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Motivation

Computational models of high-dimensional systems arise in a
rich variety of engineering and scientific applications

(a) CFD (b) FEA

(c) Global climate modeling
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Motivation

High-fidelity simulations remain prohibitive

I Computational costs still too high for parametric,
time-critical and many-query applications (i.e., design,
design optimization, control, UQ)

I Postprocessing/visualization difficulties

→ There are significant scientific and engineering benefits
in developing and studying low-dimensional
representations of high-dimensional systems that retain
physical fidelity while substantially reducing the size and
cost of the computational model

“Purpose of computing is insight, not numbers”
— Richard Hamming (1962)
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Projection-based model order reduction

Data-driven model order reduction (MOR)1

→ Underlying mathematical premises:

1. Compression: solution of governing parametric partial
differential equation (PDE) or a coupled system of PDEs lies
in a subspace of significantly lower dimension

2. Off-line training: subspace can be identified/learned off-line
via training simulations and high-fidelity model can be
reformulated with respect to this subspace

3. On-line prediction: identified parametric reduced-order
models (ROMs) capable of providing new solutions at a
fraction of the computational cost

1Not to be confused with model simplification or physics simplification
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Projection-based model order reduction

Targeted application: compressible fluid flow (e.g., captive carry).

I Majority of MOR approaches in the literature for fluids are for
incompressible flow.

I Some works on MOR for compressible flows:
I Energy-based inner products: Rowley et al., 2004

(isentropic); Barone et al., 2009 (linear); Serre et. al, 2012
(linear); Kalashnikova et al., 2014 (nonlinear).

I GNAT method: Carlberg et al., 2013 (nonlinear).

MOR for nonlinear, compressible fluid flows is in its infancy!
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Projection-based model order reduction

Standard 3 step recipe

I Low-rank approximation of snapshot matrix M ∈ RN×K

(Proper Orthogonal Decomposition, a.k.a., POD):

min
U∈RN×n,V∈Rn×K

‖M −UV ‖F . (1)

I Spectral discretization

u(x , t) ≈
n∑

i=1

ai (t) Ui (x). (2)

I Projection yields a small set of evolution equations for the
mode coefficients ai

d

dt
ai = fi (a). (3)
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Projection-based model order reduction

Governing equations

I We consider the 3D compressible Navier-Stokes equations in
primitive specific volume form:

ζ,t + ζ,juj − ζuj ,j = 0,
ui ,t + ui ,juj + ζp,i − 1

Re ζτij ,j = 0,

p,t + ujp,j + γuj ,jp −
( γ
PrRe

)
(κ(pζ),j),j −

(
γ−1
Re

)
ui ,jτij = 0.

(4)

I For the compressible Navier-Stokes equations (4), Galerkin
projection yields a system of n coupled quadratic ODEs

da
dt

= C +La+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

(5)

where C ∈ Rn, L ∈ Rn×n and Q(i) ∈ Rn×n, ∀i = 1, . . . , n.
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Projection-based model order reduction

Summary of technical challenges
I Projection-based MOR necessitates truncation.

I POD is, by definition and design, biased towards the
large, energy producing scales of the flow (i.e., modes with
large POD eigenvalues).

I Truncated/unresolved modes are negligible from a
data compression point of view (i.e., small POD eigenvalues)
but are crucial for the dynamical equations.

I For fluid flow applications, higher-order modes are associated
with energy dissipation and thus, low-dimensional ROMs are
often inaccurate and sometimes unstable.

I For a ROM to be stable and accurate, truncated/unresolved
subspace must be accounted for (e.g., turbulence modeling ,
subspace rotation).
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Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 12 / 33



Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 12 / 33



Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 12 / 33



Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 12 / 33



Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 12 / 33



Accounting for modal truncation

Traditional linear eddy-viscosity approach

I Dissipative dynamics of truncated higher-order modes are
modeled using additional linear term

da
dt

= C+(L+Lν)a+
[

aTQ(1)a aTQ(2)a · · · aTQ(n)a
]T

I Lν is designed to decrease magnitude of positive eigenvalues
and increase magnitude of negative eigenvalues of L + Lν (for
stability).

I Disadvantages of this approach:
1. Additional term destroys consistency between ROM and

Navier-Stokes equations.
2. Calibration necessary to derive optimal Lν and optimal value is

flow dependent.
3. Inherently a linear model → cannot be expected to perform

well for all classes of problems (e.g., nonlinear).

