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Outline 

• The PISCEES project, land-ice equations and 
relevant codes (Albany/FELIX, CISM-Albany, 
MPAS-Albany). 
 

• Uncertainty Quantification Problem Definition. 
 

• Bayesian Calibration. 
• Methodology. 
• Demonstrations. 

 
• Forward Propagation of Uncertainty. 

• Methodology. 
• Demonstrations. 

 
• Summary and Future Work.  
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PISCEES Project and Relevant Solvers 
(Albany-FELIX, CISM/MPAS-Albany) 

“PISCEES” = Predicting Ice Sheet Climate Evolution at Extreme Scales 
5 year project funded by SciDAC, which began in June 2012 

Sandia’s Role in the PISCEES Project: to develop and support a robust and 
scalable land ice solver based on the “First-Order” (FO) Stokes approximation 

Albany/FELIX Solver (steady): 
Ice Sheet PDEs (First Order Stokes)  

(stress-velocity solve) 

CISM/MPAS Land Ice Codes (dynamic): 
Ice Sheet Evolution PDEs 

(thickness, temperature evolution) 

 

•  Requirements for our land-ice solver: 
 

• Scalable, fast, robust. 
 

• Dynamical core (dycore) when coupled to codes that solve thickness and temperature 
evolution equations (CISM/MPAS LI codes). 

 

• Performance-portability.  
 

• Advanced analysis capabilities (adjoint-based deterministic inversion, Bayesian 
calibration, UQ, sensitivity analysis).  

 

Dycore will provide actionable predictions of 21st 
century sea-level rise (including uncertainty). 
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The First-Order Stokes  
Model for Ice Sheets & Glaciers 

 

•  Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to 
viscous incompressible quasi-static Stokes flow with power-law viscosity. 

 
−𝛻 ∙ (2𝜇𝝐 1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇𝝐 2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

    ,    in Ω 

Albany/FELIX 

• Relevant boundary conditions:  
 
 

• Stress-free BC:     2𝜇𝝐 𝑖 ∙ 𝒏 = 0, on Γ𝑠 
 

• Floating ice BC:  

             2𝜇𝝐 𝑖 ∙ 𝒏 =  
𝜌𝑔𝑧𝒏, if 𝑧 > 0 

0,       if 𝑧 ≤ 0
, on Γ𝑙 

• Basal sliding BC:  2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 

 

Basal boundary  Γ𝛽 
) 

Lateral boundary Γ𝑙 

Ice sheet 

 

•  Viscosity 𝜇 is nonlinear function given by “Glen’s law”:  

𝜇 =
1

2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2

𝑖𝑗

1
2𝑛

−
1
2

 

𝛽 = sliding coefficient ≥ 0 

𝝐 1
𝑇 = 2𝜖 11+ 𝜖 22, 𝜖 12, 𝜖 13  

𝝐 2
𝑇 = 2𝜖 12, 𝜖 11+ 2𝜖 22, 𝜖 23  

𝜖 ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

 

Surface boundary Γ𝑠 

*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

(𝑛 = 3) 
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Land Ice Physics Set 
(Albany/FELIX code)  

Other Albany 
Physics Sets 

The Albany/FELIX* First Order 
Stokes solver is implemented in a 
Sandia parallel C++ finite element 

code called… 

 Implementation of  
Albany/FELIX using Trilinos  

 

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore! 

Started 

by A. 

Salinger 

• Discretizations/meshes 
• Solver libraries  
• Preconditioners 
• Automatic differentiation 
• Many others! 

• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

“Agile Components” 

*FELIX = “Finite Elements for Land Ice eXperiments”. 
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Ice Sheet Evolution Models 

• Model for evolution of the boundaries (thickness 
evolution equation): 

 

𝜕ℎ

𝜕𝑡
= −𝛻 ∙ 𝒖 ℎ + 𝑏  

 

      where 𝒖  = vertically averaged velocity, 𝑏  = surface mass  
       balance (conservation of mass). 
 
