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Motivation for Concurrent Multiscale 
Coupling
▪ Large scale structural failure frequently 

originates from small scale phenomena such 
as defects, microcracks, inhomogeneities and 
more, which grow quickly in unstable manner.

▪ Failure occurs due to tightly coupled 
interaction between small scale (stress 
concentrations, material instabilities, cracks, 
etc.) and large scale (vibration, impact, high 
loads and other perturbations).

Roof failure of Boeing 737 aircraft due to 
fatigue cracks. From imechanica.org

structural scale, ~m

deformation twins

surface

flaw

reservoir

multiscale region

at crack tip

grain boundaries

s
arc length

grain scale evolution, ~mm

grains

s
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hydrogen gas

Concurrent multiscale methods are 
essential for understanding and prediction 
of behavior of engineering systems when a 

small scale failure determines the 
performance of the entire system.

Surface flaw in pressure 
vessel: interacts with 

microstructure, which may 
or may not lead to failure.



Requirements for Multiscale Coupling Method
o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement.

➢ Ability to use different solvers/time-integrators in different regions.

o Coupling does not introduce 
nonphysical artifacts.

o Theoretical convergence 
properties/guarantees.



Schwarz Alternating Method for Domain 
Decomposition
▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

Initialize:

▪ Solve PDE by any method on W1 w/ initial guess for Dirichlet BCs on G1.

Iterate until convergence:

▪ Solve PDE by any method (can be different than for W1) on W2 w/ 
Dirichlet BCs on G2 that are the values just obtained for W1.

▪ Solve PDE by any method (can be different than for W2) on W1 w/ 
Dirichlet BCs on G1 that are the values just obtained for W2.

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm
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Schwarz Alternating Method for Domain 
Decomposition
▪ Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

Initialize:

▪ Solve PDE by any method on W1 w/ initial guess for Dirichlet BCs on G1.

Iterate until convergence:

▪ Solve PDE by any method (can be different than for W1) on W2 w/ 
Dirichlet BCs on G2 that are the values just obtained for W1.

▪ Solve PDE by any method (can be different than for W2) on W1 w/ 
Dirichlet BCs on G1 that are the values just obtained for W2.

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Requirement for convergence: Ω1⋂ Ω2≠ ∅

▪ Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for 
solving multiscale partial differential equations (PDEs).
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Schwarz Alternating Method for Multiscale 
Coupling in Quasistatics

Advantages:

▪ Conceptually very simple.

▪ Allows the coupling of regions with different non-conforming meshes, different element 
types, and different levels of refinement.

▪ Information is exchanged among two or more regions, making coupling concurrent.

▪ Different solvers can be used for the different regions.

▪ Different material models can be coupled if they are compatible in the overlap region.

▪ Simplifies the task of meshing complex geometries for the different scales.



▪ S. L. Sobolev (1936): posed Schwarz method for linear 
elasticity in variational form and proved method’s 
convergence by proposing a convergent sequence of 
energy functionals. 

▪ S. G. Mikhlin (1951): proved convergence of Schwarz 
method for general linear elliptic PDEs.

▪ A. Mota, I. Tezaur, C. Alleman (2017)*: derived a proof of 
convergence of the alternating Schwarz method for the 
finite deformation quasi-static nonlinear PDEs (with 
energy functional 𝜱[𝝋] defined below), and determined a 
geometric convergence rate for the finite deformation 
quasi-static problem.

S. G. Mikhlin (1908 – 1990)

S. L. Sobolev (1908 – 1989)

𝜱 𝝋 = 𝐵 𝑊 𝑭, 𝒁, 𝑇 𝑑𝑉 𝐵− 𝑩 ∙ 𝝋 𝑑𝑉-𝜕𝑇𝐵
ഥ𝑻 ∙ 𝝋 𝑑𝑆

𝛻 ∙ 𝑷 + 𝑩 = 𝟎

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation



Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

Four Variants* of Schwarz



Four Variants* of Schwarz

Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

Most performant method: monotonic convergence, 
theoretical convergence guarantee.