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 12 / 33



Accounting for modal truncation

Proposed new approach
I Instead of modeling truncation via additional linear term,

model the truncation a priori by “rotating” the projection
subspace into a more dissipative regime.

I Standard approach: retain only the most energetic POD
modes, i.e., U1, U2, U3, U4 ...

I Proposed approach: choose some higher order basis to
increase dissipation, i.e., U1, U2, U6, U8, ...

I That is, approximate the solution using a linear superposition
of n + p (with p > 0) most energetic modes:

Ũi =

n+p∑
j=1

XjiUj i = 1, · · · , n, (6)

where X ∈ R(n+p)×n is an orthonormal (XTX = In×n)
“rotation” matrix.
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Accounting for modal truncation

Goals of proposed new approach:

Find X such that

1. New modes Ũ remain good approximations of the flow →
minimize the “rotation” angle, i.e. minimize ||X − I(n+p),n||F .

2. New modes produce stable and accurate ROMs → ensure
appropriate balance between energy production and energy
dissipation.

→ Extension of earlier work for incompressible flow (Balajewicz
et al., 2013) where it was shown that new POD modal basis is
guaranteed to respect the power balance equation for the
resolved turbulent kinetic energy and gives a stable ROM.
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appropriate balance between energy production and energy
dissipation.

→ Extension of earlier work for incompressible flow (Balajewicz
et al., 2013) where it was shown that new POD modal basis is
guaranteed to respect the power balance equation for the
resolved turbulent kinetic energy and gives a stable ROM.
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Accounting for modal truncation

Trace minimization on Stiefel manifold

minimize
X∈V(n+p),n

− tr
(
XTI(n+p)×n

)
subject to tr(XTLX ) = η

(7)

where η ∈ R and

V(n+p),n ∈ {X ∈ R(n+p)×n : XTX = In , p > 0}. (8)

I η is a proxy for the balance between energy production and
energy dissipation (calculated iteratively using modal energy).

I Equation (7) is solved efficiently offline using method of
Lagrange multipliers (Manopt MATLAB toolbox).

I Result is system of the form (5) with

Q
(i)
jk ←

n+p∑
s,q,r=1

XsiQ
(s)
qr XqjXrk , L← XTLX , C ← XTC ∗.
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Accounting for modal truncation

Stabilization algorithm: returns stabilizing rotation matrix X .

Inputs: Initial guess η(0) = tr(L(1 : n, 1 : n)) (X = I(n+p)×n), ROM size n and p ≥ 1,
ROM matrices associated with the first n + p most energetic POD modes,
convergence tolerance TOL, maximum number of iterations kmax .

for k = 0, · · · , kmax
Solve constrained optimization problem on Stiefel manifold:

minimize
X (k)∈V(n+p),n

− tr
(
X (k)TI(n+p)×n

)

subject to tr(X (k)TLX (k)) = η
(k)
.

Construct new Galerkin matrices using (9).
Integrate numerically new Galerkin system.

Calculate “modal energy” E(t)(k) =
∑n

i (a(t)
(k)
i )2.

Perform linear fit of temporal data E(t)(k) ≈ c
(k)
1 t + c

(k)
0 , where c

(k)
1 =energy growth.

Calculate ε such that c
(k)
1 (ε) = 0 (no energy growth) using root-finding algorithm.

Perform update η(k+1) = η(k) + ε.

if ||c(k)
1 || < TOL

X := X (k).
terminate the algorithm.

end

end
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Accounting for modal truncation

Remarks

I Proposed approach may be interpreted as an a priori,
consistent formulation of the eddy-viscosity turbulence
modeling approach.

I Advantages of proposed approach:
1. Retains consistency between ROM and Navier-Stokes

equations → no additional turbulence terms required.
2. Inherently a nonlinear model → should be expected to

outperform linear models.
3. Works with any basis and Petrov-Galerkin projection.

