Sandia
National
Laboratories

Ly
e zzemzae
e C -~
T BB : > -
- e I L | s I

The Schwarz Alternating Method for Multiscale
Coupling in Solid Mechanics

Alejandro Mota?, Irina Tezaur?!, Coleman Alleman?, Greg Phlipot?

1Sandia National Laboratories, Livermore, CA, USA. 2California Institute of Technology, Pasadena, CA, USA.
COUPLED 2019 Sitges, Spain June 3-5, 2019

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
1; owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-5577 C



. Sandia
Outline rh) et

1. Motivation

2. Schwarz Alternating Method for Concurrent
Multiscale Coupling for Quasistatics
* Formulation

* Implementation -
e Numerical Examples :
3. Schwarz Alternating Method for Concurrent o

Multiscale Coupling for Dynamics
* Formulation

* Implementation

 Numerical Examples

4. Summary

Future Work e




. Sandia
Outline rh) et

1. Motivation

2. Schwarz Alternating Method for Concurrent
Multiscale Coupling for Quasistatics
* Formulation

* Implementation -
* Numerical Examples COUPLED 2017 talk 1
3. Schwarz Alternating Method for Concurrent o

Multiscale Coupling for Dynamics
* Formulation

* Implementation

 Numerical Examples

4. Summary

Future Work i




. Sandia
Outline rh) o
1. Motivation

2. Schwarz Alternating Method for Concurrent
Multiscale Coupling for Quasistatics
* Formulation

* Implementation -
e Numerical Examples :
3. Schwarz Alternating Method for Concurrent o

Multiscale Coupling for Dynamics
* Formulation

* Implementation

 Numerical Examples

NEW!

4. Summary

Future Work il




. Sandia
Outline rh) et

1. Motivation

2. Schwarz Alternating Method for Concurrent
Multiscale Coupling for Quasistatics
* Formulation

* Implementation -
e Numerical Examples :
3. Schwarz Alternating Method for Concurrent o

Multiscale Coupling for Dynamics
* Formulation

* Implementation

 Numerical Examples

4. Summary

Future Work e




Motivation for Concurrent Multiscale h) e,
Coupling

= [Large scale structural failure frequently
originates from small scale phenomena such
as defects, microcracks, inhomogeneities and
more, which grow quickly in unstable manner.

= Failure occurs due to tightly coupled
interaction between small scale (stress
concentrations, material instabilities, cracks, Roof failure of Boeing 737 aircraft due to

etc.) and large scale (vibration, impact, high fatigue cracks. From imechanica.org
loads and other perturbations).

Concurrent multiscale methods are
essential for understanding and prediction
of behavior of engineering systems when a .

. _ Surface flaw in pressure

Sma” Scale fallure determ|nes the vessel: interacts with

performance of the entire system. microstructure, which may
or may not lead to failure.



Requirements for Multiscale Coupling Method

o Coupling is concurrent (two-way).
o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries!

» Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

> Ability to use different solvers/time-integrators in different regions.

o Coupling does not introduce
nonphysical artifacts.

o Theoretical convergence
properties/guarantees.




Schwarz Alternating Method for Domain ()&
Decomposition

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843 — 1921)

L Basic Schwarz Algorithm
Initialize:

= Solve PDE by any method on (2, w/ initial guess for Dirichlet BCs on 7.

Iterate until convergence:

r, = Solve PDE by any method (can be different than for €2) on 2, w/
Dirichlet BCs on 7 that are the values just obtained for (2,.

= Solve PDE by any method (can be different than for €2,) on ©, w/
Dirichlet BCs on /7 that are the values just obtained for (2,.
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Schwarz Alternating Method for Domain ()&
Decomposition (

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains. <
T e

Crux of Method: if the solution is known in regularly shaped domains, use -
those as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843 — 1921)

Basic Schwarz Algorithm

Initialize:

= Solve PDE by any method on (2, w/ initial guess for Dirichlet BCs on 7.

Iterate until Convergence: REQUiI'ementfor ConvergenCE' an QZ i Q)
r, = Solve PDE by any method (can be different than for €2) on 2, w/
Dirichlet BCs on 7, that are the values just obtained for £2,.
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Dirichlet BCs on /7 that are the values just obtained for (2,.

= Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.




— solving multiscale partial differential equations (PDEs).

Schwarz Alternating Method for Domain ()&
Decomposition

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843 — 1921)

Basic Schwarz Algorithm

Initialize:

= Solve PDE by any method on (2, w/ initial guess for Dirichlet BCs on /7.

Iterate until Convergence: RECIUiI‘ementhI' ConvergenCE' an QZ i Q)
r, = Solve PDE by any method (can be different than for €2) on 2, w/
Dirichlet BCs on 7, that are the values just obtained for £2,.
a, = Solve PDE by any method (can be different than for €2,) on ©, w/

Dirichlet BCs on /7 that are the values just obtained for (2,.

= Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for
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Schwarz Alternating Method for Multiscale, g

Laboratories

Coupling in Quasistatics

1: 00 «— idx in 2 > initialize to zero displacement or a better guess in {25
2:n<+1

3: repeat > Schwarz loop
4: @™ «— x on 0 > Dirichlet BC for §;
5 (") Po, 1, [cp(”_l)] on [; 0, Ty r, o > Schwarz BC for ;
6 @™ «— arg IIélg ®,[¢] in §2; > solve in §2;
7: n+<n-+1 e

8: until converged

Advantages:

Conceptually very simple.

Allows the coupling of regions with different non-conforming meshes, different element
types, and different levels of refinement.

Information is exchanged among two or more regions, making coupling concurrent.
Different solvers can be used for the different regions.

Different material models can be coupled if they are compatible in the overlap region.
Simplifies the task of meshing complex geometries for the different scales.



Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear
elasticity in variational form and proved method’s |
convergence by proposing a convergent sequence of S. L. Sobolev (1908 — 1989)
energy functionals.

\

= S. G. Mikhlin (1951): proved convergence of Schwarz \ - '
— )

method for general linear elliptic PDEs.

= A. Mota, |. Tezaur, C. Alleman (2017)*: derived a proof of
convergence of the alternating Schwarz method for the
finite deformation quasi-static nonlinear PDEs (with
energy functional @[] defined below), and determined a
geometric convergence rate for the finite deformation
guasi-static problem.

