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Motivation rh) o

Targeted application: compressible fluid flow (e.g., captive-carry)

* Majority of fluid MOR approaches in the literature are for incompressible flow.

* There has been some on MOR for compressible flows.

* Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al.,
2007 (linear); Serre et al., 2012 (linear); Kalashnikova et al., 2014 (nonlinear).

* GNAT method/Petrov-Galerkin projection: Carlberg et al., 2014 (nonlinear).

MOR for nonlinear, compressible fluid flows is still in its infancy!
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High-Fidelity
CFD Simulations:

Snapshot 1 Step 1

Snapshot 2

Snapshot K

Fluid Modal
Decomposition
(POD):

u Z ar (t)Ur(x)
k=1

Snapshot matrix: X = (x1, ..., x¥) € RV*K
SVD: X =UxVT
Truncation: U « (U4, ...,U,) =U(:,1:n)

POD/Galerkin
Method to Model
Order Reduction

Step 2

Galerkin Projection
of Fluid PDEs:

(U;,a+ V- -F(u)) =0

_

—

“Small”
ROM
ODE

System:

ap = f{ﬂ.l, ...,aﬂ)

N = # of dofs in high-
fidelity simulation

K = # of snapshots

n = # of dofs in ROM
(n << N,n << K)
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Governing equations

* 3D compressible Navier-Stokes equations in primitive specific volume form:

Cetqu—Cujj=0

1
Ui + U jU; + (P — =T, =0 (1)

[PDEs] Re

Y y—1
Pty +vup — (5) (k@0),) i (T) U;,jTij =0

PrRe
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Governing equations

* 3D compressible Navier-Stokes equations in primitive specific volume form:

Cetqu—Cujj=0

1
[PDES M U P g STy =0 (1
14 y—1
Pt T Upj+ YUj;p— ( PrRe) (k¢ ),,-), I (W) Ui jTij = 0

* Spectral discretization (q(x,t) = Y.}, a;(t)U;(x)) + Galerkin projection
applied to (1) yields a system of n coupled quadratic ODEs:

da
—=C+la+[a"QWa+a"QPa+ - +a’Q™a]" (2)

[ROM]

where € € R*, L € R™" and QW € R foralli =1, ..., n.
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Summary of technical challenges

Projection-based MOR necessitates truncation.

 POD s, by definition and design, biased towards the large, enerqy producing
scales of the flow (i.e., modes with large POD eigenvalues).

* Truncated/unresolved modes are negligible form a data compression point of
view (i.e., small POD eigenvalues) but are crucial for the dynamical
equations.

* For fluid flow applications, higher-order modes are associated with energy
dissipation = low-dimensional ROMs are often inaccurate and sometimes
unstable.

For a ROM to be stable and accurate, the
truncated/unresolved subspace must be accounted for.

v N\
Turbulence Modeling Subspace Rotation
(traditional approach) (our approach)

SAND2016-4892C
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Traditional linear eddy-viscosity approach

* Dissipative dynamics of truncated higher-order modes are modeled using
an additional linear term:

da
S =C+ (L+L)a+[a"@Wa+a"QPa+ -+ a"QMal"

L, is designed to decrease magnitude of positive eigenvalues and increase
magnitude of negative eigenvalues of L + L,, (for stability).

 Disadvantages of this approach:

1. Additional term destroys consistency between ROM and Navier-
Stokes equations.

2. Calibration is necessary to derive optimal L,, and optimal value is flow
dependent.

3. Inherently a linear model — cannot be expected to perform well for
all classes of problems (e.g., nonlinear).
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Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation
a priori by “rotating” the projection subspace into a more dissipative regime

lllustrative example
* Standard approach: retain only the most energetic POD modes, i.e., U, U5,
Us U,,..
* Proposed approach: choose some higher order basis modes to increase
dissipation, i.e.,, U{,U,, Ug, Usg, ...

