Towards Uncertainty Quantification in 21st Century Sea-Level Rise Predictions: Efficient Methods for Bayesian Calibration and Forward Propagation of Uncertainty for Land-Ice Models

**I. Tezaur**<sup>1</sup>, J. Jakeman<sup>1</sup>, M. Eldred<sup>1</sup>, M. Perego<sup>1</sup>, A. Salinger<sup>1</sup>, S. Price<sup>2</sup>



1

<sup>1</sup> Sandia National Laboratories Livermore, CA and Albuquerque, NM, USA <sup>2</sup> Los Alamos National Laboratory Los Alamos, NM, USA

> SIAM Conference on Uncertainty Quantification (SIAM UQ16) April 5-8, 2016 Lausanne, Switzerland

> > SAND2016-2717C



#### Outline

- The PISCEES project, land-ice equations and relevant codes (*Albany/FELIX*, *CISM-Albany*, *MPAS-Albany*).
- Uncertainty Quantification Problem Definition.
- Bayesian Calibration.

- Methodology.
- Demonstrations.
- Forward Propagation of Uncertainty.
  - Methodology.
  - Demonstrations.
- Summary and Future Work.





#### Outline

- The PISCEES project, land-ice equations and relevant codes (*Albany/FELIX*, *CISM-Albany*, *MPAS-Albany*).
- Uncertainty Quantification Problem Definition.
- Bayesian Calibration.

- Methodology.
- Demonstrations.
- Forward Propagation of Uncertainty.
  - Methodology.
  - Demonstrations.
- Summary and Future Work.





# PISCEES Project and Relevant Solvers (Albany-FELIX, CISM/MPAS-Albany)



4

"PISCEES" = Predicting Ice Sheet Climate Evolution at Extreme Scales 5 year project funded by SciDAC, which began in June 2012

# <u>Sandia's Role in the PISCEES Project</u>: to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes approximation

<u>Requirements for our land-ice solver:</u>

Dycore will provide actionable predictions of 21<sup>st</sup> century sea-level rise (including uncertainty).

- Scalable, fast, robust.
- Dynamical core (dycore) when coupled to codes that solve thickness and temperature evolution equations (*CISM/MPAS LI* codes).
- Performance-portability.
- Advanced analysis capabilities (adjoint-based deterministic inversion, Bayesian calibration, UQ, sensitivity analysis).

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)



CISM/MPAS Land Ice Codes (dynamic): Ice Sheet Evolution PDEs (thickness, temperature evolution)



# PISCEES Project and Relevant Solvers (Albany-FELIX, CISM/MPAS-Albany)



5

"PISCEES" = Predicting Ice Sheet Climate Evolution at Extreme Scales 5 year project funded by SciDAC, which began in June 2012

# <u>Sandia's Role in the PISCEES Project</u>: to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes approximation

<u>Requirements for our land-ice solver:</u>

Dycore will provide actionable predictions of 21<sup>st</sup> century sea-level rise (including uncertainty).

- Scalable, fast, robust.
- Dynamical core (dycore) when coupled to codes that solve thickness and temperature evolution equations (*CISM/MPAS LI* codes).
- Performance-portability.
- This
  Advanced analysis capabilities (adjoint-based deterministic inversion, Bayesian calibration, UQ, sensitivity analysis).

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)



CISM/MPAS Land Ice Codes (dynamic): Ice Sheet Evolution PDEs (thickness, temperature evolution)



# The First-Order Stokes Model for Ice Sheets & Glaciers

Ice sheet dynamics are given by the *"First-Order" Stokes PDEs*: approximation\* to viscous incompressible *quasi-static* Stokes flow with power-law viscosity.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

• Viscosity  $\mu$  is nonlinear function given by "*Glen's law"*:

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left( \frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^{2} \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

- Relevant boundary conditions:
  - Stress-free BC:  $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = 0$ , on  $\Gamma_s$
  - Floating ice BC:

6

$$2\mu \dot{\boldsymbol{\epsilon}}_{i} \cdot \boldsymbol{n} = \begin{cases} \rho g z \boldsymbol{n}, \text{ if } z > 0\\ 0, \quad \text{if } z \le 0 \end{cases}, \text{ on } \Gamma_{l}$$

