On the Development & Performance of a First Order Stokes Finite Element Ice Sheet Dycore Built Using *Trilinos* Software Components

I. Tezaur*, A. Salinger, M. Perego, R. Tuminaro

Sandia National Laboratories Livermore, CA and Albuquerque, NM

1

With contributions from: I. Demeshko (SNL), S. Price (LANL) and M. Hoffman (LANL)

Saturday, March 14, 2015

SIAM Conference on Computational Science & Engineering (CS&E) 2015 Salt Lake City, UT

*Formerly I. Kalashnikova.

SAND2015-1599 C

Outline

- The First Order Stokes model for ice sheets and the Albany/FELIX finite element solver.
- Verification and mesh convergence.
- Effect of partitioning and vertical refinement.
- Nonlinear solver robustness.
- Linear solver scalability.

2

- Performance-portability.
- Summary and ongoing work.

Outline

- The First Order Stokes model for ice sheets and the Albany/FELIX finite element solver.
- Verification and mesh convergence.
- Effect of partitioning and vertical refinement.
- Nonlinear solver robustness.
- Linear solver scalability.

3

- Performance-portability.
- Summary and ongoing work.

For non-ice sheet modelers, this talk will show:

- How one can rapidly develop a productionready scalable and robust code using opensource libraries.
- Recommendations based on numerical lessons learned.
- New algorithms / numerical techniques.

4

The First-Order Stokes Model for Ice Sheets & Glaciers

Ice sheet dynamics are given by the *"First-Order" Stokes PDEs*: approximation* to viscous incompressible *quasi-static* Stokes flow with power-law viscosity.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

• Viscosity μ is nonlinear function given by "*Glen's law"*:

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^{2} \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

• Relevant boundary conditions:

 $\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\boldsymbol{\epsilon}}_{11} + \dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{13})$ $\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{11} + 2\dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{23})$ $\dot{\boldsymbol{\epsilon}}_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial u_{i}} + \frac{\partial u_{j}}{\partial u_{i}} \right)$

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

5

The First-Order Stokes Model for Ice Sheets & Glaciers

Ice sheet dynamics are given by the *"First-Order" Stokes PDEs*: approximation* to viscous incompressible *quasi-static* Stokes flow with power-law viscosity.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

• Viscosity μ is nonlinear function given by "*Glen's law"*:

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^{2} \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

- Relevant boundary conditions:
 - Stress-free BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = 0$, on Γ_s

 $\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\epsilon}_{11} + \dot{\epsilon}_{22}, \dot{\epsilon}_{12}, \dot{\epsilon}_{13})$ $\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\epsilon}_{12}, \dot{\epsilon}_{11} + 2\dot{\epsilon}_{22}, \dot{\epsilon}_{23})$

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

6

The First-Order Stokes Model for Ice Sheets & Glaciers

Ice sheet dynamics are given by the *"First-Order" Stokes PDEs*: approximation* to viscous incompressible *quasi-static* Stokes flow with power-law viscosity.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

Viscosity μ is nonline n's law":

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^{2} \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

- Relevant boundary conditions:
 - Stress-free BC: $2\mu\dot{\epsilon}_i \cdot \boldsymbol{n} = 0$, on Γ_s
 - Floating ice BC:

$$2\mu \dot{\boldsymbol{\epsilon}}_{i} \cdot \boldsymbol{n} = \begin{cases} \rho g z \boldsymbol{n}, \text{ if } z > 0\\ 0, \text{ if } z \leq 0 \end{cases}, \text{ on } \Gamma$$

*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

$$\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\boldsymbol{\epsilon}}_{11} + \dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{13})$$
$$\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{11} + 2\dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{23})$$
$$\dot{\boldsymbol{\epsilon}}_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

The First-Order Stokes Model for Ice Sheets & Glaciers

Ice sheet dynamics are given by the *"First-Order" Stokes PDEs*: approximation* to viscous incompressible *quasi-static* Stokes flow with power-law viscosity.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\boldsymbol{\epsilon}}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

