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Outline 

• Overview:  
• First Order (FO) Stokes model. 

• Albany/FELIX First-Order (FO) Stokes 
diagnostic solver. 

• CISM-Albany and MPAS-Albany codes for 
prognostic simulations of the ice sheet 
evolution.  

 

• Uncertainty Quantification (UQ):  
• Deterministic inversion. 
• Bayesian calibration.  
• Forward propagation of uncertainty. 

 

• Performance portability. 
 

• Summary and ongoing work.  
 

• Questions? 

Albany/FELIX  = new land-ice solver 
with next-generation capabilities. 
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The PISCEES Project and the 
Albany/FELIX Solver 

“PISCEES” = Predicting Ice Sheet Climate & Evolution at Extreme Scales 
5 year project funded by SciDAC, which began in June 2012 

Sandia’s Role in the PISCEES Project: to develop and support a robust and 
scalable land ice solver based on the “First-Order” (FO) Stokes approximation 

Albany/FELIX Solver (steady): 
Ice Sheet PDEs (First Order Stokes)  

(stress-velocity solve) 

CISM/MPAS Land Ice Codes (dynamic): 
Ice Sheet Evolution PDEs 

(thickness, temperature evolution) 

• Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*. 
 

•  Requirements for Albany/FELIX:  
 

• Scalable, fast, robust. 
 

• Dynamical core (dycore) when coupled to codes that solve thickness and temperature 
evolution equations (CISM/MPAS LI codes). 

 

• Advanced analysis capabilities (adjoint-based deterministic inversion, Bayesian 
calibration, UQ, sensitivity analysis).  

 

• Performance-portability.  
*FELIX=“Finite Elements for Land Ice eXperiments” 

Dycore will provide actionable predictions of 21st 
century sea-level rise (including uncertainty). 

This 
talk 
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The First-Order Stokes Model 
for Ice Sheets & Glaciers 

 

•  Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to 
viscous incompressible quasi-static Stokes flow with power-law viscosity. 

 
−𝛻 ∙ (2𝜇𝝐 1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇𝝐 𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

    ,    in Ω 

Albany/FELIX 

• Relevant boundary conditions:  
 
 

• Stress-free BC:     2𝜇𝝐 𝑖 ∙ 𝒏 = 0, on Γ𝑠 
 

• Floating ice BC:  

             2𝜇𝝐 𝑖 ∙ 𝒏 =  
𝜌𝑔𝑧𝒏, if 𝑧 > 0 

0,       if 𝑧 ≤ 0
, on Γ𝑙 

• Basal sliding BC:  2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 

 

Basal boundary  Γ𝛽 
) 

Lateral boundary Γ𝑙 

Ice sheet 

 

•  Viscosity 𝜇 is nonlinear function given by “Glen’s law”:  

𝜇 =
1

2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2

𝑖𝑗

1
2𝑛

−
1
2

 

𝛽 = sliding coefficient ≥ 0 

𝝐 1
𝑇 = 2𝜖 11+ 𝜖 22, 𝜖 12, 𝜖 13  

𝝐 2
𝑇 = 2𝜖 12, 𝜖 11+ 2𝜖 22, 𝜖 23  

𝜖 ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

 

Surface boundary Γ𝑠 

*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

(𝑛 = 3) 



6 

Algorithmic Choices for Albany/FELIX: 
Discretization & Meshes 

• Discretization: unstructured grid finite element method (FEM) 
 

• Can handle readily complex geometries. 
• Natural treatment of stress boundary                                

conditions. 
• Enables regional refinement/unstructured                        

meshes. 
• Wealth of software and algorithms. 

 
• Meshes: can use any mesh but interested specifically in  
 

• Structured hexahedral meshes (compatible with CISM). 
• Tetrahedral meshes (compatible with MPAS LI)  
• Unstructured Delaunay triangle meshes with regional 

refinement based on gradient of surface velocity. 
• All meshes are extruded (structured) in vertical direction as        

tetrahedra or hexahedra. 
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Algorithmic Choices for Albany/FELIX: 
Nonlinear & Linear Solver 

• Nonlinear solver: full Newton with analytic (automatic differentiation) 
derivatives and homotopy continuation 

 

• Most robust and efficient for steady-state solves. 
• Jacobian available for preconditioners and matrix-vector products. 
• Analytic sensitivity analysis.  
• Analytic gradients for inversion.  
 

