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• Scientific models (e.g., climate models) need more computational 
power to achieve higher resolutions.

• High performance computing (HPC) architectures are becoming 
increasingly more heterogeneous in a move towards exascale.

• Climate models need to adapt to execute correctly & efficiently on 
new HPC architectures with drastically different memory models.

Motivation



MPI+X Programming Model

• HPC architectures are rapidly changing, but trends remain the same.

• Computations are cheap, memory transfer is expensive.

• Single core cycle time has improved but stagnated.

• Increased computational power achieved through manycore
architectures.

→ MPI-only is not enough to exploit emerging massively parallel 
architectures.

Approach: MPI+X 
Programming Model

• MPI: inter-node parallelism.

• X: intra-node parallelism.

→ Examples: X = OpenMP, CUDA, Pthreads, etc.

Year Memory 
Access Time

Single Core 
Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns
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ProSPect Project for Land-Ice Modeling

Sandia’s Role in the ProSPect Project: to develop and support a robust and scalable 
land ice solver based on the “First-Order” (FO) Stokes equations → Albany Land-Ice

Requirements for Albany Land-Ice: 

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities: 
deterministic inversion, calibration, 
uncertainty quantification.

As part of DOE E3SM* Earth System 
Model, solver will provide actionable 
predictions of 21st century sea-level 

change (including uncertainty bounds).

“ProSPect” = Probabilistic Sea Level Projections from 
Ice Sheet and Earth System Models
5 year SciDAC4 project (2017-2022).

* Energy Exascale Earth System Model.
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First-Order (FO) Stokes Model
• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

• Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice” 
elliptic approximation* to Stokes’ flow equations.
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Albany/FELIX
• Relevant boundary conditions: 

• Stress-free BC: 2𝜇 ሶ𝝐𝑖 ∙ 𝒏 = 0, on Γ𝑠
• Floating ice BC: 

• Basal sliding BC: 

Basal boundary  Γ𝛽
)

Lateral boundary Γ𝑙

Ice sheet

• Viscosity 𝜇 is nonlinear function given by “Glen’s law”: 
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*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical.

(𝑛 = 3)
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2𝜇 ሶ𝝐𝑖 ∙ 𝒏 + 𝛽(𝑥, 𝑦)𝑢𝑖 = 0, on Γ𝛽

𝛽 𝑥, 𝑦 = basal
sliding coefficient



Albany Land-Ice implemented in open-source* C++ multi-
physics finite element Trilinos-based code: 

Albany Code Base and Albany Land-Ice 
Solver

* https://github.com/gahansen/Albany.   
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Performance-portability via Kokkos

We need to be able to run climate models on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

• In Albany Land-Ice, we achieve performance-portability via Kokkos.

• Kokkos: C++ library and programming model that provides 
performance portability across multiple computing architectures.

→ Examples: Multicore CPU, NVIDIA GPU, Intel Xeon Phi, and more.

• Provides automatic access to OpenMP, CUDA, Pthreads, etc.

• Designed to work with the MPI+X programming model.

• Abstracts data layouts for optimal performance (“array of strucs” vs. 
struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template 
parameter to get the optimal data layout for your hardware.

→ Allows researcher to focus on application development for large 
heterogeneous architectures.



Albany Finite Element Assembly (FEA)

Problem 
Type

% CPU time 
for FEA

Implicit 50%

Explicit 99%

Performance-portability work has focused on Finite Element Assembly (FEA).

• Import: imports global solution from nonoverlapping data structure → gives each rank 
access to relevant data for further communication.

• Gather: gathers solution values from overlapping data structure to element local data 
structure indexed to element/local node.

• Interpolate: interpolated solution/gradient from nodal to quadrature points. 

• Evaluate: evaluates the residual, Jacobian, source terms (templated using AD*).

• Scatter: scatters residual/Jacobian values from element local to global data structures.

• Export: exports residual/Jacobian from overlapping to nonoverlapping data structure, 
where info is updated across MPI ranks.

FEA

* Automatic differentiation.

Shared Memory Assembly

Distributed Memory 
Assembly



Performance-portability of FEA via Kokkos

• MPI-only FEA:
• Each MPI process has workset of cells, computes nested parallel for loops.

• MPI+X FEA:
• Each MPI process has workset of cells.
• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested 

parallel for loops.

• Parallelism over all elements (element local data structure)
• Kokkos::parallel_for

• Multidimensional parallelism for nested for loops
• Kokkos::Experimental::md_parallel_for

• Atomics used to scatter local data to global data structures
• Kokkos::atomic_fetch_add (Tpetra)

• Data transfer from host to device handled by CUDA UVM*

*  Unified Virtual Memory.

