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Outline 

• The First Order Stokes model for ice sheets and 
the Albany/FELIX finite element solver. 

 

• Verification and mesh convergence. 
 

• Effect of partitioning and vertical refinement. 
 

• Nonlinear solver robustness. 
 

• Linear solver scalability. 
 

• Performance-portability. 
 

• Summary and ongoing work.  
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• Summary and ongoing work.  

For non-ice sheet modelers, this talk will show:  
 

• How one can rapidly develop a production-
ready scalable and robust code using open-
source libraries.  

 

• Recommendations based on numerical 
lessons learned. 

 

• New algorithms / numerical techniques.  
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The First-Order Stokes Model 
for Ice Sheets & Glaciers 

 

•  Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to 
viscous incompressible quasi-static Stokes flow with power-law viscosity. 

 
−𝛻 ∙ (2𝜇𝝐 1) = −𝜌𝑔

𝜕𝑠

𝜕𝑥

−𝛻 ∙ (2𝜇𝝐 𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

    ,    in Ω 

Albany/FELIX 

• Relevant boundary conditions:  
 
 

 

Ice sheet 

 

•  Viscosity 𝜇 is nonlinear function given by “Glen’s law”:  
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𝝐 1
𝑇 = 2𝜖 11+ 𝜖 22, 𝜖 12, 𝜖 13  

𝝐 2
𝑇 = 2𝜖 12, 𝜖 11+ 2𝜖 22, 𝜖 23  

𝜖 ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

 

*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical. 
 

(𝑛 = 3) 
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Surface boundary Γ𝑠 
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(𝑛 = 3) 
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The PISCEES Project and the 
Albany/FELIX Solver 

“PISCEES” = Predicting Ice Sheet Climate & Evolution at Extreme Scales 
5 Year Project funded by SciDAC, which began in June 2012 

Sandia’s Role in the PISCEES Project: to develop and support a robust and 
scalable land ice solver based on the “First-Order” (FO) Stokes physics 
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Algorithmic Choices for Albany/FELIX: 
Discretization & Meshes 

• Discretization: unstructured grid finite element method (FEM) 
 

• Can handle readily complex geometries. 
• Natural treatment of stress boundary                                

conditions. 
• Enables regional refinement/unstructured                        

meshes. 
• Wealth of software and algorithms. 

 
• Meshes: can use any mesh but interested specifically in  
 

• Structured hexahedral meshes (compatible with CISM). 
• Structured tetrahedral meshes (compatible with MPAS)  
• Unstructured Delaunay triangle meshes with regional 

refinement based on gradient of surface velocity. 
• All meshes are extruded (structured) in vertical direction as        

tetrahedra or hexahedra. 
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Algorithmic Choices for Albany/FELIX: 
Nonlinear & Linear Solver 

• Nonlinear solver: full Newton with analytic (automatic differentiation) 
derivatives 

 

• Most robust and efficient for steady-state solves. 
• Jacobian available for preconditioners and matrix-vector products. 
• Analytic sensitivity analysis.  
• Analytic gradients for inversion.  
 

• Linear solver: preconditioned iterative method 
 

• Solvers: Conjugate Gradient (CG) or GMRES 
• Preconditioners: ILU or algebraic multi-grid (AMG) 

 

Nonlinear Solve 
for 𝒇(𝒙)  =  0 

(Newton) 

Preconditioned  
Iterative Linear Solve  

(CG or GMRES): 
Solve 𝑱𝒙 = 𝒓 

Automatic 
Differentiation 

Jacobian: 

𝑱 =  
𝜕𝒇

𝜕𝒙
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Land Ice Physics Set 
(Albany/FELIX code)  

Other Albany 
Physics Sets 

The Albany/FELIX First Order Stokes 
solver is implemented in a Sandia 
(open-source*) parallel C++ finite 

element code called… 

• Discretizations/meshes 
• Solver libraries  
• Preconditioners 
• Automatic differentiation 
• Many others! 

• Parameter estimation 
• Uncertainty quantification 
• Optimization 
• Bayesian inference 

• Configure/build/test/documentation 

The Albany/FELIX Solver:  
Implementation in Albany using Trilinos  

 

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore! 

Started 

by A. 

Salinger 

“Agile Components” 

See A. Salinger’s talk on Tuesday @ 2:40PM in MS225 
“Albany: A Trilinos-based code for Ice Sheet Simulations and other Applications” 

*Available on github: https://github.com/gahansen/Albany. 
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Verification/Mesh Convergence 
Studies 

Stage 1: solution verification on 2D MMS 
problems we derived. 