 More generally: approximate the solution using a linear superposition
of n + p (with p > 0) most energetic modes:

o + .
Ui = Z;L::{QXU U], i=1,..,n, (3)

where X € R(™*P)*7 i an orthonormal (XTX = I,,5.,,) “rotation” matrix.
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Goals of proposed new approach

Find X such that:

1. New modes U remain good approximations of the flow.
2. New modes produce stable and accurate ROMs.

« We formulate and solve a constrained optimization problem for X:

minimizeXEV(ner),n f(X)
subjectto g(X,L) =0

where V(15 n € {X e Rm+pxn. xTx — [ p > O} is the Stiefel manifold.

* Once X is found, the result is a system of the form (2) with:

Q(i)jk o Zn-l-p—lXSiQ(S)quqTXTkﬁ L < XTLX; C «— XTC*

S,q,r=
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Objective function

minimizeXev(ner),n f(X) (5)
subjectto g(X,L) =0

* We have considered two objectives f(X) in (5):

e  Minimize subspace rotation

fX) = ”X ~ I(n+p),n”F — _tr(XTI(n+p)><n) (6)

* Maximize resolved turbulent kinetic enerqy (TKE)

(7)

f&X) =12 - XX"X||,

» TKE objective (7) comes from earlier work (Balajewicz et al., 2013) involving
stabilization of incompressible flow ROMs
* POD modes associated with low KE are important dynamically even though
they contribute little to overall energy of the fluid flow.
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Objective function

minimizeXEv(ner)’n f(X) (5)
subjectto g(X,L) =0

* We have considered two objectives f(X) in (5):

4 )
e  Minimize subspace rotation

fX) = ”X ~ I(n+p),n”F — _tr(XTI(n+p)><n) (6)
\. J

e Maximize resolved turbulent kinetic enerqy (TKE)

(7)

fX) =12 - XX"X||,

* Numerical experiments reveal objective (6) produces better results than
objective (7) for compressible flow.
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constraint g(X,L) = 0in (5):

g(X,L) =tr(XTLX) — n

(5)
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minimizeyey,, . f(X) (5)
subjectto g(X,L) =0

e We use the traditional linear eddy-viscosity closure model ansatz for the
constraint g(X,L) = 0in (5):

g(X,L) =tr(XTLX) — n (8)

» Specifically, constraint (8) involves overall balance between linear energy
production and dissipation.

* 1 = proxy for the balance between linear energy production and energy
dissipation.
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Constraint

minimizexev(nwm f(X) (5)
subjectto g(X,L) =0

e We use the traditional linear eddy-viscosity closure model ansatz for the
constraint g(X,L) = 0in (5):

g(X,L) =tr(XTLX) — n (8)

» Specifically, constraint (8) involves overall balance between linear energy
production and dissipation.

* 1 = proxy for the balance between linear energy production and energy
dissipation.
* Constraint comes from property that averaged total power (= tr(XT LX) +
energy transfer) has to vanish.
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Minimal subspace rotation: trace minimization on Stiefel manifold

. . . T
minimizexey,,, . . —tr(X I(n+p)><n)

(9)
subjectto  tr(XTLX) =17

* 1 € R: proxy for the balance between linear energy production and energy
dissipation (calculated iteratively using modal energy).

* Viip)n € {X € RO XTx = [ 1 > 0} is the Stiefel manifold.

* Equation (9) is solved efficiently offline using the method of Lagrange
multipliers (Manopt MATLAB toolbox).

* See (Balajewicz, Tezaur, Dowell, 2016) and Appendix slide for Algorithm.
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Remarks

Proposed approach may be interpreted as an a priori consistent
formulation of the eddy-viscosity turbulence modeling approach.

e Advantages of proposed approach:

1. Retains consistency between ROM and Navier-Stokes equations —
no additional turbulence terms required.

2. Inherently a nonlinear model — should be expected to outperform
linear models.

3. Works with any basis and Petrov-Galerkin projection.

 Disadvantages of proposed approach:

1. Off-line calibration of free parameter n is required.
2. Stability cannot be proven like for incompressible case.
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High angle of attack laminar airfoil
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2D flow around an inclined NACAO0O012 airfoil at Mach 0.7,
Re =500, Pr=0.72, AOA =20° = n = 4 ROM (86% snapshot energy).