• **Basal sliding BC:**  $2\mu \dot{\epsilon}_i \cdot n + \beta u_i = 0$ , on  $\Gamma_\beta$ 





 $\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\epsilon}_{11} + \dot{\epsilon}_{22}, \dot{\epsilon}_{12}, \dot{\epsilon}_{13})$  $\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\epsilon}_{12}, \dot{\epsilon}_{11} + 2\dot{\epsilon}_{22}, \dot{\epsilon}_{23})$ 

 $\dot{\epsilon}_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$ 

Basal boundary  $\Gamma_{R}$ 

Surface boundary  $\Gamma_s$ 

\*Assumption: aspect ratio  $\delta$  is small and normals to upper/lower surfaces are almost vertical.

# Implementation of Albany/FELIX using Trilinos



Use of **Trilinos** components has enabled the **rapid** development of the **Albany/FELIX** First Order Stokes dycore!

\*FELIX = "Finite Elements for Land Ice eXperiments".



**Ice Sheet Evolution Models** 

Model for *evolution of the boundaries* (thickness evolution equation):

$$\frac{\partial h}{\partial t} = -\nabla \cdot (\overline{\boldsymbol{u}}h) + \dot{b}$$

where  $\overline{u}$  = vertically averaged velocity,  $\dot{b}$  = surface mass balance (conservation of mass).

• Temperature equation (advection-diffusion):

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \rho c \boldsymbol{u} \cdot \nabla T + 2 \dot{\boldsymbol{\epsilon}} \boldsymbol{\sigma}$$

(energy balance).

- Flow factor A in Glen's law depends on temperature T: A = A(T).
- Ice sheet *grows/retreats* depending on thickness *h*.





Ice-covered ("active") cells shaded in white  $(h > h_{min})$ 



## **Ice Sheet Evolution Models**

Model for *evolution of the boundaries* (thickness evolution equation):

$$\frac{\partial h}{\partial t} = -\nabla \cdot (\overline{\boldsymbol{u}}h) + \dot{b}$$

where  $\overline{u}$  = vertically averaged velocity,  $\dot{b}$  = surface mass balance (conservation of mass).

• Temperature equation (advection-diffusion):

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \rho c \boldsymbol{u} \cdot \nabla T + 2 \dot{\boldsymbol{\epsilon}} \boldsymbol{\sigma}$$

(energy balance).

- Flow factor A in Glen's law depends on temperature T: A = A(T).
- Ice sheet *grows/retreats* depending on thickness *h*.









**Ice Sheet Evolution Models** 

Model for *evolution of the boundaries* (thickness evolution equation):

$$\frac{\partial h}{\partial t} = -\nabla \cdot (\overline{\boldsymbol{u}}h) + \dot{b}$$

where  $\overline{u}$  = vertically averaged velocity,  $\dot{b}$  = surface mass balance (conservation of mass).

• Temperature equation (advection-diffusion):

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) - \rho c \boldsymbol{u} \cdot \nabla T + 2 \dot{\boldsymbol{\epsilon}} \boldsymbol{\sigma}$$

(energy balance).

- Flow factor A in Glen's law depends on temperature T: A = A(T).
- Ice sheet *grows/retreats* depending on thickness h.









# Interfaces to CISM and MPAS LI for Transient Simulations



11

Albany/FELIX has been coupled to two land ice dycores: Community Ice Sheet Model (CISM) and Model for Prediction Across Scales for Land Ice (MPAS LI)



#### Outline

- The PISCEES project, land-ice equations and relevant codes (*Albany/FELIX*, *CISM-Albany*, *MPAS-Albany*).
- Uncertainty Quantification Problem Definition.
- Bayesian Calibration.

- Methodology.
- Demonstrations.
- Forward Propagation of Uncertainty.
  - Methodology.
  - Demonstrations.
- Summary and Future Work.







Quantity of Interest (QoI) in Ice Sheet Modeling: total ice mass loss/gain during  $21^{st}$  century  $\rightarrow$  sea level rise prediction.

There are several sources of uncertainty, most notably:

- Climate forcings (e.g., surface mass balance).
- Basal friction ( $\beta$ ).
- Ice sheet thickness (*h*).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).



