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Motivation for Concurrent Multiscale 
Coupling
 Large scale structural failure frequently 

originates from small scale phenomena such 
as defects, microcracks, inhomogeneities and 
more, which grow quickly in unstable manner.

 Failure occurs due to tightly coupled 
interaction between small scale (stress 
concentrations, material instabilities, cracks, 
etc.) and large scale (vibration, impact, high 
loads and other perturbations).

Roof failure of Boeing 737 aircraft due to 
fatigue cracks. From imechanica.org

structural scale, ~m

deformation twins

surface

flaw

reservoir

multiscale region

at crack tip

grain boundaries

s
arc length

grain scale evolution, ~mm

grains

s

high-pressure

hydrogen gas

Concurrent multiscale methods are 
essential for understanding and prediction 
of behavior of engineering systems when a 

small scale failure determines the 
performance of the entire system.

Surface flaw in pressure 
vessel: interacts with 

microstructure, which may 
or may not lead to failure.
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Schwarz Alternating Method for Domain 
Decomposition
 Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

Schwarz Alternating Method

Initialize:

 Solve PDE by any method on W1 w/ initial guess for Dirichlet BCs on G1.

Iterate until convergence:

 Solve PDE by any method (can be different than for W1) on W2 w/ 
Dirichlet BCs on G2 that are the values just obtained for W1.

 Solve PDE by any method (can be different than for W2) on W1 w/ 
Dirichlet BCs on G1 that are the values just obtained for W2.

Simple idea: if the solution is known in regularly shaped domains, use those 
as pieces to iteratively build a solution for the more complex domain.
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 Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843 – 1921)

Schwarz Alternating Method

Initialize:

 Solve PDE by any method on W1 w/ initial guess for Dirichlet BCs on G1.

Iterate until convergence:

 Solve PDE by any method (can be different than for W1) on W2 w/ 
Dirichlet BCs on G2 that are the values just obtained for W1.

 Solve PDE by any method (can be different than for W2) on W1 w/ 
Dirichlet BCs on G1 that are the values just obtained for W2.

Simple idea: if the solution is known in regularly shaped domains, use those 
as pieces to iteratively build a solution for the more complex domain.

 Schwarz alternating method most commonly used as a preconditioner for Krylov
iterative methods to solve linear algebraic equations.

Requirement for convergence: Ω1⋂ Ω2≠ ∅
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PDEs is natural idea with a sound theoretical foundation.



Schwarz Alternating Method after Schwarz

 S. L. Sobolev (1936): posed Schwarz method for linear 
elasticity in variational form and proved method’s 
convergence by proposing a convergent sequence of 
energy functionals. 

S. L. Sobolev (1908 – 1989)

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.



Schwarz Alternating Method after Schwarz

 S. L. Sobolev (1936): posed Schwarz method for linear 
elasticity in variational form and proved method’s 
convergence by proposing a convergent sequence of 
energy functionals. 

 S. G. Mikhlin (1951): proved convergence of Schwarz 
method for general linear elliptic PDEs.

S. G. Mikhlin (1908 – 1990)

S. L. Sobolev (1908 – 1989)

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.



Schwarz Alternating Method after Schwarz

 S. L. Sobolev (1936): posed Schwarz method for linear 
elasticity in variational form and proved method’s 
convergence by proposing a convergent sequence of 
energy functionals. 

 S. G. Mikhlin (1951): proved convergence of Schwarz 
method for general linear elliptic PDEs.

 A. Mota, I. Tezaur, C. Alleman (2017)*: derived a proof of 
convergence of the alternating Schwarz method for the 
finite deformation quasi-static nonlinear PDEs (with 
energy functional 𝜱[𝝋] defined below), and determined a 
geometric convergence rate for the finite deformation 
quasi-static problem.

S. G. Mikhlin (1908 – 1990)

S. L. Sobolev (1908 – 1989)

𝜱 𝝋 = 𝐵׬ 𝑊 𝑭, 𝒁, 𝑇 𝑑𝑉 𝐵׬− 𝑩 ∙ 𝝋 𝑑𝑉-׬𝜕𝑇𝐵
ഥ𝑻 ∙ 𝝋 𝑑𝑆

𝛻 ∙ 𝑷 + 𝑩 = 𝟎

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.
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Schwarz Alternating Method for Multiscale 
Coupling in Quasistatics

Advantages:

 Conceptually very simple.