-

r__,"‘!_

Figure 1: Contours of velocity magnitude at time of final snapshot.




Applications

High angle of attack laminar airfoil
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Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)

OO =1 O O = L2 D =

0.8
0.6
0.4
0.2
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-- standard
ROM (n=4)

— stabilized
ROM (n=p=4)

Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis
a,(t) and a,(t), (c) illustration of stabilizing rotation showing that rotation is small:

”X_I(n ),n”F
n*” = 0.083,X = I(nip)n
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High angle of attack laminar airfoil

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)

| ByN

—5 ] e e = B 8

-5 0 5 -5 0 5 i 0 &
DNS Standard Stabilized ROM

Figure 3: High angle of attack laminar airfoil contours of velocity magnitude at time of
final snapshot.
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Channel driven cavity: low Reynolds number case

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72
= n = 4 ROM (91% snapshot energy).

BT

Nl
e

5110 L
il i

e e

Figure 4: Domain and mesh for viscous channel driven cavity problem.
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Channel driven cavity: low Reynolds number case

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)

108 Sa— T — T T T 1
S ] 0.1}k - . 2 0.8
| ! i 3 0.6 | --standard
- ol ¥ T .l 1.4 04 | ROM (n=4)
_ :,-j 1 = : 09 | stabilized
10~ £ 5 “ | ROM (n=p=4)
J UIF 1 g 0 | _pbns
ID—E l l l l I l
0 200 400 600 0.1 0 01
t G J
(a) (b) (c)

Figure 5: (a) evolution of modal energy, (b) phase plot of first and second temporal basis
a,(t) and a,(t), (c) illustration of stabilizing rotation showing that rotation is small:

”X_I(n ),n”F
n*” = 0.188,X = I(nip)n




Applications

Channel driven cavity: low Reynolds number case

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)

Power (dB/rad/sample)

Normalized frequency (rad/sample)

Figure 6: Pressure power spectral density (PSD) at location x = (2, —1);

stabilized ROM minimizes subspace rotation.
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-- standard
ROM (n=4)

— stabilized
ROM (n=p=4)
— DNS

0 0.2 0.4 0.6 0.8 1




Applications

Channel driven cavity: low Reynolds number case

e Maximizing resolved TKE:

fX) =12 - XX"X||,
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-- standard
ROM (n=4)

— stabilized
ROM (n=p=4)
— DNS

Power (dB/rad/sample)

Normalized frequency (rad/sample)

Figure 7: Pressure power spectral density (PSD) at location x = (2, —1);

stabilized ROM maximizes resolved TKE.

0 0.2 0.4 0.6 0.8 1
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Channel driven cavity: low Reynolds number case

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)

Y

o i
|
0 2 4
£r T .
DNS Standard Stabilized ROM
ROM (n = 4) (n=p=4)

Figure 8: Channel driven cavity Re = 1500 contours of u-velocity at time of final
snapshot.
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Channel driven cavity: moderate Reynolds number case

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr=0.72
= n = 20 ROM (71.8% snapshot energy).

i

Lol 4+

Figure 9: Domain and mesh for viscous channel driven cavity problem.
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Channel driven cavity: moderate Reynolds number case

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)

].OD B [ B
- 10 - 1 0.8 | __ standard
S— s e ] ol 0.6 | ROM (n=20)
o101 E A m T 4 7 0.4 | — stabilized
. a0 L a 0.2 | ROM (n=p=20)
d 0 — DNS
- Wﬂmf N
0 200 400 600 10 20
t J
(a) (b)