Basal sliding BC:  $2\mu \dot{m{\epsilon}}_i \cdot m{n} + m{\beta} u_i = 0$ , on  $\Gamma_m{eta}$ 





Quantity of Interest (QoI) in Ice Sheet Modeling: total ice mass loss/gain during  $21^{st}$  century  $\rightarrow$  sea level rise prediction.

There are several sources of uncertainty, most notably:

- Climate forcings (e.g., surface mass balance).
- Basal friction ( $\beta$ ).
- Ice sheet thickness (*h*).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

As a first step, we focus on effect of uncertainty in **basal friction** ( $\beta$ ) only.



Basal sliding BC:  $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} + \beta u_i = 0$ , on  $\Gamma_{\beta}$ 





Quantity of Interest (QoI) in Ice Sheet Modeling: total ice mass loss/gain during  $21^{st}$  century  $\rightarrow$  sea level rise prediction.

There are several sources of uncertainty, most notably:

- Climate forcings (e.g., surface mass balance).
- Basal friction ( $\beta$ ).
- Ice sheet thickness (*h*).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

As a first step, we focus on effect of uncertainty in **basal friction** ( $\beta$ ) only.

This is a *real* application where standard UQ methods *do not work* out of the box!



Basal sliding BC:  $2\mu \dot{m{\epsilon}}_i \cdot m{n} + eta u_i = 0$ , on  $\Gamma_eta$ 





Quantity of Interest (QoI) in Ice Sheet Modeling: total ice mass loss/gain during  $21^{st}$  century  $\rightarrow$  sea level rise prediction.

There are several sources of uncertainty, most notably:

- Climate forcings (e.g., surface mass balance).
- Basal friction ( $\beta$ ).
- Ice sheet thickness (h).
- Geothermal heat flux.
- Model parameters (e.g., Glen's flow law exponent).

As a first step, we focus on effect of uncertainty in **basal friction** ( $\beta$ ) only.

This is a *real* application where standard UQ methods *do not work* out of the box!





Basal sliding BC:  $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} + eta u_i = 0$ , on  $\Gamma_eta$ 





# Uncertainty Quantification Workflow

**Goal:** UQ in 21<sup>st</sup> century aggregate ice sheet mass loss (QoI)

- **Deterministic inversion:** perform adjoint-based deterministic inversion to estimate initial ice sheet state (i.e., characterize the present state of the ice sheet to be used for performing prediction runs).
- Bayesian calibration: construct the posterior distribution using Markov Chain Monte Carlo (MCMC) run on an emulator of the forward model → <u>Bayes' Theorem</u>: assume prior distribution; update using data:



• Forward propagation: sample the obtained distribution and perform ensemble of forward propagation runs to compute the uncertainty in the QoI.

What are the parameters that render a given set of observations?

What is the impact of uncertain parameters in the model on quantities of interest (QoI)?

Laboratories

## Uncertainty Quantification Workflow

**Goal:** UQ in 21<sup>st</sup> century aggregate ice sheet mass loss (QoI)

• **Deterministic inversion:** perform adjoint-based deterministic inversion to estimate initial ice sheet state (i.e., characterize the present state of the ice sheet to be used for performing prediction runs).

18

#### This talk

 Bayesian calibration: construct the posterior distribution using Markov Chain Monte Carlo (MCMC) run on an emulator of the forward model → <u>Bayes' Theorem</u>: assume prior distribution; update using data:



• Forward propagation: sample the obtained distribution and perform ensemble of forward propagation runs to compute the uncertainty in the QoI.

What are the parameters that render a given set of observations?

What is the impact of uncertain parameters in the model on quantities of interest (QoI)?

Laboratories

#### Outline

- The PISCEES project, land-ice equations and relevant codes (*Albany/FELIX*, *CISM-Albany*, *MPAS-Albany*).
- Uncertainty Quantification Problem Definition.
- Bayesian Calibration.

- Methodology.
- Demonstrations.
- Forward Propagation of Uncertainty.
  - Methodology.
  - Demonstrations.
- Summary and Future Work.





Albany/FELIX has been hooked up to **DAKOTA** (in "black-box" mode) for **UQ**/ **Bayesian calibration.** 

> **Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!



*Albany/FELIX* has been hooked up to **DAKOTA** (in "black-box" mode) for **UQ/ Bayesian calibration.** 

21

**Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!

**<u>Approach</u>**: Reduce O(100K) dimensional problem to O(10) dimensional problem.



Albany/FELIX has been hooked up to **DAKOTA** (in "black-box" mode) for **UQ**/ **Bayesian calibration.** 

> **Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!

