Exceptional service in the national interest

A minimal subspace rotation approach for obtaining stable & accurate low-order projection-based reduced order models for nonlinear compressible flow

I. Tezaur¹, M. Balajewicz²

¹ Quantitative Modeling & Analysis Department, Sandia National Laboratories

² Aerospace Engineering Department, University of Illinois Urbana-Champaign

ECCOMAS 2016 Crete, Greece June 6-10, 2016

SAND2016-4892C

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Outline

1. Motivation

- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Targeted application: compressible fluid flow (e.g., captive-carry)

• Majority of fluid MOR approaches in the literature are for <u>incompressible</u> flow.

- Majority of fluid MOR approaches in the literature are for <u>incompressible</u> flow.
- There has been some on MOR for <u>compressible flows</u>.

- Majority of fluid MOR approaches in the literature are for <u>incompressible</u> flow.
- There has been some on MOR for <u>compressible flows</u>.
 - Energy-based inner products: Rowley *et al.,* 2004 (isentropic); Barone *et al.,* 2007 (linear); Serre *et al.,* 2012 (linear); <u>Kalashnikova</u> *et al.,* 2014 (nonlinear).

- Majority of fluid MOR approaches in the literature are for <u>incompressible</u> flow.
- There has been some on MOR for <u>compressible flows</u>.
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et al., 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method/Petrov-Galerkin projection:** Carlberg *et al.,* 2014 (nonlinear).

Targeted application: compressible fluid flow (e.g., captive-carry)

- Majority of fluid MOR approaches in the literature are for <u>incompressible</u> flow.
- There has been some on MOR for <u>compressible flows</u>.
 - Energy-based inner products: Rowley *et al.*, 2004 (isentropic); Barone *et al.*, 2007 (linear); Serre *et al.*, 2012 (linear); <u>Kalashnikova</u> *et al.*, 2014 (nonlinear).
 - **GNAT method/Petrov-Galerkin projection:** Carlberg *et al.,* 2014 (nonlinear).

MOR for <u>nonlinear</u>, <u>compressible</u> fluid flows is still in its infancy!

Projection-based model order reduction

SAND2016-4892C

Projection-based model order reduction <a>figure

Governing equations

• 3D compressible Navier-Stokes equations in *primitive specific volume form*:

$$\zeta_{,t} + \zeta_{,j}u_j - \zeta u_{j,j} = 0$$

$$u_{i,t} + u_{i,j}u_j + \zeta p_{,i} - \frac{1}{Re}\zeta\tau_{ij,j} = 0$$

$$p_{,t} + u_j p_{,j} + \gamma u_{j,j}p - \left(\frac{\gamma}{PrRe}\right)\left(\kappa(p\zeta)_{,j}\right)_{,j} - \left(\frac{\gamma-1}{Re}\right)u_{i,j}\tau_{ij} = 0$$
(1)

[PDEs]

Projection-based model order reduction <a>D

Governing equations

• 3D compressible Navier-Stokes equations in *primitive specific volume form*:

$$\zeta_{,t} + \zeta_{,j}u_{j} - \zeta u_{j,j} = 0$$

$$u_{i,t} + u_{i,j}u_{j} + \zeta p_{,i} - \frac{1}{Re}\zeta\tau_{ij,j} = 0$$

$$p_{,t} + u_{j}p_{,j} + \gamma u_{j,j}p - \left(\frac{\gamma}{PrRe}\right)\left(\kappa(p\zeta)_{,j}\right)_{,j} - \left(\frac{\gamma-1}{Re}\right)u_{i,j}\tau_{ij} = 0$$
(1)

[PDEs]

• Spectral discretization $(\boldsymbol{q}(\boldsymbol{x},t) \approx \sum_{i=1}^{n} a_i(t) \boldsymbol{U}_i(\boldsymbol{x})) + \text{Galerkin projection}$ applied to (1) yields a system of <u>*n* coupled quadratic ODEs</u>:

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + \boldsymbol{L}\boldsymbol{a} + [\boldsymbol{a}^T \boldsymbol{Q}^{(1)} \boldsymbol{a} + \boldsymbol{a}^T \boldsymbol{Q}^{(2)} \boldsymbol{a} + \dots + \boldsymbol{a}^T \boldsymbol{Q}^{(n)} \boldsymbol{a}]^T$$
(2)

where $\boldsymbol{C} \in \mathbb{R}^{n}$, $\boldsymbol{L} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{Q}^{(i)} \in \mathbb{R}^{n \times n}$ for all i = 1, ..., n.