• Temperature equation (advection-diffusion): 
 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2𝝐 𝝈 

 

     (energy balance).  
 
• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 

𝐴 = 𝐴(𝑇). 
 

• Ice sheet grows/retreats depending on thickness ℎ. 
 
 

time 𝑡0 

Ice-covered (“active”) 
cells shaded in white 

(ℎ > ℎ𝑚𝑖𝑛) 
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time 𝑡0 time 𝑡1 time 𝑡2 

Ice-covered (“active”) 
cells shaded in white 

(ℎ > ℎ𝑚𝑖𝑛) 
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Interfaces to CISM and MPAS LI for 
Transient Simulations  

7/20 

Albany/FELIX (C++) 
velocity solve 

CISM (Fortran) 
Thickness evolution,  
temperature solve, 
coupling to CESM 

cism_driver 

C++/Fortran 
Interface, Mesh 

Conversion 

MPAS Land-Ice 
(Fortran) 

Thickness evolution,   
temperature solve,  

coupling to DOE-ESM 

C++/Fortran 
Interface, Mesh 

Conversion 

LandIce_model 

CISM-
Albany 

MPAS LI-
Albany 

• Structured 
hexahedral meshes 
(rectangles extruded 
to hexes). 

• Tetrahedral meshes (dual of 
hexaganonal mesh,  
extruded to tets). 

Albany/FELIX has been coupled to two land ice dycores: Community Ice Sheet 
Model (CISM) and Model for Prediction Across Scales for Land Ice (MPAS LI)  

output file output file 



12 

Outline 

• The PISCEES project, land-ice equations and 
relevant codes (Albany/FELIX, CISM-Albany, 
MPAS-Albany). 
 

• Uncertainty Quantification Problem Definition. 
 

• Bayesian Calibration. 
• Methodology. 
• Demonstrations. 

 
• Forward Propagation of Uncertainty. 

• Methodology. 
• Demonstrations. 

 
• Summary and Future Work.  

 



13 

Uncertainty Quantification (UQ)  
Problem Definition 

Quantity of Interest (QoI) in Ice Sheet Modeling:  
total ice mass loss/gain during 21st century 

→ sea level rise prediction. 

There are several sources of uncertainty, most notably: 

  

• Climate forcings (e.g., surface mass balance). 
• Basal friction (𝛽). 
• Ice sheet thickness (h). 
• Geothermal heat flux. 
• Model parameters (e.g., Glen’s flow law         

exponent). 

Basal sliding BC:   
2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 

Basal boundary  Γ𝛽 
) 

Ice sheet 

𝜇 =
1

2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2+

𝑖𝑗

𝛾

1
2𝑛

−
1
2

 

𝑛 = Glen’s law exponent 

thickness 
(h) 
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Uncertainty Quantification (UQ)  
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Ice sheet 

𝜇 =
1

2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2+

𝑖𝑗

𝛾

1
2𝑛

−
1
2

 

𝑛 = Glen’s law exponent 

thickness 
(h) 
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1

2
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1
𝑛

1

2
 𝝐 𝑖𝑗

2+

𝑖𝑗

𝛾

1
2𝑛

−
1
2

 

𝑛 = Glen’s law exponent 

thickness 
(h) 

This is a real application where standard UQ 
methods do not work out of the box! 
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𝑛 = Glen’s law exponent 

thickness 
(h) 

This is a real application where standard UQ 
methods do not work out of the box! 

→ This talk tells the story of what we have tried and learned. 
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Uncertainty Quantification 
Workflow 

Goal: UQ in 21st century aggregate ice sheet mass loss (QoI) 

• Deterministic inversion: perform adjoint-based deterministic 
inversion to estimate initial ice sheet state (i.e., characterize 
the present state of the ice sheet to be used for performing 
prediction runs). 
 