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Implementation within Albany Code

▪ Component-based design for rapid development of 
capabilities.

▪ Contains a wide variety of constitutive models.

▪ Extensive use of libraries from the open-source Trilinos
project.

▪ Use of the Phalanx package to decompose complex 
problem into simpler problems with managed 
dependencies.

▪ Use of the Sacado package for automatic 
differentiation.

▪ Use of Teko package for block preconditioning.

▪ Parallel implementation of Schwarz alternating method 
uses the Data Transfer Kit (DTK).

▪ All software available on GitHub.

https://github.com/trilinos/trilinos

https://github.com/gahansen/Albany

https://github.com/ORNL-
CEES/DataTransferKit

The proposed quasistatic alternating Schwarz method is 
implemented within the LCM project in Sandia’s open-source 

parallel, C++, multi-physics, finite element code, Albany.
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Schwarz Iteration

Quasistatic Example #1: Cuboid Problem

• Coupling of two cuboids with square base (above).

• Neohookean-type material model.



Below: Convergence of the cuboid 
problem for different mesh sizes 

and fixed overlap volume fraction.  
The Schwarz alternating method 

converges linearly.

Above: Convergence factor 𝜇 as a 
function of overlap volume and 
different mesh.  There is faster 

linear convergence with increasing 
overlap volume fraction.

∆𝑦(𝑚+1) ≤ 𝜇∆𝑦(𝑚)

Cuboid Problem: Convergence with 
Overlap & Refinement



Cuboid Problem: Schwarz Error 



Quasistatic Example #2: Notched Cylinder

• Notched cylinder that is stretched along its axial direction.

• Domain decomposed into two subdomains.

• Neohookean-type material model.



▪ The Schwarz alternating method is capable of coupling different mesh topologies.

▪ The notched region, where stress concentrations are expected, is finely meshed with 
tetrahedral elements.

▪ The top and bottom regions, presumably of less interest, are meshed with coarser 
hexahedral elements. 

Notched Cylinder: TET-HEX Coupling



Notched Cylinder: TET-HEX Coupling



Notched Cylinder: Conformal TET-HEX 
Coupling



▪ Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.

▪ Coarse region is elastic and fine region is elasto-plastic. 

▪ The overlap region in the first mesh is nearer the notch, where plastic behavior is 
expected.

Overlap far from notch. Overlap near notch.

Coupled regions

Coarse, elastic region

Fine, elasto-plastic region

Notched Cylinder: Coupling Different Materials
The Schwarz method is capable of coupling regions with different material models.



▪ When the overlap region is far from the notch, no plastic deformation exists in it: the 
coarse and fine regions predict the same behavior. 

▪ When the overlap region is near the notch, plastic deformation spills onto it and the two 
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.

Notched Cylinder: Coupling Different Materials
Need to be careful to do domain decomposition so that 

material models are consistent in overlap region.



Quasistatic Example #3: Laser Weld

Laser weld specimen

• Problem of practical scale (~200K dofs).

• Isotropic elasticity and J2 plasticity 
with linear isotropic hardening.

• Identical parameters for weld and base 
materials for proof of concept, to 
become independent models.

10

20

30

0.000e+00

4.000e+01
Cauchy_Stress_05

Coupled Schwarz discretization
(50% reduction in model size)

Single domain discretization



Laser Weld: Strong Scalability of Parallel 
Schwarz with DTK

• Near-ideal linear speedup (64-1024 cores).

Data Transfer Kit (DTK)
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Schwarz Alternating Method for 
Dynamics
▪ In the literature the Schwarz method 

is applied to dynamics by using space-
time discretizations.

Overlapping non-matching meshes and 
time steps in dynamics.



▪ In the literature the Schwarz method 
is applied to dynamics by using space-
time discretizations.

Overlapping non-matching meshes and 
time steps in dynamics.

Pro ☺: Can use non-matching meshes 
and time-steps (see right figure).

Con : Unfeasible given the design of our 
current codes and size of simulations.