• Linear solver: preconditioned iterative method 
 

• Solvers: Conjugate Gradient (CG) or GMRES 
• Preconditioners: ILU or algebraic multi-grid (AMG) 

 

Nonlinear Solve 
for 𝒇(𝒙)  =  0 

(Newton) 

Preconditioned  
Iterative Linear Solve  

(CG or GMRES): 
Solve 𝑱𝒙 = 𝒓 

Automatic 
Differentiation 

Jacobian: 

𝑱 =  
𝜕𝒇

𝜕𝒙
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Land Ice Physics Set 
(Albany/FELIX code)  

Other Albany 
Physics Sets 

The Albany/FELIX First Order Stokes 
solver is implemented in a Sandia 
parallel C++ finite element code 

called… 

The Albany/FELIX Solver:  
Implementation in Albany using Trilinos  

 

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore! 

Started 

by A. 

Salinger 

• Discretizations/meshes 
• Solver libraries  
• Preconditioners 
• Automatic differentiation 
• Many others! 

• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

“Agile Components” 
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γ=10-1.0 

γ=10-2.5 γ=10-6.0 γ=10-10 

γ=10-10 

γ=10-10 

The Albany/FELIX Solver is Verified, 
Scalable, Fast and Robust! 

Albany/FELIX 

LifeV 

Verified via MMS and 
code-to-code 
comparisons. 

Robust via homotopy 
continuation w.r.t. 𝛾. 

𝜇 =
1

2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2+

𝑖𝑗

𝛾

1
2𝑛

−
1
2

 

Scalable via algebraic multi-
grid (AMG) preconditioning 

Algebraic 
Structured MG 

Unstructured 
AMG  

Algebraic 
Structured MG 
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Ice Sheet Evolution Models 

• Model for evolution of the boundaries (thickness 
evolution equation): 

 

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ 𝒖 𝐻 + 𝑏  

 

      where 𝒖  = vertically averaged velocity, 𝑏  = surface mass  
       balance (conservation of mass). 
 
• Temperature equation (advection-diffusion): 
 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2𝝐 𝝈 

 

     (energy balance).  
 
• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 

𝐴 = 𝐴(𝑇). 
 

• Ice sheet grows/retreats depending on thickness 𝐻. 
 
 

time 𝑡0 

Ice-covered (“active”) 
cells shaded in white 

(𝐻 > 𝐻𝑚𝑖𝑛) 
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Ice Sheet Evolution Models 

• Model for evolution of the boundaries (thickness 
evolution equation): 

 

𝜕𝐻
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• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 

𝐴 = 𝐴(𝑇). 
 

• Ice sheet grows/retreats depending on thickness 𝐻. 
 
 

time 𝑡0 time 𝑡1 time 𝑡2 

Ice-covered (“active”) 
cells shaded in white 

(𝐻 > 𝐻𝑚𝑖𝑛) 
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Interfaces to CISM and MPAS LI for 
Transient Simulations  

7/20 

Albany/FELIX (C++) 
velocity solve 

CISM (Fortran) 
Thickness evolution,  
temperature solve, 
coupling to CESM 

cism_driver 

C++/Fortran 
Interface, Mesh 

Conversion 

MPAS Land-Ice 
(Fortran) 

Thickness evolution,   
temperature solve,  

coupling to DOE-ESM 

C++/Fortran 
Interface, Mesh 

Conversion 

LandIce_model 

CISM-
Albany 

MPAS LI-
Albany 

• Structured 
hexahedral meshes 
(rectangles extruded 
to hexes). 

• Tetrahedral meshes (dual of 
hexaganonal mesh,  
extruded to tets). 

Albany/FELIX has been coupled to two land ice dycores: Community Ice Sheet 
Model (CISM) and Model for Prediction Across Scales for Land Ice (MPAS LI)  

output file output file 
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Outline 

Albany/FELIX  = new land-ice solver 
with next-generation capabilities. 

• Overview:  
• First Order (FO) Stokes model. 
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diagnostic solver. 
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Uncertainty Quantification (UQ)  
Problem Definition 

Quantity of Interest (QoI) in Ice Sheet Modeling:  
total ice mass loss/gain during 21st century 

→ sea level rise prediction. 

