
Photos placed in horizontal position

with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Towards Performance-Portability of the Albany Land-Ice Solver to New and
Emerging Architectures Using Kokkos

Jerry Watkins1, Irina Tezaur1, Irina Demeshko2

1 Sandia National Laboratories, Livermore, CA, USA.
2 Los Alamos National Laboratory, Los Alamos, NM, USA.

ESCO 2018 Pilsen, Czech Republic June 4-8, 2018

SAND2018-4907 C

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

• Scientific models (e.g., climate models) need more computational
power to achieve higher resolutions.

• High performance computing (HPC) architectures are becoming
increasingly more heterogeneous in a move towards exascale.

• Climate models need to adapt to execute correctly & efficiently on
new HPC architectures with drastically different memory models.

Motivation

MPI+X Programming Model

• HPC architectures are rapidly changing, but trends remain the same.

• Computations are cheap, memory transfer is expensive.

• Single core cycle time has improved but stagnated.

• Increased computational power achieved through manycore
architectures.

→ MPI-only is not enough to exploit emerging massively parallel
architectures.

Approach: MPI+X
Programming Model

• MPI: inter-node parallelism.

• X: intra-node parallelism.

→ Examples: X = OpenMP, CUDA, Pthreads, etc.

Year Memory
Access Time

Single Core
Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

ProSPect Project for Land-Ice Modeling

Sandia’s Role in the ProSPect Project: to develop and support a robust and scalable
land ice solver based on the “First-Order” (FO) Stokes equations → Albany Land-Ice

Requirements for Albany Land-Ice:

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

As part of DOE E3SM* Earth System
Model, solver will provide actionable
predictions of 21st century sea-level

change (including uncertainty bounds).

“ProSPect” = Probabilistic Sea Level Projections from
Ice Sheet and Earth System Models
5 year SciDAC4 project (2017-2022).

* Energy Exascale Earth System Model.

ProSPect Project for Land-Ice Modeling

Sandia’s Role in the ProSPect Project: to develop and support a robust and scalable
land ice solver based on the “First-Order” (FO) Stokes equations → Albany Land-Ice

Requirements for Albany Land-Ice:

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

As part of DOE E3SM* Earth System
Model, solver will provide actionable
predictions of 21st century sea-level

change (including uncertainty bounds).

“ProSPect” = Probabilistic Sea Level Projections from
Ice Sheet and Earth System Models
5 year SciDAC4 project (2017-2022).

* Energy Exascale Earth System Model.

First-Order (FO) Stokes Model
• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

• Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice”
elliptic approximation* to Stokes’ flow equations.

൞
−𝛻 ∙ (2𝜇 ሶ𝝐1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐2) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

, in Ω

Albany/FELIX
• Relevant boundary conditions:

• Stress-free BC: 2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = 0, on Γ𝑠
• Floating ice BC:

• Basal sliding BC:

Basal boundary Γ𝛽
)

Lateral boundary Γ𝑙

Ice sheet

• Viscosity 𝜇 is nonlinear function given by “Glen’s law”:

𝜇 =
1

2
𝐴(𝑇)−

1
𝑛

1

2
෍

𝑖𝑗

ሶ𝝐𝑖𝑗
2

1
2𝑛

−
1
2

ሶ𝝐1
𝑇 = 2 ሶ𝜖11+ ሶ𝜖22, ሶ𝜖12, ሶ𝜖13

ሶ𝝐2
𝑇 = 2 ሶ𝜖12, ሶ𝜖11+ 2 ሶ𝜖22, ሶ𝜖23

ሶ𝜖ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

Surface boundary Γ𝑠

*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical.

(𝑛 = 3)

2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = ൜
𝜌𝑔𝑧𝒏, if 𝑧 > 0
0, if 𝑧 ≤ 0

, on Γ𝑙

2𝜇 ሶ𝝐𝑖 ∙ 𝒏 + 𝛽(𝑥, 𝑦)𝑢𝑖 = 0, on Γ𝛽

𝛽 𝑥, 𝑦 = basal
sliding coefficient

Albany Land-Ice implemented in open-source* C++ multi-
physics finite element Trilinos-based code:

Albany Code Base and Albany Land-Ice
Solver

* https://github.com/gahansen/Albany.