®lp] = [, W(F,Z,T)adv - [, B-(pdV—faTBT_'-tpdS
V-P+B=0

A. Mota, |. Tezaur, C. Alleman

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Four Variants® of Schwarz rh) i

1: zg) <~ Xg) in g, zgl) <~ x(Xél)) on dpf, m/(sl) “— Xl(,l) onT; > initialize for €1

2: wg) — Xg) in Qg, z,(,z) — x(X,§2)) on 9 s, z?) — X[(f) onTlg > initialize for Qg

3: repeat > Schwarz loop ) . ) ) ) ) .
4y zg)  for convergence check ey’ « Xp'inQy,a, + x(X,) on 8p01, Ty Xﬂ onTl'y > initialize for

2 2) . 2 2 2 2 -
5 mfgl) - Pmmg) + lewf) + G12-’B§32) > project from 3 to T'y 2: z(B) — XJ(B) in Qg, zg ) X(Xg )) on 92, zg ) Xé ) on Ty D> initialize for Qg
6:  repeat > Newton loop for 1 3 “Pea(tl) @ @ @ > Newton-Schwarz loop
7 Awg) . _Kfcill)s(wg)? w(bl);w‘(gl))\Rg)(zg); wl(,l); wg)) > linear system 4 xp’ « Ppzp +Quwy +Gixg > project from Qg to 'y
8 2D 20 4 Azd 50 Az K@ 220 N\RD @) 20 24) > linear system
9:  until [|[A2)1/112P]] < emachine > tight tolerance 6 22l Axld
10:  y@ « zg) > for convergence check 7: z/(:) «— Pglzg) + angl) + Gzlwgl) > project from € to I'y
2 .
1 2P « Ppa) + Qual’ + Guzl) > project from 5 to Iy 8 sad « —K@@P;a aP\RYD @32 2?) > linear system
12: repeat > Newton loop for 2o o: ) @ | Ap®
13: 22— ~KD @S2 2P N\RD @) 22 > linear system ¢ ®p & Tp HATE ) A
14: mg) — m(‘g) + Amg) 10: until [(HAmg)H/ng)H) + (llAmg)H/Hzg)ll) ] < €machine > tight tolerance
15:  until HAzg)II/IIzg)H < €machine > tight tolerance
) 1112 @ @2
16: until [(ny“) —2P=PN) + (ly® - =2 1/1=$1) } < Cmchine b tight tolerance
Full Schwarz Modified Schwarz

12« X3 in 01,2l x(X{) ondp0, 2 X onTy b initialize for 1

2 wﬁ? — Xf;) in Qg, w,(,z) — x(x,ﬁ”) on dpfa, w;f) — Xff) onTly > initialize for 22

3: repeat > Schwarz loop

4: y(l) ) > for convergence check (1) (1) (1) (1) .

. o B @ @ @ . Lxyg’ « X' inQp, ey’ + x(X, ) ondp, > initialize for €21
50 my’ « Powy’ + Quey” + Graxy > project from Q2 to I'y 2 2@  x® iy Qs, 2@ x(X(2>) on 8p 2, > initialize for 2
6: repeat > Newton loop for 1 "B B b b

X 1) —K(l) ). (1), (1) R(l) . 1), (1) ) 3: repeat > Newton-Schwarz loop
7: Az’ ap@plimy eg )\Ry (eg’say, say’) > linear system (1) (1) (1) 1) (1)

(1) (1) (1) Az KAB+KA/9H11 KABHIZ R .

8: 2y 2l + safy S D ) o K® S @ |\ _gd > linear system

i (1) (1) 4 10—1 Re] Apti21 aB t B ysH22 -Ry
9:  until [|[Azy’||/||leg’|| <€ > loose tolerance, e.g. € € [1074,1071] (1) (1) (1)

. @ 5: xR’ Ty + ATy
10: Y@ Tp © for convergence check 6 @ @ L pp®
11: mg) . szg> +Q21w§1> + Gm-’cf;) > project from Q4 to Ty r g’ —xg’ + Ay . s
12: repeat > Newton loop for Qo 7: until [ ”Am(l)”/um(l)” i |\Aw(2)||/||m(2)|| ] Lhemgati > tight tolerance
13: Az(;) — —Kf})s(:t(;);z?);wgz))\Rf) (wg);wgz);wg)) D> solve linear system ( B B ) ( B B ) = e
14: m(;) — mg) + Am(;)
15:  until ||Azg)||/||$(§)|| <e > loose tolerance, e.g. € € [1074,107!]

2 211/2
16: until [(uy@) —2@1/ePN) + (ly® -2 1/1=$11) ] < Cmctine b tight tolerance
Inexact Schwarz Monolithic Schwarz

I ———————-——
*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.




Four Variants™ of Schwarz

Most performant method: monotonic convergence,
theoretical convergence guarantee.
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m National
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1: z(l) XD in 0, &)  x(XP) on dp0, zf;) « Xt(al) onTy > initialize for Q1

2: w ) X<2) in Q, @ ( ) — x(X,§2)) on 9 s, m?) — X[(iz) onTlg > initialize for Qg

3: repeat > Schwarz loop . ) ) ) ) .

4y zg) b for convergence check 1: z — Xp'inQ, @y’ (X, ) on 0, g’ X7 onTy > initialize for 1
2 2 2 2 -

5 :1:(1) - Pmmg) + lewf) + G12m(2) > project from 3 to T'y 2: zB < XJ(B) in Qg, ,(J — X(Xé )) on 92, zg ) Xg ) on Ty D initialize for Qg

6: repeat > Newton loop for 1 3: repeat > Newton-Schwarz loop

7 pad)  ~ KD @D 2 aPNRY @D; 22 ) > linear system 4 2« Poal) + Qual + Gzl > project from Q3 to I'y

g 2D 2 +Am(1) 50 Az K@ 220 N\RD @) 20 24) > linear system

9: until HAw(l)H/Hz(I)H < €machine > tight tolerance 6 mg) “— wg) + Awg)

10:  y@ « z%) > for convergence check 7 2 lezg) + an(l) + Gzlwﬂl > project from Q3 to T’

1 )« Ppal) + lemgl) +Gnz) > project from Q5 to T'y 8 sad « —K@@P;a aP\RYD @32 2?) > linear system

12: repeat > Newton loop for Q2 o ) @ A (2)

13: Azg) — —Kf}a(a:g); (2))\R(2)(:1:(2) £2);w§f)) > linear system . Tp < Tp +AOTp 211/2

14: z? 2@ 4 p2® 10: until [(HAz(l)H/Hm(l)H) (||Am(2)\|/||z(2)||) ] < €machine > tight tolerance

15: until HAz@)ll/llz@)H < €machine > tight tolerance

) 1112 @ @2
16: until [(ny“) —2P=PN) + (ly® - =2 1/1=$1) } < Cmchine b tight tolerance

Full Schwarz Modified Schwarz
12« X3 in 01,2l x(X{) ondp0, 2 X onTy b initialize for 1
2 w(,f) — Xf;) in Qg, w,(,z) — x(X,SZ)) on dpfa, z;f) — Xff) onTly > initialize for Q2
3: repeat > Schwarz loop
. 1 (1)
oy (1; “r @ @ > for convergence check el « XPin0, 2  x(XD) on 8,9, > initialize for
5: xy’ Pz’ + Qrazy +G12w > project from Qg to 'y 2 2@  X®inq, 2@ x(X(2>) on B > initialize for
6: repeat > Newton loop for Q1 3: regeat B 25 b ‘p3ias & Newton-Schwarz 100;
7: Aw(l) - K(l) (z(l) 2(71) (1))\R(1)(w(1) '(71); zgl)) > linear system A KD+ KOH KO H,, _R®
8: (1) - m(l) + Am(l) 4: B« AB @ AB @ AB @ f‘z) > linear system
o) o) Azy K s Ha KAB+KA5H22 -Ry
9:  until HA:E I/llep’l] < e > loose tolerance, e.g. € € [1074,1071] 5 (1) 1) | Ag®
: “—
10: Y@ zg) © for convergence check 6 ( ) 2(2) Az(z)
11: mg) — Pglmg) + lemgl) + Gglm(l) > project from Q to I'y : Ep =g HAE 011/2
12 repeat e R, > Newton loop for 22 7: until [(||Aw‘”|\/um“)n) (la=@1/1=$1) ] < Cmahine b tight tolerance
13: Azg) +— —KE“)B(:ESR);:I: ! ))\R( )(z( ), ,(7 );zg )) D> solve linear system
14: 2P 2P + rxl

15:  until ||A:z:(2)||/||:z:(2)|| <e > loose tolerance, e.g. € € [10~4,1071]

2 211/2
16: until [(uy@) —2@1/ePN) + (ly® -2 1/1=$11) ] < Couchine b tight tolerance

Inexact Schwarz Monolithic Schwarz

I ———————-——
*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Implementation within Albany Code

The proposed quasistatic alternating Schwarz method is
implemented within the LCM project in Sandia’s open-source
parallel, C++, multi-physics, finite element code, Albany.