MPI-only 
FEA

MPI+X  
FEA



MPI+X FEA via Kokkos

• MPI-only nested for loop:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; MPI process n



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; 

Thread 1 computes A for 

(cell,node,qp)=(0,0,0)

Thread 2 computes A for 

(cell,node,qp)=(0,0,1)

Thread N computes A for 

(cell,node,qp)=(numCells,numNodes,numQPs)MPI process n

MPI+X FEA via Kokkos
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MPI process n

*  Unified Virtual Memory.

MPI+X FEA via Kokkos



• Multi-dimensional parallelism for nested 
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)
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(cell,node,qp)=(0,0,0)

Thread 2 computes A for 
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• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

MPI process n

MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 
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computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}); 

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this); 

Kokkos parallelization in Albany 
Land-Ice is only over cells.
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Performance Study*: Greenland Ice Sheet (GIS) 

Mesh Resolution # Elements

Case 1 4km-20km 1.51 million

Case 2 1km-7km 14.4 million

• Unstructured tetrahedral element meshes

• Wall-clock time averaged over 100 global assembly 
evaluations (residual + Jacobian)

• Performance analysis focuses on finite element assembly 

• No-slip boundary condition at bedrock

• 3 devices considered: Haswell, KNL, P100 GPU

• Notation for performance results:

𝑟 MPI + 𝑗X , X ∈ {OMP, GPU}

𝑟 = # MPI ranks
𝑗 = # OpenMP threads or GPUs/rank

X = architecture for shared memory parallelism

* See J. Watkins, I. Tezaur, I. Demeshko. Lecture Notes in Computational Science & Engineering, 2018 (accepted).



Computer Architectures

Architectures:

• Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)]

• Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)] 
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)]

• Quetzal (SNL): Workstation [Titan V GV100 (1 GPU)]

Models:

• 3 models tested: MPI-only, MPI+OpenMP, MPI+CUDA

• MPI+OpenMP: MPI ranks are mapped to cores, 
OpenMP threads are mapped to hardware-threads*

• Each Haswell core has 2 256-bit-wide vector processing units
• Each KNL core has 2 512-bit-wide vector processing units

• MPI+GPU: MPI ranks assigned a single core per GPU
• CUDA-Aware MPI (direct GPU communication)

Ride

Performance-portability of FEA in Albany has been tested across 
multiple architectures: Intel Sandy Bridge, IBM POWER8, IBM 

POWER9, Keplar/Pascal/Volta GPUs, KNL Xeon Phi

* Alternatives are sub-optimal, e.g., mapping MPI ranks to hardware threads ⇒ slower runs (ranks compete for resources). 
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Wall-Clock Time on Single Node

• Speedup is achieved across all execution spaces.
• Ride node performs best in this case (because of the 4 GPUs)

• SMAssembly dominates on CPU 
• Possible improvement: explicit vectorization to utilize VPUs.

• DMAssembly is a factor on GPU 
• Tpetra routines (50% CPU time spent in Tpetra) are not fully optimized

SM = Shared Memory
DM = Distributed Memory

Given access to a single node of Cori Haswell, Cori KNL, and 
Ride P100, where should 4km-20km GIS problem be run?



Wall-Clock Time on Single Device

• Speedup is achieved across all execution spaces.
• P100 GPU performs best → required some code optimizations (removal of unnecessary 

recomputations, data movement through memoizer).
• SMAssembly dominates on CPU 

• Possible improvement: explicit vectorization to utilize VPUs.
• DMAssembly is a factor on GPU 

• Tpetra routines (50% CPU time spent in Tpetra) are not fully optimized

SM = Shared Memory
DM = Distributed Memory

What single device is best investment (Haswell, KNL, 
POWER8, P100) for running 4km-20km GIS problem?

Similar 
conclusions as 

for single node.
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Scalability Study

• Reasonable strong and weak scaling are observed across all devices.

• Weak scaling (left): 4km-20km GIS (1 device), 1km-7km GIS (10 devices).
• Poor weak scaling on GPU is coming from Tpetra routines (DMAssembly), 

which are not fully optimized.

• Strong scaling (right): 4km-20km GIS (1-32 devices). 
• Loss of scalability # devices ↑, for KNL and GPU as they are not saturated 

enough for strong scaling. 

