
Photos placed in horizontal position 

with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Performance & Performance Portability of the Albany/FELIX 
Finite Element Land-Ice Solver 

I. Tezaur1, J. Watkins1, R. Tuminaro1, I. Demeshko2

1 Sandia National Laboratories, Livermore, CA, USA.
2 Los Alamos National Laboratory, Los Alamos, NM, USA.

SIAM GS 2017    Erlangen, Germany    September 11-14, 2017

SAND2017-9362C

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Outline
1. Background.

• Motivation.
• PISCEES project for land-ice 

modeling.
• Albany/FELIX “First-Order 

Stokes” land-ice model.

2. Finite Element Assembly.
• Performance-portability via 

Kokkos.

3. Linear Solve.
• AMG preconditioning.

4. Summary & future work.



Outline
1. Background.

• Motivation.
• PISCEES project for land-ice 

modeling.
• Albany/FELIX “First-Order 

Stokes” land-ice model.

2. Finite Element Assembly.
• Performance-portability via 

Kokkos.

3. Linear Solve.
• AMG preconditioning.

4. Summary & future work.



• Scientific models (e.g. climate models) need more computational 
power to achieve higher resolutions.

• High performance computing (HPC) architectures are becoming 
increasingly more heterogeneous in a move towards exascale.

• Climate models need to adapt to execute correctly & efficiently on 
new HPC architectures with drastically different memory models.

Motivation



MPI+X Programming Model

• HPC architectures are rapidly changing, but trends remain the same.

• Computations are cheap, memory transfer is expensive.

• Single core cycle time has improved but stagnated.

• Increased computational power achieved through manycore
architectures.

→ MPI-only is not enough to exploit emerging massively parallel 
architectures.

Approach: MPI+X 
Programming Model

• MPI: inter-node parallelism.

• X: intra-node parallelism.

→ Examples: X = OpenMP, CUDA, Pthreads, etc.

Year Memory 
Access Time

Single Core 
Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns
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PISCEES Project for Land-Ice Modeling

Sandia’s Role in the PISCEES Project: to develop and support a robust and scalable land 
ice solver based on the “First-Order” (FO) Stokes equations → Albany/FELIX*

Requirements for Albany/FELIX: 

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities: 
deterministic inversion, calibration, 
uncertainty quantification.

* Finite Elements for Land Ice eXperiments

As part of ACME DOE Earth System 
Model, solver will provide actionable 
predictions of 21st century sea-level 

change (including uncertainty bounds).

“PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales
5 year SciDAC3 project (2012-2017).
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First-Order (FO) Stokes Model

Algorithmic choices for Albany/FELIX:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with 
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear 
solvers.

• Advanced analysis capabilities: deterministic 
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Ice sheet

* https://github.com/gahansen/Albany.

Albany/FELIX implemented in open-source*         
multi-physics FE Trilinos-based  code: 



First-Order (FO) Stokes Model

Algorithmic choices for Albany/FELIX:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with 
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear 
solvers.

• Advanced analysis capabilities: deterministic 
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Implicit solver:

Ice sheet

FEA** = 50% 
CPU-time

Linear solve = 
50% CPU-time

Albany/FELIX implemented in open-source*         
multi-physics FE Trilinos-based  code: 

* https://github.com/gahansen/Albany.   **Finite Element Assembly
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Albany/FELIX Finite Element Assembly (FEA)
• Gather operation extracts solution values 

out of global solution vector.

• Physics evaluator functions operate on 
workset of elements, store evaluated 
quantities in local field arrays.

• FEA relies on template based generic 
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual, 
Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%
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Albany/FELIX Finite Element Assembly (FEA)
• Gather operation extracts solution values 

out of global solution vector.

• Physics evaluator functions operate on 
workset of elements, store evaluated 
quantities in local field arrays.

• FEA relies on template based generic 
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual, 
Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

• MPI-only FEA:

• Each MPI process has workset of cells &                                                                       
computes nested parallel for loops.

• MPI+X FEA:

• Each MPI process has workset of cells.

• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.



Performance-portability via Kokkos

We need to be able to run climate models on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

• In Albany/FELIX, we achieve performance-portability via Kokkos.