There are several sources of uncertainty, most notably: 

  

• Climate forcings (e.g., surface mass balance). 
• Basal friction (𝛽) 
• Bedrock topography 
• Geothermal heat flux 
• Model parameters (e.g., Glen’s flow law exponent) 

Basal sliding BC:   
2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 

Basal boundary  Γ𝛽 
) 

Ice sheet 

𝜇 =
1

2
𝐴−

1
𝑛

1

2
 𝝐 𝑖𝑗

2+

𝑖𝑗

𝛾

1
2𝑛

−
1
2

 

𝑛 = Glen’s law exponent 
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• Bedrock topography 
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As a first step, we focus on effect of 
uncertainty in basal friction (𝜷) only.  

There are several sources of uncertainty, most notably: 
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2+

𝑖𝑗

𝛾

1
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−
1
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𝑛 = Glen’s law exponent 
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Uncertainty Quantification 
Workflow 

Goal: Uncertainty Quantification in 21st century sea level (QoI) 

• Deterministic inversion: perform adjoint-based deterministic 
inversion to estimate initial ice sheet state (i.e., characterize 
the present state of the ice sheet to be used for performing 
prediction runs). 
 

• Bayesian calibration: construct the posterior distribution 
using Markov Chain Monte Carlo (MCMC) run on an emulator 
of the forward model. 

 
• Forward propagation: sample the obtained distribution and 

perform ensemble of forward propagation runs to compute 
the uncertainty in the QoI. 

What are the 
parameters that render 

a given set of 
observations?  

What is the impact of 
uncertain parameters in 
the model on quantities 

of interest (QoI)?  
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Deterministic Inversion: Estimation  
of Ice Sheet Initial State  

Objective:  find ice sheet initial state that 
• Matches observations (e.g., surface velocity, temperature, etc.)  
• Matches present-day geometry (elevation, thickness). 
• Is in “equilibrium” with climate forcings (SMB). 
 
Approach:  invert for unknown/uncertain ice sheet model 
parameters.  
• Significantly reduces non-physical transients without model 

spin-up. 
 
Available data/measurements:  
• Ice extent and surface topography. 
• Surface velocity. 
• Surface mass balance (SMB). 
• Ice thickness 𝐻 (sparse measurements). 
 
Field to be estimated: 
• Basal friction 𝛽 (spatially variable proxy for all basal processes). 
• Ice thickness 𝐻 (allowed to be weighted by observational 

uncertainties). 

Ice sheet 

𝛽 

𝐻 

Assumptions:  
• Ice flow described by FO 

Stokes equations. 
• Ice is close to 

mechanical equilibrium.  
• Temperature field is 

given.   

Basal sliding BC:   
2𝜇𝝐 𝑖 ∙ 𝒏 + 𝛽𝑢𝑖 = 0, on Γ𝛽 



19 

Deterministic Inversion:  
Greenland 

First Order Stokes PDE Constrained Optimization Problem: 
 

𝐽 𝛽, 𝐻 =
1

2
𝛼𝑣 𝒖− 𝒖𝑜𝑏𝑠 2𝑑𝑠

Γ𝑡𝑜𝑝

+
1

2
𝛼 𝑑𝑖𝑣 𝑼𝐻 − 𝑆𝑀𝐵 2𝑑𝑠 +

Γ

1

2
𝛼𝐻 𝐻 − 𝐻𝑜𝑏𝑠 2𝑑𝑠 + ℛ(𝛽) + ℛ(𝐻)

Γ𝑡𝑜𝑝

 

• Minimize difference between:  
• Computed and measured surface velocity (𝒖𝒐𝒃𝒔) → common  
• Computed divergence flux and measured surface mass 

balance (SMB) → novel 
• Computed and reference thickness (Hobs) → novel 
 

• Control variables:  
• Basal friction (𝜷). 
• Thickness (H).  Estimated divergence (left) vs. 

reference SMB (right) 

Estimated 𝛽 𝐻 − 𝐻𝑜𝑏𝑠 

Estimated (left) vs. reference surface velocity (right) 

Software for adjoint-based inversion: 
   