• Viscosity μ is nonlinear function given by "*Glen's law"*:

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^{2} \right)^{\left(\frac{1}{2n} - \frac{1}{2}\right)} \qquad (n = 3)$$

- Relevant boundary conditions:
 - Stress-free BC: $2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = 0$, on Γ_s
 - Floating ice BC:

$$2\mu \dot{\boldsymbol{\epsilon}}_i \cdot \boldsymbol{n} = \begin{cases} \rho g z \boldsymbol{n}, \text{ if } z > 0\\ 0, & \text{ if } z \le 0 \end{cases}, \text{ on}$$

• **Basal sliding BC:** $2\mu \dot{\epsilon}_i \cdot n + \beta u_i = 0$, on Γ_{β}

$$\dot{\boldsymbol{\epsilon}}_{1}^{T} = (2\dot{\boldsymbol{\epsilon}}_{11} + \dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{13})$$
$$\dot{\boldsymbol{\epsilon}}_{2}^{T} = (2\dot{\boldsymbol{\epsilon}}_{12}, \dot{\boldsymbol{\epsilon}}_{11} + 2\dot{\boldsymbol{\epsilon}}_{22}, \dot{\boldsymbol{\epsilon}}_{23})$$
$$\dot{\boldsymbol{\epsilon}}_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$

Surface boundary
$$\Gamma_s$$

ice sheet
 \leftarrow Lateral boundary Γ_l
 Γ_l
 β = sliding coefficient ≥ 0

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to **develop** and **support** a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

• Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.

*FELIX="Finite Elements for Land Ice eXperiments"

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

- Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.
- <u>Requirements for Albany/FELIX:</u>

*FELIX="Finite Elements for Land Ice eXperiments"

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

- Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.
- <u>Requirements for Albany/FELIX:</u>
 - Scalable, fast, robust.

*FELIX="Finite Elements for Land Ice eXperiments"

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

- Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.
- <u>Requirements for Albany/FELIX:</u>
 - Scalable, fast, robust.

Dycore will provide actionable predictions of 21st century sea-level rise (including uncertainty).

• Dynamical core (dycore) when coupled to codes that solve thickness and temperature evolution equations (*CISM/MPAS* codes).

*FELIX="Finite Elements for Land Ice eXperiments"

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)

CISM/MPAS Land Ice Codes (dynamic):

Ice Sheet Evolution PDEs (thickness, temperature evolution)

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

- Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.
- <u>Requirements for Albany/FELIX:</u>
 - Scalable, fast, robust.

Dycore will provide actionable predictions of 21st century sea-level rise (including uncertainty).

**See M. Perego's talk today@ 5:25PM in MS71: "Advances on Ice-Sheet Model Initialization using the First Order Model"

- Dynamical core (dycore) when coupled to codes that solve thickness and temperature evolution equations (*CISM/MPAS* codes).
- Advanced analysis capabilities (deterministic inversion**, Bayesian calibration, UQ, sensitivity analysis).

*FELIX="Finite Elements for Land Ice eXperiments"

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)

CISM/MPAS Land Ice Codes (dynamic):

Ice Sheet Evolution PDEs

(thickness, temperature evolution)

"PISCEES" = Predicting Ice Sheet Climate & Evolution at Extreme Scales 5 Year Project funded by SciDAC, which began in June 2012

<u>Sandia's Role in the PISCEES Project:</u> to develop and support a robust and scalable land ice solver based on the "First-Order" (FO) Stokes physics

- Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.
- <u>Requirements for Albany/FELIX:</u>
 - Scalable, fast, robust.

Dycore will provide actionable predictions of 21st century sea-level rise (including uncertainty).

- Dynamical core (dycore) when coupled to codes that solve thickness and temperature evolution equations (*CISM/MPAS* codes).
- Advanced analysis capabilities (deterministic inversion**, Bayesian calibration, UQ, sensitivity analysis).
- Performance-portability.