**Approach:** Reduce O(100K) dimensional problem to O(10) dimensional problem.

• For initial demonstration of workflow, we use the *Karhunen-Loeve Expansion (KLE)*:



Albany/FELIX has been hooked up to **DAKOTA** (in "black-box" mode) for **UQ**/ **Bayesian calibration.** 

> **Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!

**Approach:** Reduce O(100K) dimensional problem to O(10) dimensional problem.

- For initial demonstration of workflow, we use the *Karhunen-Loeve Expansion (KLE)*:
  - 1. Assume analytic covariance kernel  $C(r_1, r_2) = exp\left(-\frac{(r_1 r_2)^2}{L^2}\right)$ .



*Albany/FELIX* has been hooked up to **DAKOTA** (in "black-box" mode) for **UQ/ Bayesian calibration.** 

**Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!

**Approach:** Reduce O(100K) dimensional problem to O(10) dimensional problem.

- For initial demonstration of workflow, we use the *Karhunen-Loeve Expansion (KLE)*:
  - 1. Assume analytic covariance kernel  $C(r_1, r_2) = exp\left(-\frac{(r_1 r_2)^2}{L^2}\right)$ .
  - 2. Perform eigenvalue decomposition of *C*.



*Albany/FELIX* has been hooked up to **DAKOTA** (in "black-box" mode) for **UQ/ Bayesian calibration.** 

**Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!

**<u>Approach</u>**: Reduce O(100K) dimensional problem to O(10) dimensional problem.

- For initial demonstration of workflow, we use the *Karhunen-Loeve Expansion (KLE)*:
  - 1. Assume analytic covariance kernel  $C(r_1, r_2) = exp\left(-\frac{(r_1 r_2)^2}{L^2}\right)$ .

 $\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega)$ 

- 2. Perform eigenvalue decomposition of *C*.
- 3. Expand\*  $\beta \overline{\beta}$  in basis of eigenvectors  $\{\phi_k\}$  of *C*, with random variables  $\{\xi_k^{\beta}\}$ :  $\overline{\beta}$  = initial condition for  $\beta$

(from deterministic inversion or spin-up)



\*In practice, expansion is done on  $\log(\beta)$  to avoid negative values of  $\beta$ .

Albany/FELIX has been hooked up to DAKOTA (in "black-box" mode) for UQ/ **Bayesian calibration.** 

> **Difficulty in UQ**: "Curse of Dimensionality" The  $\beta$  field inversion problems has O(100K) dimensions!

**Approach:** Reduce O(100K) dimensional problem to O(10) dimensional problem.

- For initial demonstration of workflow, we use the *Karhunen-Loeve Expansion (KLE*):
- Offline  $-\begin{bmatrix} 1. & \text{Assume analytic covariance kernel } C(r_1, r_2) = exp\left(-\frac{(r_1 r_2)^2}{L^2}\right). \\ 2. & \text{Perform eigenvalue decomposition of } C. \end{bmatrix}$ 
  - - Expand\*  $\beta \overline{\beta}$  in basis of eigenvectors  $\{\phi_k\}$  of *C*, with random variables  $\{\xi_k^{\ \beta}\}$ :

Online \_

 $\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega)$ 

 $\overline{\beta}$  = initial condition for  $\beta$ (from deterministic inversion or spin-up)

\*In practice, expansion is done on  $\log(\beta)$ to avoid negative values of  $\beta$ .

Inference/calibration is for coefficients of KLE  $\Rightarrow$  significant dimension reduction.