=  Component-based design for rapid development of https://github.com/gahansen/Albany
capabilities.

= Contains a wide variety of constitutive models.

= Extensive use of libraries from the open-source Trilinos
project.

= Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

= Use of the Sacado package for automatic
differentiation.

= Use of Teko package for block preconditioning.

= Parallel implementation of Schwarz alternating method

uses the Data Transfer Kit (DTK). https://github.com/ORNL-

] . CEES/DataTransferKit
= All software available on GitHub.
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Quasistatic Example #1: Cuboid Problem

| |

* Coupling of two cuboids with square base (above).

* Neohookean-type material model.

Schwarz Iteration

Sandia
National
Laboratories




1 1 Sandia
Cuboid Problem: Convergence with ) e
Overlap & Refinement

W s -

) o—e (hi,he)=(L})

Below: Convergence of the cuboid e (il =(L})
problem for different mesh sizes e italih
and fixed overlap volume fraction. e b5 (Bl
The Schwarz alternating method £os o (b j;i;
converges linearly. ol e =

10°

1
Overlap Volume Fraction

e Gt = (L)
ol s (i ha) = (1,3
o iy Above: Convergence factor y as a
I e — (b ha)= (3 3) function of overlap volume and
i T o Efj:i; different mesh. There is faster
S —e (k)= () linear convergence with increasing
: e g overlap volume fraction.
Ay (m+D) < py )

10-12 d ! i I ] I TR S ! I I
10710210710~ 10 10- 107 10-° 10-° 10-* 10~ 102 10-" 10°
Increment Norm ||Ay™)||
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Cuboid Problem: Schwarz Error

Subdomain ws relative error o33 relative error

o 1.94 x 10~ 14 2.31 x 10~ 13 lhang
Qs 7.30 x 1071 3.06 x 10713




Quasistatic Example #2: Notched Cylinder

[bary
[
[ |

128

e
32
........ 1o
16
............ \(T 358
’Ql gzé& 16
............ U N E
16
e
I 32
e
64

(a) Schematic

(b) Entire Domain 2 (c) Fine Region €23

Notched cylinder that is stretched along its axial direction.
Domain decomposed into two subdomains.

Neohookean-type material model.

Sandia
National
Laboratories

(d) Coarse Region (22




Notched Cylinder: TET-HEX Coupling )

Laboratories

= The Schwarz alternating method is capable of coupling different mesh topologies.

= The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

= The top and bottom regions, presumably of less interest, are meshed with coarser
hexahedral elements.




Notched Cylinder: TET-HEX Coupling () i,




Notched Cylinder: Conformal TET-HEX =
Coupling

u3 error
5.820e-05

4e-5

3e-5

'Hmmlummm

le-5

0.000e+00

(a) €21

us relative error
Absolute residual tolerance 95 Qo

1.0x 10~ 9.27 x 1072 3.70 x 1073




Notched Cylinder: Coupling Different Materials

The Schwarz method is capable of coupling regions with different material models.

= Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.
= Coarse region is elastic and fine region is elasto-plastic.

= The overlap region in the first mesh is nearer the notch, where plastic behavior is

expected.
Overlap far from notch. Overlap near notch.
”.’”.'.'HHH(
%z’ T
Coupled regions
Coarse, elastic region
AT
A
il

Fine, elasto-plastic region




Notched Cylinder: Coupling Different Materials

Need to be careful to do domain decomposition so that
material models are consistent in overlap region.

= When the overlap region is far from the notch, no plastic deformation exists in it: the
coarse and fine regions predict the same behavior.

= When the overlap region is near the notch, plastic deformation spills onto it and the two
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.




Quasistatic Example #3: Laser Weld ) i,

Laser weld specimen Single domain discretization

Cauchy_Stress_05
4.000e+0

* Problem of practical scale (~200K dofs).

* Isotropic elasticity and J2 plasticity
with linear isotropic hardening.
* Identical parameters for weld and base

materials for proof of concept, to
become independent models.




Sandia

Laser Weld: Strong Scalability of Parallel .
Schwarz with DTK

(@)}
g

w
NS
T

—
(@)
T

Wall Time [hr]

N
T

* Near-ideal linear speedup (64-1024 cores). L5 64 158 256 512 1824 2048

Number of Processors

Data Transfer Kit (DTK)
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Schwarz Alternating Method for ) e,

Dynamics

= |n the literature the Schwarz method
is applied to dynamics by using space-

time discretizations.

Laboratories

Time

> & &
T2
D

—0—0—05—0—0—5 O—> Space
- D

h1 ha

Overlapping non-matching meshes and
time steps in dynamics.



Schwarz Alternating Method for ) e,

Dynamics

= |n the literature the Schwarz method
is applied to dynamics by using space-
time discretizations.

Pro ©: Can use non-matching meshes
and time-steps (see right figure).

Con ®: Unfeasible given the design of our
current codes and size of simulations.

Laboratories

Time

® & &
T2
D

—0—0—05—0—0—5 O—> Space
- D

h1 ha

Overlapping non-matching meshes and
time steps in dynamics.



Schwarz Alternating Method for Dynamic .
M u Itisca Ie CO u p I | ng Controller time stepper = convenient

checkpoint to facilitate implementation

Controller time stepper

| Time integrator for (2,

| | Time integrator for (2,
Q, | |

Step 0: Initialize i = 0 (controller time index).




Schwarz Alternating Method for Dynamic ™.
Multiscale Coupling

Q,

|T0

Controller time stepper = convenient
checkpoint to facilitate implementation

Integrate using At,

A~ N

'T,
Controller time stepper
|
‘ Time integrator for (2,
Interpolate|from
Q,tol; |
I Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step At4, using solution in (), interpolated to I'; at times T; + n4t;.




Schwarz Alternating Method for Dynamic ™.
Multiscale Coupling

Q,

I’]"1

| Interpolate
\A

from (), to

IFZ

Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Controller time stepper = convenient
checkpoint to facilitate implementation

Controller time stepper
Time integrator for (2,

Time integrator for (2,

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step At4, using solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.




Schwarz Alternating Method for Dynamic ®&=..
M u Itisca Ie CO u p I | ng Controller time stepper = convenient

checkpoint to facilitate implementation

Controller time stepper

| Time integrator for (2,

| | Time integrator for (2,
Q, | |
| |

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step At4, using solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj 1.