Projection-based model order reduction <a>b

Summary of technical challenges

Projection-based MOR necessitates *truncation*.

Projection-based model order reduction <a>b

Summary of technical challenges

Projection-based MOR necessitates *truncation*.

• POD is, by definition and design, biased towards the *large, energy producing* scales of the flow (i.e., modes with large POD eigenvalues).

Projection-based model order reduction <a>b

Summary of technical challenges

Projection-based MOR necessitates *truncation*.

- POD is, by definition and design, biased towards the *large, energy producing* scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible form a <u>data compression</u> point of view (i.e., small POD eigenvalues) but are crucial for the <u>dynamical</u> <u>equations</u>.

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates truncation.

- POD is, by definition and design, biased towards the *large, energy producing* ۲ scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible form a *data compression* point of ۲ view (i.e., small POD eigenvalues) but are crucial for the dynamical equations.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> \Rightarrow low-dimensional ROMs are often <u>inaccurate</u> and sometimes unstable.

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates truncation.

- POD is, by definition and design, biased towards the *large, energy producing* ۲ scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible form a *data compression* point of ۲ view (i.e., small POD eigenvalues) but are crucial for the dynamical equations.
- For fluid flow applications, higher-order modes are associated with energy ٠ <u>dissipation</u> \Rightarrow low-dimensional ROMs are often <u>inaccurate</u> and sometimes unstable.

For a ROM to be stable and accurate, the *truncated/unresolved subspace* must be accounted for.

Projection-based model order reduction <a>figure

Summary of technical challenges

Projection-based MOR necessitates *truncation*.

- POD is, by definition and design, biased towards the *large, energy producing* scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible form a <u>data compression</u> point of view (i.e., small POD eigenvalues) but are crucial for the <u>dynamical</u> <u>equations</u>.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> ⇒ low-dimensional ROMs are often <u>inaccurate</u> and sometimes <u>unstable</u>.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Traditional linear eddy-viscosity approach

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + \boldsymbol{L}\boldsymbol{a} + [\boldsymbol{a}^T \boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^T \boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^T \boldsymbol{Q}^{(n)}\boldsymbol{a}]^T$$

Traditional linear eddy-viscosity approach

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\boldsymbol{\nu}})\boldsymbol{a} + [\boldsymbol{a}^{T}\boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^{T}\boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^{T}\boldsymbol{Q}^{(n)}\boldsymbol{a}]^{T}$$

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\boldsymbol{\nu}})\boldsymbol{a} + [\boldsymbol{a}^{T}\boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^{T}\boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^{T}\boldsymbol{Q}^{(n)}\boldsymbol{a}]^{T}$$

• L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).

Traditional linear eddy-viscosity approach

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\boldsymbol{\nu}})\boldsymbol{a} + [\boldsymbol{a}^{T}\boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^{T}\boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^{T}\boldsymbol{Q}^{(n)}\boldsymbol{a}]^{T}$$

- L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).
- <u>Disadvantages of this approach</u>:

Traditional linear eddy-viscosity approach

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\boldsymbol{v}})\boldsymbol{a} + [\boldsymbol{a}^{T}\boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^{T}\boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^{T}\boldsymbol{Q}^{(n)}\boldsymbol{a}]^{T}$$

- L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).
- <u>Disadvantages of this approach</u>:
 - Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.

Traditional linear eddy-viscosity approach

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\boldsymbol{\nu}})\boldsymbol{a} + [\boldsymbol{a}^{T}\boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^{T}\boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^{T}\boldsymbol{Q}^{(n)}\boldsymbol{a}]^{T}$$

- L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).
- <u>Disadvantages of this approach</u>:
 - Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
 - 2. Calibration is necessary to derive optimal L_{ν} and optimal value is <u>flow</u> <u>dependent</u>.