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Performance-portability via Kokkos

We need to be able to run climate models on new architecture machines (hybrid
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

• In Albany Land-Ice, we achieve performance-portability via Kokkos.

• Kokkos: C++ library and programming model that provides
performance portability across multiple computing architectures.

→ Examples: Multicore CPU, NVIDIA GPU, Intel Xeon Phi, and more.

• Provides automatic access to OpenMP, CUDA, Pthreads, etc.

• Designed to work with the MPI+X programming model.

• Abstracts data layouts for optimal performance (“array of strucs” vs.
struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template
parameter to get the optimal data layout for your hardware.

→ Allows researcher to focus on application development for large
heterogeneous architectures.

Albany Finite Element Assembly (FEA)

Problem
Type

% CPU time
for FEA

Implicit 50%

Explicit 99%

Performance-portability work has focused on Finite Element Assembly (FEA).

• Import: imports global solution from nonoverlapping data structure → gives each rank
access to relevant data for further communication.

• Gather: gathers solution values from overlapping data structure to element local data
structure indexed to element/local node.

• Interpolate: interpolated solution/gradient from nodal to quadrature points.

• Evaluate: evaluates the residual, Jacobian, source terms (templated using AD*).

• Scatter: scatters residual/Jacobian values from element local to global data structures.

• Export: exports residual/Jacobian from overlapping to nonoverlapping data structure,
where info is updated across MPI ranks.

FEA

* Automatic differentiation.

Shared Memory Assembly

Distributed Memory
Assembly

Performance-portability of FEA via Kokkos

• MPI-only FEA:
• Each MPI process has workset of cells, computes nested parallel for loops.

• MPI+X FEA:
• Each MPI process has workset of cells.
• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested

parallel for loops.

• Parallelism over all elements (element local data structure)
• Kokkos::parallel_for

• Multidimensional parallelism for nested for loops
• Kokkos::Experimental::md_parallel_for

• Atomics used to scatter local data to global data structures
• Kokkos::atomic_fetch_add (Tpetra)

• Data transfer from host to device handled by CUDA UVM*

* Unified Virtual Memory.

MPI-only
FEA

MPI+X
FEA

MPI+X FEA via Kokkos

• MPI-only nested for loop:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; MPI process n

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)MPI process n

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

* Unified Virtual Memory.

MPI process n

* Unified Virtual Memory.

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

MPI process n

MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

MPI process n

MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

Kokkos parallelization in Albany
Land-Ice is only over cells.

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Performance Study*: Greenland Ice Sheet (GIS)

Mesh Resolution # Elements

Case 1 4km-20km 1.51 million

Case 2 1km-7km 14.4 million

• Unstructured tetrahedral element meshes

• Wall-clock time averaged over 100 global assembly
evaluations (residual + Jacobian)

• Performance analysis focuses on finite element assembly

• No-slip boundary condition at bedrock

• 3 devices considered: Haswell, KNL, P100 GPU

• Notation for performance results:

𝑟 MPI + 𝑗X , X ∈ {OMP, GPU}

𝑟 = # MPI ranks
𝑗 = # OpenMP threads or GPUs/rank

X = architecture for shared memory parallelism

* See J. Watkins, I. Tezaur, I. Demeshko. Lecture Notes in Computational Science & Engineering, 2018 (accepted).

Computer Architectures

Architectures:

• Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)]

• Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)]

• Quetzal (SNL): Workstation [Titan V GV100 (1 GPU)]

Models:

• 3 models tested: MPI-only, MPI+OpenMP, MPI+CUDA

• MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads*

• Each Haswell core has 2 256-bit-wide vector processing units
• Each KNL core has 2 512-bit-wide vector processing units

• MPI+GPU: MPI ranks assigned a single core per GPU
• CUDA-Aware MPI (direct GPU communication)

Ride

Performance-portability of FEA in Albany has been tested across
multiple architectures: Intel Sandy Bridge, IBM POWER8, IBM

POWER9, Keplar/Pascal/Volta GPUs, KNL Xeon Phi

* Alternatives are sub-optimal, e.g., mapping MPI ranks to hardware threads ⇒ slower runs (ranks compete for resources).

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Wall-Clock Time on Single Node

• Speedup is achieved across all execution spaces.
• Ride node performs best in this case (because of the 4 GPUs)

• SMAssembly dominates on CPU
• Possible improvement: explicit vectorization to utilize VPUs.