 Allows the coupling of regions with different non-conforming meshes, different element 
types, and different levels of refinement.

 Information is exchanged among two or more regions, making coupling concurrent.

 Different solvers can be used for the different regions.

 Different material models can be coupled provided that they are compatible in the overlap 
region.

 Simplifies the task of meshing complex geometries for the different scales.



Four Variants* of the Schwarz Alternating 
Method

Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.



Four Variants* of the Schwarz Alternating 
Method

Full Schwarz Modified Schwarz

Inexact Schwarz Monolithic Schwarz

Least-intrusive variant: by-passes Schwarz iteration, 
no need for block solver.

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Schwarz Alternating Method in Albany Code

 Component-based design for rapid development 
of capabilities.

 Extensive use of libraries from the open-source 
Trilinos project.

 Use of the Phalanx package to decompose 
complex problem into simpler problems with 
managed dependencies.

 Use of the Sacado package for automatic 
differentiation.

 Use of Teko package for block preconditioning.

 Parallel implementation of Schwarz alternating 
method uses the Data Transfer Kit (DTK).

 All software available on GitHub.

https://github.com/trilinos/trilinos

https://github.com/gahansen/Albany

https://github.com/ORNL-
CEES/DataTransferKit

Modified & monolithic Schwarz versions have been 
implemented within the LCM project in Sandia’s open-source 

parallel, C++, multi-physics, finite element code, Albany.
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 1D proof of concept problem:

 1D bar with area proportional to square root of length.

 Strong singularity on left end of bar.

 Simple hyperelestic material model with no damage.

 MATLAB implementation.

Example #1: Foulk’s Singular Bar

 Problem goals:

 Explore viability of 4 variants of the Schwarz alternating method.

 Test convergence and compare with literature (Evans, 1986).

 Expect faster convergence in fewer iterations with increased overlap.



Singular Bar and Schwarz Variants



0.00125

0.0025

0.00375

0.000e+00

5.000e-03

disp_ Z

0.00125

0.0025

0.00375

0.000e+00

5.000e-03

disp_ Z

0.00125

0.0025

0.00375

0.000e+00

5.000e-03

disp_ Z

Combined Newton-Schwarz Iteration

Example #2: Cuboid Problem

• Coupling of two cuboids with square base (above).

• Neohookean-type material model.



Cuboid Problem: Convergence with 
Overlap & Refinement

Below: Convergence of the cuboid 
problem for different mesh sizes 

and fixed overlap volume fraction.  
The Schwarz alternating method 

converges linearly.

Above: Convergence factor 𝜇 as a 
function of overlap volume and 
different mesh.  There is faster 

linear convergence with increasing 
overlap volume fraction.

∆𝑦(𝑚+1) ≤ 𝜇∆𝑦(𝑚)



Cuboid Problem: Schwarz Error 



Example #3: Notched Cylinder

• Notched cylinder that is stretched along its axial direction.

• Domain decomposed into two subdomains.

• Neohookean-type material model.



Notched Cylinder: Conformal HEX-HEX Coupling
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Coupling



 The Schwarz alternating method is capable of coupling different mesh topologies.

 The notched region, where stress concentrations are expected, is finely meshed with 
tetrahedral elements.

 The top and bottom regions, presumably of less interest, are meshed with coarser 
hexahedral elements. 

Notched Cylinder: TET-HEX Coupling



Notched Cylinder: TET-HEX Coupling



Notched Cylinder: Conformal TET-HEX 
Coupling



 Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.

 Coarse region is elastic and fine region is elasto-plastic. 

 The overlap region in the first mesh is nearer the notch, where plastic behavior is 
expected.

Overlap far from notch. Overlap near notch.

Coupled regions

Coarse, elastic region

Fine, elasto-plastic region

Notched Cylinder: Coupling Different Materials
The Schwarz method is capable of coupling regions with different material models.



 When the overlap region is far from the notch, no plastic deformation exists in it: the 
coarse and fine regions predict the same behavior. 

 When the overlap region is near the notch, plastic deformation spills onto it and the two 
models predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.

Notched Cylinder: Coupling Different Materials
Need to be careful to do domain decomposition so that 

material models are consistent in overlap region.