• Bayesian calibration: construct the posterior distribution 
using Markov Chain Monte Carlo (MCMC) run on an emulator 
of the forward model → Bayes’ Theorem: assume prior 
distribution; update using data: 

 
 
 
 
 

• Forward propagation: sample the obtained distribution and 
perform ensemble of forward propagation runs to compute 
the uncertainty in the QoI. 

What are the 
parameters that render 

a given set of 
observations?  

What is the impact of 
uncertain parameters in 
the model on quantities 

of interest (QoI)?  
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽 field inversion problems has 𝑂(100𝐾) dimensions!  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 
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𝐿2
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2. Perform eigenvalue decomposition of 𝐶. 
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The 𝛽 field inversion problems has 𝑂(100𝐾) dimensions!  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 



25 

Bayesian Calibration: Demonstration 
of Workflow using KLE 

Approach: Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem.  
  
• For initial demonstration of workflow, we use the Karhunen-Loeve Expansion (KLE): 
 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

2. Perform eigenvalue decomposition of 𝐶. 
 

3. Expand* 𝛽 − 𝛽  in basis of eigenvectors {𝝓𝑘} of 𝐶, with random variables 

{𝜉𝑘
𝛽}: 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽 field inversion problems has 𝑂(100𝐾) dimensions!  

𝛽 𝜔 = 𝛽 +  𝜆𝑘
𝛽𝝓𝑘

𝐾
𝑘=1 𝜉𝑘

𝛽(𝜔),  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 

𝛽  =  initial condition for 𝛽 
(from deterministic 

inversion or spin-up) 

*In practice, expansion is done on log(𝛽) 
to avoid negative values of 𝛽. 
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Bayesian Calibration: Demonstration 
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The 𝛽 field inversion problems has 𝑂(100𝐾) dimensions!  

𝛽 𝜔 = 𝛽 +  𝜆𝑘
𝛽𝝓𝑘
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𝑘=1 𝜉𝑘

𝛽(𝜔),  

Offline 

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 

𝛽  =  initial condition for 𝛽 
(from deterministic 

inversion or spin-up) 

*In practice, expansion is done on log(𝛽) 
to avoid negative values of 𝛽. 

Inference/calibration is for coefficients of KLE       
  ⇒ significant dimension reduction.  

Online 



27 

• Step 1 (Trilinos): Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional 
problem using Karhunen-Loeve Expansion (KLE): 

 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

2. Perform eigenvalue decomposition of 𝐶. 
 

3. Expand* 𝛽 − 𝛽  in basis of eigenvectors {𝝓𝑘} of 𝐶, with random variables 

{𝜉𝑘
𝛽}: 

Offline 

Online 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 

Bayesian Calibration: Demonstration 
of Workflow using KLE (cont’d) 

𝛽 𝜔 = 𝛽 +  𝜆𝑘
𝛽𝝓𝑘

𝐾
𝑘=1 𝜉𝑘

𝛽(𝜔),  

𝛽 =  initial condition 
for 𝛽 (from 

deterministic 
inversion or spin-up) 
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• Step 1 (Trilinos): Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional 
problem using Karhunen-Loeve Expansion (KLE): 

 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

2. Perform eigenvalue decomposition of 𝐶. 
 

3. Expand* 𝛽 − 𝛽  in basis of eigenvectors {𝝓𝑘} of 𝐶, with random variables 

{𝜉𝑘
𝛽}: 

Offline 

Online 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 

Bayesian Calibration: Demonstration 
of Workflow using KLE (cont’d) 

𝛽 𝜔 = 𝛽 +  𝜆𝑘
𝛽𝝓𝑘

𝐾
𝑘=1 𝜉𝑘

𝛽(𝜔),  

𝛽 =  initial condition 
for 𝛽 (from 

deterministic 
inversion or spin-up) 

