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Motivation for performance portability )

e Earth system models (ESMs) and ice sheet models (ISMs) need
more computational power to achieve higher resolutions.

e High performance computing (HPC) architectures are becoming
increasingly more heterogeneous in a move towards exascale.

e Climate models need to adapt to execute correctly & efficiently on
new HPC architectures with drastically different memory models.

An application is “performance portable” if it achieves a consistent
level of performance across a variety of computer architectures.




Trends in HPC architectures ) e,

Lahoratories

CPUs:
* Intel Xeon (lvy Bridge, Haswell, Skylake), AMD
Epyc, ARM

KNLs:
 NERSC Cori, ALCF Theta (— 2021)
* Follow on KNH architecture cancelled

GPUs:

*  OLCF Summit, 15MW of NVIDIA V100s

* NERSC Perlmutter (NVIDIA GPU+AMD CPU): 2020

* OLCF Frontier (AMD GPUs) in 2021: exascale in
2021 for 30MW

e ALCF Aurora (Intel GPUs): 2021

GPU and heterogeneous (CPU+GPU) architectures
seem to be the future in moving towards exascale.

» Computations are cheap, memory transfer is expensive.

» MPI alone is not enough to exploit available parallelism.




MPI+X programming model/approaches rh) e,

MPI+X Approach: two levels of parallelism for CPU+accelerator
& > MPI for inter-node parallelism (for CPU)

» X for intra-node parallelism (for accelerator, e.g. GPU)

4 <

1. Architecture specific approaches such as CUDA.
» Recent paper on FastICE v1.0 CUDA-based ISM: (Rass et al., GMDD, 2019).
» Conversion to HIP for AMD GPU supposed to be simple, but not portable.

2. Directive-based approaches such as OpenMP and OpenACC.

» Some success in achieving performance portability for climate, e.g. OpenACC port of
HOMME atmosphere dycore (Norman et al., J Comput. Sci., 2015).

» Relies on compiler to address all the standards.

3. Abstraction layers of data/task parallelism such as Kokkos and RAJA.
» Performance-portable, “future proof”: optimal data layout selected at compile-time.

» Requires code to be written using C++.

» Kokkos is path forward for DOE E3SM (SCREAM, ProSPect): (Demeshko et al. J. HPC.
Appl., 2018), (Bertagna et al., GMD, 2019), (Watkins et al. LNCSE, 2020).
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4 <

1. Architecture specific approaches such as CUDA.
» Recent paper on FastICE v1.0 CUDA-based ISM: (Rass et al., GMDD, 2019).

» Conversion to HIP for AMD GPU supposed to be simple, but not portable.

2. Directive-based approaches such as OpenMP and OpenACC.

» Some success in achieving performance portability for climate, e.g. OpenACC port of
HOMME atmosphere dycore (Norman et al., J Comput. Sci., 2015).

> Relies on compiler to address all the standards. Our strategy and this talk!

3. Abstraction layers of data/task parallelism such as Kokkos and RAJA.
» Performance-portable, “future proof”: optimal data layout selected at compile-time.

» Requires code to be written using C++.

» Kokkos is path forward for DOE E3SM (SCREAM, ProSPect): (Demeshko et al. J. HPC.
Appl., 2018), (Bertagna et al., GMD, 2019), (Watkins et al. LNCSE, 2020).
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This talk describes our efforts towards creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

1. Overview of the Albany/Land Ice (ALI)
model/code developed under
ProSPect SciDAC.

2. Performance portability of the finite
element assembly in ALl using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion
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ProSPect project for land-ice modeling ) i

SciDA “ProSPect” = Probabilistic Sea Level Projections from ISMs and ESMs CEjSM

Scaentific Discovery

thaough 5 year SciDAC4 project (2017-2022), https://doe-prospect.github.io/

Advanced Computing

Energy Exascale
Earth System Model

Sandia’s Role in the ProSPect Project: to develop and support a robust and scalable land
ice solver based on the “First-Order” (FO) Stokes equations — Albany/Land Ice (ALI)*

Requirements for Albany/Land Ice (ALI)*:

* Unstructured grid meshes.

