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Targeted Application: Compressible Flow
• We are interested in the compressible captive-carry problem.

• Secondary interest: ROMs robust w.r.t. parameter changes (e.g., Reynolds, 
Mach number) for enabling uncertainty quantification.

• Of primary interest are long-time 
predictive simulations: ROM run at 
same parameters as FOM but much 
longer in time.

→ QoIs: statistics of flow, e.g., 
pressure Power Spectral Densities 
(PSDs) [left].



POD/Galerkin Method to MOR

Snapshot matrix: 𝑿 = (𝒙1, …, 𝒙𝐾) ∈ ℝ𝑁𝑥𝐾

SVD: 𝑿 = 𝑼𝜮𝑽𝑇

Truncation: 𝑼 ← (𝑼1, … , 𝑼𝑛) = 𝑼 : , 1: 𝑛

𝑁 = # of dofs in full 
order model (FOM)
𝐾 = # of snapshots
𝑛 = # of dofs in ROM 
(𝑛 << 𝑁, 𝑛 << 𝐾)

Our focus has been 
primarily on 

POD/Galerkin ROMs



Extreme Model Reduction
• Most realistic applications (e.g., high Re compressible cavity): basis that captures 
>99% snapshot energy is required to accurately reproduce snapshots.

→ leads to 𝑛 > 𝑂(1000) except for toy problems and/or low-fidelity models.

We are looking for an approach that enables extreme model reduction: 
ROM basis size is 𝑂(10) or 𝑂(100).

• Higher order modes are in general 
unreliable for prediction, so 
including them in the basis is unlikely 
to improve the predictive capabilities 
of a ROM. 

Figure (right) shows projection error 
for POD basis constructed using 800 

snapshots for cavity problem.  
Dashed line = end of snapshot 

collection period.



3D Compressible Navier-Stokes Equations

• We start with the 3D compressible Navier-Stokes equations in primitive 
specific volume form:

(1)

𝜁,𝑡 + 𝜁,𝑗𝑢𝑗 − 𝜁𝑢𝑗,𝑗 = 0

𝑢𝑖,𝑡 + 𝑢𝑖,𝑗𝑢𝑗 + 𝜁𝑝,𝑖 −
1

𝑅𝑒
𝜁𝜏𝑖𝑗,𝑗 = 0

𝑝,𝑡 + 𝑢𝑗𝑝,𝑗 + 𝛾𝑢𝑗,𝑗𝑝 −
𝛾

𝑃𝑟𝑅𝑒
𝜅 𝑝𝜁 ,𝑗 ,𝑗

−
𝛾 − 1

𝑅𝑒
𝑢𝑖,𝑗𝜏𝑖𝑗 = 0

[PDEs]
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• We start with the 3D compressible Navier-Stokes equations in primitive 
specific volume form:

(1)

𝜁,𝑡 + 𝜁,𝑗𝑢𝑗 − 𝜁𝑢𝑗,𝑗 = 0

𝑢𝑖,𝑡 + 𝑢𝑖,𝑗𝑢𝑗 + 𝜁𝑝,𝑖 −
1

𝑅𝑒
𝜁𝜏𝑖𝑗,𝑗 = 0

𝑝,𝑡 + 𝑢𝑗𝑝,𝑗 + 𝛾𝑢𝑗,𝑗𝑝 −
𝛾

𝑃𝑟𝑅𝑒
𝜅 𝑝𝜁 ,𝑗 ,𝑗

−
𝛾 − 1

𝑅𝑒
𝑢𝑖,𝑗𝜏𝑖𝑗 = 0

• Spectral discretization 𝒒(𝒙, 𝑡) ≈ σ𝑖=1
𝑛 𝑎𝑖 𝑡 𝑼𝑖(𝒙) + Galerkin projection 

applied to (1) yields a system of 𝑛 coupled quadratic ODEs:

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳𝒂 + 𝒂𝑇𝑸(1)𝒂 + 𝒂𝑇𝑸(2)𝒂 +⋯+ 𝒂𝑇𝑸(𝑛)𝒂 𝑇 (2)[ROM]

[PDEs]

where 𝑪 ∈ ℝ𝑛, 𝑳 ∈ ℝ𝑛×𝑛 and  𝑸(𝑖) ∈ ℝ𝑛×𝑛 for all 𝑖 = 1, … , 𝑛.
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ROM Instability Problem

• A compressible fluid POD/Galerkin ROM might be stable for a given number of  
modes, but unstable for other choices of basis size (Bui-Tanh et al. 2007).