Traditional linear eddy-viscosity approach

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\boldsymbol{v}})\boldsymbol{a} + [\boldsymbol{a}^{T}\boldsymbol{Q}^{(1)}\boldsymbol{a} + \boldsymbol{a}^{T}\boldsymbol{Q}^{(2)}\boldsymbol{a} + \dots + \boldsymbol{a}^{T}\boldsymbol{Q}^{(n)}\boldsymbol{a}]^{T}$$

- L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).
- <u>Disadvantages of this approach</u>:
 - Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
 - 2. Calibration is necessary to derive optimal L_{ν} and optimal value is <u>flow</u> <u>dependent</u>.
 - Inherently a <u>linear model</u> → cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime

Illustrative example

- <u>Standard approach</u>: retain only the most energetic POD modes, i.e., U₁, U₂, U₃, U₄, ...
- <u>Proposed approach</u>: choose some higher order basis modes to increase dissipation, i.e., U₁, U₂, U₆, U₈, ...

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime

Illustrative example

- <u>Standard approach</u>: retain only the most energetic POD modes, i.e., U₁, U₂, U₃, U₄, ...
- <u>Proposed approach</u>: choose some higher order basis modes to increase dissipation, i.e., U₁, U₂, U₆, U₈, ...
- <u>More generally</u>: approximate the solution using a linear superposition of n + p (with p > 0) most energetic modes:

$$\widetilde{\boldsymbol{U}}_{i} = \sum_{j=1}^{n+p} X_{ij} \, \boldsymbol{U}_{j}, \quad i = 1, \dots, n,$$
(3)

where $X \in \mathbb{R}^{(n+p) \times n}$ is an orthonormal ($X^T X = I_{n \times n}$) "rotation" matrix.

Goals of proposed new approach

Find **X** such that:

- 1. New modes \tilde{U} remain <u>good approximations</u> of the flow.
- 2. New modes produce *stable* and *accurate* ROMs.

Goals of proposed new approach

Find X such that:

- 1. New modes \tilde{U} remain <u>good approximations</u> of the flow.
- 2. New modes produce *stable* and *accurate* ROMs.
- We formulate and solve a *constrained optimization problem* for *X*:

minimize_{$$X \in \mathcal{V}_{(n+p),n}$$} $f(X)$
subject to $g(X, L) = 0$

where $\mathcal{V}_{(n+p),n} \in \{ X \in \mathbb{R}^{(n+p) \times n} : X^T X = I_n, p > 0 \}$ is the <u>Stiefel manifold</u>.

Goals of proposed new approach

Find X such that:

- 1. New modes \tilde{U} remain <u>good approximations</u> of the flow.
- 2. New modes produce *stable* and *accurate* ROMs.
- We formulate and solve a *constrained optimization problem* for *X*:

minimize_{$$X \in \mathcal{V}_{(n+p),n}$$} $f(X)$
subject to $g(X, L) = 0$

where $\mathcal{V}_{(n+p),n} \in \{ X \in \mathbb{R}^{(n+p) \times n} : X^T X = I_n, p > 0 \}$ is the <u>Stiefel manifold</u>.

• Once *X* is found, the result is a system of the form (2) with:

$$Q^{(i)}_{jk} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q^{(s)}_{qr} X_{qr} X_{rk}, \quad \boldsymbol{L} \leftarrow \boldsymbol{X}^T \boldsymbol{L} \boldsymbol{X}, \quad \boldsymbol{C} \leftarrow \boldsymbol{X}^T \boldsymbol{C}^*$$

(5)

Objective function

minimize_{$X \in \mathcal{V}_{(n+p),n}$} f(X)subject to g(X, L) = 0

• We have considered two objectives f(X) in (5):

minimize_{$X \in \mathcal{V}_{(n+p),n}$} f(X)subject to g(X, L) = 0

- We have considered two objectives f(X) in (5):
 - Minimize *subspace rotation*

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\mathrm{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$

(6)
Objective function

minimize_{$X \in \mathcal{V}_{(n+p),n}$} f(X)subject to g(X, L) = 0

- We have considered two objectives f(X) in (5):
 - Minimize *subspace rotation*

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\mathrm{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$

• Maximize resolved *turbulent kinetic energy (TKE)*

$$f(\mathbf{X}) = -||\boldsymbol{\Sigma} - \mathbf{X}\mathbf{X}^T\boldsymbol{\Sigma}||_F$$
⁽⁷⁾

(6)