• Albany/FELIX (assembly) 
• Trilinos (linear/nonlinear solvers) 
• ROL (gradient-based optimization) 

• Limited memory BFGS. 
• Backtrack line-search. 
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Deterministic Inversion:  
Antarctica (basal friction only) 

FO Stokes PDE Constrained Optimization Problem: 
 

𝐽 𝛽 =
1

2
 𝛼 𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠
Γ𝑡𝑜𝑝

+ ℛ(𝛽) 

Antarctic ice sheet inversion performed on 700K parameters 

𝛽 (kPa y/m) obtained 
through inversion 

𝒖  (m/yr) computed 
with estimated 𝛽  

𝒖  (m/yr) for observed 
surface velocity 

Geometry: Cornford, Martin et 
al. (in prep.) 
Bedmap2: Fretwell et al., 2013 
Temperature: Pattyn, 2010. 
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 
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Bayesian Calibration: Demonstration 
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Bayesian calibration. 



24 

Bayesian Calibration: Demonstration 
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Approach: Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem.  
  
• For initial demonstration of workflow, we use the Karhunen-Loeve Expansion (KLE): 
 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Approach: Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem.  
  
• For initial demonstration of workflow, we use the Karhunen-Loeve Expansion (KLE): 
 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

2. Perform eigenvalue decomposition of 𝐶. 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Approach: Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem.  
  
• For initial demonstration of workflow, we use the Karhunen-Loeve Expansion (KLE): 
 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

2. Perform eigenvalue decomposition of 𝐶. 
 

3. Expand* 𝛽 − 𝛽  in basis of eigenvectors {𝝓𝑘} of 𝐶, with random variables {𝜉𝑘}: 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

𝛽 𝜔 = 𝛽 + 𝜆𝑘𝝓𝑘𝜉𝑘(𝜔)

𝐾

𝑘=1

 

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 

𝛽  =  initial condition for 𝛽 
(result of deterministic 
inversion or spin-up) 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Approach: Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem.  
  
• For initial demonstration of workflow, we use the Karhunen-Loeve Expansion (KLE): 
 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
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2. Perform eigenvalue decomposition of 𝐶. 
 

3. Expand* 𝛽 − 𝛽  in basis of eigenvectors {𝝓𝑘} of 𝐶, with random variables {𝜉𝑘}: 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

𝛽 𝜔 = 𝛽 + 𝜆𝑘𝝓𝑘𝜉𝑘(𝜔)

𝐾

𝑘=1

 

Offline 

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 

𝛽  =  initial condition for 𝛽 
(result of deterministic 
inversion or spin-up) 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 
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Bayesian Calibration: Demonstration 
of Workflow using KLE 

Approach: Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem.  
  
• For initial demonstration of workflow, we use the Karhunen-Loeve Expansion (KLE): 
 

1. Assume analytic covariance kernel 𝐶 𝑟1, 𝑟2 = 𝑒𝑥𝑝 −
𝑟
1
−𝑟

2
2

𝐿2
.  

 

2. Perform eigenvalue decomposition of 𝐶. 
 

3. Expand* 𝛽 − 𝛽  in basis of eigenvectors {𝝓𝑘} of 𝐶, with random variables {𝜉𝑘}: 

Difficulty in UQ: “Curse of Dimensionality” 
The 𝛽-field inversion problem has 𝑂(100𝐾) dimensions!  

Inference/calibration is for coefficients of KLE       
  ⇒ significant dimension reduction.  

𝛽 𝜔 = 𝛽 + 𝜆𝑘𝝓𝑘𝜉𝑘(𝜔)

𝐾

𝑘=1

 

Offline 

Online 

Albany/FELIX has been hooked up to DAKOTA (in “black-box” mode) for UQ/ 
Bayesian calibration. 

𝛽  =  initial condition for 𝛽 
(result of deterministic 
inversion or spin-up) 

*In practice, expansion is 
done on log(𝛽) to avoid 
negative values of 𝛽. 
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Bayesian Calibration: Illustration  
on 4km GIS Problem  

• Mean 𝛽  field obtained through spin-up over 100 years (cheaper than 
inversion, gives reasonable agreement with present-day velocity field).  

 

• Correlation length 𝐿 selected s.t. slow decay of KLE eigenvalues to enable 
refinement (left): 10 KLE modes capture 27.3% of covariance energy. 

