||_{l_{\rho}^2}} \approx 0.190$$

 Approximate misfit with *quadratic PCE* in *rotated* and truncated d = 73 space:

$$\frac{||m(\mathbf{z}) - \hat{m}_{s=73} (\mathbf{W}_{1}^{T} \mathbf{z})||_{l_{\rho}^{2}}}{||m(\mathbf{z}) - \sum_{i=1}^{M} m(\mathbf{z}^{(i)}) ||_{l_{\rho}^{2}}} \approx 0.136$$

* Ratios are improvements relative to using mean of data; want ratio close to 0.

Low Rank Laplace-Based Covariance*

$$\pi_{\text{pos}}(\boldsymbol{z} \mid \boldsymbol{y}^{\text{obs}}) = N(\boldsymbol{z}_{\text{MAP}}, \boldsymbol{\Gamma}_{\text{post}})$$

• *Linearize* parameter-to-observable map around MAP point:

$$y^{\text{obs}} = f(z) + \epsilon \approx f(z_{\text{MAP}}) + F(z - z_{\text{MAP}}) + \epsilon$$

where F = Frechet derivative of f.

Low Rank Laplace-Based Covariance*

 $\pi_{\rm pos}(\boldsymbol{z} \mid \boldsymbol{y}^{\rm obs}) = N(\boldsymbol{z}_{\rm MAP}, \boldsymbol{\Gamma}_{\rm post})$

• *Linearize* parameter-to-observable map around MAP point:

$$\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \epsilon \approx \mathbf{f}(\mathbf{z}_{\text{MAP}}) + \mathbf{F}(\mathbf{z} - \mathbf{z}_{\text{MAP}}) + \epsilon$$

where F = Frechet derivative of f.

• *Covariance* of Gaussian Laplace *posterior* given by:

 $\boldsymbol{\Gamma}_{\text{post}} = \left(\boldsymbol{H}_{\text{misfit}}^{\text{PCE}} + \boldsymbol{\Gamma}_{\text{prior}}^{-1}\right)^{-1}$

$\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \epsilon \approx \mathbf{f}(\mathbf{z}_{\text{MAP}}) + \mathbf{F}(\mathbf{z} - \mathbf{z}_{\text{MAP}}) + \epsilon$

where F = Frechet derivative of f.

• *Covariance* of Gaussian Laplace *posterior* given by:

 $\boldsymbol{\Gamma}_{\text{post}} = \left(\boldsymbol{H}_{\text{misfit}}^{\text{PCE}} + \boldsymbol{\Gamma}_{\text{prior}}^{-1}\right)^{-1}$

Low Rank Laplace-Based Covariance*

 $\pi_{\rm pos}(\boldsymbol{z} \mid \boldsymbol{y}^{\rm obs}) = N(\boldsymbol{z}_{\rm MAP}, \boldsymbol{\Gamma}_{\rm post})$

Linearize parameter-to-observable map around MAP point:

 Γ_{post} is dense! \Rightarrow **prohibitively expensive** to store & construct.

Low Rank Laplace-Based Covariance*

 $\pi_{\text{pos}}(\boldsymbol{z} \mid \boldsymbol{y}^{\text{obs}}) = N(\boldsymbol{z}_{\text{MAP}}, \boldsymbol{\Gamma}_{\text{post}})$

• *Linearize* parameter-to-observable map around MAP point:

$$\mathbf{y}^{\text{obs}} = \mathbf{f}(\mathbf{z}) + \epsilon \approx \mathbf{f}(\mathbf{z}_{\text{MAP}}) + \mathbf{F}(\mathbf{z} - \mathbf{z}_{\text{MAP}}) + \epsilon$$

where F = Frechet derivative of f.

Covariance of Gaussian Laplace posterior given by:

 $\boldsymbol{\Gamma}_{\text{post}} = \left(\boldsymbol{H}_{\text{misfit}}^{\text{PCE}} + \boldsymbol{\Gamma}_{\text{prior}}^{-1}\right)^{-1}$

• Low-rank approximation of $\Gamma_{\rm post}$ obtained using Sherman-Morrison-Woodbury formula:

 $\boldsymbol{\Gamma}_{\text{post}} \approx \boldsymbol{\Gamma}_{\text{prior}} - \boldsymbol{\widetilde{V}}_r \boldsymbol{D}_r \boldsymbol{\widetilde{V}}_r^{\diamondsuit}$

Symbols*:

 $V_r, D_r: \text{ eigenvecs, eigenvals of } \widetilde{H}_{\text{misfit}}$ $\widetilde{H}_{\text{misfit}} = \text{prior-preconditioned Hessian}$ of data misfit = $\Gamma_{\text{prior}}^{1/2} H_{\text{misfit}} \Gamma_{\text{prior}}^{1/2}$ $H_{\text{misfit}} = \text{Gauss-Newton portion of}$ Hessian misfit = $F^{\natural} \Gamma_{\text{obs}}^{-1} F$ $\widetilde{V}_r = \Gamma_{\text{prior}}^{1/2} V_r, \widetilde{V}_r^{\diamondsuit} = \text{adjoint of } \widetilde{V}_r$ $\Gamma_{\text{prior}}^{-1} = M^{-1} K, K = \text{Laplace stiffness.}$

- $\tilde{H}_{\text{misfit}}$ and its EV decomposition can be computed efficiently using a parallel *matrix-free Lanczos method*.
- **Rank of** Γ_{post} = # of modes that informed directions of posterior (AS vectors).