• Kokkos: C++ library and programming model that provides 
performance portability across multiple computing architectures.

→ Examples: Multicore CPU, NVIDIA GPU, Intel Xeon Phi, and more.

• Provides automatic access to OpenMP, CUDA, Pthreads, etc.

• Designed to work with the MPI+X programming model.

• Abstracts data layouts for optimal performance (“array of strucs” vs. 
struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template 
parameter to get the optimal data layout for your hardware.

→ Allows researcher to focus on application development for large 
heterogeneous architectures.



MPI+X FEA via Kokkos

• MPI-only nested for loop:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; MPI process n



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)

Thread 2 computes A for 

(cell,node,qp)=(0,0,1)

Thread N computes A for 

(cell,node,qp)=(numCells,numNodes,numQPs)MPI process n

MPI+X FEA via Kokkos



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)

Thread 2 computes A for 

(cell,node,qp)=(0,0,1)

Thread N computes A for 

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 

*  Unified Virtual Memory.

MPI process n

*  Unified Virtual Memory.

MPI+X FEA via Kokkos
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• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 
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Thread 2 computes A for 
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typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

• For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

*  Unified Virtual Memory.

MPI process n

MPI+X FEA via Kokkos

Kokkos parallelization in 
FELIX is only over cells.

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 



Computer Architectures

• Ride (SNL) used for verification, performance tests
12 nodes (dual-Power8 (16 cores) + P100 quad-GPU)

• Bowman (SNL) used for verification
10 nodes (Intel Xeon Phi KNL (68 cores))

• Cori (NERSC) used for verification, performance tests
9688 nodes (Intel Xeon Phi KNL (68 cores))

• Summit (ORLCF) is ultimate GPU target
4600 nodes (dual-Power9 + 6 NVIDIA Volta)

Ride

Performance-portability of FEA in Albany has been tested 
across multiple architectures: Intel Sandy Bridge, IBM 

Power8, Keplar/Pascal GPUs, KNL Xeon Phi

Bowman
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Platforms 

utilized here.



GIS Kokkos Execution Space Comparison

A single node comparison: 16MPI vs. 4(MPI+GPU) [Left], 68MPI vs. 68(MPI+4OMP) [Right] 
(GIS 4km-20km unstructured mesh with 1.51M tet elements)

Blue (evaluateFields): mostly Residual/Jacobian computation + Gather/Scatter (Albany/FELIX); 
Yellow (GlobalAssembly): mostly communication + Trilinos operations.



GIS Kokkos 16 MPI vs. 4(MPI+GPU) Results
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evaluateFields (blue): mostly residual/Jacobian computation + Gather/Scatter

• evaluateFields<Jacobian> much faster than evaluateFields<Residual> b/c there is 
more work in computing Jacobian.

• 2x speedup not much considering 4 GPUs (desirable speedup: 10x or more).
• Data movement is lagging speedup – can be improved by removing CUDA 

UVM, data padding to prevent data misalignment.
• A few kernels still for boundary conditions still need to be ported to Kokkos.

GlobalAssembly (yellow): mostly 
communication + Trilinos operations

• 8x slow-down is not reasonable.
• Most slow-downs are in Trilinos (Tpetra) 

→ Trilinos packages are currently being 
reworked using CUDA-aware MPI*.

Summary: speed-ups on GPU are not yet 
as expected but may be improved by 
introducing padding, removing CUDA 

UVM and unnecessary data movement, 
switching to CUDA-aware MPI.

* With CUDA-aware MPI, GPU buffers can be passed directly to MPI w/o staging using cudaMemcpy.



GIS Kokkos 68MPI vs. 68(MPI+4OMP) Results

evaluateFields (blue): mostly residual/Jacobian computation + Gather/Scatter

• 1.2x speedup from hardware threads is reasonable (there are 2 VPUs/KNL core, so 2x 
speedup is ideal but will be limited by L1 cache size in core for bandwidth bound operation)

• Once the nonlinear/linear solver is included, more OpenMP threads will likely be used (e.g. 
4(MPI+68OMP)) to improve speedup.