• Mismatch function (calculated in Albany/FELIX): 
 

𝐽 𝛽 =  
1

𝜎𝑢
2
𝒖 − 𝒖𝑜𝑏𝑠 2𝑑𝑠

Γ𝑡𝑜𝑝

 

  
• PCE emulator was formed for the mismatch 𝐽 𝛽  using uniform [−1,1] prior distributions and 

286* high-fidelity runs on Hopper (DAKOTA). 
 

• For calibration, MCMC was performed on the PCE with 2K samples (QUESO). 

𝛽  

Modes 1-5: 

Modes 6-10: 

𝒖  
computed 

with 𝛽  

Below: decay of KLE eigenvalues 

Disclaimer: results presented 
demonstrate that we have UQ 
workflow in place; quantifying 
uncertainty in 𝛽 and SLR will 

require re-running with better data.     

*286 points = 3rd degree polynomial in 10D 
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Bayesian Calibration: Illustration  
 on 4km GIS Problem (cont’d) 

• Posterior distributions for 10 KLE coefficients: 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

• Distributions are peaked rather than uniform ⇒ data informed the posteriors.  
 
• MAP point: 𝝃 = (0.372, −0.679, −0.420, −0.189, −7.38e−2, −0.255, 0.449, −0.757, 

0.847,−0.447) 
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Bayesian Calibration: Illustration  
 on 4km GIS Problem (cont’d) 

𝛽 field at 
MAP point 

|𝒖| 
computed 
with 𝛽  at 
MAP point 

|𝒖𝑜𝑏𝑠| 

• Ice is too fast at MAP point.  Possible explanations: 
 

• Surrogate error (based on cross-validation). 
 

• Mean field error. 
 

• Bad modes and/or not enough modes. 

Mismatch 𝐽 𝛽  at 
MAP point: 1.87 × 

mismatch at 𝛽  

𝛽  

𝛽 from 
deterministic 

inversion 
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Bayesian Calibration: Building  
Gaussian Distribution using Hessian 

• Hessian of the merit functional (velocity mismatch) can provide a way to compute the 
covariance of a Gaussian posterior:  

 

𝑪𝑝𝑜𝑠𝑡 = 𝑪𝑝𝑟𝑖𝑜𝑟𝑯𝑚𝑖𝑠𝑓𝑖𝑡 + 𝑰 −1𝑪𝑝𝑟𝑖𝑜𝑟 

• We want to limit only the most important directions (eigenvectors) of 𝑪𝑝𝑜𝑠𝑡. 

Issue: there are too many (~1000) significant eigenvalues  
 

Right: log-linear plot of the spectra of a prior-preconditioned data misfit Hessian at the MAP point 
for two successively finer parameter/state meshes of the inverse ice sheet problem.  

evec 1 evec 2 evec 100 

evec 200 evec 500 evec 4000 

Figures 
courtesy of 
O. Ghattas’ 
group (Isaac 
et al., 2004) 

# significant 
eigenvalues does 
not depend on # 

DOFs in grid 
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Forward Propagation 

Albany/FELIX 

PCE Emulator 

𝛽 𝜔 = 𝛽 + 𝜆𝑘𝝓𝑘𝜉𝑘(𝜔)

𝐾

𝑘=1

 

DAKOTA, Albany/FELIX 
QoI(𝛽) 

(total ice mass loss) 

Model realizations 
Forward propagation  

(e.g., 2000-2050) 

• Parameter (𝛽) distribution can either be assumed to be Gaussian (based on 
Hessian information) or can be the result of Bayesian calibration. 

 
• Emulator is built using DAKOTA coupled with CISM-Albany for forward runs. 

  

• Use compressed sensing to adaptively select significant modes that affect 
QoI.  The hope is that only a few modes affect the QoI. 

 

• Could use cheaper physical models to reduce computational time of 
forward model. 

  
• MCMC (QUESO) used to perform uncertainty propagation.  
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Forward Propagation:  
Illustration on 4km GIS Problem 

Procedure: 
 

• We first ran 66* CISM-Albany high-fidelity simulations on Hopper with 𝛽 
sampled from a uniform [−1,1] distribution and no forcing for 50 years.    