• Step 2 (DAKOTA): Polynomial Chaos Expansion (PCE) emulator for mismatch (over 
surface velocity, SMB, thickness) discrepancy. 
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Online 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 

Bayesian Calibration: Demonstration 
of Workflow using KLE (cont’d) 

𝛽 𝜔 = 𝛽 +  𝜆𝑘
𝛽𝝓𝑘

𝐾
𝑘=1 𝜉𝑘

𝛽(𝜔),  

𝛽 =  initial condition 
for 𝛽 (from 

deterministic 
inversion or spin-up) 

• Step 2 (DAKOTA): Polynomial Chaos Expansion (PCE) emulator for mismatch (over 
surface velocity, SMB, thickness) discrepancy. 

• Step 3 (QUESO): Markov Chain Monte Carlo (MCMC) calibration using PCE emulator. 
 

→can obtain MAP point and posterior distributions on KLE coefficients. 
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Initial Demonstration: Bayesian  
Calibration for 4km GIS Problem  

• Mean 𝛽  field obtained through spin-up over 100 years (cheaper than 
inversion, gives reasonable agreement with present-day velocity field).  

 

• Correlation length 𝐿 (𝐿2=0.05) selected s.t. slow decay of KLE eigenvalues to 
enable refinement (left): 10 KLE modes capture 27.3% of covariance 
energy. 

• Mismatch function (calculated in Albany/FELIX): 
 

𝐽 𝛽 =  
1

𝜎𝑢
2
𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠

Γ𝑡𝑜𝑝

 

  
• PCE emulator was formed for the mismatch 𝐽 𝛽  using uniform [−1,1] prior distributions and 

286 high-fidelity runs on Hopper (286 points = 3rd degree polynomial in 10D). 

𝛽  

Modes 1-5: 

Modes 6-10: 

𝒖  
computed 

with 𝛽  

Below: decay of KLE eigenvalues 
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Initial Demonstration: Bayesian  
Calibration for 4km GIS Problem  

• For calibration, MCMC (Delayed Rejection Adaptive Metropolis – DRAM) was 
performed on the PCE with 2K samples. 
 

• Posterior distributions for 10 KLE coefficients: 

• Distributions are peaked rather than uniform ⇒ data informed the posteriors.  
 
• MAP point: 𝝃 = (0.372, −0.679, −0.420, −0.189, −7.38e−2, −0.255, 0.449, −0.757, 

0.847,−0.447) 

Mode 1 Mode 2 

… 
Green = prior 
(uniform [-1,1]) 
Blue = posterior 
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Initial Demonstration: Bayesian  
Calibration for 4km GIS Problem  

𝛽 field at 
MAP point 

|𝒖| 
computed 
with 𝛽  at 
MAP point 

|𝒖𝑜𝑏𝑠| 

• Ice is too fast at MAP point.  Possible explanations: 
 

• Surrogate error (based on cross-validation). 
 

• Mean field error. 
 

• Bad modes (modes lack fine scale features). 

Mismatch 𝐽 𝛽  at 
MAP point: 1.87 × 

mismatch at 𝛽  

𝛽  

𝛽 from 
deterministic 

inversion 
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems 

• Mean 𝛽  , ℎ  fields obtained deterministic inversion minimizing 

𝐽 𝛽, ℎ = 𝛼𝑣 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

+ 𝛼 𝑑𝑖𝑣 𝒖𝐻 − 𝑆𝑀𝐵 2𝑑𝑠 +
Γ

𝛼𝐻 ℎ − ℎ𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems 

• Mean 𝛽  , ℎ  fields obtained deterministic inversion minimizing 

𝐽 𝛽, ℎ = 𝛼𝑣 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

+ 𝛼 𝑑𝑖𝑣 𝒖𝐻 − 𝑆𝑀𝐵 2𝑑𝑠 +
Γ

𝛼𝐻 ℎ − ℎ𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

 

 
 