<u>Step 1 (*Trilinos*)</u>: Reduce O(100K) dimensional problem to O(10) dimensional problem using *Karhunen-Loeve Expansion (KLE)*:

1. Assume analytic covariance kernel 
$$C(r_1, r_2) = exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$
.

- 2. Perform eigenvalue decomposition of *C*.
- <sup>2</sup> 3. Expand\*  $\beta \overline{\beta}$  in basis of eigenvectors { $\phi_k$ } of *C*, with random variables  $\{\xi_k^{\ \beta}\}$ :

Online -

Offline

27

$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega)$$

 $\bar{\beta}$ = initial condition for  $\beta$  (from deterministic inversion or spin-up)





<u>Step 1 (*Trilinos*)</u>: Reduce O(100K) dimensional problem to O(10) dimensional problem using *Karhunen-Loeve Expansion (KLE)*:

1. Assume analytic covariance kernel 
$$C(r_1, r_2) = exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$
.

- 2. Perform eigenvalue decomposition of *C*.
- <sup>2</sup> 3. Expand\*  $\beta \overline{\beta}$  in basis of eigenvectors  $\{\phi_k\}$  of *C*, with random variables  $\{\xi_k^{\ \beta}\}$ :

Online -

Offline

$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega)$$

 $\bar{\beta}$ = initial condition for  $\beta$  (from deterministic inversion or spin-up)

• <u>Step 2 (DAKOTA)</u>: Polynomial Chaos Expansion (PCE) emulator for mismatch (over surface velocity, SMB, thickness) discrepancy.







<u>Step 1 (Trilinos)</u>: Reduce O(100K) dimensional problem to O(10) dimensional problem using Karhunen-Loeve Expansion (KLE):

1. Assume analytic covariance kernel 
$$C(r_1, r_2) = exp\left(-\frac{(r_1 - r_2)^2}{L^2}\right)$$

- 2. Perform eigenvalue decomposition of C.
- <sup>2</sup> 3. Expand\*  $\beta \overline{\beta}$  in basis of eigenvectors  $\{\phi_k\}$  of *C*, with random variables  $\{\xi_k^{\ \beta}\}$ :

Online -

Offline

$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega)$$

 $\bar{\beta}$ = initial condition for  $\beta$  (from deterministic inversion or spin-up)

- <u>Step 2 (DAKOTA)</u>: Polynomial Chaos Expansion (PCE) emulator for mismatch (over surface velocity, SMB, thickness) discrepancy.
- Step 3 (QUESO): Markov Chain Monte Carlo (MCMC) calibration using PCE emulator.
  →can obtain MAP point and posterior distributions on KLE coefficients.

\*In practice, expansion is done on  $\log(\beta)$  to avoid negative values of  $\beta$ .









## Initial Demonstration: Bayesian Calibration for 4km GIS Problem

- Mean  $\bar{\beta}$  field obtained through spin-up over 100 years (cheaper than inversion, gives reasonable agreement with present-day velocity field).
- Correlation length L (L<sup>2</sup>=0.05) selected s.t. slow decay of KLE eigenvalues to enable refinement (*left*): 10 KLE modes capture 27.3% of covariance energy.



• Mismatch function (calculated in *Albany/FELIX*):

30







• PCE emulator was formed for the mismatch  $J(\beta)$  using uniform [-1,1] prior distributions and 286 high-fidelity runs on Hopper (286 points = 3<sup>rd</sup> degree polynomial in 10D).





- For calibration, MCMC (Delayed Rejection Adaptive Metropolis DRAM) was performed on the PCE with 2K samples.
- *Posterior distributions* for 10 KLE coefficients:





- Distributions are peaked rather than uniform  $\Rightarrow$  data informed the posteriors.
- **MAP point**:  $\boldsymbol{\xi} = (0.372, -0.679, -0.420, -0.189, -7.38e-2, -0.255, 0.449, -0.757, 0.847, -0.447)$

## Initial Demonstration: Bayesian Calibration for 4km GIS Problem



- Ice is too fast at MAP point. Possible explanations:
  - Surrogate error (based on cross-validation).
  - Mean field error.

32

• Bad modes (modes lack fine scale features).

Mismatch  $J(\beta)$  at MAP point: 1.87 × mismatch at  $\overline{\beta}$ 



• Mean areta , ar h fields obtained deterministic inversion minimizing

$$J(\beta, h) = \alpha_v \int_{\Gamma_{top}} |\boldsymbol{u} - \boldsymbol{u}^{obs}|^2 ds + \alpha \int_{\Gamma} |div(\boldsymbol{u}H) - SMB|^2 ds + \alpha_H \int_{\Gamma_{top}} |h - h^{obs}|^2 ds$$



• Mean  $ar{eta}$  ,  $ar{h}$  fields obtained deterministic inversion minimizing

$$J(\beta,h) = \alpha_v \int_{\Gamma_{top}} |\boldsymbol{u} - \boldsymbol{u}^{obs}|^2 ds + \alpha \int_{\Gamma} |div(\boldsymbol{u}H) - SMB|^2 ds + \alpha_H \int_{\Gamma_{top}} |h - h^{obs}|^2 ds$$

• Prior and expected variation in  $\beta$ , h is unknown...