Left: SLR distribution from 
ensemble of 66 high-
fidelity simulations 
(differenced against 

control run using the 𝛽  
distribution).  All 66 runs 
ran to completion out-of-

the-box on Hopper!  

• We then used the results of these runs to create a PCE emulator for the SLR. 
 

• Using emulator, propagated posterior distributions computed in Bayesian 
calibration (using KLE) through the model to get posteriors on SLR (MCMC on 
PCE emulator with 2K samples). 

Above: 𝛽, velocity and thickness 
perturbations.  Ice thickness 

changed > 500m in some places. 

*66 points = 2D polynomial in 10D. 

Disclaimer: results presented 
demonstrate that we have UQ 
workflow in place; quantifying 
uncertainty in 𝛽 and SLR will 

require re-running with better data.     
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Forward Propagation:  
Illustration on 4km GIS Problem (cont’d) 

PDF of SLR 

Prior informed (green): uniform distribution 
translates to distribution skewed w.r.t. model 
outputs. 
  

• Larger fraction of the ice sheet currently has a 𝛽 value 
that forces no (or slow) basal sliding. 

• Areas with little sliding: not affected by increase in 𝛽, 
but greatly affected by decrease in 𝛽 (velocity in these 
regions will change significantly from initial condition).  

• Since we sample from a uniform distribution when 
perturbing 𝛽, we expect to see a disproportionately 
large signal when reducing 𝛽 vs. increasing it.  

Expected (black): normal distribution centered 
around 0 SLR since no forcing. 

Posterior informed (blue): centered on positive tail of prior – not consistent with observations. 
 

• Could be due to “ad hoc” 𝛽 used as mean field (spin-up over 100 years). 
• May be that emulator was been built with a (non-physical) positive mass balance while calibration was done on 

present-day observations (consistent with ice losing mass). 
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Forward Propagation:  
Illustration on 4km GIS Problem (cont’d) 

PDF of SLR 

Prior informed (green): uniform distribution 
translates to distribution skewed w.r.t. model 
outputs. 
  

• Larger fraction of the ice sheet currently has a 𝛽 value 
that forces no (or slow) basal sliding. 

• Areas with little sliding: not affected by increase in 𝛽, 
but greatly affected by decrease in 𝛽 (velocity in these 
regions will change significantly from initial condition).  

• Since we sample from a uniform distribution when 
perturbing 𝛽, we expect to see a disproportionately 
large signal when reducing 𝛽 vs. increasing it.  

Expected (black): normal distribution centered 
around 0 SLR since no forcing. 

Posterior informed (blue): centered on positive tail of prior – not consistent with observations. 
 

• Could be due to “ad hoc” 𝛽 used as mean field (spin-up over 100 years). 
• May be that emulator was been built with a (non-physical) positive mass balance while calibration was done on 

present-day observations (consistent with ice losing mass). 

Results illustrate that we have in place all steps of our UQ workflow; 
they are NOT yet actual uncertainty bounds for sea-level rise.   

Next step: repeat UQ procedure with better modes, surrogates and 𝛽 . 
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Outline 

Albany/FELIX  = new land-ice solver 
with next-generation capabilities. 

• Overview:  
• First Order (FO) Stokes model. 

• Albany/FELIX First-Order (FO) Stokes 
diagnostic solver. 

• CISM-Albany and MPAS-Albany codes for 
prognostic simulations of the ice sheet 
evolution.  

 

• Uncertainty Quantification (UQ):  
• Deterministic inversion. 
• Bayesian calibration.  
• Forward propagation of uncertainty. 

 

• Performance portability. 
 

• Summary and ongoing work.  
 

• Questions? 
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We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• Kokkos: Trilinos library that provides performance portability across diverse 
devises with different memory models. 

 

• A programming model as much as a software library. 
 

• Provides automatic access to OpenMP, CUDA, Pthreads, etc. 
 

• Templated meta-programming: parallel_for, parallel_reduce (templated on 
an execution space). 

 

• Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality). 
 

Performance-Portability via  
Kokkos 

With Kokkos, you write an algorithm once, and just change a template 
parameter to get the optimal data layout for your hardware. 
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We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• Kokkos: Trilinos library that provides performance portability across diverse 
devises with different memory models. 