• Prior and expected variation in 𝛽, ℎ is unknown…  
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems 

• Mean 𝛽  , ℎ  fields obtained deterministic inversion minimizing 

𝐽 𝛽, ℎ = 𝛼𝑣 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

+ 𝛼 𝑑𝑖𝑣 𝒖𝐻 − 𝑆𝑀𝐵 2𝑑𝑠 +
Γ

𝛼𝐻 ℎ − ℎ𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

 

 
 

• Prior and expected variation in 𝛽, ℎ is unknown…  
 
 

• Idea to estimate K and L: solve LLS problem 

   𝑚𝑖𝑛𝐿,𝐾 exp 𝛽 𝑜𝑝𝑡(min 𝐽(𝛽)) − 𝛽 𝑜𝑝𝑡(min 𝐽(𝛽, ℎ)) − 𝜆𝑘
𝛽𝝓𝑘

𝐾

𝑘=1

𝜉𝑘
𝛽 𝜔  

 𝛽 𝑜𝑝𝑡 (min 𝐽 𝛽, ℎ ) 𝛽 𝑜𝑝𝑡(min 𝐽(𝛽)) 
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems 

• Mean 𝛽  , ℎ  fields obtained deterministic inversion minimizing 

𝐽 𝛽, ℎ = 𝛼𝑣 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

+ 𝛼 𝑑𝑖𝑣 𝒖𝐻 − 𝑆𝑀𝐵 2𝑑𝑠 +
Γ

𝛼𝐻 ℎ − ℎ𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

 

 
 

• Prior and expected variation in 𝛽, ℎ is unknown…  
 
 

• Idea to estimate K and L: solve LLS problem 

   𝑚𝑖𝑛𝐿,𝐾 exp 𝛽 𝑜𝑝𝑡(min 𝐽(𝛽)) − 𝛽 𝑜𝑝𝑡(min 𝐽(𝛽, ℎ)) − 𝜆𝑘
𝛽𝝓𝑘

𝐾

𝑘=1

𝜉𝑘
𝛽 𝜔  

 𝛽 𝑜𝑝𝑡 (min 𝐽 𝛽, ℎ ) 𝛽 𝑜𝑝𝑡(min 𝐽(𝛽)) 

LLS representation error 
decay is independent of L 

⇒ 

K 
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S 
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems   

𝛽 field at 
MAP point 

• Conclusion 1: use more modes (O(100), O(1000)). 

Mode 1 Mode 5 Mode 20 Mode 50 Mode 100 
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems   

𝛽 field at 
MAP point 

• Conclusion 1: use more modes (O(100), O(1000)). 

• Conclusion 2: L does not affect LLS reconstruction because representation error 
decay is independent of L. 

 

• Coefficients in LLS fitting were of the same order. 
⟹ We can assume every random variable has the same variance: 

 

Mode 1 Mode 5 Mode 20 Mode 50 Mode 100 

𝛽 𝜔 = 𝛽 +  𝜆𝑘
𝛽𝝓𝑘

𝐾
𝑘=1 𝜉𝑘

𝛽(𝜔),   ℎ 𝜔 = ℎ +  𝜆𝑘
ℎ𝝓𝑘𝜉𝑘

ℎ(𝜔)𝐾
𝑘=1   
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Next Step: Bayesian Calibration of  
𝛽, ℎ for 8km, 16km GIS Problems   

𝛽 field at 
MAP point 

𝛽 𝜔 = 𝛽 +  𝝓𝑘
𝐾
𝑘=1 𝜉𝑘

𝛽(𝜔),   ℎ 𝜔 = ℎ +  𝝓𝑘𝜉𝑘
ℎ(𝜔)𝐾

𝑘=1   

• Conclusion 1: use more modes (O(100), O(1000)). 

• Conclusion 2: L does not affect LLS reconstruction because representation error 
decay is independent of L. 