• More OpenMP threads on cores in FEA reduces performance because it takes away 
from coarser grain MPI parallelism

GlobalAssembly (yellow): mostly 
communication + Trilinos operations

• 1.5x slowdown is in Jacobian assembly 
not Residual assembly → Trilinos team is 
investigating this now.

Summary: besides the global Jacobian 
assembly, results are promising. More 

studies are needed once we profile 
nonlinear/linear solvers.
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GIS MPI+Device Weak Scalability 

• Scalability of GlobalAssembly + evaluateFields is studied.

• Weak Scalability is for GIS 4km-20km and 1km-7km (1.51M and 14.4M elements) tet meshes.

• Weak scalability is comparable for P100 and KNL.
• KNL performs better because of heavy use of MPI.

• Optimizations/profiling required for strong scalability of FELIX; we have demonstrated strong 
scalability for other applications in Albany (I. Demeshko et al 2017).
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Initial Weak Scalability Study Using ILU 

Scalability results are not acceptable!

Why is scalability so bad for out-of-the-box preconditioners?

1. Ice sheet geometries have bad aspect ratios 𝑑𝒙 ≫ 𝑑𝑧 .

2. Ice shelves give rise to severely ill-conditioned matrices.

3. Islands and hinged peninsulas lead to solver failures.  

We mitigate these difficulties 
through the development of: 

• New AMG* preconditioner  
based on semi-coarsening.

• Island/hinge removal 
algorithm.

Greenland Ice Sheet Antarctic Ice Sheet

* Algebraic Multi-Grid.
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Scalability via Algebraic Multi-Grid 
Preconditioning with Semi-Coarsening

Bad aspect ratios (𝑑𝒙 ≫ 𝑑𝑧) ruin 
classical AMG convergence rates!
• relatively small horizontal 

coupling terms, hard to 
smooth horizontal errors

 Solvers (AMG and ILU) must 
take aspect ratios into account

We developed a new AMG 
solver based on aggressive 

semi-coarsening (available in 
ML/MueLu packages of Trilinos)

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

Scaling studies (next slides): 
New AMG preconditioner vs. ILU

See (Tezaur et al., 2015),
(Tuminaro et al., 2016).



Greenland Controlled Weak Scalability Study

• Weak scaling study with fixed 
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GMRES).

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
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16,384 cores
1.12B dofs(!)
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80 vertical layers
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• Weak scaling study with fixed 
dataset, 4 mesh bisections.

• ~70-80K dofs/core.

• Conjugate Gradient (CG)
iterative method for linear solves 
(faster convergence than 
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Basal boundary  Γ𝛽
)

Lateral boundary 

Γ𝑙

Ice sheet

Surface boundary Γ𝑠

Albany/FELIX Glimmer/CISM

Moderate Resolution Antarctica Weak 
Scaling Study

(vertical > horizontal coupling) 
+ 

Neumann BCs 
=

nearly singular submatrix associated with vertical lines

Antarctica is fundamentally different than Greenland: 
AIS contains large ice shelves (floating extensions of land ice). 

• Along ice shelf front: open-ocean BC (Neumann).
• Along ice shelf base: zero traction BC (Neumann).

⇒ For vertical grid lines that lie within ice shelves, top and 
bottom BCs resemble Neumann BCs so sub-matrix 
associated with one of these lines is almost* singular. 

⇒ Ice shelves give rise to severe ill-
conditioning of linear systems!

*Completely singular in the presence 
of islands and some ice tongues.



Albany/FELIX Glimmer/CISM

Moderate Resolution Antarctica Weak 
Scaling Study

• Weak scaling study on Antarctic problem (8km w/ 5 layers → 2km w/ 20 layers).

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature field from BEDMAP2.

• Iterative linear solver: GMRES.

• Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening.

16 

cores 

1024 

cores 

# cores

16 

cores 

1024 

cores 

# cores

ILU AMG

AMG 
preconditioner 

AMG preconditioner less sensitive than ILU to ill-conditioning (ice shelves 
→ Green’s function with modest horizontal decay → ILU is less effective).

Severe ill-conditioning 
caused by ice shelves!