* Scalable, fast and robust.

* Verified and validated.

* Portable to new architecture machines.

* Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

Hooked up to DOE’s E3SM Earth
System Model through MPAS

(MPAS + ALl = MALI)

MPAS
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Albany finite element C++ code base ) i,

The Albany/Land Ice First Order Stokes
solver is implemented in a Sandia open-
source parallel C++ multi-physics finite
element code known as...

AN

Land Ice Equation Other
Set (ALI) Equation Sets

Albany:
https://github.com/SNL
Computation/Albany

“Agile Components”

Discretizations/meshes
Solver libraries
Preconditioners
Automatic differentiation
Performance portable kernels
Many others!

Parameter estimation
Uncertainty
qguantification
Optimization
Bayesian inference

By using software components, we
have been able to leverage years of
R&D in algorithms, software, and
performance portability!

Trilinos: https://github.com/trilinos/Trilinos
Dakota: https://dakota.sandia.gov/



https://github.com/trilinos/Trilinos
https://dakota.sandia.gov/
https://github.com/SNLComputation/Albany

First-Order (FO) Stokes model Taglinos EMGIE=N

* Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

ds €7 = (2., + €35 €15, €13)
— V- (2uED) = —pg— 1 1 1 11T €22 €12, €13
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(2ué;) = —pg 3y = é; 2( 7, o,

Algorithmic choices for ALI:

e 3D unstructured grid FEM discretization.

e Newton method nonlinear solver with
automatic differentiation Jacobians.

e Preconditioned Krylov iterative linear
solvers.

e Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

(E3SM

Energy Exascale
Earth System Model




First-Order (FO) Stokes model

Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:
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. N ds €," = (2€1;+ €55, €15,€43)
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Algorithmic choices for ALI: Implicit solver:
3D unstructured grid FEM discretization. FEA* = 50%
] ] CPU-time
Newton method nonlinear solver with
automatic differentiation Jacobians. Linear solve =

Preconditioned Krylov iterative linear
solvers.

Advanced analysis capabilities: deterministic

inversion, calibration, UQ.

(E3SM

Energy Exascale
Earth System Model

50% CPU-time

IC)heet

* Finite Element Assembly
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First-Order (FO) Stokes model

* Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

: = €T = (2611 + €33 €12 €13)
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Algorithmic choices for ALI: Implicit solver:
e 3D unstructured grid FEM discretization. FEA* = 50% Performance-
, _ CPU-time portable
e Newton method nonlinear solver with

Performant
(towards portability)

automatic differentiation Jacobians. Linear solve =
50% CPU-time

A 4

e Preconditioned Krylov iterative linear
solvers.

e Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

(E3SM

Energy Exascale
Earth System Model

IC)heet

* Finite Element Assembly
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This talk describes our experience in creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

1. Overview of the Albany/Land Ice (ALI)
model/code developed under ProSPect
SciDAC.

2. Performance portability of the finite
element assembly in ALl using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion




Performance portability via Kokkos ) e,

We need to be able to run ALI/E3SM on new architecture
machines (GPUs, KNLs) and hybrid (CPU+GPU) systems.

* Kokkos* is a C++ library that provides performance portability across multiple
shared memory computing architectures using the MPI+X programming model

» A programming model as much as a software library.

» Provides automatic access to OpenMP, CUDA, Pthreads, ...
» Templated meta-programming: parallel_for, parallel_reduce

» Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template
parameter to get the optimal data layout for your hardware.

* Allows researchers to focus on application development instead of architecture
specific programming.

* Finite element assembly in ALl has been rewritten using Kokkos functors.



https://github.com/kokkos/kokkos

ALl Finite Element Assembly (FEA) ) .

Albany Land Ice performance is split between
the linear solve (50%) and FEA (50%)

Phalanx
e Piro manages the nonlinear solve ‘a

* Tpetra manages distributed memory linear
algebra (MPI+X)

* Phalanx manages shared memory ““MM?