 

• Coefficients in LLS fitting were of the same order. 
⟹ We can assume every random variable has the same variance: 

 

Mode 1 Mode 5 Mode 20 Mode 50 Mode 100 
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Next Step: Improve Efficiency of  
MCMC Using Gradient/Hessian Information 

MCMC with active subspaces using gradient information 

• Gradients (𝑑(𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ)
𝑑𝛽 , 𝑑(𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ)

𝑑ℎ ) can be used to identify subspace that controls 

variation in likelihood function  this info can improve MCMC performance by reducing 
correlation between samples. 

•  Surrogates (to reduce sampling cost) are feasible for high-dimensional parameter spaces with 
active subspaces. 

• Plan: combine MCMC in active subspaces with surrogates that adaptively target regions of 
high probability. 

 
Exploit Hessian structure  
• Improve MCMC by informing proposal covariance by structure of Hessian  posterior 

Hessian-based proposal distribution properly balances likelihood and prior, performing better 
than either alone. 

• Leverage analytic emulator gradients                                                                                                    
for QOI  full or Gauss-Newton misfit Hessian. 

• Stochastic Newton: low rank approximation for                                                                                                   
prior-preconditioned misfit Hessian  multivariate normal proposal covariance for MCMC. 

 
 

 

Gauss-Newton approx 
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Next Step: Better Reduced Bases for 
Bayesian Calibration using Hessian Info 

• Hessian of the merit (mismatch) functional can provide a way to compute the covariance of a 
Gaussian posterior:  

 

𝑪𝑝𝑜𝑠𝑡 = 𝑪𝑝𝑟𝑖𝑜𝑟𝑯𝑚𝑖𝑠𝑓𝑖𝑡 + 𝑰 −1𝑪𝑝𝑟𝑖𝑜𝑟 

• We want to limit only the most important directions (eigenvectors) of 𝑪𝑝𝑜𝑠𝑡. 

 

Right: log-linear plot of the spectra of a prior-preconditioned data misfit Hessian at the MAP point 
for two successively finer parameter/state meshes of the inverse ice sheet problem.  

evec 1 evec 2 evec 100 

evec 200 evec 500 evec 4000 

Figures 
courtesy of 
O. Ghattas’ 
group (Isaac 
et al., 2004) 

# significant 
eigenvalues does 
not depend on # 

DOFs in grid 
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Outline 

• The PISCEES project, land-ice equations and 
relevant codes (Albany/FELIX, CISM-Albany, 
MPAS-Albany). 
 

• Uncertainty Quantification Problem Definition. 
 

• Bayesian Calibration. 
• Methodology. 
• Demonstrations. 

 
• Forward Propagation of Uncertainty. 

• Methodology. 
• Demonstrations. 

 
• Summary and Future Work.  

 



43 

Forward Propagation 

Albany/FELIX 

PCE Emulator 

𝛽 𝜔 = 𝛽 + 𝜆𝑘
𝛽𝝓𝑘

𝐾

𝑘=1

𝜉𝑘
𝛽(𝜔)    

DAKOTA, Albany/FELIX 
QoI(𝛽) 

(total ice mass loss) 

Model realizations 
Forward propagation  

(e.g., 2000-2050) 

• Parameter (𝛽) distribution can either be assumed to be Gaussian (based on 
Hessian information) or can be the result of Bayesian calibration. 

 
• Emulator is built using DAKOTA coupled with CISM-Albany for forward runs.  

 
• MCMC (Delayed Rejection Adaptive Metropolis – DRAM) was used to perform 

uncertainty propagation (QUESO).   
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Initial Demonstration: Forward  
Propagation for 4km GIS Problem  

Procedure: 
 

• We first ran 66* CISM-Albany high-fidelity simulations on Hopper with 𝛽 
sampled from a uniform [−1,1] distribution and no forcing for 50 years.    