*FELIX="Finite Elements for Land Ice eXperiments"

Albany/FELIX Solver (steady): Ice Sheet PDEs (First Order Stokes) (stress-velocity solve)

**See M. Perego's talk today@ 5:25PM in MS71: "Advances on Ice-Sheet Model Initialization using the First Order Model"

CISM/MPAS Land Ice Codes (dynamic):

Ice Sheet Evolution PDEs

(thickness, temperature evolution)

Algorithmic Choices for Albany/FELIX: Discretization & Meshes

- **Discretization:** unstructured grid finite element method (FEM)
 - Can handle readily complex geometries.

15

- Natural treatment of stress boundary conditions.
- Enables regional refinement/unstructured meshes.
- Wealth of software and algorithms.
- Meshes: can use any mesh but interested specifically in
 - Structured hexahedral meshes (compatible with CISM).
 - Structured tetrahedral meshes (compatible with MPAS)
 - **Unstructured Delaunay triangle** meshes with regional refinement based on gradient of surface velocity.
 - All meshes are extruded (structured) in vertical direction as tetrahedra or hexahedra.

Algorithmic Choices for Albany/FELIX: Nonlinear & Linear Solver

- Nonlinear solver: full Newton with analytic (automatic differentiation) derivatives
 - Most robust and efficient for steady-state solves.
 - Jacobian available for preconditioners and matrix-vector products.
 - Analytic sensitivity analysis.
 - Analytic gradients for inversion.
- Linear solver: preconditioned iterative method
 - Solvers: Conjugate Gradient (CG) or GMRES
 - Preconditioners: ILU or algebraic multi-grid (AMG)

The Albany/FELIX Solver: Implementation in Albany using Trilinos

17

Use of **Trilinos** components has enabled the **rapid** development of the **Albany/FELIX** First Order Stokes dycore!

See A. Salinger's talk on Tuesday @ 2:40PM in MS225 "Albany: A Trilinos-based code for Ice Sheet Simulations and other Applications"

Verification/Mesh Convergence Studies

Stage 1: solution verification on 2D MMS problems we derived.

18

Stage 3: full 3D mesh convergence study on Greenland w.r.t. reference solution.

Are the Greenland problems resolved? Is theoretical convergence rate achieved? *Stage 2:* code-to-code comparisons on canonical ice sheet problems.

Mesh Partitioning & Vertical Refinement

Mesh convergence studies led to some useful practical recommendations (for ice sheet modelers *and* geo-scientists)!

- *Partitioning matters*: good solver performance obtained with 2D partition of mesh (all elements with same x, y coordinates on same processor *right*).
- Number of vertical layers matters: more gained in refining # vertical layers than horizontal resolution (below relative errors for Greenland).

Horiz. res.\vert. layers	5	10	20	40	80
8km	2.0e-1				
4km	9.0e-2	7.8e-2			
2km	4.6e-2	2.4e-2	2.3e-2		
1km	3.8e-2	8.9e-3	5.5e-3	5.1e-3	
500m	3.7e-2	6.7e-3	1.7e-3	3.9e-4	8.1e-5

Mesh Partitioning & Vertical Refinement

Mesh convergence studies led to some useful practical recommendations (for ice sheet modelers *and* geo-scientists)!

- *Partitioning matters*: good solver performance obtained with 2D partition of mesh (all elements with same x, y coordinates on same processor *right*).
- Number of vertical layers matters: more gained in refining # vertical layers than horizontal resolution (below relative errors for Greenland).

Horiz. res.\vert. layers	5	10	20	40	80
8km	2.0e-1				
4km	9.0e-2	7.8e-2			
2km	4.6e-2	2.4e-2	2.3e-2		
1km	3.8e-2	8.9e-3	5.5e-3	5.1e-3	
500m	3.7e-2	6.7e-3	1.7e-3	3.9e-4	8.1e-5

Mesh Partitioning & Vertical Refinement

Mesh convergence studies led to some useful practical recommendations (for ice sheet modelers *and* geo-scientists)!