Figure 10: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing

X-1
that rotation is small: | (T:’p)'"”‘” = 0.038,X = Itpip)n




Applications

Channel driven cavity: moderate Reynolds number case

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)
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Figure 11: Pressure cross PSD of of p(x,,t) and p(x,, t) where x; = (2,—0.5), x, = (0,—0.5)

Power and phase lag at fundamental frequency, and first two super harmonics are
predicted accurately using the fine-tuned ROM (A = stabilized ROM, 1 = DNS)
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Channel driven cavity: moderate Reynolds number case

Minimizing subspace rotation:

fX) = ”X - I(n+p),n”F = _tr(XTI(n+p)><n)
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Figure 12: Channel driven cavity Re = 5500 contours of u-velocity at time of final
snapshot.




Applications

CPU times (CPU-hours) for offline and online computations*

Procedure Airfoil | Low Re | Moderate
Cavity Re Cavity
| FOM # of DOF 360,000 | 288,250 | 243,750
Time-integration of FOM 7.8 hrs 72 hrs 179 hrs
E B Basis construction (size n + p ROM) | 0.16 hrs | 0.88 hrs 3.44 hrs
i Galerkin projection (size n + p ROM) | 0.74 hrs | 5.44 hrs 14.8 hrs
| Stabilization 28sec | 14 sec 170 sec
o ROM # of DOF 4 4 20
% { Time-integration of ROM 0.31sec | 0.16 sec 0.83 sec
7 Online computational speed-up 9.1e4 1.6e6 7.8e5
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* For minimizing subspace
rotation.
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Applications

CPU times (CPU-hours) for offline and online computations*

Procedure Airfoil | Low Re | Moderate
Cavity Re Cavity
| FOM # of DOF 360,000 | 288,250 | 243,750
Time-integration of FOM 7.8 hrs 72 hrs 179 hrs
E B Basis construction (size n + p ROM) | 0.16 hrs | 0.88 hrs 3.44 hrs
5 Galerkin projection (size n + p ROM) | 0.74 hrs | 5.44 hrs 14.8 hrs
| Stabilization 28sec | 14 sec 170 sec
o ROM # of DOF 4 4 20
% { Time-integration of ROM 0.31sec | 0.16 sec 0.83 sec
7 Online computational speed-up 9.1e4 1.6e6 7.8e5

» Stabilization is fast (O(sec) or O(min)).

* Significant online computational speed-up!

* For minimizing subspace

rotation.
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Summary )t

 We have developed a non-intrusive approach for stabilizing and fine-
tuning projection-based ROMs for compressible flows.

* The standard POD modes are “rotated” into a more dissipative regime to
account for the dynamics in the higher order modes truncated by the
standard POD method.

 The new approach is consistent and does not require the addition of
empirical turbulence model terms unlike traditional approaches.

* Mathematically, the approach is formulated as a quadratic matrix
program on the Stiefel manifold.

* The constrained minimization problem is solved offline and small enough
to be solved in MATLAB.

* The method is demonstrated on several compressible flow problems and
shown to deliver stable and accurate ROMs.
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Future work rhh) et

e Application to higher Reynolds number problems.

* Extension of the proposed approach to problems with generic nonlinearities,
where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).

e Extension of the method to minimal-residual-based nonlinear ROMs.

* Extension of the method to predictive applications, e.g., problems with varying
Reynolds number and/or Mach number.

» Selecting different goal-oriented objectives and constraints in our optimization
problem:

minimizeXEv(Mp)'n f(X)
subjectto g(X,L) =0

e.g.,
 Maximize parametric robustness:

f =25 BllU* ()X — U ()l 5.
e ODE constraints: g = ||a(t) — a*(t)]l.




Outline rhh) feima

1. Motivation
Projection-based model order reduction

3. Accounting for modal truncation
* Traditional linear eddy-viscosity approach
* New proposed approach via subspace rotation

4. Applications
* High angle of attack laminar airfoil
* Low Reynolds number channel driven cavity
* Moderate Reynolds number channel driven cavity

5. Summary
6. Future work
7. References




References rh) s

Avusry, N., HoLmes, P., LumLey, J. L., & STonE E. 1988 The dynamics of coherent structures in the wall
region of a turbulent boundary layer. J. Fluid Mech. 192 (115) 115-173.