Objective function

minimize_{$X \in \mathcal{V}_{(n+p),n}$} f(X)subject to g(X, L) = 0

- We have considered two objectives f(X) in (5):
 - Minimize *subspace rotation*

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\operatorname{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$
(6)

• Maximize resolved *turbulent kinetic energy (TKE)*

$$f(\mathbf{X}) = -||\boldsymbol{\Sigma} - \mathbf{X}\mathbf{X}^T\boldsymbol{\Sigma}||_F$$
⁽⁷⁾

- TKE objective (7) comes from earlier work (Balajewicz *et al.,* 2013) involving stabilization of incompressible flow ROMs
 - POD modes associated with low KE are important *dynamically* even though they contribute little to overall energy of the fluid flow.

(5)

SAND2016-4892C

Accounting for modal truncation

Objective function

minimize_{$X \in \mathcal{V}_{(n+p),n}$} f(X)subject to g(X, L) = 0

- We have considered two objectives f(X) in (5):
 - Minimize *subspace rotation*

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\mathrm{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$

• Maximize resolved *turbulent kinetic energy (TKE)*

 $f(\mathbf{X}) = -||\mathbf{\Sigma} - \mathbf{X}\mathbf{X}^T\mathbf{\Sigma}||_F$

(5)

(6)

(7)

(5)

Constraint

minimize_{$$X \in \mathcal{V}_{(n+p),n}$$} $f(X)$
subject to $g(X, L) = 0$

We use the traditional <u>linear eddy-viscosity closure model ansatz</u> for the constraint g(X, L) = 0 in (5):

$$g(\mathbf{X}, \mathbf{L}) = \operatorname{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) - \eta$$
(8)

(5)

Constraint

minimize_{$$X \in \mathcal{V}_{(n+p),n}$$} $f(X)$
subject to $g(X, L) = 0$

We use the traditional <u>linear eddy-viscosity closure model ansatz</u> for the constraint g(X, L) = 0 in (5):

$$g(\boldsymbol{X}, \boldsymbol{L}) = \operatorname{tr}(\boldsymbol{X}^T \boldsymbol{L} \boldsymbol{X}) - \boldsymbol{\eta}$$
(8)

- Specifically, constraint (8) involves overall balance between <u>linear energy</u> <u>production</u> and <u>dissipation</u>.
 - $\eta = proxy$ for the balance between linear energy production and energy dissipation.

(5)

Constraint

minimize_{$X \in \mathcal{V}_{(n+p),n}$} f(X)subject to g(X, L) = 0

We use the traditional <u>linear eddy-viscosity closure model ansatz</u> for the constraint g(X, L) = 0 in (5):

$$g(\boldsymbol{X}, \boldsymbol{L}) = \operatorname{tr}(\boldsymbol{X}^T \boldsymbol{L} \boldsymbol{X}) - \boldsymbol{\eta}$$
(8)

- Specifically, constraint (8) involves overall balance between <u>linear energy</u> <u>production</u> and <u>dissipation</u>.
 - $\eta = proxy$ for the balance between linear energy production and energy dissipation.
- Constraint comes from property that <u>averaged total power</u> (= tr(X^TLX) + energy transfer) has to vanish.

(9)

Minimal subspace rotation: trace minimization on Stiefel manifold

minimize_{$$X \in \mathcal{V}_{(n+p),n}$$} $- \operatorname{tr}(X^T I_{(n+p) \times n})$
subject to $\operatorname{tr}(X^T L X) = \eta$

- $\eta \in \mathbb{R}$: proxy for the balance between linear energy production and energy dissipation (calculated iteratively using modal energy).
- $\mathcal{V}_{(n+p),n} \in \{ X \in \mathbb{R}^{(n+p) \times n} : X^T X = I_n, p > 0 \}$ is the <u>Stiefel manifold</u>.
- Equation (9) is solved efficiently offline using the method of Lagrange multipliers (Manopt MATLAB toolbox).
- See (Balajewicz, <u>Tezaur</u>, Dowell, 2016) and Appendix slide for Algorithm.

Remarks

Remarks

Proposed approach may be interpreted as an <u>a priori consistent</u> formulation of the eddy-viscosity turbulence modeling approach.

• <u>Advantages of proposed approach</u>:

Remarks

- <u>Advantages of proposed approach</u>:
 - Retains <u>consistency</u> between ROM and Navier-Stokes equations → no additional turbulence terms required.