 Γ_{post} is dense! \Rightarrow *prohibitively expensive* to store & construct.

Greenland Bayesian Inference via KLE + AS Sandia National Laboratories

100

index

50

150

200

- *Above:* marginal distributions of Gaussian posterior computed using KLE vs. KLE+AS; *any shift from mean of 0 is due to observations*.
 - KLE eigenvectors have variance and mean close to prior.
 - Data-informed eigenvectors have smaller variance and are most shifted w.r.t. prior distribution (as expected).

* Value of d was obtained via cross-validation.

Outline

- 1. Background.
 - PISCEES project for land-ice modeling.
 - Land-ice model.
- 2. UQ problem definition.
- 3. Inversion/calibration.
 - Deterministic inversion.
 - Bayesian inference.
- 4. Summary & future work.

Summary & future work

This talk described our *workflow* for quantifying uncertainties in expected aggregate ice sheet mass change and its *demonstration* on a Greenland ice sheet problem, focusing on *inversion*.

Summary & future work

This talk described our *workflow* for quantifying uncertainties in expected aggregate ice sheet mass change and its *demonstration* on a Greenland ice sheet problem, focusing on *inversion*.

- Future work:
 - Execute *full UQ workflow* (inversion + forward propagation) on realistic Greenland/Antarctic ice sheet problems.
 - Squared Laplace covariance operator approach* (no KLE)
 - Less expensive than building PCE.
 - Allows higher dimensional parameter spaces.
 - Incorporate effects of other sources of uncertainty, e.g., surface height, surface mass balance.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.

Summary & future work

This talk described our *workflow* for quantifying uncertainties in expected aggregate ice sheet mass change and its *demonstration* on a Greenland ice sheet problem, focusing on *inversion*.

• Future work:

We are well-positioned to **do these efforts in parallel!**

- Execute *full UQ workflow* (inversion + forward propagation) on realistic Greenland/Antarctic ice sheet problems.
- Squared Laplace covariance operator approach* (no KLE)
 - Less expensive than building PCE.
 - Allows higher dimensional parameter spaces.
- Incorporate effects of other sources of uncertainty, e.g., surface height, surface mass balance.

* Bui-Thanh, Ghattas, Martin, Stadler, SISC, 2013.

Funding/acknowledgements

PISCEES team members: K. Evans, M. Gunzburger, M. Hoffman, C. Jackson, P. Jones, W. Lipscomb, M. Perego, S. Price, A. Salinger, I. Tezaur, R. Tuminaro, P. Worley.
Trilinos/DAKOTA collaborators: M. Eldred, J. Jakeman, E. Phipps, L. Swiler.
Computing resources: NERSC, OLCF.

References

[1] M.A. Heroux et al. "An overview of the Trilinos project." ACM Trans. Math. Softw. 31(3) (2005).

[2] A. Salinger, et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", Int. J. Multiscale Comput. Engng. 14(4) (2016) 415-438.

[3] **I. Tezaur**, M. Perego, A. Salinger, R. Tuminaro, S. Price. "*Albany/FELIX*: A Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", *Geosci. Model Develop.* 8 (2015) 1-24.

[4] M. Perego, S. Price, G. Stadler. "Optimal initial conditions for coupling ice sheet models to Earth system models". *J. Geophys. Res. Earth Surf.* 119 (2014) 1894-1917.

[5] P. Constantine, E. Dow, Q. Wang. "Active subspace methods in theory and practice: applications to Kriging surfaces". *SIAM J. Sci. Comput.* 36(4) (2014) A1500-A1524.

[6] P. Constantine, C. Kent, T. Bui-Thanh. "Accelerating Markov Chain Monte Carlo with Active Subspaces". *SIAM J. Sci. Comput.* 38 (5) (2016) A2779-A2805.

[7] T. Bui-Thanh, O. Ghattas. J. Martin. G. Stadler. "A computational framework for infinite-dimensional Bayesian inverse problems part I: the linearized case, with application to global seismic inversion". *SIAM J. Sci. Comput.* 35(6) (2013) A2494-2523.