Stage 2: code-to-code comparisons on canonical 
ice sheet problems. 

Stage 3: full 3D mesh convergence study on 
Greenland w.r.t. reference solution.  

Are the Greenland problems resolved?   
Is theoretical convergence rate achieved?  

Albany/FELIX LifeV 
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Mesh Partitioning & Vertical  
Refinement 

Mesh convergence studies led to some useful practical recommendations 
(for ice sheet modelers and geo-scientists)! 

• Partitioning matters: good solver performance obtained with 2D 
partition of mesh (all elements with same 𝑥, 𝑦 coordinates on same 
processor - right).  
 

• Number of vertical layers matters: more gained in refining # vertical 
layers than horizontal resolution (below – relative errors for 
Greenland). 

Horiz. res.\vert. layers 5 10 20 40 80 

8km 2.0e-1 

4km 9.0e-2 7.8e-2 

2km 4.6e-2 2.4e-2 2.3e-2 

1km 3.8e-2 8.9e-3 5.5e-3 5.1e-3 

500m 3.7e-2 6.7e-3 1.7e-3 3.9e-4 8.1e-5 
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Mesh Partitioning & Vertical  
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Vertical refinement 
to 20 layers 

recommended for 
1km resolution over 

horizontal 
refinement. 
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Robustness of Newton’s Method via 
Homotopy Continuation (LOCA) 

γ=10-1.0 

γ=10-2.5 
γ=10-6.0 γ=10-10 

γ=10-10 

γ=10-10 

𝜇 =
1

2
𝐴−

1
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2
 𝝐 𝑖𝑗

2

𝑖𝑗

1
2𝑛

−
1
2

 

Glen’s Law Viscosity:  

𝑛 = 3  
(Glen’s law exponent) 

𝝐 1
𝑇 = 2𝜖 11+ 𝜖 22, 𝜖 12, 𝜖 13  

𝝐 2
𝑇 = 2𝜖 12, 𝜖 11+ 2𝜖 22, 𝜖 23  

𝜖 ij =
1

2

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖
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Robustness of Newton’s Method via 
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Scalability via Algebraic Multi-Grid  
Preconditioning 

Bad aspect ratios ruin classical AMG convergence rates! 
• relatively small horizontal coupling terms, hard to smooth horizontal errors 
  Solvers (even ILU) must take aspect ratios into account 

We developed a new AMG solver based on semi-coarsening (figure below) 
• Algebraic Structured MG (  matrix depend. MG) used with vertical line relaxation on 
     finest levels + traditional AMG on 1 layer problem 

 

With R. Tuminaro (SNL) 

… 

Algebraic 
Structured MG 

Algebraic 
Structured MG 

Unstructured 
AMG  

Unstructured 
AMG  

*With 2D partitioning and layer-wise node ordering, 
required for best performance of ILU.  
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We developed a new AMG solver based on semi-coarsening (figure below) 
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     finest levels + traditional AMG on 1 layer problem 

 

With R. Tuminaro (SNL) 

… 

Algebraic 
Structured MG 

Algebraic 
Structured MG 

Unstructured 
AMG  

Unstructured 
AMG  

*With 2D partitioning and layer-wise node ordering, 
required for best performance of ILU.  

New AMG preconditioner is 
available in ML package of Trilinos! 

Scaling studies (next 3 slides):  
New AMG preconditioner vs. ILU* 
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Greenland Controlled Weak 
Scalability Study 

• Weak scaling study with fixed 
dataset, 4 mesh bisections. 

 

• ~70-80K dofs/core. 
 

• Conjugate Gradient (CG) 
iterative method for linear solves 
(faster convergence than 
GMRES). 

 

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).   

 

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner!  

4 cores 
334K dofs 

8 km Greenland,  
5 vertical layers 

16,384 cores 
1.12B dofs(!) 

0.5 km Greenland,  
80 vertical layers 

× 84  
scale up 



29 

Greenland Controlled Weak 
Scalability Study 

• Weak scaling study with fixed 
dataset, 4 mesh bisections. 

 

• ~70-80K dofs/core. 
 

• Conjugate Gradient (CG) 
iterative method for linear solves 
(faster convergence than 
GMRES). 

 

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).   