• DMAssembly is a factor on GPU
• Tpetra routines (50% CPU time spent in Tpetra) are not fully optimized

SM = Shared Memory
DM = Distributed Memory

Given access to a single node of Cori Haswell, Cori KNL, and
Ride P100, where should 4km-20km GIS problem be run?

Wall-Clock Time on Single Device

• Speedup is achieved across all execution spaces.
• P100 GPU performs best → required some code optimizations (removal of unnecessary

recomputations, data movement through memoizer).
• SMAssembly dominates on CPU

• Possible improvement: explicit vectorization to utilize VPUs.
• DMAssembly is a factor on GPU

• Tpetra routines (50% CPU time spent in Tpetra) are not fully optimized

SM = Shared Memory
DM = Distributed Memory

What single device is best investment (Haswell, KNL,
POWER8, P100) for running 4km-20km GIS problem?

Similar
conclusions as

for single node.

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Scalability Study

• Reasonable strong and weak scaling are observed across all devices.

• Weak scaling (left): 4km-20km GIS (1 device), 1km-7km GIS (10 devices).
• Poor weak scaling on GPU is coming from Tpetra routines (DMAssembly),

which are not fully optimized.

• Strong scaling (right): 4km-20km GIS (1-32 devices).
• Loss of scalability # devices ↑, for KNL and GPU as they are not saturated

enough for strong scaling.

Weak Scaling Strong Scaling

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Preliminary Results on Volta GPU

GPUs
Wall

Time (s)
Bandwidth

(GB/s)
Speedup over

previous

K80 1.24e-2 1.30e2 −

P100 3.44e-3 4.70e2 3.6×

Titan
V

3.12e-3 5.18e2 1.10×

GPUs
Wall

Time (s)
Bandwidth

(GB/s)
Speedup over

previous

K80 6.22e-5 3.38e1 −

P100 3.48e-5 6.04e1 1.78×

Titan
V

2.71e-5 7.78e1 1.29×

1.51M Elements/GPU:
bandwidth bound case

1961 Elements/GPU (768 GPUs):
latency bound case

• Sample residual evaluator using Kokkos assuming unstructured tets, single GPU.

• Results show improvements over previous GPU generations.

• Fully saturated bandwidth bound case (left) expected to perform better since
Titan V has less bandwidth (652.8 GB/s) compared to V100 (900 GB/s) → 1.1×
speedup due to increase in bandwidth.

• Speedup is attained on Titan V even in latency bound strong scaling case (right).

Outline

1. Background
• Motivation
• ProSPect Project for Land-ice

Modeling & Albany Land-Ice
Solver

2. Performance-Portability of Finite
Element Assembly via Kokkos

3. Performance Results
• Architecture Comparison
• Scaling Study
• Preliminary Results on Volta GPU

4. Summary & Future Work.

Summary

• Performance portability is achieved across a wide variety of HPC architectures using a single
code base through Kokkos
• Multicore and manycore processors (POWER8, Haswell, KNL)
• NVIDIA GPUs (P100, Titan V)

• We can use heterogeneous HPC architectures for climate research using Albany Land-Ice.
• Target: Cori (Haswell, KNL), Aurora (new Xeon Phi), Summit (POWER9+V100)

• The open-source Albany multi-physics finite element code is available here:
• https://github.com/gahansen/Albany

• Performance studies show that further optimization is needed to fully utilize resources

Future Work

• Code optimizations for FEA:
• Introduction of hierarchical parallelism, GEMMS.
• Explicit vectorization on CPUs.
• Multiple CUDA instances on GPUs for better node utilization.
• Explicit data management to minimize memory transfers.

• Performance portability for linear solvers is an ongoing research topic within Trilinos.

Summary & Future Work

https://github.com/gahansen/Albany

Funding/Acknowledgements

Support for this work was provided through Scientific Discovery through Advanced
Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science

(OSCR), Advanced Scientific Computing Research and Biological and Environmental
Research (BER) → ProSPect SciDAC Application Partnership.

ProSPect team members: K. Evans, M. Hoffman, C. Jackson, W. Lipscomb, M. Perego,
S. Price, A. Salinger, I. Tezaur, R. Tuminaro, J. Bassis, G. Stadler, M. Eldred, J. Jakeman.