Schwarz Alternating Method for Dynamic ™.
Multiscale Coupling

Q,

|T0

Controller time stepper = convenient
checkpoint to facilitate implementation

Integrate using At,

A~ N

'T,
Controller time stepper
|
! Time integrator for (2,
Interpolate|from
Q,tol; |
I Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step At4, using solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj 1.
» If unconverged, return to Step 1.




Schwarz Alternating Method for Dynamic®
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M u Itisca Ie CO u p I | N g Controller time stepper = convenient

'T; p

Integrate using At; I

Interjpolate from
Q, 6T, AN |

Q, | |
I |

Step 0: Initialize i = 0 (controller time index).

checkpoint to facilitate implementation
Controller time stepper
Time integrator for (2,

| Time integrator for (2,

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with

time-step At4, using solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with

time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time Tj 1.
» If unconverged, return to Step 1.
» If converged, seti = i+ 1 and return to Step 1.
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Schwarz Alternating Method for Dynamic @Jx..

: . Controller time stepper = convenient
M u It 15Ca Ie CO u pl | ng checkpoint to facilitate implementation
Q, I Tl | TZ
Controller time stepper
I, Integrate using At; |
| — Time integrator for €2,
T, nterpolate from
Q, 6T, AN |
| Time integrator for (2,
Q, | I
| |

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T; ;1 using time-stepper in {); with
time-step At4, using solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 1 using time-stepper in (), with
time-step At,, using solution in ()4 interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, 1. Can use different integrators
» If unconverged, return to Step 1. with different time steps

» If converged, seti = i + 1 and return to Step 1. il ealh sl




Schwarz Alternating Method for Dynamic (@) &,
Multiscale Coupling: Theory

For quasistatics, we derived a proof of convergence of the alternating Schwarz
method for the finite deformation problem, and determined a geometric
convergence rate [(Mota, Tezaur, Alleman, CMAME, 2017) and previous talk].

Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then

(@) o[@pO] = P[] > ... > P[P D] = d[@™] = - .- > D[], where  is the minimizer of P[] over S.

(b) The sequence {95(”} } defined in (39) converges to the minimizer @ of ®[p] in S.

(¢) The Schwarz minimum values ®[@"] converge monotonically to the minimum value ®[p) in S starting from any
initial guess .

Extending these results to dynamics is work in progress.

Quasistatic proof extends naturally assuming conformal meshes and the same
time step is used in each Schwarz subdomain.

Some analysis of Schwarz for evolution problems was performed in (Lions, 1988)
and may be possible to leverage.

Our numerical results suggest theoretical analysis is possible.
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Implementation within Albany Code

The proposed dynamic alternating Schwarz method is
implemented within the LCM project in Sandia’s open-source
parallel, C++, multi-physics, finite element code, Albany.

=  Component-based design for rapid development of https://github.com/gahansen/Albany
capabilities.

= Contains a wide variety of constitutive models.

= Extensive use of libraries from the open-source Trilinos
project.

= Use of the Phalanx package to decompose complex
problem into simpler problems with managed
dependencies.

= Use of the Sacado package for automatic
differentiation.

= Use of Tempus package for time-integration*.

= Parallel implementation of Schwarz alternating method

uses the Data Transfer Kit (DTK). https://github.com/ORNL-
CEES/DataTransferKit

All software available on GitHub.

* Current dynamic Schwarz implementation in Albany requires same At in different subdomains.
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Dynamic Example #1: Elastic Wave Propagation

* Linear elastic clamped beam with Gaussian initial condition for the
z-displacement (see figures to the right and below).

* Simple problem with analytical exact solution but very stringent test
for discretization methods.

 Test Schwarz with 2 subdomains: 0, = (0,0.001) x (0.001) X
(0,0.75), 0, = (0,0.001) x (0.001) x (0.25,1).

Clamped Beam Gaussian Z Problem
e Left: Initial condition
e (blue) and final solution
(red). Wave profile is
negative of initial profile
at time T = 1.0e-3.

0.01

0.008 r

0.006 |

0.004 r

0.002 1

0

z-disp

-0.002 +
Time-discretizations:

Newmark-Beta (implicit,
explicit) with same At.

-0.004 ¢

-0.006

-0.008 r

001 - - - - 1 Meshes: hexes, tets

I Z -




Elastic Wave Propagation

Time =0 Time =0
0.01 - T . : | 500 | . - .
0.808 i Dynamic Schwarz coupling introduces no —__a
0.006 [ dynamic artifacts that are pervasivein [~ ™
e | |\ other coupling methods!
0.002 | | | 1 100 f
=N i —
% 0 — . % 0 U= S
| | | z-velocity
-0.004 | z-displacement 1 -200
-0.006 | R -300 -
-0.008 - -400 ¢
-0.01 : . : : -500 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Z z

Table 1: Averaged (over times + domains) relative errors in z—displacement (blue) and z-
velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal hex-hex 2.79e-3 | 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2
Nonconformal hex-hex | 2.90e-3 | 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3
Tet-hex 2.79e-3 | 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

LM = Lumped Mass, CM = Consistent Mass
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Elastic Wave Propagation
Energy Conservation

Clamped Gaussian Z Problem Total Energy

2.2149
— 2, dominant

- — — — {1, dominant
5 22149 [ Single @
]
D 22149t
> ' .
= | Total energy is conserved
A 2.2149 . .
3 | and matches single-domain
3 | total energy.
5 2.2149 |
: |
T |
522149¢

2.2148 '

0 0.5 1 1.5

Time 1n-3

* For clamped beam problem, total energy (TE = 0.5x7 Kx + 0.5x7 Mx) should be conserved.

* Total energy is calculated in 2 ways: with most of contribution from , and from ;.




Example #2: Tension Specimen h) .

* Uniaxial aluminum cylindrical tensile
specimen with inelastic J, material
model.

* Domain decomposition into two
subdomains (right): (15 = ends,
(1, = gauge.

* Nonconformal hex + composite tet
10 coupling via Schwarz.

* Implicit Newmark time-integration
with adaptive time-stepping
algorithm employed in both
subdomains.

» Slight imperfection introduced at
center of gauge to force necking

upon pulling in vertical direction.




Tension Specimen h) .

y-displacement Nodal eqps*
E‘mw Ez.zzoemo
éo.oos ! _f]m
Time: 0.000000 E Z
—;].4799 —21.1132
: é—O.CDS 50.5566
T i
-1.008e-02 0.000e+00

Average of ~7 Schwarz
iterations/time step required
for convergence to Schwarz

tolerance of le-6.

===t

*Nodal egps = equivalent plastic strain computed via weighted volume average.



Example #3: Bolted Joint Problem ) .,

Problem of practical scale.

* Schwarz solution compared to single-domain
solution on composite tet 10 mesh.

* (), = bolts (composite tet 10), {2, = parts (hex).

* Inelastic J, material model in both subdomains.
e ();: steel
e (),: steel component, aluminum (bottom) plate

BC: x-disp=0.02at T =
1.0e-3 on top of parts.

Run until T = 5.0e-4 w/ dt =
1le-5 + implicit Newmark
with analytic mass matrix
for composite tet 10s.