(vertical > horizontal 
coupling) 

+ 
Neumann BCs 

=
nearly singular 

submatrix associated 
with vertical lines
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Summary & Conclusions
• A performance portable implementation of the FEA in the FELIX land-ice model 

was created using Kokkos within the Albany code base.

- With this implementation, the same code can run on devices with drastically 
different memory models (many-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.).

- Performance studies show that further optimization is needed to fully utilize all 
resources.

More on performance-portability of Albany using Kokkos can be 
found here: https://github.com/gahansen/Albany/wiki/Albany-

performance-on-next-generation-platforms

https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
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• Scalable, fast and robust linear solve is achieved via algebraic multigrid (AMG) 
preconditioner that takes advantage of layered nature of meshes.

- Performance portability of linear solve is work in progress.

Heterogeneous HPC architectures can now be 
utilized for land-ice research using Albany/FELIX.

• A performance portable implementation of the FEA in the FELIX land-ice model 
was created using Kokkos within the Albany code base.

- With this implementation, the same code can run on devices with drastically 
different memory models (many-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.).

- Performance studies show that further optimization is needed to fully utilize all 
resources.
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Ongoing/Future Work
Finite Element Assembly (FEA):

• Profiling using TAU and nvprof.

• Methods for improving performance:
- Reduce excess memory usage.
- Utilize shared memory.
- Replace CUDA UVM with manual memory transfer.
- Parallelize over nodes, quad points, levels in addition to cells.
- Add data padding to prevent misalignment.
- Switch to CUDA-aware MPI.

• Large-scale runs on Cori and Summit.

Linear Solve:

• Performance-portability of preconditioned iterative linear solve using 
Kokkos for implicit problems in Albany (e.g., FELIX).
- Finish converting MueLu/Ifpack2 to use Kokkos.
- Algorithm redesign may be necessary for GPUs.
- Considering other solvers, e.g., hierarchical solvers, Shylu (FAST-ILU, multi-

cccccthreaded GS).
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Appendix: Parallelism on Modern Hardware

Year Memory Access Time Single Core Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns

• Memory access time has remained the same.

• Single core performance has improved but stagnated.

• Computations are cheap, memory transfer is expensive.

• More performance from multicore/manycore processors.



Multiphysics Code

• Component-based design for rapid 
development of new physics & capabilities.

• Extensive use of libraries from the open-
source Trilinos project:

• Automatic differentiation.

• Discretizations/meshes, mesh adaptivity.

• Solvers, preconditioners.

• Performance-portable kernels.

• Advanced analysis capabilities:

• Parameter estimation.

• Uncertainty quantification (DAKOTA).

• Optimization.

• Sensitivity analysis.

FO-Stokes model is implemented within Albany, Sandia open-source* 
parallel, C++, multi-physics finite element code → Albany/FELIX**.

40+ packages; 120+ libraries

* https://github.com/gahansen/Albany. **Finite Elements for Land Ice eXperiments

Appendix:



Appendix: First-Order (FO) Stokes Model
• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

• Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice” 
elliptic approximation* to Stokes’ flow equations.

൞
−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

,    in Ω

Albany/FELIX
• Relevant boundary conditions: 

• Stress-free BC: 2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = 0, on Γ𝑠
• Floating ice BC: 

• Basal sliding BC: 

Basal boundary  Γ𝛽
)

Lateral boundary Γ𝑙

Ice sheet

• Viscosity 𝜇 is nonlinear function given by “Glen’s law”: 

𝜇 =
1

2
𝐴(𝑇)−

1
𝑛

1

2
෍

𝑖𝑗

ሶ𝝐𝑖𝑗
2

1
2𝑛

−
1
2

ሶ𝝐1
𝑇 = 2 ሶ𝜖11+ ሶ𝜖22, ሶ𝜖12, ሶ𝜖13

ሶ𝝐2
𝑇 = 2 ሶ𝜖12, ሶ𝜖11+ 2 ሶ𝜖22, ሶ𝜖23

ሶ𝜖ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

Surface boundary Γ𝑠

*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical.