Example #4: Laser Weld with 3 Subdomains

Laser weld specimen

• Problem of practical scale (~200K dofs).

• Isotropic elasticity and J2 plasticity 
with linear isotropic hardening.

• Identical parameters for weld and base 
materials for proof of concept, to 
become independent models.

10

20

30

0.000e+00

4.000e+01
Cauchy_Stress_05

Coupled Schwarz discretization
(50% reduction in model size)

Single domain discretization



Laser Weld: Strong Scalability of Parallel 
Schwarz with DTK

• Near-ideal linear speedup (64-1024 cores).

Data Transfer Kit (DTK)
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 We have proposed the Schwarz alternating method as a means of concurrent 
multiscale coupling in finite deformation quasistatic solid mechanics.  

 We have developed four variants of the Schwarz alternating method (Full Schwarz, 
Modified Schwarz, Inexact Schwarz, Monolithic Schwarz).

 We have proven that the Full Schwarz variant converges geometrically for the solid 
mechanics problem. 

 We have demonstrated numerically that the convergence of the Schwarz method in its 
four variants is linear. 

 We have demonstrated coupling of conformal and non-conformal meshes, meshes with 
different levels of refinement, meshes with different element topologies, and > two 
subdomains via the proposed method.

 We have demonstrated that the error in the coupling can be decreased up to numerical 
precision provided that no other sources of error exist.

 We have developed a parallel implementation of the Modified Schwarz method in the 
Albany code and demonstrated that the strong scalability of our implementation is 
close to ideal.

Summary
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 Extension of the methods presented herein to transient dynamics (hyperbolic) 
problems with the ability to use different time steps and time integrators for each 
subdomain.

 Development of a multi-physics coupling framework based on variational
formulations and the Schwarz alternating method.

 Analysis of the convergence for the other Schwarz variants introduced herein, 
namely Modified Schwarz, Inexact Schwarz, and Monolithic Schwarz.

 Using the Schwarz alternating method with different solvers in different domains.

 Develop a hybrid FOM-ROM (full-order-model – reduced-order-model) framework 
using the Schwarz alternating method.

 Introduction of pervasive multi-threading into our Albany implementation of the 
Schwarz alternating method using the Kokkos framework.

 Multiscale coupling using the proposed Schwarz alternating method in other 
applications.

Future Work
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Appendix.  Previous Work



Three-field multiscale 
coupling formulation 

with compatibility 
enforced weakly using 
Lagrange multipliers. 

Appendix.  Previous Work



Method works well, but is 
difficult to implement into 

existing codes.

Appendix.  Previous Work



Appendix.  Full Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop 
and inner Newton loop, each converged to a tight tolerance (𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒).



Appendix.  Inexact Schwarz Method

Classical algorithm originally proposed by Schwarz with outer Schwarz loop 
and inner Newton loop, with Newton step converged to a loose tolerance.



Appendix.  Monolithic Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with 
elimination of Schwarz boundary DOFs, and tight convergence tolerance.

Advantages:

• By-passes Schwarz loop.

Disadvantages:

• Off-diagonal coupling terms → block linear solver is needed.



Appendix.  Modified Schwarz Method

Combines Schwarz and Newton loop into since Newton-Schwarz loop, with 
Schwarz boundaries at Dirichlet boundaries and tight convergence tolerance.

Least-intrusive variant: by-passes Schwarz 
iteration, no need for block solver.

Advantages:

• By-passes Schwarz loop.
• No diagonal coupling (conventional linear 

solver can be used in each subdomain).
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⌦1 ⌦2 Γ1Γ2 !

Figure 1: Two subdomains⌦1 and⌦2 and the corresponding boundaries Γ1 and Γ2 used by the Schwarz alternating method.

that is i = 1 and j = 2 if n is odd, and i = 2 and j = 1 if n is even. Introduce the following definitions for

each subdomain i :

• Closure: ⌦i := ⌦i [ @⌦i

• Dirichlet boundary: @' ⌦i := @' ⌦\ ⌦i .

• Neumann boundary: @T ⌦i := @T ⌦\ ⌦i .

• Schwarz boundary: Γ i := @⌦i \ ⌦j .

Note that with thesedefinitions we guarantee that @' ⌦i \ @T ⌦i = ; , @' ⌦i \ Γ i = ; and @T ⌦i \ Γ i = ; .