• Instability can be due to: 

1. Choice of inner product: Galerkin projection + L2 inner product is unstable.

→ Stable alternatives include:
• Energy-based inner products: Rowley et al., 2004 (isentropic); 

Barone et al., 2007 (linear); Serre et al., 2012 (linear); 
Kalashnikova et al., 2014 (nonlinear).

• GNAT method/Petrov-Galerkin projection: Carlberg et al., 2014 
(nonlinear).

2.   Basis truncation: destroys balance between energy production & 
hhhdissipation.

Stability can be a real problem for compressible flow ROMs!

This talk focuses on remedying “mode truncation instability” problem 
for projection-based (POD/Galerkin) compressible flow ROMs.
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Mode Truncation Instability
• Projection-based MOR necessitates truncation.

• POD is, by definition and design, biased towards the large, energy producing
scales of the flow (i.e., modes with large POD eigenvalues).

• Truncated/unresolved modes are negligible from a data compression point of 
view (i.e., small POD eigenvalues) but are crucial for the dynamical 
equations.

• For fluid flow applications, higher-order modes are associated with energy 
dissipation

⟹ low-dimensional ROMs (Galerkin and Petrov-Galerkin) can be 
inaccurate and unstable.

For a low-dimensional ROM to be stable and accurate, the 
truncated/unresolved subspace must be accounted for.

Turbulence Modeling
(traditional approach)

Subspace Rotation
(our approach)
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Traditional Linear Eddy-Viscosity Approach

• Dissipative dynamics of truncated higher-order modes are modeled using 
an additional linear term:

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳 + 𝑳𝜈 𝒂 + 𝒂𝑇𝑸 1 𝒂 + 𝒂𝑇𝑸 2 𝒂 +⋯+ 𝒂𝑇𝑸 𝑛 𝒂 𝑇

• 𝑳𝜈 is designed to decrease magnitude of positive eigenvalues and increase 
magnitude of negative eigenvalues of 𝑳 + 𝑳𝜈 (for stability).

• Disadvantages of this approach:

1. Additional term destroys consistency between ROM and Navier-
Stokes equations.

2.    Calibration is necessary to derive optimal 𝑳𝜈 and optimal value is flow
dependent.

3.    Inherently a linear model → cannot be expected to perform well for 
all classes of problems (e.g., nonlinear).
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Proposed new approach: basis rotation

(3)

Instead of modeling truncation via additional linear term, model the truncation 
a priori by “rotating” the projection subspace into a more dissipative regime

• More generally: approximate the solution using a linear superposition 
of 𝑛 + 𝑝 (with 𝑝 > 0) most energetic modes: 

෩𝑼𝑖 = σ𝑗=1
𝑛+𝑝

𝑋𝑖𝑗 𝑼𝑗,   𝑖 = 1, … , 𝑛,

where 𝑿 ∈ ℝ 𝑛+𝑝 ×𝑛 is an orthonormal (𝑿𝑇𝑿 = 𝑰𝑛×𝑛) “rotation” matrix.

Illustrative example
• Standard approach: retain only the most energetic POD modes, i.e., 𝑼1, 𝑼2,

𝑼3.
• Proposed approach: add some higher order basis modes to increase 

dissipation, i.e., 𝑎1𝑼1 + 𝑏1𝑼6 + 𝑐1𝑼8, 𝑎2𝑼2 + 𝑏2𝑼11 + 𝑐2𝑼18, 𝑎3𝑼3 +
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Find 𝑿 such that:

1. New modes ෩𝑼 remain good approximations of the flow.

2.     New modes produce stable and accurate ROMs.

• We formulate and solve a constrained optimization problem for 𝑿:

minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛
𝑓(𝑿)

subject to 𝑔 𝑿, 𝑳 = 0

where 𝒱 𝑛+𝑝 ,𝑛 ∈ 𝑿 ∈ ℝ 𝑛+𝑝 ×𝑛: 𝑿𝑇𝑿 = 𝑰𝑛, 𝑝 > 0 is the Stiefel manifold.