Left: SLR distribution from 
ensemble of 66 high-
fidelity simulations 
(differenced against 

control run using the 𝛽  
distribution).  All 66 runs 
ran to completion out-of-

the-box on Hopper!  

• We then used the results of these runs to create a PCE emulator for the SLR. 
 

• Using emulator, propagated posterior distributions computed in Bayesian 
calibration (using KLE) through the model to get posteriors on SLR (MCMC on 
PCE emulator with 2K samples). 

Above: 𝛽, velocity and thickness 
perturbations.  Ice thickness 

changed > 500m in some places. 

*66 points = 2D polynomial in 10D. 
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Initial Demonstration: Forward  
Propagation for 4km GIS Problem  

PDF of SLR 

Prior informed (green): uniform distribution 
translates to distribution skewed w.r.t. model 
outputs. 
  

• Larger fraction of the ice sheet currently has a 𝛽 value 
that forces no (or slow) basal sliding. 

• Areas with little sliding: not affected by increase in 𝛽, 
but greatly affected by decrease in 𝛽 (velocity in these 
regions will change significantly from initial condition).  

• Since we sample from a uniform distribution when 
perturbing 𝛽, we expect to see a disproportionately 
large signal when reducing 𝛽 vs. increasing it.  

Expected PDF of SLR: normal distribution 
centered around 0 SLR since no forcing. 

Posterior informed (blue): centered on positive tail of prior – not consistent with observations. 
 

• Could be due to “ad hoc” 𝛽 used as mean field (spin-up over 100 years). 
• May be that emulator was been built with a (non-physical) positive mass balance while calibration was done on 

present-day observations (consistent with ice losing mass). 

Disclaimer: these results illustrate that we have in place all steps of our UQ 
workflow. They are NOT yet actual uncertainty bounds for sea-level rise.   
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Outline 

• The PISCEES project, land-ice equations and 
relevant codes (Albany/FELIX, CISM-Albany, 
MPAS-Albany). 
 

• Uncertainty Quantification Problem Definition. 
 

• Bayesian Calibration. 
• Methodology. 
• Demonstrations. 

 
• Forward Propagation of Uncertainty. 

• Methodology. 
• Demonstrations. 

 
• Summary and Future Work.  
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Summary and Ongoing Work 

 

• This talk described our workflow for quantifying uncertainties in expected aggregate ice 
sheet mass loss and its demonstration on some Greenland ice sheet problems.  

 

• Our choice of prior is somewhat arbitrary; however it is possible to build an informed 
Gaussian distribution using the Hessian of the deterministic inversion. 

 
 

• We plan to use gradient information to combine MCMC in active subspaces with 
surrogates.  
 

• We might use techniques such as the compressed sensing technique to adaptively 
select significant modes and the basis for the parameter space. The hope is that only 
few modes affect the low dimensional QoI (e.g., sea level rise). 

 

• We might use cheap physical models (e.g., the shallow ice model or SIA) or low 
resolution solves to reduce the cost of building the emulator.  
 

• In future work, we plan to look at effects of other sources of uncertainty, e.g., surface 
mass balance. 
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Appendix: Bayesian Calibration  
of 𝛽, ℎ for 8km, 16km GIS Problems 

L2=0.005      L2=0.05      L2=0.5 

L2=0.001 L2=0.005 L2=0.05 

L2=0.001 L2=0.005 L2=0.01 

Left: 𝛽  for 16km GIS  
 

Right: 𝛽  reconstructed with K 
KLE modes as a function of 
length scale L for 16km GIS 

• Length scale L and dimension size K can 
be fine-tuned by looking at reconstruction 
of 𝛽 using the KLE modes. 

• Larger L ⇒ smoother (too diffusive) 
reconstruction. 

• High dimension K in plots due to omitting 
𝛽  from reconstruction:   

 

          𝛽 =  𝑎𝑘𝜙𝑘
𝐾
𝑘=1  

K=300 

K=500 

K=1000 