I Disadvantages of proposed approach:
1. Off-line calibration of a free parameter η is required.
2. Stability cannot be proven like for incompressible case.
3. Existence/uniqueness of solution to (7) is not guaranteed;

general rules-of-thumbs are available in (Balajewicz et al.,
2015).
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1. Motivation

2. Projection-based model order reduction

3. Accounting for modal truncation

3.1 Traditional linear eddy-viscosity approach
3.2 New proposed approach via subspace rotation

4. Applications

4.1 High-angle of attack airfoil
4.2 Low Reynolds number channel driven cavity
4.3 Higher Reynolds number channel driven cavity

5. Conclusions and future work
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Applications

High angle of attack laminar airfoil
I 2D flow around an inclined NACA0012 airfoil at Mach 0.7,

Re = 500, Pr = 0.72, AOA = 20◦, 1.25M DOFs ⇒ n = 4
ROM (86% snapshot energy).
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Figure 1: Contours of velocity magnitude at time of final snapshot.
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Applications

High angle of attack laminar airfoil
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Figure 2: Nonlinear model reduction of the laminar airfoil. Evolution of
modal energy (a), and phase plot of the first and second temporal basis,
a1(t) and a2(t) (b); DNS (thick gray line), standard n = 4 ROM (dashed
blue line), fine-tuned n, p = 4 ROM (solid black line). Stabilizing
rotation matrix, X (c). Rotation is small: ||X − I(n+p)×n||F/n = 0.083,
X ≈ I(n+p)×n.

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 20 / 33



Applications

High angle of attack laminar airfoil
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Figure 3: Snapshot of high angle of attack airfoil at final snapshot;
contours of velocity magnitude. DNS (left), standard n = 4 ROM
(middle), and fine-tuned n, p = 4 ROM (right)
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Applications

Channel driven cavity: low Reynolds number case
I Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72,

500K DOFs ⇒ n = 4 ROM (91% snapshot energy).
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Figure 4: Domain and mesh for viscous channel driven cavity problem
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Applications

Channel driven cavity: low Reynolds number case
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Figure 5: Nonlinear model reduction of channel drive cavity at
Re ≈ 1500. Evolution of modal energy (a) and phase plot of the first and
second temporal basis, a1(t) and a2(t) (b); DNS (thick gray line),
standard n = 4 ROM (dashed blue line), fine-tuned n, p = 4 ROM (solid
black line). Stabilizing rotation matrix, X (c). Rotation is small:
||X − I(n+p)×n||F/n = 0.118, X ≈ I(n+p)×n.
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Applications

Channel driven cavity: low Reynolds number case
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Figure 6: PSD of p(x , t) where x = (2,−1) of channel drive cavity
Re ≈ 1500. DNS (thick gray line), fine-tuned n, p = 4 ROM (black line)
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Applications

Channel driven cavity: low Reynolds number case
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Figure 7: Snapshot of channel drive cavity Re ≈ 1500; contours of
u-velocity magnitude at the final snapshot. DNS (left), standard n = 4
ROM (middle) and fine-tuned n, p = 4 ROM (right)
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Applications

Channel driven cavity: moderate Reynolds number case
I Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72
⇒ n = 20 ROM (71% snapshot energy).
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Figure 8: Domain and mesh for viscous channel driven cavity problem
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Applications

Channel driven cavity: moderate Reynolds number case

0 200 400 600
10−2

10−1

100

t

E

(a)

10 20

10

20

30

40

j

i

0

0.2

0.4

0.6

0.8

(b)

Figure 9: Nonlinear model reduction of channel drive cavity at
Re ≈ 5500. Evolution of modal energy (a); DNS (thick gray line),
standard n = 20 ROM (dashed blue line), fine-tuned n, p = 20 ROM
(solid black line). Stabilizing rotation matrix, X (b). Rotation is small:
||X − I(n+p)×n||F/n = 0.038, X ≈ I(n+p)×n.
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 10: CPSD of p(x1, t) and p(x2, t) where x1 = (2,−0.5) and
x2 = (0,−0.5) of channel driven cavity at Re ≈ 5500. DNS (thick gray
line), fine-tuned n, p = 20 ROM (black line)

I Power and phase lag at the fundamental frequency, and first two
super harmonics are predicted accurately using the fine-tuned ROM.