- *Partitioning matters*: good solver performance obtained with 2D partition of mesh (all elements with same x, y coordinates on same processor *right*).
- Number of vertical layers matters: more gained in refining # vertical layers than horizontal resolution (below relative errors for Greenland).

Horiz. res.\vert. layers	5	10	20	40	80
8km	2.0e-1				
4km	9.0e-2	7.8e-2			
2km	4.6e-2	2.4e-2	2.3e-2		
1km	3.8e-2	8.9e-3	5.5e-3	5.1e-3	
500m	3.7e-2	6.7e-3	1.7e-3	3.9e-4	8.1e-5

Vertical refinement to 20 layers recommended for 1km resolution over horizontal refinement.

Robustness of Newton's Method via Homotopy Continuation (LOCA)

22

Robustness of Newton's Method via Homotopy Continuation (LOCA)

Robustness of Newton's Method via Homotopy Continuation (LOCA)

• Newton's method most robust with full step + homotopy continuation of $\gamma \rightarrow 10^{-10}$: converges out-of-the-box!

24

Scalability via Algebraic Multi-Grid *With R. Tuminaro (SNL)* Preconditioning

Bad aspect ratios ruin classical AMG convergence rates!

25

- relatively small horizontal coupling terms, hard to smooth horizontal errors
- \Rightarrow Solvers (even ILU) must take aspect ratios into account

We developed a new AMG solver based on semi-coarsening (figure below)

*With 2D partitioning and layer-wise node ordering, required for best performance of ILU.

Scalability via Algebraic Multi-Grid *With R. Tuminaro (SNL)* Preconditioning

Bad aspect ratios ruin classical AMG convergence rates!

- relatively small horizontal coupling terms, hard to smooth horizontal errors
- \Rightarrow Solvers (even ILU) must take aspect ratios into account

We developed a new AMG solver based on semi-coarsening (figure below)

*With 2D partitioning and layer-wise node ordering, required for best performance of ILU.

Scalability via Algebraic Multi-Grid With R. Tuminaro (SNL) Preconditioning

Bad aspect ratios ruin classical AMG convergence rates!

- relatively small horizontal coupling terms, hard to smooth horizontal errors
- \Rightarrow Solvers (even ILU) must take aspect ratios into account

We developed a **new AMG solver** based on **semi-coarsening** (figure below)

*With 2D partitioning and layer-wise node ordering, required for best performance of ILU.

Scaling studies (next 3 slides):

New AMG preconditioner vs. ILU*

Greenland Controlled Weak Scalability Study

- Weak scaling study with fixed dataset, 4 mesh bisections.
- ~70-80K dofs/core.
- Conjugate Gradient (CG) iterative method for linear solves (faster convergence than GMRES).
- New AMG preconditioner developed by R. Tuminaro based on semi-coarsening (coarsening in z-direction only).
- Significant improvement in scalability with new AMG preconditioner over ILU preconditioner!

Greenland Controlled Weak Scalability Study

29

Fine-Resolution Greenland Strong Scaling Study

beta

150 100

10

0.1

lul

Sandia

- Strong scaling on 1km Greenland with 40 vertical layers (143M dofs, hex elements).
- Initialized with realistic basal friction (from deterministic inversion) and temperature fields \rightarrow interpolated from coarser to fine mesh.
- Iterative linear solver: CG.
- **Preconditioner**: ILU vs. new AMG (based on aggressive semi-coarsening).

ILU preconditioner scales better than AMG but ILU-preconditioned solve is slightly slower (see Kalashnikova et al ICCS 2015).

lul 3000

1000

10

0.1

- Weak scaling study on Antarctic problem (8km w/ 5 layers \rightarrow 2km with 20 layers).
- Initialized with realistic basal friction (from deterministic inversion) and temperature field from BEDMAP2.
- Iterative linear solver: GMRES.