Schwarz Alternating Method for 
Dynamics



Schwarz Alternating Method for Dynamic 
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with 
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Step 3: Check for convergence at time 𝑇𝑖+1.
➢ If unconverged, return to Step 1. 
➢ If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

Controller time stepper

Time integrator for W1

Time integrator for W2

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1

Controller time stepper = convenient 
checkpoint to facilitate implementation  

Can use different integrators 
with different time steps

within each domain!



Schwarz Alternating Method for Dynamic 
Multiscale Coupling: Theory

• For quasistatics, we derived a proof of convergence of the alternating Schwarz 
method for the finite deformation problem, and determined a geometric 
convergence rate [(Mota, Tezaur, Alleman, CMAME, 2017) and previous talk].  

• Quasistatic proof extends naturally assuming conformal meshes and the same 
time step is used in each Schwarz subdomain.

• Some analysis of Schwarz for evolution problems was performed in (Lions, 1988) 
and may be possible to leverage.

• Our numerical results suggest theoretical analysis is possible. 

Extending these results to dynamics is work in progress.
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Implementation within Albany Code

▪ Component-based design for rapid development of 
capabilities.

▪ Contains a wide variety of constitutive models.

▪ Extensive use of libraries from the open-source Trilinos
project.

▪ Use of the Phalanx package to decompose complex 
problem into simpler problems with managed 
dependencies.

▪ Use of the Sacado package for automatic 
differentiation.

▪ Use of Tempus package for time-integration*.

▪ Parallel implementation of Schwarz alternating method 
uses the Data Transfer Kit (DTK).

▪ All software available on GitHub.

https://github.com/trilinos/trilinos

https://github.com/gahansen/Albany

https://github.com/ORNL-
CEES/DataTransferKit

The proposed dynamic alternating Schwarz method is 
implemented within the LCM project in Sandia’s open-source 

parallel, C++, multi-physics, finite element code, Albany.

* Current dynamic Schwarz implementation in Albany requires same Δ𝑡 in different subdomains. 
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Dynamic Example #1: Elastic Wave Propagation

• Linear elastic clamped beam with Gaussian initial condition for the 
𝑧-displacement (see figures to the right and below).

• Simple problem with analytical exact solution but very stringent test 
for discretization methods.

• Test Schwarz with 2 subdomains: Ω0 = 0,0.001 × 0.001 ×
0,0.75 , Ω1 = 0,0.001 × 0.001 × 0.25,1 . 

Left: Initial condition 
(blue) and final solution 

(red).  Wave profile is 
negative of initial profile 

at time  T = 1.0e-3.

Time-discretizations:
Newmark-Beta (implicit, 
explicit) with same Δ𝑡.

Meshes: hexes, tets



z-displacement

Table 1: Averaged (over times + domains) relative errors in z–displacement (blue) and z-
velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

LM = Lumped Mass, CM = Consistent Mass

z-velocity

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal hex-hex 2.79e-3 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2

Nonconformal hex-hex 2.90e-3 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3

Tet-hex 2.79e-3 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

Dynamic Schwarz coupling introduces no 
dynamic artifacts that are pervasive in 

other coupling methods!

Elastic Wave Propagation



Elastic Wave Propagation

• For clamped beam problem, total energy (TE = 0.5𝒙𝑇𝑲𝒙 + 0.5 ሶ𝒙𝑇𝑴 ሶ𝒙) should be conserved.

• Total energy is calculated in 2 ways: with most of contribution from Ω0 and from Ω1.

Energy Conservation

Total energy is conserved
and matches single-domain 

total energy.



Example #2: Tension Specimen

Ω1

Ω0

+

• Uniaxial aluminum cylindrical tensile 
specimen with inelastic J2 material 
model.

• Domain decomposition into two 
subdomains (right): Ω0 = ends,      
Ω1 = gauge.

• Nonconformal hex + composite tet
10 coupling via Schwarz.

• Implicit Newmark time-integration 
with adaptive time-stepping 
algorithm employed in both 
subdomains.