Computing resources: NERSC, OLCF.

References
[1] M.A. Heroux et al. “An overview of the Trilinos project.” ACM Trans. Math. Softw. 31(3) (2005).

[2] A. Salinger, et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics
Analysis Code", Int. J. Multiscale Comput. Engng. 14(4) (2016) 415-438.

[3] I. Tezaur, M. Perego, A. Salinger, R. Tuminaro, S. Price. "Albany/FELIX: A Parallel, Scalable and Robust
Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", Geosci. Model Develop.
8 (2015) 1-24.

[4] C. Edwards, C. Trott, D. Sunderland. “Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns”, J. Par. & Distr. Comput. 74 (12) (2014) 3202-3216.

[5] I. Demeshko, J. Watkins, I. Tezaur, O. Guba, W. Spotz, A. Salinger, R. Pawlowski, M. Heroux. "Towards
performance-portability of the Albany finite element analysis code using the Kokkos library", J. HPC Appl.
(2018) 1-23.

[6] J. Watkins, I. Tezaur, I. Demeshko. "A study on the performance portability of the finite element
assembly process within the Albany land ice solver", Lecture Notes in Computational Science and
Engineering (accepted).

[7] S. Price, M. Hoffman, J. Bonin, T. Neumann, I. Howat, J. Guerber, I. Tezaur, J. Saba, J. Lanaerts, D.
Chambers, W. Lipscomb, M. Perego, A. Salinger, R. Tuminaro. "An ice sheet model validation framework
for the Greenland ice sheet", Geosci. Model Dev. 10 (2017) 255-270

Appendix: Parallelism on Modern Hardware

Year Memory Access Time Single Core Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns

• Memory access time has remained the same.

• Single core performance has improved but stagnated.

• Computations are cheap, memory transfer is expensive.

• More performance from multicore/manycore processors.

Appendix: Albany FEA
• Gather operation extracts solution values

out of global solution vector.

• Physics evaluator functions operate on
workset of elements, store evaluated
quantities in local field arrays.

• FEA relies on template based generic
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual,
Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

• MPI-only FEA:

• Each MPI process has workset of cells &
computes nested parallel for loops.

• MPI+X FEA:

• Each MPI process has workset of cells.

• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.

Multiphysics Code

• Component-based design for rapid
development of new physics & capabilities.

• Extensive use of libraries from the open-
source Trilinos project:

• Automatic differentiation.

• Discretizations/meshes, mesh adaptivity.

• Solvers, preconditioners.

• Performance-portable kernels.

• Advanced analysis capabilities:

• Parameter estimation.

• Uncertainty quantification (DAKOTA).

• Optimization.

• Sensitivity analysis.

FO-Stokes model is implemented within Albany, Sandia open-source*
parallel, C++, multi-physics finite element code → Albany Land-Ice.

40+ packages; 120+ libraries

* https://github.com/gahansen/Albany.

Appendix:

Appendix: First-Order (FO) Stokes Model

Algorithmic choices for Albany Land-Ice:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear
solvers.

• Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Implicit solver:

Ice sheet

FEA** = 50%
CPU-time

Linear solve =
50% CPU-time

Albany Land-Ice implemented in open-source*
multi-physics FE Trilinos-based code:

* https://github.com/gahansen/Albany. **Finite Element Assembly

Appendix: Ice Sheet Dynamic Equations

• Model for evolution of the boundaries (thickness
evolution equation):

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

where ഥ𝒖 = vertically averaged velocity, ሶ𝑏 = surface mass
balance (conservation of mass).

• Temperature equation (advection-diffusion):

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

(energy balance).

• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇:
𝐴 = 𝐴(𝑇).

• Ice sheet grows/retreats depending on thickness 𝐻.

Ice-covered (“active”)
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)

Appendix: Performance Improvements
from Introduction of Memoizer

• Approximately 2-4× improvement on finite element assembly
(FEA) using memorization.

Single GPU Profile (4km-20km GIS)

• Profile includes shared memory
local/global assembly
(assembly & computation)

• Wall-clock time dominated by
Interpolation and ALI kernels

• Future Work:
• Improve Interpolation and ALI

kernels
• Begin profiling solver performance

ALI