31

 Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening (Kalashnikova et al GMD 2014, Kalashnikova et al ICCS 2015, Tuminaro et al SISC 2015).

Performance-Portability via (SNL) Kokkos

We need to be able to run *Albany/FELIX* on *new architecture machines* (hybrid systems) and *manycore devices* (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.).

- *Kokkos*: *Trilinos* library and programming model that provides performance portability across diverse devises with different memory models.
- With *Kokkos*, you write an algorithm once, and just change a template parameter to get the optimal data layout for your hardware.

See I. Demeshko's talk today @ 3:40PM in MS43 "A *Kokkos* Implementation of *Albany*: A Performance Portable Multiphysics Simulation Code"

Performance-Portability via *Kokkos* (continued)

 <u>Right</u>: results for a mini-app that uses finite element kernels from Albany/FELIX but none of the surrounding infrastructure.

33

- "# of elements" = threading index (allows for on-node parallelism).
- # of threads required before the Phi and GPU accelerators start to get enough work to warrant overhead: ~100 for the Phi and ~1000 for the GPU.

 <u>Below</u>: preliminary results for 3 of the finite element assembly kernels, as part of full Albany/FELIX code run.

Kernel	Serial	16 OpenMP Threads	GPU
Viscosity Jacobian	20.39 s	2.06 s	0.54 s
Basis Functions w/ FE Transforms	8.75 s	0.94 s	1.23 s
Gather Coordinates	0.097 s	0.107 s	5.77 s

Note: Gather Coordinates routine requires copying data from host to GPU.

Summary and Ongoing Work

Summary:

34

- This talk described the development of a finite element land ice solver known as *Albany/FELIX* written using the libraries of the *Trilinos* libraries.
- The code is verified, scalable, robust, and portable to new-architecture machines! This is thanks to:
 - Some new algorithms (e.g., AMG preconditioner) and numerical techniques (e.g., homotopy continuation).
 - The *Trilinos* software stack.

Use of *Trilinos* libraries has enabled the rapid development of this code!

Ongoing/future work:

- Dynamic simulations of ice evolution.
- Deterministic and stochastic initialization runs (see M. Perego's talk).
- Porting of code to new architecture supercomputers (see I. Demeshko's talk).
- Articles on Albany/FELIX [GMD, ICCS 2015], Albany [J. Engng.] (see A. Salinger's talk), AMG preconditioner (SISC).
- Delivering code to climate community and coupling to earth system models.

Funding/Acknowledgements

35

PISCEES team members: W. Lipscomb, S. Price, M. Hoffman, A. Salinger, M. Perego, I. Kalashnikova, R. Tuminaro, P. Jones, K. Evans, P. Worley, M. Gunzburger, C. Jackson;

Trilinos/DAKOTA collaborators: E. Phipps, M. Eldred, J. Jakeman, L. Swiler.

Thank you! Questions?

References

[1] M.A. Heroux *et al.* "An overview of the Trilinos project." *ACM Trans. Math. Softw.* **31**(3) (2005).

[2] A.G. Salinger *et al.* "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", *Comput. Sci. Disc.* (submitted, 2015).

36

[3] **I. Kalashnikova**, M. Perego, A. Salinger, R. Tuminaro, S. Price. "*Albany/FELIX*: A Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", *Geosci. Model Develop. Discuss.* 7 (2014) 8079-8149 (under review for *GMD*).

[4] I. Kalashnikova, R. Tuminaro, M. Perego, A. Salinger, S. Price. "On the scalability of the *Albany/FELIX* first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets", *MSESM/ICCS15*, Reykjavik, Iceland (June 2014).

[5] R.S. Tuminaro, **I. Tezaur**, M. Perego, A.G. Salinger. "A Hybrid Operator Dependent Multi-Grid/Algebraic Multi-Grid Approach: Application to Ice Sheet Modeling", *SIAM J. Sci. Comput.* (in prep).