Remarks

- <u>Advantages of proposed approach</u>:
 - Retains <u>consistency</u> between ROM and Navier-Stokes equations → no additional turbulence terms required.
 - Inherently a <u>nonlinear</u> model → should be expected to outperform linear models.

Remarks

- <u>Advantages of proposed approach</u>:
 - Retains <u>consistency</u> between ROM and Navier-Stokes equations → no additional turbulence terms required.
 - Inherently a <u>nonlinear</u> model → should be expected to outperform linear models.
 - 3. Works with *any* basis and Petrov-Galerkin projection.

Remarks

- <u>Advantages of proposed approach</u>:
 - Retains <u>consistency</u> between ROM and Navier-Stokes equations → no additional turbulence terms required.
 - Inherently a <u>nonlinear</u> model → should be expected to outperform linear models.
 - 3. Works with *any* basis and Petrov-Galerkin projection.
- <u>Disadvantages of proposed approach</u>:

Remarks

- <u>Advantages of proposed approach</u>:
 - Retains <u>consistency</u> between ROM and Navier-Stokes equations → no additional turbulence terms required.
 - Inherently a <u>nonlinear</u> model → should be expected to outperform linear models.
 - 3. Works with *any* basis and Petrov-Galerkin projection.
- <u>Disadvantages of proposed approach</u>:
 - 1. Off-line calibration of free parameter η is required.

Remarks

- <u>Advantages of proposed approach</u>:
 - Retains <u>consistency</u> between ROM and Navier-Stokes equations → no additional turbulence terms required.
 - Inherently a <u>nonlinear</u> model → should be expected to outperform linear models.
 - 3. Works with *any* basis and Petrov-Galerkin projection.
- <u>Disadvantages of proposed approach</u>:
 - 1. Off-line calibration of free parameter η is required.
 - 2. Stability cannot be proven like for incompressible case.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation

4. Applications

- High angle of attack laminar airfoil
- Low Reynolds number channel driven cavity
- Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

High angle of attack laminar airfoil

2D flow around an inclined NACA0012 airfoil at Mach 0.7, Re = 500, Pr = 0.72, AOA = $20^{\circ} \Rightarrow n = 4$ ROM (86% snapshot energy).

Figure 1: Contours of velocity magnitude at time of final snapshot.

SAND2016-4892C

• Minimizing subspace rotation:

Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis $a_1(t)$ and $a_2(t)$, (c) illustration of stabilizing rotation showing that rotation is small: $\frac{\|X - I_{(n+p),n}\|_F}{n} = 0.083, X \approx I_{(n+p),n}$

High angle of attack laminar airfoil

• Minimizing subspace rotation:

Figure 3: High angle of attack laminar airfoil contours of velocity magnitude at time of final snapshot.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Channel driven cavity: low Reynolds number case

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72 $\Rightarrow n = 4$ ROM (91% snapshot energy).

Figure 4: Domain and mesh for viscous channel driven cavity problem.

SAND2016-4892C

• Minimizing subspace rotation:

Figure 5: (a) evolution of modal energy, (b) phase plot of first and second temporal basis $a_1(t)$ and $a_2(t)$, (c) illustration of stabilizing rotation showing that rotation is small: $\frac{\|X-I_{(n+p),n}\|_F}{n} = 0.188, X \approx I_{(n+p),n}$

Channel driven cavity: low Reynolds number case

• Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\mathrm{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$

Figure 6: Pressure power spectral density (PSD) at location x = (2, -1); stabilized ROM minimizes subspace rotation.

SAND2016-4892C

Channel driven cavity: low Reynolds number case

• <u>Maximizing resolved TKE</u>:

$$f(\boldsymbol{X}) = -||\boldsymbol{\Sigma} - \boldsymbol{X}\boldsymbol{X}^{T}\boldsymbol{\Sigma}||_{F}$$

Figure 7: Pressure power spectral density (PSD) at location x = (2, -1); stabilized ROM maximizes resolved TKE.

Channel driven cavity: low Reynolds number case

• Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\mathrm{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$

Figure 8: Channel driven cavity Re \approx 1500 contours of *u*-velocity at time of final snapshot.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation

4. Applications

- High angle of attack laminar airfoil
- Low Reynolds number channel driven cavity
- Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Channel driven cavity: moderate Reynolds number case

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72 $\Rightarrow n = 20$ ROM (71.8% snapshot energy).