Weak Scaling Strong Scaling
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Preliminary Results on Volta GPU

GPUs
Wall 

Time (s)
Bandwidth 

(GB/s)
Speedup over 

previous

K80 1.24e-2 1.30e2 −

P100 3.44e-3 4.70e2 3.6×

Titan 
V

3.12e-3 5.18e2 1.10×

GPUs
Wall 

Time (s)
Bandwidth 

(GB/s)
Speedup over 

previous

K80 6.22e-5 3.38e1 −

P100 3.48e-5 6.04e1 1.78×

Titan 
V

2.71e-5 7.78e1 1.29×

1.51M Elements/GPU: 
bandwidth bound case

1961 Elements/GPU (768 GPUs): 
latency bound case

• Sample residual evaluator using Kokkos assuming unstructured tets, single GPU.

• Results show improvements over previous GPU generations.

• Fully saturated bandwidth bound case (left) expected to perform better since 
Titan V has less bandwidth (652.8 GB/s) compared to V100 (900 GB/s) → 1.1×
speedup due to increase in bandwidth.

• Speedup is attained on Titan V even in latency bound strong scaling case (right).
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Summary

• Performance portability is achieved across a wide variety of HPC architectures using a single 
code base through Kokkos
• Multicore and manycore processors (POWER8, Haswell, KNL)
• NVIDIA GPUs (P100, Titan V)

• We can use heterogeneous HPC architectures for climate research using Albany Land-Ice.
• Target: Cori (Haswell, KNL), Aurora (new Xeon Phi), Summit (POWER9+V100)

• The open-source Albany multi-physics finite element code is available here:
• https://github.com/gahansen/Albany

• Performance studies show that further optimization is needed to fully utilize resources

Future Work

• Code optimizations for FEA: 
• Introduction of hierarchical parallelism, GEMMS.
• Explicit vectorization on CPUs.
• Multiple CUDA instances on GPUs for better node utilization.
• Explicit data management to minimize memory transfers. 

• Performance portability for linear solvers is an ongoing research topic within Trilinos.

Summary & Future Work

https://github.com/gahansen/Albany
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Appendix: Parallelism on Modern Hardware

Year Memory Access Time Single Core Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns

• Memory access time has remained the same.

• Single core performance has improved but stagnated.

• Computations are cheap, memory transfer is expensive.

• More performance from multicore/manycore processors.



Appendix: Albany FEA
• Gather operation extracts solution values 

out of global solution vector.

• Physics evaluator functions operate on 
workset of elements, store evaluated 
quantities in local field arrays.

• FEA relies on template based generic 
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual, 
Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

• MPI-only FEA:

• Each MPI process has workset of cells &                                                                       
computes nested parallel for loops.

• MPI+X FEA:

• Each MPI process has workset of cells.

• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.



Multiphysics Code

• Component-based design for rapid 
development of new physics & capabilities.

• Extensive use of libraries from the open-
source Trilinos project:

• Automatic differentiation.

• Discretizations/meshes, mesh adaptivity.

• Solvers, preconditioners.

• Performance-portable kernels.

• Advanced analysis capabilities:

• Parameter estimation.

• Uncertainty quantification (DAKOTA).

• Optimization.

• Sensitivity analysis.

FO-Stokes model is implemented within Albany, Sandia open-source* 
parallel, C++, multi-physics finite element code → Albany Land-Ice.

40+ packages; 120+ libraries

* https://github.com/gahansen/Albany.

Appendix:



Appendix: First-Order (FO) Stokes Model

Algorithmic choices for Albany Land-Ice:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with 
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear 
solvers.

• Advanced analysis capabilities: deterministic 
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Implicit solver:

Ice sheet

FEA** = 50% 
CPU-time

Linear solve = 
50% CPU-time

Albany Land-Ice implemented in open-source*         
multi-physics FE Trilinos-based  code: 

* https://github.com/gahansen/Albany.   **Finite Element Assembly



Appendix: Ice Sheet Dynamic Equations

• Model for evolution of the boundaries (thickness 
evolution equation):

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

where ഥ𝒖 = vertically averaged velocity, ሶ𝑏 = surface mass 
balance (conservation of mass).

• Temperature equation (advection-diffusion):

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

(energy balance). 

• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 
𝐴 = 𝐴(𝑇).

• Ice sheet grows/retreats depending on thickness 𝐻.

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)



Appendix: Performance Improvements 
from Introduction of Memoizer

• Approximately 2-4× improvement on finite element assembly 
(FEA) using memorization. 



Single GPU Profile (4km-20km GIS)

• Profile includes shared memory 
local/global assembly 
(assembly & computation)

• Wall-clock time dominated by 
Interpolation and ALI kernels

• Future Work:
• Improve Interpolation and ALI 

kernels
• Begin profiling solver performance

ALI