• Mean  $ar{eta}$  ,  $ar{h}$  fields obtained deterministic inversion minimizing

$$J(\beta,h) = \alpha_{v} \int_{\Gamma_{top}} |\boldsymbol{u} - \boldsymbol{u}^{obs}|^{2} ds + \alpha \int_{\Gamma} |div(\boldsymbol{u}H) - SMB|^{2} ds + \alpha_{H} \int_{\Gamma_{top}} |h - h^{obs}|^{2} ds$$

- Prior and expected variation in  $\beta$ , h is unknown...
- <u>Idea to estimate K and L:</u> solve LLS problem

$$\min_{L,K} \left\| \exp\left( \bar{\beta}^{opt}(\min J(\beta)) - \bar{\beta}^{opt}(\min J(\beta,h)) - \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \, \xi_k^{\beta}(\omega) \right) \right\|$$



 $\bar{\beta}^{opt}$  (min  $J(\beta, h)$ )  $\bar{\beta}^{opt}$ (min  $J(\beta)$ )



• Mean  $ar{eta}$  ,  $ar{h}$  fields obtained deterministic inversion minimizing

$$(\beta, h) = \alpha_{v} \int_{\Gamma_{top}} |\boldsymbol{u} - \boldsymbol{u}^{obs}|^{2} ds + \alpha \int_{\Gamma} |div(\boldsymbol{u}H) - SMB|^{2} ds + \alpha_{H} \int_{\Gamma_{top}} |h - h^{obs}|^{2} ds$$

• Prior and expected variation in  $\beta$ , h is unknown...

36

Idea to estimate K and L: solve LLS problem  $min_{L,K} \left\| \exp\left( \bar{\beta}^{opt}(\min J(\beta)) - \bar{\beta}^{opt}(\min J(\beta,h)) - \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega) \right) \right\|$  $\bar{\beta}^{opt}$  (min  $J(\beta, h)$ )  $\bar{\beta}^{opt}(\min J(\beta))$ -LS representation relative error 1.5 $\Rightarrow$ LLS representation error 1 decay is independent of L 0.51,000 0 5001,5002,000National Κ

• <u>Conclusion 1:</u> use more modes (*O*(100), *O*(1000)).





• <u>Conclusion 1:</u> use more modes (*O*(100), *O*(1000)).



- **Conclusion 2:** *L* does not affect LLS reconstruction because representation error decay is independent of *L*.
  - Coefficients in LLS fitting were of the same order.
  - $\Rightarrow$  We can assume every random variable has the same variance:

 $\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \sqrt{\lambda_k^{\beta}} \boldsymbol{\phi}_k \xi_k^{\beta}(\omega), \quad h(\omega) = \bar{h} + \sum_{k=1}^{K} \sqrt{\lambda_k^{h}} \boldsymbol{\phi}_k \xi_k^{h}(\omega)$ 



• <u>Conclusion 1:</u> use more modes (*O*(100), *O*(1000)).



- **Conclusion 2:** *L* does not affect LLS reconstruction because representation error decay is independent of *L*.
  - Coefficients in LLS fitting were of the same order.
  - $\Rightarrow$  We can assume every random variable has the same variance:

$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^{K} \boldsymbol{\phi}_{k} \xi_{k}^{\beta}(\omega), \quad h(\omega) = \bar{h} + \sum_{k=1}^{K} \boldsymbol{\phi}_{k} \xi_{k}^{h}(\omega)$$



# Next Step: Improve Efficiency of MCMC Using Gradient/Hessian Information

#### MCMC with active subspaces using gradient information

- Gradients  $\binom{d(mismatch)}{d\beta}$ ,  $\frac{d(mismatch)}{dh}$  can be used to identify subspace that controls variation in likelihood function  $\rightarrow$  this info can improve MCMC performance by reducing correlation between samples.
- Surrogates (to reduce sampling cost) are feasible for high-dimensional parameter spaces with active subspaces.
- <u>Plan:</u> combine MCMC in active subspaces with surrogates that adaptively target regions of high probability.