Figure 9: Domain and mesh for viscous channel driven cavity problem.

SAND2016-4892C

• Minimizing subspace rotation:

Figure 10: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing that rotation is small: $\frac{\|X - I_{(n+p),n}\|_F}{n} = 0.038, X \approx I_{(n+p),n}$

SAND2016-4892C

Channel driven cavity: moderate Reynolds number case

• Minimizing subspace rotation:

Figure 11: Pressure cross PSD of of $p(x_1, t)$ and $p(x_2, t)$ where $x_1 = (2, -0.5)$, $x_2 = (0, -0.5)$

Power and phase lag at fundamental frequency, and first two super harmonics are predicted accurately using the fine-tuned ROM (Δ = stabilized ROM, \Box = DNS)

Channel driven cavity: moderate Reynolds number case

• Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\mathrm{tr}(\mathbf{X}^T \mathbf{I}_{(n+p)\times n})$$

Figure 12: Channel driven cavity Re \approx 5500 contours of *u*-velocity at time of final snapshot.

CPU times (CPU-hours) for offline and online computations*

	Procedure	Airfoil	Low Re Cavity	Moderate Re Cavity
offline	FOM # of DOF	360,000	288,250	243,750
	Time-integration of FOM	7.8 hrs	72 hrs	179 hrs
	Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs	3.44 hrs
	Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs	14.8 hrs
	Stabilization	28 sec	14 sec	170 sec
online	ROM # of DOF	4	4	20
	Time-integration of ROM	0.31 sec	0.16 sec	0.83 sec
	Online computational speed-up	9.1e4	1.6e6	7.8e5

* For minimizing subspace rotation.

offline

online

CPU times (CPU-hours) for offline and online computations*

	Procedure	Airfoil	Low Re Cavity	Moderate Re Cavity
_	FOM # of DOF	360,000	288,250	243,750
	Time-integration of FOM	7.8 hrs	72 hrs	179 hrs
	Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs	3.44 hrs
	Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs	14.8 hrs
	Stabilization	28 sec	14 sec	170 sec
	ROM # of DOF	4	4	20
	Time-integration of ROM	0.31 sec	0.16 sec	0.83 sec
	Online computational speed-up	9.1e4	1.6e6	7.8e5

• Stabilization is *fast* (O(sec) or O(min)).

* For minimizing subspace rotation.

۲

CPU times (CPU-hours) for offline and online computations*

	Procedure	Airfoil	Low Re Cavity	Moderate Re Cavity
offline	FOM # of DOF	360,000	288,250	243,750
	Time-integration of FOM	7.8 hrs	72 hrs	179 hrs
	Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs	3.44 hrs
	Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs	14.8 hrs
	Stabilization	28 sec	14 sec	170 sec
online	ROM # of DOF	4	4	20
	Time-integration of ROM	0.31 sec	0.16 sec	0.83 sec
	Online computational speed-up	9.1e4	1.6e6	7.8e5

- Stabilization is *fast* (O(sec) or O(min)).
 - Significant online computational speed-up!

* For minimizing subspace rotation.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Summary

- We have developed a non-intrusive approach for <u>stabilizing</u> and <u>fine-</u> <u>tuning</u> projection-based ROMs for compressible flows.
- The standard POD modes are "<u>rotated</u>" into a more dissipative regime to account for the dynamics in the higher order modes truncated by the standard POD method.
- The new approach is <u>consistent</u> and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a *quadratic matrix program* on the Stiefel manifold.
- The constrained minimization problem is solved <u>offline</u> and <u>small</u> enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver <u>stable</u> and <u>accurate</u> ROMs.
Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

Future work

- Application to *higher Reynolds number* problems.
- Extension of the proposed approach to problems with <u>generic nonlinearities</u>, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to *minimal-residual-based* nonlinear ROMs.
- Extension of the method to <u>predictive applications</u>, e.g., problems with varying Reynolds number and/or Mach number.
- Selecting different <u>goal-oriented</u> objectives and constraints in our optimization problem:

minimize_{$$X \in \mathcal{V}_{(n+p),n}$$} $f(X)$
subject to $g(X, L) = 0$

e.g.,

• Maximize parametric robustness:

$$f = \sum_{i=1}^k \beta_i \| \boldsymbol{U}^*(\boldsymbol{\mu}_i) \boldsymbol{X} - \boldsymbol{U}^*(\boldsymbol{\mu}_i) \|_F.$$