• Slight imperfection introduced at 
center of gauge to force necking 
upon pulling in vertical direction.



Tension Specimen

Average of ~7 Schwarz 
iterations/time step required 
for convergence to Schwarz 

tolerance of 1e-6.

y-displacement Nodal eqps*

*Nodal eqps = equivalent plastic strain computed via weighted volume average.



Example #3: Bolted Joint Problem

Ω2

Ω1

• Ω1 = bolts (composite tet 10), Ω2 = parts (hex).

• Inelastic J2 material model in both subdomains.
• Ω1: steel
• Ω2: steel component, aluminum (bottom) plate

• Schwarz solution compared to single-domain 
solution on composite tet 10 mesh.

• BC: x-disp = 0.02 at T = 
1.0e-3 on top of parts.

• Run until T = 5.0e-4 w/ dt = 
1e-5 + implicit Newmark 
with analytic mass matrix 
for composite tet 10s.

Problem of practical scale.



Single Ω Schwarz

Bolted Joint Problem

x-displacement



Cross-section of bolts obtained via clip (right) 

Bolted Joint Problem

Nodal Equivalent Plastic Strain (eqps)



Schwarz / solver settings

• Relatively loose Schwarz 
tolerances were used:

• Relative Tolerance: 1.0e-3.
• Absolute Tolerance: 1.0e-4.

• Newton tolerance on NormF: 1e-8
• Linear solver tolerance: 1e-5
• MueLu preconditioner

• Top right plot: # Schwarz iterations for each time step.

• After start-up, # Schwarz iterations / time step is ~9-10.  This is not 
bad given how small is the size of the overlap region for this problem.

Bolted Joint Problem
Some Performance Results
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Summary

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o Scalable, fast, robust (we target real engineering problems, e.g., analyses 
involving failure of bolted components!).

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

➢ Ability to couple regions with different non-conformal meshes, different 
element types and different levels of refinement.

➢ Ability to use different solvers/time-integrators in different regions.               

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees (☺ for quasistatics).

☺



☺

☺

☺

☺

☺

The alternating Schwarz coupling method has been developed/implemented for 
concurrent multiscale quasistatic & dynamic modeling in Sandia’s Albany/LCM code.

☺
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▪ Develop theory for dynamic alternating Schwarz formulation. 

▪ Journal article on dynamic Schwarz formulation.

▪ Extension of Albany/LCM dynamic Schwarz implementation   
to allow for different time steps in different subdomains. 

▪ Apply dynamic Schwarz to problem of interest to production.

▪ Implement alternating Schwarz method in Sandia production 
codes (Sierra Solid Mechanics).

▪ Development of a multi-physics coupling framework based 
on variational formulations and the Schwarz alternating 
method.

Ongoing/Future Work
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Appendix.  Previous Work

Three-field multiscale 
coupling formulation 

with compatibility 
enforced weakly using 
Lagrange multipliers. 



Appendix.  Previous Work

Method works well, but is 
difficult to implement into 

existing codes.



Appendix.  Full Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop 
and inner Newton loop, each converged to a tight tolerance (𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒).



Appendix.  Inexact Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop 
and inner Newton loop, with Newton step converged to a loose tolerance.



Appendix.  Monolithic Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with 
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

Advantages:

• By-passes Schwarz loop.

Disadvantages:

• Off-diagonal coupling terms → block linear solver is needed.



Appendix.  Modified Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with 
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

Least-intrusive variant: by-passes Schwarz 
iteration, no need for block solver.

Advantages:

• By-passes Schwarz loop.
• No diagonal coupling (conventional linear 

solver can be used in each subdomain).
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⌦1 ⌦2 Γ1Γ2 !

Figure 1: Two subdomains⌦1 and⌦2 and the corresponding boundaries Γ1 and Γ2 used by the Schwarz alternating method.

that is i = 1 and j = 2 if n is odd, and i = 2 and j = 1 if n is even. Introduce the following definitions for

each subdomain i :

• Closure: ⌦i := ⌦i [ @⌦i

• Dirichlet boundary: @' ⌦i := @' ⌦\ ⌦i .