Bolted Joint Problem

lirmez: 02.000000

x-displacement

Single () v Schwarz



Bolted Joint Problem rh) g

Nodal Equivalent Plastic Strain (eqps)

0. 00=+1 0007% 0os 0 30012

MI|IIIIIIIII|IIIIIIIII|JIM

Time: 0.000000

Cross-section of bolts obtained via clip (right)




Bolted Joint Problem ) i
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Some Performance Results

Schwarz / solver settings '|

* Relatively loose Schwarz sof
tolerances were used:

* Relative Tolerance: 1.0e-3.

e Absolute Tolerance: 1.0e-4.
Newton tolerance on NormF: 1le-8 |
* Linear solver tolerance: le-5 21 H%*k

* Muelu preconditioner ol %%w

# Schwarz iters

Top right plot: # Schwarz iterations for each time step.

» After start-up, # Schwarz iterations / time step is ~¥9-10. This is not
bad given how small is the size of the overlap region for this problem.
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Summary ) i,

The alternating Schwarz coupling method has been developed/implemented for
concurrent multiscale quasistatic & dynamic modeling in Sandia’s Albany/LCM code.

© Coupling is concurrent (two-way). lhang

© Ease of implementation into existing massively-parallel HPC codes.

© Scalable, fast, robust (we target real engineering problems, e.g., analyses
involving failure of bolted components!).

© “Plug-and-play” framework: simplifies task of meshing complex geometries!

© Ability to couple regions with different non-conformal meshes, different
element types and different levels of refinement.

© Ability to use different solvers/time-integrators in different regions.

© Coupling does not introduce nonphysical artifacts.

(© for quasistatics).
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Ongoing/Future Work

= Journal article on dynamic Schwarz formulation.

= Extension of Albany/LCM dynamic Schwarz implementation
to allow for different time steps in different subdomains.

= Apply dynamic Schwarz to problem of interest to production.

= |mplement alternating Schwarz method in Sandia production
codes (Sierra Solid Mechanics).

= Development of a multi-physics coupling framework based
on variational formulations and the Schwarz alternating
method.

h

Sandia
National
Laboratories

Develop theory for dynamic alternating Schwarz formulation.
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

Three-field multiscale
coupling formulation
with compatibility
enforced weakly using
Lagrange multipliers.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-
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Abstract We generalize the multiscale overlapped domain
framework to couple multiple rate-independent standard dis-
sipative material models in the finite deformation regime
across different length scales. We show that a fully cou-
pled multiscale incremental boundary-value problem can be
recast as the stationary point that optimizes the partitioned
incremental work of a three-field energy functional. We also
establish inf-sup tests to examine the numerical stability
issues that arise from enforcing weak compatibility in the
three-field formulation. We also devise a new block solver
for the domain coupling problem and demonstrate the per-
formance of the formulation with one-dimensional numerical
examples. These simulations indicate that it is sufficient to
introduce a localization limiter in a confined region of inter-
est to regularize the partial differential equation if loss of
ellipticity occurs.

strain localization may lead to the eventual failure of materi-
als, this phenomenon is of significant importance to modern
engineering applications.

The objective of this work is to introduce concurrent cou-
pling between sub-scale and macro-scale simulations for
inelastic materials that are prone to strain localization. Since
it is not feasible to conduct sub-scale simulations on macro-
scopic problems, we use the domain coupling method such
that computational resources can be efficiently allocated to
regions of interest [ 14,23,24,30]. To the best of our knowl-
edge, this is the first work focusing on utilizing the domain
coupling method to model strain localization in inelastic
materials undergoing large deformation.

Nevertheless, modeling strain localization with the con-
ventional finite element method may lead to spurious mesh-
dependent results due to the loss of ellipticity at the onset
of strain localization [31]. To circumvent the loss of mate-

Method works well, but is
difficult to implement into



Appendix. Full Schwarz Method rh) b

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, each converged to a tight tolerance (€,,4chine)-

1: mg) — Xg) in Qq, wél) — x(Xél)) on 9, a:él) “— X!(Bl) onI'; B> initialize for 2,
2: wg) — Xg) in Qo, :I:I()z) — x(X}Sz)) on 9,2, :x:g) — X!(Bz) onI'g B> initialize for (2o
3: repeat > Schwarz loop
4. y(l) — mg) > for convergence check
5: mgl) — Plga:g) + lezcl(f) + Glzmg) > project from Qg to I'y
6: repeat > Newton loop for €21
7. Amg) < —K&lé(mg); mgl);mg))\Rg)(mg); wgl); wgl)) > linear system
8: mg) < mg) + Amg)

9: until ||A:c§31)|| / ||:c§91)|| < €machine B> tight tolerance
10: y(2) — :c(;) > for convergence check
11: :B'(Bz) — Pglwg) -+ lewgl) -+ Gglwg) > project from €27 to I'2
12: repeat > Newton loop for €22
13: Amg) — —Kff))g (mg); wgz) ; mg))\Rf) (mg); mgz) ; mg)) > linear system
14: mg) — mg) + A:cg)

15: until ||A:cg) |/ ||:cg)|| < €machine > tight tolerance
W1 11112 @1 me@ ]
t6: wntit | 1y — 2111+ (1 - @ W1eP1)° | < et > tight tolerance




Appendix. Inexact Schwarz Method rh) b

Classical algorithm originally proposed by Schwarz with outer Schwarz loop
and inner Newton loop, with Newton step converged to a loose tolerance.

1: mg) — X}(Bl) in 21, :cgl) — x(Xél)) on O 21, :cfal) — Xél) onI'y > initialize for 21
2: mg) Y Xg) in Qo, mgz) — x(Xéz)) on Oy g, :cg) — Xéz) onI'y > initialize for Qo
3: repeat > Schwarz loop
4: y(l) — mg) > for convergence check
5 :cél) — Plgm(;) + Q12:c§2) + Glgmg) B> project from 29 to I'y
6: repeat > Newton loop for 21
7: Amg) — —K‘(Alg(a:g); mgl);wgl))\Rg)(mg); :cgl); zcgl)) > linear system
8 mg) — mJ(Bl) + /_\.mg)

9 until ||Amg)||/||mg)|| <e > loose tolerance, e.g. € € [1074,107}]
10: y(2) — :cg) > for convergence check
11: wg) — Pglwg) e lewgl) ek Gglw‘(@l) > project from €2 to I'g
12: repeat > Newton loop for 22
13: /_\.mg) —ng (mg); mgz); wéz))\Rg)(wg); mgz); wgz)) > solve linear system
14: :cg) — :c(,f) + Amg)

15:  until ||Awg)||/||wg) || <e b loose tolerance, e.g. € € [1074,107}]
: DO )2 2 @ @)\ -
16: until [(ny( Y—2PN/M2P1) + (@ -2 1/12$)1) } < Cmachine > tight tolerance




Appendix. Monolithic Schwarz Method ([@.

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

1 mg) < X](Bl) in Q1, a:l()l) < x(XlEl)) on 9§21, > initialize for 21

2 mg) < X](Bz) in Qo, ml()z) < x(Xéz)) on O 2, > initialize for Qo

3: repeat > Newton-Schwarz loop
Azl KO + KVHy, KU H;, ~RW .

4: 5) < AB (2) AB (2) Ap (2) \ é) > linear SyStem
AwB KAﬁH21 KAB+KA[3H22 _RA

5 wg) — wg) + Awg)

6: mg) o wg) - Amg)

7: until [(nAwS)n/an)u) + (l2e@11/1= 1) ] < Comaie > tight tolerance

Advantages:

* By-passes Schwarz loop.