• Once 𝑿 is found, the result is a system of the form: 

𝑄
(𝑖)

𝑗𝑘← σ𝑠,𝑞,𝑟=1
𝑛+𝑝

𝑋𝑠𝑖𝑄
(𝑠)

𝑞𝑟𝑋𝑞𝑟𝑋𝑟𝑘 , 𝑳 ← 𝑿𝑇𝑳𝑿,     𝑪← 𝑿𝑇𝑪∗

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳𝒂 + 𝒂𝑇𝑸 1 𝒂 + 𝒂𝑇𝑸 2 𝒂 +⋯+ 𝒂𝑇𝑸 𝑛 𝒂 𝑇

with: 
(4)
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Objective function

• We have considered two objectives 𝑓(𝑿) in (5):

• Minimize subspace rotation

(5)

𝑓 𝑿 = −| 𝜮 − 𝑿𝑿𝑇𝜮 |𝐹

• Maximize resolved turbulent kinetic energy (TKE) 

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛

• TKE objective (7) comes from earlier work (Balajewicz et al., 2013) involving 
stabilization of incompressible flow ROMs

• POD modes associated with low KE are important dynamically even though 
they contribute little to overall energy of the fluid flow.

(6)

(7)

minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛
𝑓(𝑿)

subject to 𝑔 𝑿, 𝑳 = 0

* In (7), 𝜮 denotes the square of second moments of ROM modal coefficients (Balajewicz et al., 2013). 



Objective function

• We have considered two objectives 𝑓(𝑿) in (5):

• Minimize subspace rotation

(5)

𝑓 𝑿 = −| 𝜮 − 𝑿𝑿𝑇𝜮 |𝐹

• Maximize resolved turbulent kinetic energy (TKE) 

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛 (6)

(7)

minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛
𝑓(𝑿)

subject to 𝑔 𝑿, 𝑳 = 0

• Numerical experiments reveal objective (6) produces better results than 
objective (7) for compressible flow.
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Constraint

• We use the traditional linear eddy-viscosity closure model ansatz for the 
constraint 𝑔(𝑿, 𝑳) = 0 in (5):

𝑔 𝑿, 𝑳 = tr 𝑿𝑇𝑳𝑿 − 𝜂

• Specifically, constraint (8) involves overall balance between linear energy 
production and dissipation.

• 𝜂 = proxy for the balance between linear energy production and energy 
dissipation.

• Constraint comes from property that averaged total power (= tr(𝑿𝑇𝑳𝑿) +
energy transfer) has to vanish.

(8)

(5)minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛
𝑓(𝑿)

subject to 𝑔 𝑿, 𝑳 = 0



Optimization problem summary

Minimal subspace rotation: trace minimization on Stiefel manifold

• 𝜂 ∈ ℝ: proxy for the balance between linear energy production and energy 
dissipation (calculated iteratively using modal energy).

• 𝒱 𝑛+𝑝 ,𝑛 ∈ 𝑿 ∈ ℝ 𝑛+𝑝 ×𝑛: 𝑿𝑇𝑿 = 𝑰𝑛, 𝑝 > 0 is the Stiefel manifold.

• Equation (9) is solved efficiently offline using the method of Lagrange 
multipliers (Manopt MATLAB toolbox).

• See (Balajewicz, Tezaur, Dowell, 2016) and Appendix slide for Algorithm.

(9)
minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛

− tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛

subject to tr 𝑿𝑇𝑳𝑿 = 𝜂
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Remarks on proposed approach

Proposed approach may be interpreted as an a priori consistent
formulation of the eddy-viscosity turbulence modeling approach.

• Advantages of proposed approach: 

1. Retains consistency between ROM and Navier-Stokes equations →
no additional turbulence terms required.

2. Inherently a nonlinear model → should be expected to outperform 
linear models.

3.     Works with any basis and Petrov-Galerkin projection.

• Disadvantages of proposed approach:

1. Off-line calibration of free parameter 𝜂 is required.

2.     Stability cannot be proven like for incompressible case.
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Low Re Channel Driven Cavity

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72 ⇒
𝑛 = 4 ROM (91% snapshot energy).

Figure 1: Domain and mesh for viscous channel driven cavity problem.