• Neumann boundary: @T ⌦i := @T ⌦\ ⌦i .

• Schwarz boundary: Γ i := @⌦i \ ⌦j .

Note that with thesedefinitionswe guarantee that @' ⌦i \ @T ⌦i = ; , @' ⌦i \ Γ i = ; and @T ⌦i \ Γ i = ; .

Now define the spaces

Si := ' 2 W 1
2 (⌦i ) : ' = χ on @' ⌦i , ' = P⌦j ! Γ i

[' (⌦j )] on Γ i

 
, (7)

and

Vi := ⇠2 W 1
2 (⌦i ) : ⇠= 0 on @' ⌦i [ Γ i

 
, (8)

where thesymbol P⌦j ! Γ i
[·] denotes the projection from thesubdomain⌦j onto theSchwarz boundary Γ i .

This projection operator plays a central role in the Schwarz alternating method. Its form and implementation

are discussed in subsequent sections. For the moment it is sufficient to assume that the operator is able to

project afield ' from one subdomain to the Schwarz boundary of the other subdomain.

The Schwarz alternating method solves a sequence of problems on⌦1 and⌦2. The solution ' (n ) for the

n-th problem is given by

' (n ) =

8
<

:

idX , for n = 0;

arg min
' 2 Si

Φi [' ], for n > 0;
(9)

where idX is the identity map that maps X onto itself (i.e. zero displacement), and

Φi [' ] :=

Z

⌦i

A(F , Z ) dV −

Z

⌦i

RB · ' dV −

Z

@T ⌦i

T · ' dS. (10)

A better guess, if available, may be used to initialize ' (0) on ⌦2 rather than the identity map idX . The

minimization of the functional (10) leads to a variational formulation of the form (4)–(5) for each subdomain

as

DΦi ['
(n ) ](⇠( i ) ) =

Z

⌦i

P : Grad⇠( i ) dV −

Z

⌦i

RB ·⇠( i ) dV −

Z

@T ⌦i

T ·⇠( i ) dS = 0, (11)

6

Appendix.  Convergence Proof



 1D proof of concept problem:

 1D bar with area proportional to square root of length.

 Strong singularity on left end of bar.

 Simple hyperelestic material model with no damage.

 MATLAB implementation.

Appendix. Foulk’s Singular Bar

 Problem goals:

 Explore viability of 4 variants of the Schwarz alternating method.

 Test convergence and compare with literature (Evans, 1986).

 Expect faster convergence in fewer iterations with increased overlap.



Appendix. Singular Bar and Schwarz Variants



Appendix.  Notched Cylinder: HEX-HEX Coupling



Appendix.  Notched Cylinder: Nonconformal 
HEX-HEX Coupling



Appendix.  Notched Cylinder: Nonconformal 
HEX-HEX Coupling



Region of 
localization 
(necking)

Appendix. Multiscale Modeling of 
Localization

Goals:

• Connect physical length scales to engineering scale 
models.

• Investigate importance of microstructural detail.

• Develop bridging technologies for spatial multiscale/ 
multiphysics.

Region of localization (fracture)

Strain localization can cause localized necking (left) 
and ultimately fracture (above).



Appendix.  Parallelization via DTK: Weak 
Scaling on Cubes Problem
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64 Processors,
1.9*103 DOF / proc



Appendix.  Parallelization via DTK: Strong 
Scaling on Cubes Problem

Small problem (2.5*103 DOFs) Medium problem (1.7*104 DOFs)
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Appendix. Rubiks Cube Problem

plotting axial

stress 

concurrent 

coupling

Two distinct bodies, the component 
scale and the microstructural scale, 

are coupled iteratively with 
alternating Schwarz 

component 

scale

distinct 

models

microstructural 

scale

Work by J. Foulk, D. Littlewood, 

C. Battaile,  H. Lim



Appendix.  Tensile Bar

Embed microstructure in 
ASTM tensile geometry



Appendix.  Tensile Bar: Meso-Macroscale 
Coupling

+
Mesoscale 

Macroscale 

SPARKS-generated  
microstructure (F. Abdeljawad)