Disadvantages:
* Off-diagonal coupling terms — block linear solver is needed.



Appendix. Modified Schwarz Method ) e

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

1: :cg) < Xg) in 1, :cgl) - x(XE()l)) on 021, a:fgl) — Xél) on I’y b initialize for 27
2: :cg) - Xg) in Qo, mgz) - x(XE(f)) on 02, :13532) — Xff) on I’y b initialize for 2o
3: repeat > Newton-Schwarz loop
4: mg) — Plga:g) + Q12m§,2) + Glzwg) B> project from 9 to I'y
5: Amg) < —KEL); (:cg); :cgl); :cg))\RS)(a:g); wgl); :cg)) > linear system
6: mg) < mg) o /_\mg)

7. SBE;Z) — lewg) -+ lewgl) -+ G21:1:f31) > project from €21 to I'p
8: /_\.mg) < —ngg (:cg); mgz); :cg))\REf)(a:g); wgz); 33532)) > linear system
9: wg) — wg) + /_\wg)

10: until [(H/_\.a:g)ﬂ/“a:g)”) + (||A:cg)||/||mg)||) ] < €machine > tight tolerance

Advantages: ) . .
& Least-intrusive variant: by-passes Schwarz

* By-passes Schwarz loop. iteration, no need for block solver.
* No diagonal coupling (conventional linear

solver can be used in each subdomain).
I ———————-——



Appendix. Convergence Proof
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2 Formulation of the Schwarz Alternating Method

We strt by defiing the standand fiite deformation variational ormulation 1o establish notation before
presenting the formulation o the coupling metho

21 Variational Formulation on a Single Domain

= p(X): 2 B,

02 Assume that he .,ma.r, i body is 12U B0 with it normal N, where 9,1

T iacmin iy, e o Sy, B, Oy . T st mouny
X g

Neumann boundary conditions see T : 92 —» K. Let F' i Gradp be the deformation gradicnt. Let

also R - 2 - B be the body force, with I the mas density inthereference configuraton. Furthermore,

introduce the cnergy functional

algl= [aFz - [rBpawv- [ T.as »
o o om0
nwhich A(F, 2) 2 s acoletion o nernal varsbles. The weak
formof el Wi
a D
): i = xon i 0} @
wa
Vs {€e WH) € 0on a0} @
i€ Vle o ol vy i Fnd oy < el ot
£cVandec R S that satisfies
m{wue\—/y Grdgav /m; cav / T.gas @
Where P = 0.0/0F denots the it The Bl L
ihe varitonal saement (1) s
DvPLRB=0, in 9
N=T. o Ops, ©
e=x. o 0,0

22 Coupling Two or More Subdomains via the Schwarz Alternating Method

Inthis section,

‘Consider without loss of and
2 such that 2 = £, U2 nd £, 1112, # 35 shown in Figure |

that alternate heween the subdomains as

new

+1-2lflena ©

A Mota, L Tezaur, C. Alleman .

A Proof of Convergence of the Schwarz Alternating Method for the
Finite-Deformation Inelastic Problem

i seton we give & profof Theore | The prof s on several popeties, prseed el s
remarks. Assume properties 13 enumeratd in Section 3 hold.

Remark 1 i L
his functional over S exiss, e, the minimization of &) is wellposed.

Remark 2 Ble]in fnding €  such
hat

(@lel&-p) 20 on
forall g€ 5.

Remark 3 Recal that the srct convexity property of ] can be witen as
D]~ D] — (o 2 = 81) 20, &)

4y € S. From (36), emark that if bl s swritly comvex over S VR € K such that 7 < o0, we can find
anan > 0 such that W v € Koy we have

Bl]~ ¥ — @I 6 — ) > it — =)

Remark 4 By propety . ol > 0,with
5 Ko, s that

11991) = /o2l < o = ). o

Wby € K By definton. w(c) — s ¢ = 0

Remark 5 It was shown in [5] that in the case ©, 1112, # 0, % € S, there exist 1 € 8, nd G € S
such that

PGt 69
and
max (161,61} < Collell, 56
forsome Cy > 0 independent of .
Remark 6 Note hat (39) can be witen a5
@@€0 =0, forg €8, v €, 57
andn € {0,1,2,.. ) eecall 0 .
o Bl over

S,
Remark 7 Let ") <, and et § < 5. By Remark 5, there exist ¢ € 5, and Gy € S, sueh that

(@"

8= @E.6+G) &)

A Mota, I Tezau, C. Alleman

Fouer L
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- Clowre B = Bl @
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* Neumann boundary: @ 5= @ B\ &

-+ Sohwarzbounday: [, = @9\ 5
Note that with these definitions we guarantee thal @ 19\ @ %
N dein theseces

@\ =A@ T
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ot ot
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beter guess,if available, may be used to niiaize (9 on 5 rather than the idendity map i . The
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By (67 (@[5 G

(@] G+ )

PG+ ) (WG

(@RGP (9

since (@/16], 1) = 0, also by (57). By the Cauehy-Schwarz inequaliy,

(@[5].Ga) — (@[] Ca) = (¥[8 ¥ig"V.¢) < ([ " V)|| ¢l 60y
Againusing (57) andalso (5) in (60 eads 10
(@[] - ¥ V].Ga) = (@[6].€) < [|9")] ~ @[]l ©1)
and subsiain (56 o (51 we iy buin that
@150 < Gl )] - 6 ]- el ©@
vees
Remark § Forpat () of Theorem 1 rcal the defniton of geometic comergence:
Ep £ OE, )
Vi€ (0,12, forsome € 0, where
=11+ - g ey
Remark9 Recal o FiglisL 5101 near . then
hereexists aconsant K > 0 such that
©)
el 1.
191611 < K11 - gl )

Proof of Theorem |

Proofof o). Let @)

Blg]. By (40, 5

argmin s, . Lot hethe minimizer o Bl over S,
b 50

Hence, it canno be

> o

hat 1] < B2 where ) L] I fllows by inducton that

B < algtY] n
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V- fgesie-omain) o8
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Proofof (b1 By () @] —+ Las n —+ o for some { & F. Now, combining (1) and (53), we have the
bound

) — Bp] 3 BB — B (W] 0 — ) 3 g e,

)
foralln € (1,2,3, ..} Since B[] —+ L n — oo, i follows that 85| ~ B[] 5 0asn - .
From (65). we have that

i 67— g

0, )
from which we can conclude that %) — 31 5 0 as 1 - x.