I Phase lag at these three frequencies as predicted by the CFD and
the fine-tuned ROM is identified by red squares and blue triangles,
respectively.
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 11: Snapshot of channel drive cavity Re ≈ 5500; contours of
u-velocity magnitude at the final snapshot. DNS (left), standard n = 20
ROM (middle), and fine-tuned n, p = 20 ROM (right)
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 12: Snapshot of channel driven cavity Re ≈ 5500; contours of
pressure at the final snapshot. DNS (left), standard n = 20 ROM
(middle), and fine-tuned n, p = 20 ROM (right)
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Conclusions

I We have developed a non-intrusive approach for stabilizing
and fine-tuning projection-based ROMs for compressible flows.

I The standard POD modes are rotated into a more dissipative
regime to account for the dynamics in higher order modes
truncated by the standard POD method.

I The new method is consistent and does not require addition
of empirical turbulence model terms.

I Mathematically, the approach is formulated as a
quadratic matrix program on the Stiefel manifold.

I This constrained minimization problem is solved offline and
small enough to be solved in MATLAB.

I The method is demonstrated to deliver more stable and
accurate ROMs on several applications.
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Future work

I Extension of the proposed approach to problems with
generic non-linearities, where the ROM involves some form of
hyper-reduction (e.g., DEIM, gappy POD).

I Extension of the method to predictive applications, e.g.,
problems with varying Reynolds number and geometry.

I Selecting different goal-oriented objectives and constraints in
our optimization problem:

minimize
X∈V(n+p),n

f (X )

subject to g(X ,L)
(10)

e.g.,
I Maximize parametric robustness:

f =
∑k

i=1 βi ||U∗(µi )X −U∗(µi )||F .

I ODE constraints: g = ||a(t)− a∗(t)|| < ε.
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problems with varying Reynolds number and geometry.

I Selecting different goal-oriented objectives and constraints in
our optimization problem:

minimize
X∈V(n+p),n

f (X )

subject to g(X ,L)
(10)

e.g.,
I Maximize parametric robustness:

f =
∑k

i=1 βi ||U∗(µi )X −U∗(µi )||F .

I ODE constraints: g = ||a(t)− a∗(t)|| < ε.
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Thank you!

References

Aubry, N., Holmes, P., Lumley, J. L., & Stone E. 1988 The dynamics of coherent structures in the wall
region of a turbulent boundary layer. J. Fluid Mech. 192 (115) 115–173.

Balajewicz, M. & Dowell, E. 2012 Stabilization of projection-based reduced order models of the Navier-Stokes
equation. Nonlinear Dynamics 70 (2), 1619–1632.

Balajewicz, M. & Dowell, E. & Noack, B. 2013 Low-dimensional modelling of high-Reynolds-number shear
flows incorporating constraints from the Navier-Stokes equation. Journal of Fluid Mechanics 729, 285–308.

Balajewicz, M., Tezaur, I. & Dowell, E. 2015 Minimal subspace rotation on the Stiefel manifold for
stabilization and enhancement of projection-based reduced order models for the compressible Navier-Stokes
equations. ArXiV: http://arxiv.org/abs/1504.06661.

Barone, M., Kalashnikova, I., Segalman, D. & Thornquist, H. 2009 Stable Galerkin reduced order models
for linearized compressible flow. J. Computat. Phys. 228 (6), 1932–1946.

Carlberg, K., Farhat, C., Cortial, J. & Amsallem, D. 2013 The GNAT method for nonlinear model
reduction: effective implementation and application to computational uid dynamics and turbulent flows. J.
Computat. Phys. 242 623–647.

Kalashnikova, I., Arunajatesan, S., Barone, M., van Bloemen Waanders, B. & Fike, J. 2014 Reduced
order modeling for prediction and control of large-scale systems. Sandia Tech. Report.

Osth, J., Noack, B. R., Krajnovic, C., Barros, D., & Boree, J. 2014 On the need for a nonlinear subscale
turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body. J. Fluid
Mech. 747 518–544.

Rowley, C., Colonius, T. & Murray, R. 2004 Model reduction for compressible ows using pod and galerkin
projection. Physica D: Nonlinear Phenomena 189 (1) 115–129.

Serre, G., Lafon, P., Gloerfelt, X. & Bailly, C. 2012 Reliable reduced-order models for timedependent
linearized euler equations. J. Computat. Phys. 231 (15) 5176–5194.

Balajewicz, Tezaur SAND2015-6376C ICIAM 2015 33 / 33

http://arxiv.org/abs/1504.06661