 

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner!  

4 cores 
334K dofs 

8 km Greenland,  
5 vertical layers 

16,384 cores 
1.12B dofs(!) 

0.5 km Greenland,  
80 vertical layers 

× 84  
scale up 

New AMG preconditioner 
preconditioner 

ILU preconditioner 
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Albany/FELIX Glimmer/CISM 

Fine-Resolution Greenland Strong  
Scaling Study 

• Strong scaling on 1km Greenland with 40 vertical layers (143M dofs, hex elements). 
 

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature fields → interpolated from coarser to fine mesh. 

 

• Iterative linear solver: CG. 
 

• Preconditioner: ILU vs. new AMG (based on aggressive semi-coarsening). 

ILU preconditioner scales better than AMG but ILU-preconditioned solve is slightly slower 
(see Kalashnikova et al ICCS 2015). 

ILU AMG 

1024 
cores  

16,384 
cores  # cores 

 

1024 
cores  

16,384 
cores  # cores 
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Albany/FELIX Glimmer/CISM 

Moderate Resolution Antarctica 
Weak Scaling Study 

• Weak scaling study on Antarctic problem (8km w/ 5 layers → 2km with 20 layers). 
 

• Initialized with realistic basal friction (from deterministic inversion) and 
temperature field from BEDMAP2. 

 

• Iterative linear solver: GMRES. 
 

• Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening 
(Kalashnikova et al GMD 2014, Kalashnikova et al ICCS 2015, Tuminaro et al SISC 
2015). 

16 
cores  

1024 
cores  # cores 

 

16 
cores  

1024 
cores  # cores 

 

ILU AMG 

AMG 
preconditioner  

AMG preconditioner less sensitive 
than ILU to ill-conditioning. 

Severe ill-conditioning 
caused by ice shelves! 

(vertical > horizontal 
coupling)  

+  
Neumann BCs  

=  
nearly singular 

submatrix associated 
with vertical lines GMRES less sensitive than CG to rounding errors from 

ill-conditioning [also minimizes different norm]. 
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We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• Kokkos: Trilinos library and programming model that provides performance 
portability across diverse devises with different memory models. 

 

• With Kokkos, you write an algorithm once, and just change a template parameter 
to get the optimal data layout for your hardware. 

With I. Demeshko (SNL) 

Performance-Portability via  
Kokkos 

See I. Demeshko’s talk today @ 3:40PM in MS43 
“A Kokkos Implementation of Albany: A Performance Portable Multiphysics Simulation Code” 
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• Right: results for a mini-app that uses finite 
element kernels from Albany/FELIX but none 
of the surrounding infrastructure. 
• “# of elements” = threading index 

(allows for on-node parallelism).  
• # of threads required before the Phi 

and GPU accelerators start to get 
enough work to warrant overhead: 
~100 for the Phi and ~1000 for the GPU. 

Performance-Portability via  
Kokkos (continued) 

• Below: preliminary results for 3 of the finite                         
element assembly kernels, as part of full Albany/FELIX code run. 

 
Kernel Serial 16 OpenMP Threads GPU 

Viscosity Jacobian 20.39 s 2.06 s 0.54 s 

Basis Functions w/ FE Transforms 8.75 s 0.94 s 1.23 s 

Gather Coordinates 0.097 s 0.107 s 5.77 s 

Note: Gather 
Coordinates 

routine requires 
copying data from 

host to GPU. 
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Summary and Ongoing Work 

Summary:  
 

• This talk described the development of a finite element land ice solver known as 
Albany/FELIX written using the libraries of the Trilinos libraries.  

 

• The code is verified, scalable, robust, and portable to new-architecture machines!  This 
is thanks to: 

 

• Some new algorithms (e.g., AMG preconditioner) and numerical techniques (e.g., 
homotopy continuation). 

 

• The Trilinos software stack.  

Ongoing/future work: 
 

• Dynamic simulations of ice evolution.  
 

• Deterministic and stochastic initialization runs (see M. Perego’s talk). 
 

• Porting of code to new architecture supercomputers (see I. Demeshko’s talk). 
 

• Articles on Albany/FELIX [GMD, ICCS 2015], Albany [J. Engng.] (see A. Salinger’s talk), 
AMG preconditioner (SISC). 

 

• Delivering code to climate community and coupling to earth system models. 

Use of Trilinos libraries has enabled the rapid development of this code! 
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