We mustnow show that ") converges (0, the minimizer of #(] on S. By (53) with
= B, we have

Il = B < - {ole] - 88 - (#1576 - 5) } a0
um of {), by (a) we have that #[] < B[3"]. It follows that

NE ). oD

Since s he
o] - #lp ] = (#16p - 6) < - (- ) = (215

Subsiuting (71) into (10) we have

500 1 S, g
Il =P < o (167,67 - ) @
Nowby (62)(Remark 7,
(#1616 - ) < Coll#'6™] - #1618 - . a3

Subsituting (73)into (72)eads to

- Co 1) - gt
116~ gl < 220/ - ) o
Appyin the nifrm coniniy sssumpion (5 we cbiin
) G el ne)
116 = gl < o (16~ 1) s

By (69), 4% — @]~ 0.as 0 — oc. From this we obiain the result, namely that ) >  as
b, o

Proofof (). This fllows mmediatey from () and (b) a

Proofof (). By (5) for large enough . there exists some €' > 1 independent of  such that

18 =l < Call gt — @7 a6

Letus choose C' such that Cy > /K, where I is the Lipshitz contnuity constant in (6. Combining
(68) with (76) leads to

= () - wip )

> 8 - . a
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Remark that [50]

Gum gD o G0N Gy o gD € Sy w0

Theorem 1. Assume hat the energy functional () sasfies properies 1-S above, Consder the Schwarz
2 O 39). Then

@ BIE0) > W] > > wig Y] > o[ > Bl where s the mininizerof lg]
overs.

(b) the sequence (")) defned in (39) conserges 10 the minimizer o of 91| in S.
© 9 il in S staring
Jrom any intal uess V.

@ il ” then he sequence { (%))

Proof. See Appendix A o

Finally, while mostof works cited sbove present their analysis for the specific case of two sublomains,

specifically in Lions 15, Badea [], and

han and Exans 1],

4 Numerical Examples

Inthis section, the belavior of
Firs, M W he o
ALnavy 21 Next,
Then, of the

) bid
body of square base, aims o study th effct ofthe size of the overlap region o the comergence of the
method

R g e omit
he useofunts unles hy ar ncccsay for t undersanding of th problem st .

4.1 Implementation

The four o 24 have beer
one-dimensional MATLAR code. The objective is o determine the convergence behavior,efficiency, and

peed.
Inaddition,the Modifed variant of the Schwarz alterating method described in Section 2.4 has been

Sk ek 3 1 A o eTon o eamere comrgce

15

A Mora, 1 Tezaur, €. Alleman g e e

he dentiy 0[] — 013
(ai le]) - (16" - de]

Subsituing v = ") and 2 = i ino (53) and rearanging, we obiain

D] = (@15] ~ Blg]) — (2[5 - gl it ollows from (77)

= ZHE ~ ol s

(#1670 - 6) < (#1670 - 6) 4 anlle - 6] < #lg] - @1 09

since g > 0. Now by et
of ] () we can wite

(#1870 = 8) < I#I1-llp = @1 < Kllp = & o
Hence, from (79,
U i < K6 gl an
Moreower by (59 sine #¢]
B] — Bl > anl|™ - ol ®2)
Using (31) 1 (52) we biin
(#1971~ 2lgl) - (212~ 0l < KIIP™ @l —anll g ol 63

Combining (53) and (75 leads to

B < (917 - #1g]) ~ (#15") - #1g]) < KIS~ ol — anllg ™ gl

o)
1161 — gl < Bl ®
with
T
Rl ey oo
e C, > an/K. T (o
i o311 3 (o s Folows o B € (0.1 e €1 B € (03 e 89
canbe recat a5
116~ ] < Ol — =0 @
Whereupon the clin s proven o

B Analytic Solution for Linear-Elastic Singular Bar

e, hercin we provide the solution of the singular bar o Section 4.3 for linar clasicity. The
equilibrium equation s

P=a(X)AX) = coms, o ym w0, am-a(5)

X

Be(X), (>

3
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Appendix. Foulk’s Singular Bar ) Som

o 1D proof of concept problem:

e 1D bar with area proportional to square root of length.
« Strong singularity on left end of bar.

o Simple hyperelestic material model with no damage.

MATLAB
« MATLAB implementation. Th anguoge o TchncolComutng

u(0) = 0 A(X) = Ap\/X/L u(L) = A
7

L
o Problem goals:

o Explore viability of 4 variants of the Schwarz alternating method.
« Test convergence and compare with literature (Evans, 1986).
« Expect faster convergence in fewer iterations with increased overlap.




Appendix. Singular Bar and Schwarz Variariss:

1.0

0.8

=
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Displacement
=
.
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D.%.

10°
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101

1076

Error e™+2)
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- e
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=™ x|
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~—  Full Schwarz
~—— Modified Schwarz
~— Inexact Schwarz

Monolithic Schwarz
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Error €™

Number of [terations

100 ] i i I
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Size of Overlap Region [%)]
103 T T l l
ol ~— Full Schwarz
MATL AB ~—— Modified Schwarz
The Language of Technical Computing 102 ~—— Inexact Schwarz T B
Monolithic Schwarz |
1
= 10 E
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=
= o100 |
107 1E e e i
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10° 108
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10?
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boratories

64 elements
128 elements

© 2048 elements

256 elements
512 elements
1024 elements |

4096 elements
8192 elements

102

10° 10* 107

Number of Elements per Subdomain



Appendix. Notched Cylinder: HEX-HEX Coupling

6.400e-03
0.006

o
o
o
o

0.003

)
RRRRRRRRRRRRRRRRRRRI

0.002

0.000e+00
(a) (b) Q2 (€) per

us relative error

Absolute residual tolerance 9 Qo
1.0 x 10~* 7.60 x 1072 3.20x 1073
1.0 x 1078 3.10 x 10™° 1.71 x 107°
1.0 x 10712 1.34 x 1072 5.10 x 1071°
1.0 x 10714 1.23 x 10711 4.69 x 1012

2.5 x 10716 1.14 x 10713 8.37 x 10~ 14
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Appendix. Notched Cylinder: Nonconformal) &,
HEX-HEX Coupling

(a) €21 and Qo (b) Qr mesh (¢) 2er solution

u3
6.400e-03
E0.00é

—0.005

—0.003

-

E0.002
0.000e+00

ez
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Appendix. Notched Cylinder: Nonconformat) &,
HEX-HEX Coupling

1.446e-05

1.2e-5

e

5 {ﬁjv Bt -
HJ;“ —gée-é
i 3e-6
0.000e+00
(@) 21
ug relative error
Absolute residual tolerance 04 Qs
1.0 x 1078 1.31 x 1072 4.45 x 1074 mg
1.0 x 10712 1.30 x 1072 4.43 x 107*
1.0 x 10714 1.30 x 1072 4.43 x 1074

2.5 x 10716 1.30 x 1073 4.43 x 1074




Appendix. Multiscale Modeling of 7
Localization

Laboratories

Region of localization (fracture)

Region of |
localization
(necking) |

— '

Strain localization can cause localized necking (left)
and ultimately fracture (above).

Goals:

* Connect physical length scales to engineering scale
models.

* Investigate importance of microstructural detail.