#### **Exploit Hessian structure**

- Improve MCMC by informing proposal covariance by structure of Hessian → posterior Hessian-based proposal distribution properly balances likelihood and prior, performing better than either alone.
   Leverage analytic emulator gradients
- Leverage analytic emulator gradients for QOI → full or Gauss-Newton misfit Hessian.
- Stochastic Newton: low rank approximation for prior-preconditioned misfit Hessian → multivariate normal proposal covariance for MCMC.

$$\boldsymbol{L_0^T H_M L_0} \approx \boldsymbol{V_r \Lambda_r V_r^T}$$

$$\overline{\mathbf{F}} = H_{\mathrm{nlpost}}^{-1} \approx L_0 \left[ I - V_r D_r V_r^T \right] L_0^T$$



# Next Step: Better Reduced Bases for Bayesian Calibration using Hessian Info

 Hessian of the merit (mismatch) functional can provide a way to compute the covariance of a Gaussian posterior:

$$\boldsymbol{C}_{post} = (\boldsymbol{C}_{prior}\boldsymbol{H}_{misfit} + \boldsymbol{I})^{-1}\boldsymbol{C}_{prior}$$

• We want to limit only the most important directions (eigenvectors) of *C*<sub>post</sub>.

41



*Right*: log-linear plot of the spectra of a prior-preconditioned data misfit Hessian at the MAP point for two successively finer parameter/state meshes of the inverse ice sheet problem.



#### Outline

- The PISCEES project, land-ice equations and relevant codes (*Albany/FELIX*, *CISM-Albany*, *MPAS-Albany*).
- Uncertainty Quantification Problem Definition.
- Bayesian Calibration.

- Methodology.
- Demonstrations.
- Forward Propagation of Uncertainty.
  - Methodology.
  - Demonstrations.
- Summary and Future Work.







## **Forward Propagation**



- Parameter ( $\beta$ ) distribution can either be assumed to be Gaussian (based on Hessian information) or can be the result of Bayesian calibration.
- Emulator is built using DAKOTA coupled with CISM-Albany for forward runs.



• MCMC (Delayed Rejection Adaptive Metropolis – DRAM) was used to perform uncertainty propagation (*QUESO*).





# Initial Demonstration: Forward Propagation for 4km GIS Problem

#### Procedure:

44

• We first ran 66\* CISM-Albany high-fidelity simulations on Hopper with  $\beta$  sampled from a uniform [-1,1] distribution and **no forcing** for 50 years.



Left: SLR distribution from ensemble of 66 highfidelity simulations (differenced against control run using the  $\bar{\beta}$ distribution). All 66 runs ran to completion out-ofthe-box on Hopper!



Above:  $\beta$ , velocity and thickness perturbations. Ice thickness changed > 500m in some places.

- We then used the results of these runs to create a PCE emulator for the SLR.
- Using emulator, propagated posterior distributions computed in Bayesian calibration (using KLE) through the model to get posteriors on SLR (MCMC on PCE emulator with 2K samples).



# Initial Demonstration: Forward Propagation for 4km GIS Problem

**Disclaimer:** these results illustrate that we have in place all steps of our UQ workflow. *They are NOT yet actual uncertainty bounds for sea-level rise.* 

#### **Expected PDF of SLR:** normal distribution centered around 0 SLR since no forcing.

45

**Prior informed (green)**: uniform distribution translates to distribution skewed w.r.t. model outputs.

- Larger fraction of the ice sheet currently has a  $\beta$  value that forces no (or slow) basal sliding.
- Areas with little sliding: not affected by increase in  $\beta$ , but greatly affected by decrease in  $\beta$  (velocity in these regions will change significantly from initial condition).
- Since we sample from a uniform distribution when perturbing  $\beta$ , we expect to see a disproportionately large signal when reducing  $\beta$  vs. increasing it.



#### **PDF of SLR**

**Posterior informed (blue):** centered on positive tail of prior – not consistent with observations.

- Could be due to "ad hoc"  $\beta$  used as mean field (spin-up over 100 years).
- May be that emulator was been built with a (non-physical) positive mass balance while calibration was done on present-day observations (consistent with ice losing mass).