Low Re Channel Driven Cavity

Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis 
𝑎1(𝑡) and 𝑎2(𝑡), (c) illustration of stabilizing rotation showing that rotation is small: 
𝑿−𝑰 𝑛+𝑝 ,𝑛 𝐹

𝑛
= 0.188, 𝑿 ≈ 𝑰 𝑛+𝑝 ,𝑛

• Minimizing subspace rotation:

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛

-- standard 
ROM (n=4)
− stabilized 
ROM (n=p=4)
− FOM



Low Re Channel Driven Cavity

Figure 3: Pressure power spectral density (PSD) at location 𝒙 = (2,−1); 
stabilized ROM minimizes subspace rotation.

-- standard 
ROM (n=4)
− stabilized 
ROM (n=p=4)
− FOM

• Minimizing subspace rotation:

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛



Low Re Channel Driven Cavity

Figure 4: Pressure power spectral density (PSD) at location 𝒙 = (2,−1); 
stabilized ROM maximizes resolved TKE.

-- standard 
ROM (n=4)
− stabilized 
ROM (n=p=4)
− FOM

• Maximizing resolved TKE:

𝑓 𝑿 = −| 𝜮 − 𝑿𝑿𝑇𝜮 |𝐹



Low Re Channel Driven Cavity

Figure 5: Channel driven cavity Re ≈ 1500 contours of 𝑢-velocity at time of final 
snapshot.

Standard 
ROM (𝑛 = 4)

Stabilized ROM 
(𝑛 = 𝑝 = 4)FOM

• Minimizing subspace rotation:

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛



Moderate Re Channel Driven Cavity

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72 ⇒
𝑛 = 20 ROM (71.8% snapshot energy).

Figure 6: Domain and mesh for viscous channel driven cavity problem.



Moderate Re Channel Driven Cavity

Figure 7: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing 

that rotation is small: 
𝑿−𝑰 𝑛+𝑝 ,𝑛 𝐹

𝑛
= 0.038, 𝑿 ≈ 𝑰 𝑛+𝑝 ,𝑛

-- standard 
ROM (n=20)
− stabilized 
ROM (n=p=20)
− FOM

• Minimizing subspace rotation:

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛



Moderate Re Channel Driven Cavity

Power and phase lag at fundamental frequency, and first two super harmonics are 
predicted accurately using the fine-tuned ROM (∆ = stabilized ROM,  = FOM)

Figure 8: Pressure cross PSD of of 𝑝(𝒙1, 𝑡) and 𝑝(𝒙2, 𝑡) where 𝒙1 = 2,−0.5 , 𝒙2 = (0,−0.5)

− stabilized 
ROM (n=p=20)
− FOM

• Minimizing subspace rotation:

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛



Moderate Re Channel Driven Cavity

Figure 9: Channel driven cavity Re ≈ 5500 contours of 𝑢-velocity at time of final 
snapshot.

Standard ROM 
(𝑛 = 20)

Stabilized ROM 
(𝑛 = 𝑝 =20)FOM

• Minimizing subspace rotation:

𝑓 𝑿 = 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹 = −tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛



CPU times (CPU-hours) for offline and 
online computations* 

* For minimizing subspace 
rotation.

Procedure Low Re Cavity Moderate Re Cavity

FOM # of DOF 288,250 243,750

Time-integration of FOM 72 hrs 179 hrs

Basis construction (size 𝑛 + 𝑝 ROM) 0.88 hrs 3.44 hrs

Galerkin projection (size 𝑛 + 𝑝 ROM) 5.44 hrs 14.8 hrs

Stabilization 14 sec 170 sec

ROM # of DOF 4 20

Time-integration of ROM 0.16 sec 0.83 sec

Online computational speed-up 1.6e6 7.8e5o
n

lin
e
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CPU times (CPU-hours) for offline and 
online computations* 

* For minimizing subspace 
rotation.

Procedure Low Re Cavity Moderate Re Cavity

FOM # of DOF 288,250 243,750

Time-integration of FOM 72 hrs 179 hrs

Basis construction (size 𝑛 + 𝑝 ROM) 0.88 hrs 3.44 hrs

Galerkin projection (size 𝑛 + 𝑝 ROM) 5.44 hrs 14.8 hrs

Stabilization 14 sec 170 sec

ROM # of DOF 4 20

Time-integration of ROM 0.16 sec 0.83 sec

Online computational speed-up 1.6e6 7.8e5o
n

lin
e

o
ff

lin
e

• Stabilization is fast (𝑂(sec) or 𝑂(min)).