(𝑛 = 3)

2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = ൜
𝜌𝑔𝑧𝒏, if 𝑧 > 0
0, if 𝑧 ≤ 0

, on Γ𝑙

2𝜇 ሶ𝝐𝑖 ∙ 𝒏 + 𝛽(𝑥, 𝑦)𝑢𝑖 = 0, on Γ𝛽

𝛽 𝑥, 𝑦 = basal
sliding coefficient



Appendix: Kokkos-ification of Finite 
Element Assembly (Example)

ExecutionSpace parameter 
tailors code for device (e.g., 

OpenMP, CUDA, etc.)



Appendix: Ice Sheet Dynamic Equations

• Model for evolution of the boundaries (thickness 
evolution equation):

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

where ഥ𝒖 = vertically averaged velocity, ሶ𝑏 = surface mass 
balance (conservation of mass).

• Temperature equation (advection-diffusion):

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

(energy balance). 

• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 
𝐴 = 𝐴(𝑇).

• Ice sheet grows/retreats depending on thickness 𝐻.

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)



Appendix: MPI+Device Scalability Study

Device Comparison, P100 vs. KNL (GIS 4km-20km mesh)

1. Blue: mostly Residual/Jacobian computation, Yellow: mostly communication.

2. KNL performs better because of heavy use of MPI

3. P100 performance is hindered by communication cost 
(worse when scaling because of lack of CUDA aware MPI)

Strong Scalability Weak Scalability



Appendix: MPI+Device Scalability Study

• Scalability of GlobalAssembly + evaluateFields is studied.

• Strong Scalability is for GIS 4km-20km tet mesh (1.51M elements).

• Weak Scalability is for GIS 4km-20km and 1km-7km (1.51M and 14.4M elements) tet meshes.

• KNL strong scaling under investigation – requires profiling.

• P100 results hindered by communication cost (worse when scaling b/c no CUDA-aware MPI)
• Scalability can likely be improved by removing CUDA UVM.

• Weak scaling is comparable for P100 and KNL.
• KNL performs better because of heavy use of MPI.

Strong Scalability Weak Scalability



Appendix: Greenland Weak Scalability on 
Titan

Wall-clock Time: FEA Wall-clock Time: 
Total Time – Setup Time

Weak scalability on Titan (16km, 8km, 4km, 2km, 1km Greenland)

Titan: 18,688 AMD 
Opteron nodes

• 16 cores per node
• 1 K20X Kepler GPUs/ 
node
• 32GB + 6GB 
memory/ node



Appendix: Scalability with Increasing Order 
Elements 

• Left: speedup plot shows benefit of using higher orders to obtain better strong scalability for 
MPI+OpenMP for Aeras atmosphere dycore shallow water test case.

• Right: weak scalability for MPI + GPU on the Ride for Aeras atmosphere dycore shallow 
water test case. Efficiency drops significantly for lower order elements, but GPU is better 
able to maintain weak scaling for higher order p6 spectral element.



Appendix: Kokkos Range vs. MDRange
Policy

• Range vs. MDRange policy for shallow water test case in Aeras
atmosphere dycore with p6 spectral element for MPI + GPU.



Appendix: Improved Linear Solver 
Performance through Hinge Removal

Islands and certain hinged 
peninsulas lead to solver failures

• We have developed an algorithm to detect/remove problematic 
hinged peninsulas & islands based on coloring and repeated use 
of connected component algorithms (Tuminaro et al., 2016).

• Solves are ~2x faster with hinges removed.

• Current implementation is MATLAB, but                                           
working on C++ implementation                                                               
for integration into dycores. Resolu-

tion
ILU –
hinges

ILU – no 
hinges

ML –
hinges

ML – no 
hinges

8km/5 
layers

878 sec, 
84 iter/solve

693 sec,
71 iter/solve

254 sec,
11 iter/solve

220 sec,
9 iter/solve

4km/10 
layers

1953 sec,
160 iter/solve

1969 sec, 
160 iter/solve

285 sec, 
13 iter/solve

245 sec,
12 iter/solve

2km/20 
layers

10942 sec,
710 iter/solve

5576 sec,
426 iter/solve

482 sec,
24 iter/solve

294 sec,
15 iter/solve

1km/40 
layers

-- 15716 sec,
881 iter/solve

668 sec,
34 iter/solve

378 sec,
20 iter/solve

Greenland Problem