#### Outline

- The PISCEES project, land-ice equations and relevant codes (*Albany/FELIX*, *CISM-Albany*, *MPAS-Albany*).
- Uncertainty Quantification Problem Definition.
- Bayesian Calibration.

- Methodology.
- Demonstrations.
- Forward Propagation of Uncertainty.
  - Methodology.
  - Demonstrations.
- Summary and Future Work.





## Summary and Ongoing Work

- This talk described our *workflow* for quantifying uncertainties in expected aggregate ice sheet mass loss and its *demonstration* on some Greenland ice sheet problems.
- Our choice of prior is somewhat arbitrary; however it is possible to build an informed Gaussian distribution using the *Hessian of the deterministic inversion*.
- We plan to use *gradient information* to combine MCMC in *active subspaces* with surrogates.

- We might use techniques such as the *compressed sensing* technique to adaptively select significant modes and the basis for the parameter space. The hope is that only few modes affect the low dimensional QoI (e.g., sea level rise).
- We might use *cheap physical models* (e.g., the shallow ice model or SIA) or *low resolution solves* to reduce the cost of building the emulator.
- In future work, we plan to look at effects of *other sources of uncertainty*, e.g., surface mass balance.





#### Funding/Acknowledgements



48

**PISCEES team members:** K. Evans, M. Gunzburger, M. Hoffman, C. Jackson, P. Jones, W. Lipscomb, M. Perego, S. Price, A. Salinger, I. Tezaur, R. Tuminaro, P. Worley.

Trilinos/DAKOTA collaborators: M. Eldred, J. Jakeman, E. Phipps, L. Swiler.

Computing resources: NERSC, OLCF.

Thank you! Questions?





nnal

ratories

[1] M.A. Heroux *et al.* "An overview of the Trilinos project." *ACM Trans. Math. Softw.* **31**(3) (2005).

[2] A.G. Salinger *et al.* "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", *Comput. Sci. Disc.* (submitted, 2015).

49

[3] **I. Tezaur**, M. Perego, A. Salinger, R. Tuminaro, S. Price. "*Albany/FELIX*: A Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", *Geosci. Model Develop.* 8 (2015) 1-24.

[4] **I. Tezaur**, R. Tuminaro, M. Perego, A. Salinger, S. Price. "On the scalability of the *Albany/FELIX* first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets", *MSESM/ICCS15*, Reykjavik, Iceland (June 2014).

[5] R.S. Tuminaro, **I. Tezaur**, M. Perego, A.G. Salinger. "A Hybrid Operator Dependent Multi-Grid/Algebraic Multi-Grid Approach: Application to Ice Sheet Modeling", *SIAM J. Sci. Comput.* (in prep).

[6] R. Tuminaro. "ML's SemiCoarsening Feature, Addition to ML 5.0 Smoothed Aggregation User's Guide", Sandia National Laboratories Report, SAND2006-2649, Sandia National Laboratories, Albuquerque, NM, 2014.

# References (cont'd)

[7] S. Shannon, *et al.* "Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise", *P. Natl. Acad. Sci.*, 110 (2013) 14156-14161.

[8] P. Fretwell, *et al.* "BEDMAP2: Improved ice bed, surface, and thickness datasets for Antarctica", *The Cryosphere* 7(1) (2013) 375-393.

50

[9] F. Pattyn. "Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model", *Earth and Planetary Science Letters 295 (2010).* 

[10] M. Perego, S. Price, G. Stadler. "Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models", *J. Geophys. Res.* 119 (2014) 1894-1917.

[11] J. Jakeman, M. Eldred, K. Sargsyan. "Enhancing l1-minimization estimates of polynomial chaos expansions using basis selection", *J. Comp. Phys.* 289 (2015) 18-34.



- Length scale *L* and dimension size *K* can be fine-tuned by looking at reconstruction of β using the KLE modes.
- Larger L ⇒ smoother (too diffusive) reconstruction.
- High dimension *K* in plots due to omitting  $\overline{\beta}$  from reconstruction:

$$\beta = \sum_{k=1}^{K} a_k \phi_k$$

**Left:**  $\overline{\beta}$  for 16km GIS **Right:**  $\overline{\beta}$  reconstructed with *K* KLE modes as a function of length scale *L* for 16km GIS