» Develop bridging technologies for spatial multiscale/
multiphysics.
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Appendix. Parallelization via DTK: Weak @)=
Scaling on Cubes Problem

10*
©
e
= 103"
e
@]
|_
2
10 ‘
10° 10t 102

Number of Processors

1 Processor,
2.5*%103 DOF / proc

8 Processors,
2.1*103 DOF / proc

64 Processors,
1.9*103 DOF / proc
I ———————-——
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la DTK: Strong @

10N Vid

Appendix. Parallelizat

Scaling on Cubes Problem
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Appendix. Rubiks Cube Problem rh) b

Work by J. Foulk, D. Littlewood,
C. Battaile, H. Lim

. _ Two distinct bodies, the component
anisotropic

~ .. | scale and the microstructural scale,
crystal elasticity . . .
are coupled iteratively with

isotropic alternating Schwarz
elasticity

distinct
models

overlap

component

concurrent
scale

coupling

plotting axial

stress microstructural

scale
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Appendix. Tensile Bar

Cauchy Stress 11
125.0

l 92.5

60.0

50 A

Embed microstructure in
ASTM tensile geometry




Appendix. Tensile Bar: Meso-Macroscale) s

Laboratories

Coupling
Mesoscale

SPARKS-generated
microstructure (F. Abdeljawad)

Macroscale

4+

cubic elastic constant : C1; = 204.6 GPa
cubic elastic constant : C15 = 137.7 GPa
cubic elastic constant : Cyy = 126.2 GPa

® | oad microstructural ensembles in uniaxial stress
" Fit flow curves with a macroscale J, plasticity model

reference shear rate : 99 = 1.0 1/s 350
rate sensitivity factor : m = 20 T X T Y Y XY
hardening rate parameter : go = 2.0 x 10* 1/s 300}

initial hardness : go = 90 MPa Young’s modulus : E = 195.0 GPa

saturation hardness : g5 = 202 MPa %ﬂz 250} Poission’s ratio : v = 0.3
saturation exponent : w = 0.01 g yield stress : o9 = 144 MPa

Fix microstructure, investigate ensembles 2 200} hardening modulus : H = 300 MPa |
= saturation modulus : S = 170 MPa

151 axial vectors
from 3 of the 10
ensembles of
random rotations
(blue, green, red)

150 saturation exponent : a = 190 |

e e 10 CPensembles
— J2fit

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
(()).000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
equivalent plastic strain(mm/mm)

oy =00+ He, +5(1 —e “?)




Appendix. Tensile Bar: Results

Reduction in cross-sectional
area over time

0.01005

0.01000

mmg]

—0.00995

Area

0.00990

0-0098% 75 ~0.05 0.00 0.05

Location [mm]
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Appendix. Schwarz Alternating Method ()&
for Dynamics

= Inthe literature the Schwarz method is applied to dynamics by using space-time
discretizations.

= This was deemed unfeasible given the design of our current codes and size of

simulations. _
Time

*
I* (2
Ql: 2>

—o—a

" —o—0—&  J

Y (/ \.)
T2

*—o—0—0—0—0—5 & > Space
-~

h1 h2

Overlapping non-matching meshes and time steps in dynamics.
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Appendix. A Schwarz-like Time Integrator @ &=
=  We developed an extension of Schwarz coupling to dynamics using a governing time
stepping algorithm that controls time integrators within each domain.
= Can use different integrators with different time steps within each domain.

= 1D results show smooth coupling without numerical artifacts such as spurious wave
reflections at boundaries of coupled domains.

Controller time stepper
[ I |
Time integrator for (2,

Time integrator for (2,




Appendix. Dynamic Singular Bar )

= |nelasticity masks problems by introducing energy dissipation.
= Schwarz does not introduce numerical artifacts.
= Can couple domains with different time integration schemes (Explicit-Implicit below).

0.030 ; 140 ; : 15107
0.025 120r
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e 80} 0.5k LN A |
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v 20 05 W/ P77 A 4
0.005 / )  /
i 0
0.000 // ol -10
—0008 5 0.2 0.4 056 0.8 o 4 ~190 0.2 0.4 0.6 o.is 1.0
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0.030 : 140 1.5 X107
0.025 | Lol .
100} ' A A
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© 80t 0.5 4 AN A il 7
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5 o0 2 ol S AN 60 Y
2 0010 . T 40 8 ARV NTIC I NS R Y\ Bk v‘% /
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Appendix. Elastic Wave Propagation thj

Laboratories
Some Performance Results

5 L '
o I
2
wn |
2 4.5 ]
|
Hal |
= ‘| 10°F |
2 | < |
l = (o]
w | +
s || E,
g || s
235 | 1 ©1070r 1
E |I @ F
| ©
S 3 IL«L_H% & '
W . '_____4_‘_‘_————“ | ’_7/’ -
= — 15| /,/ e 1st timestep
_g N\ 10 e - 2nd timestep
3 AN I 10th timestep
=Z 25} AN 7 g - 1000th timestep
o
z \\ I e last timestep
\\ r slope = -1
2 1 1 1 10'20
0 20 40 60 80 100 10-15 10-10 1078 100
Size of Overlap Region [%]

Relative error ™

Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The

method does not converge for 0% overlap. If the overlap is 100% then the single-domain
solution is recovered for each of the subdomains.

Right figure shows linear convergence rate of dynamic Schwarz implementation (for small
overlap fraction of 0.2%).



Appendix. Torsion

Nonlinear elastic bar (Neohookean material model)
subjected to a high degree of torsion.

The domain is (0 = (—0.025,0.025) X
(—0.025,0.025) x (—0.5,0.5).

We evaluate dynamic Schwarz with 2 subdomains:
Q, = (—0.025,0.025) x (—0.025,0.025) %
(—0.5,0.25),Q, = (—0.025,0.025) X
(—0.025,0.025) x (—0.25,0.5).

Time-discretizations: Newmark-Beta (implicit,
explicit) with same At.

Meshes: hexes, composite tet 10s.
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Append iX. TO rsion Schwarz and single-domain results [l

agree to almost machine-precision!

Conformal Hex + Hex Coupling QO Qe

* Each subdomain discretized using uniform hex mesh with Ax; =
0.01, and advanced in time using implicit Newmark-Beta scheme
with At =1e-6.

e Results compared to single-domain solution on mesh conformal with
Schwarz domain meshes.

Displacement relative errors at final time (T=0.002) ol referror

1.8463e-13

—1.2308e-13

o
o
I
S
@

~

9.502e-16

Velocity relative errors at final time (T=0.002)

s R

T Y srsamis
Q Iﬁ“ ! rr 4.66246-12
1 1l SEs 080 1 =4 e-
=3.10826-12
» .e svomean snal F
QO E HiH i "*ﬂ E
0 T T e 15541812

ET 236e-14




Appendix. Torsion ) e,

Qref

Hex + Composite Tet 10 Coupling
* Coupling of composite tet 10s + explicit Newmark with consistent
mass in {0, with hexes + implicit Newmark in ().

* Reference solution is computed on fine hex mesh + implicit
Newmark Q. of

Relative error <1% and
does not grow in time!

No dynamic
artifacts! v

relative error

Time: 0.000000
0.04
0.02

0 50 100 150 200 250
snapshot #

Movie of |displacement|
T Left: Single-domain,
Right: Schwarz
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Appendix. Torsion
Some Performance Results

]_UI:' T T T
107
~
+
=
-
=
o 10'].'] L
w
=
=
Je
w -
== S = 1st imestep
15 L - .
10 e 2nd timestep
————— 10th timestep
1000th time step
————— last timestep
20 slope = -1
10- i i 1
10720 1017 10710 1072 10¢

Relative error '™

e Convergence behavior of the dynamic Schwarz algorithm for the torsion problem for small
overlap volume fraction (2%) in which each subdomain is discretized using a hexahedral
mesh. The plot shows that a linear convergence rate is achieved.

I —————



Appendix. Bolted Joint Problem

y-displacement
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Appendix. Bolted Joint Problem

z-displacement
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