Now define the spaces

Si := ' 2 W 1
2 (⌦i ) : ' = χ on @' ⌦i , ' = P⌦j ! Γ i

[' (⌦j )] on Γ i

 
, (7)

and

Vi := ⇠2 W 1
2 (⌦i ) : ⇠= 0 on @' ⌦i [ Γ i

 
, (8)

where thesymbol P⌦j ! Γ i
[·] denotes the projection from thesubdomain⌦j onto theSchwarz boundary Γ i .

This projection operator plays a central role in the Schwarz alternating method. Its form and implementation

are discussed in subsequent sections. For the moment it is sufficient to assume that the operator is able to

project afield ' from one subdomain to the Schwarz boundary of the other subdomain.

The Schwarz alternating method solves a sequence of problems on⌦1 and⌦2. The solution ' (n ) for the

n-th problem is given by

' (n ) =

8
<

:

idX , for n = 0;

arg min
' 2 Si

Φi [' ], for n > 0;
(9)

where idX is the identity map that maps X onto itself (i.e. zero displacement), and

Φi [' ] :=

Z

⌦i

A(F , Z ) dV −

Z

⌦i

RB · ' dV −

Z

@T ⌦i

T · ' dS. (10)

A better guess, if available, may be used to initialize ' (0) on ⌦2 rather than the identity map idX . The

minimization of the functional (10) leads to a variational formulation of the form (4)–(5) for each subdomain

as

DΦi ['
(n ) ](⇠( i ) ) =

Z

⌦i

P : Grad⇠( i ) dV −

Z

⌦i

RB ·⇠( i ) dV −

Z

@T ⌦i

T ·⇠( i ) dS = 0, (11)

6

Appendix.  Convergence Proof



Region of 
localization 
(necking)

Appendix. Multiscale Modeling of 
Localization

Goals:

• Connect physical length scales to engineering scale 
models.

• Investigate importance of microstructural detail.

• Develop bridging technologies for spatial multiscale/ 
multiphysics.

Region of localization (fracture)

Strain localization can cause localized necking (left) 
and ultimately fracture (above).



Appendix.  Parallelization via DTK: Weak 
Scaling on Cubes Problem
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64 Processors,
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Appendix.  Parallelization via DTK: Strong 
Scaling on Cubes Problem

Small problem (2.5*103 DOFs) Medium problem (1.7*104 DOFs)
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Appendix. Rubiks Cube Problem

plotting axial

stress 

concurrent 

coupling

Two distinct bodies, the component 
scale and the microstructural scale, 

are coupled iteratively with 
alternating Schwarz 

component 

scale

distinct 

models

microstructural 

scale

Work by J. Foulk, D. Littlewood, 

C. Battaile,  H. Lim



Appendix.  Tensile Bar

Embed microstructure in 
ASTM tensile geometry



Appendix.  Tensile Bar: Meso-Macroscale 
Coupling

+
Mesoscale 

Macroscale 

SPARKS-generated  
microstructure (F. Abdeljawad)

Fix microstructure, investigate ensembles 

151 axial vectors 
from 3 of the 10 

ensembles of 
random rotations 
(blue, green, red)

 Load microstructural ensembles in uniaxial stress
 Fit flow curves with a macroscale J2 plasticity model



Appendix.  Tensile Bar: Results

Reduction in cross-sectional 
area over time



Appendix.  Schwarz Alternating Method 
for Dynamics
 In the literature the Schwarz method is applied to dynamics by using space-time 

discretizations.

 This was deemed unfeasible given the design of our current codes and size of 
simulations.

Overlapping non-matching meshes and time steps in dynamics.



Appendix. A Schwarz-like Time Integrator
 We developed an extension of Schwarz coupling to dynamics using a governing time 

stepping algorithm that controls time integrators within each domain. 

 Can use different integrators with different time steps within each domain.

 1D results show smooth coupling without numerical artifacts such as spurious wave 
reflections at boundaries of coupled domains.

Controller time stepper

Time integrator for W1

Time integrator for W2



Appendix.  Dynamic Singular Bar
 Inelasticity masks problems by introducing energy dissipation.

 Schwarz does not introduce numerical artifacts.

 Can couple domains with different time integration schemes (Explicit-Implicit below).