• Significant online computational speed-up!
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Extensions to Least-Squares Petrov-
Galerkin (LSPG) ROMs

Stabilization/enhancement of LSPG ROMs is parallel effort to 
implementation of LSPG minimal-residual ROMs (GNAT method of Carlberg 

et al.) in our in-house flow solver, SPARC (see poster by Jeff Fike)
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• Equivalent to Petrov-Galerkin projection with test basis 𝜳𝑀 = 𝑱𝜱𝑀, where 𝑱
is the Jacobian of 𝒓(𝒘).  

• POD/LSPG ROMs are more stable than POD/Galerkin ROMs.

→ Nevertheless, low-dimensional LSPG ROMs can benefit from basis 
stabilization.  

Stabilization/enhancement of LSPG ROMs is parallel effort to 
implementation of LSPG minimal-residual ROMs (GNAT method of Carlberg 

et al.) in our in-house flow solver, SPARC (see poster by Jeff Fike)



Stabilization of Inviscid Pulse in Uniform 
Flow Low Order LSPG ROM

Preliminary Workflow 

1. Run LSPG ROM in SPARC → output POD basis.

2. Use POD/Galerkin ROM code Spirit to produce 𝑪, 𝑳, and 𝑸 𝑖 matrices in (2).
3. Stabilize POD basis using stabilization approach described in this talk.
4. Run LSPG ROM in SPARC with stabilized basis.  
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Stabilization of Inviscid Pulse in Uniform 
Flow Low Order LSPG ROM

Preliminary Workflow 

1. Run LSPG ROM in SPARC → output POD basis.

2. Use POD/Galerkin ROM code Spirit to produce 𝑪, 𝑳, and 𝑸 𝑖 matrices in (2).
3. Stabilize POD basis using stabilization approach described in this talk.
4. Run LSPG ROM in SPARC with stabilized basis.  

• Figure (left) shows generalized coordinates for 
mode 2 compared to FOM projection.

• Our approach effectively stabilizes LSPG ROM.

• Preliminary approach needs improvement, as 
there are inconsistencies between SPARC and 
Spirit codes.

We are currently working on extending 
our stabilization/enhancement approach 

to ROMs with generic nonlinearities.  
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Summary

• We have developed a non-intrusive approach for stabilizing and fine-
tuning projection-based ROMs for compressible flows.

• The standard POD modes are “rotated” into a more dissipative regime to 
account for the dynamics in the higher order modes truncated by the 
standard POD method.

• The new approach is consistent and does not require the addition of 
empirical turbulence model terms unlike traditional approaches.

• Mathematically, the approach is formulated as a quadratic matrix 
program on the Stiefel manifold.

• The constrained minimization problem is solved offline and small enough 
to be solved in MATLAB.

• The method is demonstrated on several compressible flow problems and 
shown to deliver stable and accurate ROMs.
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Future work

• Application to higher Reynolds number problems.

• Extension of the proposed approach to problems with generic nonlinearities, 
where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).

• Extension of the method to minimal-residual-based nonlinear ROMs.

• Extension of the method to predictive applications, e.g., problems with varying 
Reynolds number and/or Mach number.

• Selecting different goal-oriented objectives and constraints in our optimization 
problem: 

minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛
𝑓(𝑿)

subject to 𝑔(𝑿, 𝑳) = 0

e.g., 

• Maximize parametric robustness: 𝑓 = σ𝑖=1
𝑘 𝛽𝑖 𝑼∗ 𝜇𝑖 𝑿 − 𝑼∗ 𝜇𝑖 𝐹.

• ODE constraints: 𝑔 = 𝒂 𝑡 − 𝒂∗(𝑡) .
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Appendix: Accounting for modal truncation
Stabilization algorithm: returns stabilizing rotation matrix 𝑿.
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Targeted Application: Compressible Flow
• We are interested in the compressible captive-carry problem.

• Majority of fluid MOR approaches in the literature are for incompressible flow.

• Desired numerical properties of ROMs:

• Consistency (w.r.t. the continuous PDEs).
• Stability: if full order model (FOM) is stable, ROM should be stable.
• Convergence: requires consistency and stability.
• Accuracy (w.r.t. FOM).
• Efficiency.
• Robustness (w.r.t. time or parameter changes).

Stability can be a real problem for compressible flow ROMs!