Bavaiewicz, M. & DowgLL, E. 2012 Stabilization of projection-based reduced order models of the Navier-5tokes
equation. Nonlinear Dynamics 70 (2), 1619-1632.

Bavaiewicz, M. & DoweLL, E. & Noack, B. 2013 Low-dimensional modelling of high-Reynolds-number shear
flows incorporating constraints from the Navier-Stokes equation. Journal of Fluid Mechanics 729, 285-308.

Bavaiewicz, M., Tezavr, 1. & DowegLL, E. 2015 Minimal subspace rotation on the Stiefel manifold for
stabilization and enhancement of projection-based reduced order models for the compressible Mavier-Stokes
equations. ArXiV: http://arxiv.org/abs/1504.06661.

BaroNE, M., KALasHNIKOVA, ., SECALMAN, D. & THorNgUIST, H. 2009 Stable Galerkin reduced order models
for linearized compressible flow. J. Computat. Phys. 228 (6), 1932-1046.

CaAarLBERC, K., FAruaT, C., CoRrTIAL, J. & AMSALLEM. D. 2013 The GNAT method for nonlinear model

reduction: effective implementation and application to computational uid dynamics and turbulent flows. J.
Computat. Phys. 242 623-647.

KALASHNIKOVA, 1., ARUNAJATESAN, S., BaroNE, M., van BLoEMEN WaaANDERS, B. & Fike, J. 2014 Reduced
order modeling for prediction and control of large-scale systems. Sandia Tech. Report.

OstH, J., Noack, B. R., Kraivovic, C., Barros, D., & Borgg, J. 2014 On the need for a nonlinear subscale
turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body. J. Fluid
Mech. 747 518-544.

RowLEy, C., Covronius, T. & Murray, R. 2004 Model reduction for compressible ows using pod and galerkin
projection. Physica D: Nonlinear Phenomena 189 (1) 115-120.

SERRE, G.. Laron, P., GLOERFELT, X. & BaiLLy, C. 2012 Reliable reduced-order models for timedependent
linearized euler equations. J. Computat. Phys. 231 (15) 5176-5194.



Sandia

Outline rhh) feima

1. Motivation
Projection-based model order reduction

3. Accounting for modal truncation
* Traditional linear eddy-viscosity approach
* New proposed approach via subspace rotation

4. Applications
* Low Reynolds number channel driven cavity
* Moderate Reynolds number channel driven cavity

5. Summary
6. Future work
7. References
8. Appendix




Sandia

Appendix: Accounting for modal truncatidi .
Stabilization algorithm: returns stabilizing rotation matrix X.

Inputs: Initial guess n(®) = tr(L(1:n,1:n)) (X = lintp)xn): ROM size n and p > 1,
ROM matrices associated with the first n + p most energetic POD modes,
convergence tolerance TOL, maximum number of iterations kmax.

fﬂrk:D,"' ,kmax
Solve constrained optimization problem on Stiefel manifold:

. e . KT
{lenlmlze — tr (X{ ) 'f[n+p}><n)
XY € V(n+p),n

subject to tr{X{HTLX{H] = 5%,

Construct new Galerkin matrices using (4).
Integrate numerically new Galerkin system.

I " k _ n {k::l 2
Calculate “modal energy” E(t)(K) = >oi(alr); )"

Perform linear fit of temporal data E{r}”‘]' o c{k}t + cé,k}, where C{k} —energy growth.

(k)

Calculate € such that ¢ (e) = 0 (no energy growth) using root-finding algorithm.
Perform update ’r;r”‘"'l]' = ’r;r”‘]' + €.
if ||1c\¥|| < ToL
X = x¥),
terminate the algorithm.
end

end