 

• A programming model as much as a software library. 
 

• Provides automatic access to OpenMP, CUDA, Pthreads, etc. 
 

• Templated meta-programming: parallel_for, parallel_reduce (templated on 
an execution space). 

 

• Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality). 
 

Performance-Portability via  
Kokkos 

With Kokkos, you write an algorithm once, and just change a template 
parameter to get the optimal data layout for your hardware. 

• Finite element assembly in Albany has recently been rewritten using Kokkos 
functors. 
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Kokkos-ification of Finite Element 
Assembly 

ExecutionSpace parameter 
tailors code for device (e.g., 

OpenMP, CUDA, etc.) 
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Performance-Portability via  
Kokkos: 20km GIS Problem 

 

Shannon: 32 nodes 
• Two 8-core Sandy Bridge Xeon E5-

2670 @ 2.6GHz (HT deactivated) 
per node. 

• 128GB DDR3 memory per node 
• 2x NVIDIA K20x per node. 

“# of elements/workset” 
= threading index (allows 
for on-node parallelism) 

FEA Residual: less 
work done by 
GPU, so kernel 

launch overhead 
becomes 

significant. 
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Performance-Portability via  
Kokkos: Weak Scalability for GIS on Titan 

Titan: 18,688 AMD Opteron nodes 
 

• 16 cores per node 
• 1 K20X Kepler GPUs per node 
• 32GB + 6GB memory per node 

MPI+CUDA results on Titan 
coming soon!  (waiting for gcc 

4.7.2 compiler support for Cray) 

Increasing # 
OpenMP 

threads can 
increase thread 
synchronization 

overheads. 
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Outline 

Albany/FELIX  = new land-ice solver 
with next-generation capabilities. 

• Overview:  
• First Order (FO) Stokes model. 

• Albany/FELIX First-Order (FO) Stokes 
diagnostic solver. 

• CISM-Albany and MPAS-Albany codes for 
prognostic simulations of the ice sheet 
evolution.  

 

• Uncertainty Quantification (UQ):  
• Deterministic inversion. 
• Bayesian calibration.  
• Forward propagation of uncertainty. 

 

• Performance portability. 
 

• Summary and ongoing work.  
 

• Questions? 
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Summary and Ongoing Work 

Summary: this talk described… 
 

• The development of a finite element land ice solver known as Albany/FELIX written 
using the Trilinos libraries.  

 

•  Coupling of Albany/FELIX to the CISM and MPAS LI codes for transient simulations of ice 
sheet evolution.  

 

• Advanced, next generation capabilities (UQ, performance portability) of Albany//FELIX.  

Ongoing/future work: 
 

• Science runs using CISM-Albany and MPAS-Albany.  
 

• Deploy UQ workflow with better basis than KLE (e.g., Hessian eigenvectors). 
 

• Continued porting of code to new architecture supercomputers (GPUs on Titan, 
Summit, Cori Phase I). 

 

• Delivering code to climate community and coupling to earth system models. 
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Appendix: Preliminary Results for 
GIS Bayesian Inference 

48 

• 5 KLE modes capture 95% of covariance energy → parallel C++/Trilinos code (Anasazi). 

 

• Mismatch = sum of squares of surface velocity discrepancy → Albany. 
 
• Polynomial chaos expansion (PCE) was formed for the mismatch over 

ξk using uniform prior distributions and isotropic sparse grid level = 3 
→ DAKOTA.  

 
• Markov Chain Monte Carlo (MCMC) was performed on the PCE with 

100K samples → QUESO.  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Collaborators: M. Perego, J. Jakeman, M. Eldred, L. Swiler (SNL) 16/18 
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• Posterior distributions for the 5 KLE coefficients: 

Appendix: Preliminary Results for GIS 
Bayesian Inference (cont’d) 

MAP solution:  
𝑥 =  (−0.16,−0.08, 0, 0, 0) 

• Inference of KLE random field:  

Left: true 𝛽 field 
 

Right: reconstructed 
𝛽  field 

Good agreement 
between true and 
reconstructed 𝛽 

field! 
True 𝛽 field Reconstructed 𝛽 field 

Coefficient 1 Coefficient 2 Coefficient 3 Coefficient 4 Coefficient 5 

17/18 