• ODE constraints: $g = ||\boldsymbol{a}(t) - \boldsymbol{a}^*(t)||$.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References

References

- AUBRY, N., HOLMES, P., LUMLEY, J. L., & STONE E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192 (115) 115–173.
- BALAJEWICZ, M. & DOWELL, E. 2012 Stabilization of projection-based reduced order models of the Navier-Stokes equation. Nonlinear Dynamics 70 (2), 1619–1632.
- BALAJEWICZ, M. & DOWELL, E. & NOACK, B. 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation. *Journal of Fluid Mechanics* 729, 285–308.
- BALAJEWICZ, M., TEZAUR, I. & DOWELL, E. 2015 Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier-Stokes equations. ArXiV: http://arxiv.org/abs/1504.06661.
- BARONE, M., KALASHNIKOVA, I., SEGALMAN, D. & THORNQUIST, H. 2009 Stable Galerkin reduced order models for linearized compressible flow. J. Computat. Phys. 228 (6), 1932–1946.
- CARLBERG, K., FARHAT, C., CORTIAL, J. & AMSALLEM, D. 2013 The GNAT method for nonlinear model reduction: effective implementation and application to computational uid dynamics and turbulent flows. J. Computat. Phys. 242 623–647.
- KALASHNIKOVA, I., ARUNAJATESAN, S., BARONE, M., VAN BLOEMEN WAANDERS, B. & FIKE, J. 2014 Reduced order modeling for prediction and control of large-scale systems. *Sandia Tech. Report*.
- OSTH, J., NOACK, B. R., KRAJNOVIC, C., BARROS, D., & BOREE, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body. J. Fluid Mech. 747 518–544.
- ROWLEY, C., COLONIUS, T. & MURRAY, R. 2004 Model reduction for compressible ows using pod and galerkin projection. *Physica D: Nonlinear Phenomena* 189 (1) 115–129.
- SERRE, G., LAFON, P., GLOERFELT, X. & BAILLY, C. 2012 Reliable reduced-order models for timedependent linearized euler equations. J. Computat. Phys. 231 (15) 5176–5194.

Outline

- 1. Motivation
- 2. Projection-based model order reduction
- 3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
- 4. Applications
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
- 5. Summary
- 6. Future work
- 7. References
- 8. Appendix

Appendix: Accounting for modal truncation Sandia Laboratories

Stabilization algorithm: returns stabilizing rotation matrix X.

Inputs: Initial guess $\eta^{(0)} = tr(L(1:n,1:n))$ ($\mathbf{X} = \mathbf{I}_{(n+p)\times n}$), ROM size n and $p \ge 1$, ROM matrices associated with the first n + p most energetic POD modes, convergence tolerance *TOL*, maximum number of iterations k_{max} .

for $k = 0, \cdots, k_{max}$

Solve constrained optimization problem on Stiefel manifold:

$$\begin{array}{ll} \underset{\boldsymbol{X}^{(k)} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} & -\operatorname{tr}\left(\boldsymbol{X}^{(k)\mathrm{T}}\boldsymbol{I}_{(n+p)\times n}\right) \\ \\ \underset{k}{\operatorname{subject to}} & \operatorname{tr}(\boldsymbol{X}^{(k)\mathrm{T}}\boldsymbol{L}\boldsymbol{X}^{(k)}) = \eta^{(k)}. \end{array}$$

Construct new Galerkin matrices using (4). Integrate numerically new Galerkin system. Calculate "modal energy" $E(t)^{(k)} = \sum_{i}^{n} (a(t)_{i}^{(k)})^{2}$. Perform linear fit of temporal data $E(t)^{(k)} \approx c_{1}^{(k)}t + c_{0}^{(k)}$, where $c_{1}^{(k)}$ = energy growth. Calculate ϵ such that $c_{1}^{(k)}(\epsilon) = 0$ (no energy growth) using root-finding algorithm. Perform update $\eta^{(k+1)} = \eta^{(k)} + \epsilon$. if $||c_{1}^{(k)}|| < TOL$ $X := X^{(k)}$. terminate the algorithm. end