[8] T. Isaac, N. Petra, G. Stadler, O. Ghattas. "Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet". *J. Comput. Phys.* 296 (2015) 348-368.

[9] J. Jakeman, M. Eldred, K. Sargsyan. "Enhancing l1-minimization estimates of polynomial chaos expansions using basis selection", J. Comp. Phys. 289 (2015) 18-34.

[10] N. Petra, J. Martin, G. Stadler, O. Ghattas. "A computational framework for infinite dimensional Bayesian inverse problems. Part II: stochastic Newton with application to ice sheet flow inverse problems". *SIAM J. Sci. Comput.* 36 (4) (2014) A1525-1555.

[11] J. Jakeman, **I. Tezaur**, M. Perego, S. Price. "Probabalistic Projections of Sea-Level Change from the Greenland Ice Sheet", in preparation.

Multiphysics Code

The *Albany/FELIX land-ice solver* is implemented within the *Albany multi-physics code*.

Analysis Tools

(black-box)

Optimization

UQ (sampling)

Parameter Studies

Calibration

Reliability

Composite Physics

MultiPhysics Coupling

System UQ

Eigen Solver

Preconditioners

Multi-Level Methods

Albany = Sandia open-source* parallel, C++, multi-physics finite element code.

- *Component-based* design for rapid development of new physics & capabilities.
- Extensive use of libraries from the opensource *Trilinos* project:
 - Automatic differentiation.
 - Discretizations/meshes, mesh adaptivity.
 - Solvers, time-integration schemes.
 - Performance-portable kernels.
- Advanced analysis capabilities:
 - Parameter estimation.
 - Uncertainty quantification (DAKOTA).
 - Optimization (DAKOTA, ROL).
 - Sensitivity analysis.

40+ packages; 120+ libraries

Mesh Tools Mesh I/O **Inline Meshing** Partitioning Load Balancing Adaptivity Grid Transfers Quality Improvement Search DOF map Mesh Database

Adjoints

UQ / PCE

Propagation

Mesh Database **Geometry Database** Solution Database

_	Utilities		
	Input File Parser		
	Parameter List		
	Memory Management		
	I/O Management		
	Communicators		
	Runtime Compiler		
-	Architecture- Dependent Kernels		
	Multi-Core		
	Accelerators		
	Post Processing		
<u> </u>	In-situ Visualization		
9	In-situ Visualization Verification		
2	In-situ Visualization Verification QOI Computation		
2	In-situ Visualization Verification QOI Computation Model Reduction		
Local	In-situ Visualization Verification QOI Computation Model Reduction		
Local	In-situ Visualization Verification QOI Computation Model Reduction Fill		
E Local	In-situ Visualization Verification QOI Computation Model Reduction Fill Physics Fill PDE Terms		

BCs
Material Model
Responses
Parameters

Computing the Active Subspace

Gradients of mismatch $\nabla_{\beta}m$ can be used to identify subspace that controls variation in likelihood function (active subspace)

• Mismatch *approximated* by related function of fewer variables *g*:

$$m(\mathbf{z}) = \frac{1}{2} (\mathbf{d} - \mathbf{f}(\mathbf{z}))^T \boldsymbol{\Gamma}_{\text{obs}}^{-1} (\mathbf{d} - \mathbf{f}(\mathbf{z})) \approx g(\mathbf{W}_1^T \mathbf{z})$$

$$W_1^T z$$
 = "active variables"

Linear transformation (rotation) of coords

- Active subspace computed using $\int_{\mathbb{R}^d} \nabla m(z) \nabla m(z)^T d\rho(z) = W \Lambda W^T$
 - Sample gradient using MC: $[\nabla m(z^{(1)}), ..., \nabla m(z^{(M)})]$.
 - Form Gauss-Newton approx. of Hessian averaged over prior:

$$\boldsymbol{C} = \frac{1}{M} \sum_{i=1}^{M} \nabla m(z^{(i)}) \nabla m(z^{(i)})^{T}$$

- Compute eigenvalue decomposition: $C = W \Lambda W^T$ \rightarrow eigenvectors W define rotation of \mathbb{R}^M .
- Partition *z* into *active* and *inactive* variables:

$$\boldsymbol{z} = \boldsymbol{W}_1^T \boldsymbol{z} + \boldsymbol{W}_2^T \boldsymbol{z}, \quad \boldsymbol{W} = [\boldsymbol{W}_1 \ \boldsymbol{W}_2]$$

Perturbing $m(\mathbf{z})$ along columns of W_1 changes $m(\mathbf{z})$ more.

Full UQ Workflow: Varying Levels of Approx.

Error in uncertainty estimates for prediction of sea-level change

As with Bayesian inference:

- *Future work:* compare errors as accuracy of approximation is increased to gain insight into viability of lower-dimensional approximations.
- Lessons can be learned by avoiding use of highest fidelity model.