Fix microstructure, investigate ensembles 

151 axial vectors 
from 3 of the 10 

ensembles of 
random rotations 
(blue, green, red)

▪ Load microstructural ensembles in uniaxial stress
▪ Fit flow curves with a macroscale J2 plasticity model



Appendix.  Tensile Bar: Results

Reduction in cross-sectional 
area over time



Appendix.  Schwarz Alternating Method 
for Dynamics
▪ In the literature the Schwarz method is applied to dynamics by using space-time 

discretizations.

▪ This was deemed unfeasible given the design of our current codes and size of 
simulations.

Overlapping non-matching meshes and time steps in dynamics.



Appendix. A Schwarz-like Time Integrator
▪ We developed an extension of Schwarz coupling to dynamics using a governing time 

stepping algorithm that controls time integrators within each domain. 

▪ Can use different integrators with different time steps within each domain.

▪ 1D results show smooth coupling without numerical artifacts such as spurious wave 
reflections at boundaries of coupled domains.

Controller time stepper

Time integrator for W1

Time integrator for W2



Appendix.  Dynamic Singular Bar
▪ Inelasticity masks problems by introducing energy dissipation.

▪ Schwarz does not introduce numerical artifacts.

▪ Can couple domains with different time integration schemes (Explicit-Implicit below).



Appendix. Elastic Wave Propagation

• Left figure shows # of iterations as a function of overlap region size for 2 subdomains. The 
method does not converge for 0% overlap. If the overlap is 100% then the single-domain 
solution is recovered for each of the subdomains. 

• Right figure shows linear convergence rate of dynamic Schwarz implementation (for small 
overlap fraction of 0.2%).

Some Performance Results



Appendix.  Torsion

• Nonlinear elastic bar (Neohookean material model) 
subjected to a high degree of torsion.

• The domain is Ω = (−0.025,0.025) ×
(−0.025,0.025) × (−0.5,0.5).

• We evaluate dynamic Schwarz with 2 subdomains: 
Ω0 = (−0.025,0.025) × −0.025,0.025 ×
−0.5,0.25 , Ω1 = (−0.025,0.025) ×
−0.025,0.025 × −0.25,0.5 .

• Time-discretizations: Newmark-Beta (implicit, 
explicit) with same Δ𝑡.

• Meshes: hexes, composite tet 10s.

Ω0 Ω1 Ωref



Appendix. Torsion Schwarz and single-domain results 
agree to almost machine-precision!  

Conformal Hex + Hex Coupling Ω0 Ω1 Ωref

• Each subdomain discretized using uniform hex mesh with ∆𝑥𝑖 =
0.01, and advanced in time using implicit Newmark-Beta scheme 
with ∆𝑡 =1e-6.

• Results compared to single-domain solution on mesh conformal with 
Schwarz domain meshes.

Ω0

Ω1

Ω1

Ω0

Displacement relative errors at final time (T=0.002)

Velocity relative errors at final time (T=0.002)



Appendix. Torsion
Hex + Composite Tet 10 Coupling

• Coupling of composite tet 10s + explicit Newmark with consistent 
mass in Ω0 with hexes + implicit Newmark in Ω1.

• Reference solution is computed on fine hex mesh + implicit 
Newmark Ωref

Ω0 Ω1 Ωref

Movie of |displacement|
Left: Single-domain,  

Right: Schwarz

No dynamic 
artifacts!

Relative error <1% and 
does not grow in time!



Appendix. Torsion

• Convergence behavior of the dynamic Schwarz algorithm for the torsion problem for small 
overlap volume fraction (2%) in which each subdomain is discretized using a hexahedral 
mesh. The plot shows that a linear convergence rate is achieved.

Some Performance Results



Single Ω Schwarz

Appendix. Bolted Joint Problem
y-displacement



Single Ω Schwarz

z-displacement

Appendix. Bolted Joint Problem