Trilinos Packages

FEA Overview

computations (X)

> Gather fills element local solution @ Solution Residual
R Lt it
> Interpolate solution/gradient to fucoblan

quadrature points

» Evaluate residual/Jacobian Memory Model

» Scatter fills global residual/Jacobian

Distributed Shared
Memory (DM) Memory (SM)

* Jacobians (+ sensitivities, Hessians, ...) obtained
via automatic differentiation (Sacado).




MPI+X FEA via Kokkos rh) peiea

MPI-only FEA | ——> | MPI+X FEA

Shared

typedef Kokkos::0penMP ExecutionSpace; Memory (SM)
def Kokkos::CUDA ExecutionSpac
//typedef Kokkos::
template<typename ScalarT>

vectorGrad<ScalarT>: :vectorGrad()

{

Kokkos: :View<ScalarT****, ExecutionSpace> wvecGrad(“vecGrad”, numCells, numQP, numVec, numDim);

}

e v v e o de o o o e ok o e ok ok b o ok e e o o b o ol o o e o o e e e o o i O b o o o o e e e

/ftype

template<typename ScalarT=
void vectorGrad<ScalarT>::evaluateFields()

{

Kokkos::parallel for<ExecutionSpace> (numCells, #*this);

}

e de e e de o o o o ok o e ok ok b o o o b ok i e o ol ok e o e o e ke e ok b ke e e e e b b e b ol o

template<typename ScalarT=> ]

KOKKOS INLINE FUNCTION ExecutionSpace parameter

void vectorGrad<ScalarT>:: operator() (const int cell) const tailors code for device (e g

q g.,
for (int cell = 0; cell < pumCells; cellit) OpenMP, CUDA, etc.)

for (int gp = 0; gp < numQP; gp++) {
for (int dim = 0; dim < numVec; dim++) {
for (int i = 0; i < numDim; i++) {
for (int nd = 0; nd < numNode; nd++) {
vecGrad(cell, gp, dim, i) += wval(cell, nd, dim) * basisGrad(nd, gp, i);

PP}




Performance study: Greenland Ice Sheet (GIS)

GIS4k-20k 4km-20km 1.51 million
GIS1k-7k 1km-7km 14.4 million

e Unstructured tetrahedral element meshes

 Wall-clock time averaged over 100 global assembly
evaluations (residual + Jacobian)

* Performance analysis focuses on finite element
assembly

* Notation for performance results:

r(MPI + jX), X € {OMP, GPU}

r = # MPI ranks
j = # OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism




Performance study: Architectures rh) et
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Performance-portability of FEA in Albany has been tested across multiple architectures:
Intel Sandy Bridge, Intel Skylake, IBM Power8/9, Keplar/Pascal/Volta GPUs, KNL Xeon Phi

Architectures:

* Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

* Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)
*  Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB) &
* Ride (SNL): 12 nodes [2 POWERS (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

*  Waterman (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)

Compilers: gcc/icpc/xIC

Models:

* 3 models: MPl-only, MPI+OpenMP, MPI+CUDA

*  MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads

*  MPI+GPU: MPI ranks assigned a single core per GPU
» CUDA UVM used for host to device communication




Performance results: Node utilization rh) i

Node: Single dual-socket CPU or quad-GPU

2 \
= 20 Bl SMAssembly (Node Configuration n 2.0 B S\ Assembly (Node Configuration )
331_5 ! 3 DMAssenl 1 i a: 32MPI &31 -] a: 48MPI
2 ssembly b 32(MPI+20MP) g 1.5 1 DMAssembly b: 48(MPI+20MP)
210 ‘ ¢ GSMB j ¢ 56MPI
< d: 68(MPI+40MP) *g 1.0 d: 56(MPI+40OMP)
E e: 16MPI '_‘LI; I N 2 (x e: 40MPI
= 0.51 f: 4MPI+GPU) =05 d = U 4(MPI+HGPU)
; . _/ :ﬁ a b \l/ . J

00 Cori Cori Ride 0.0 Blake Mayer Waterman

(Haswell) (KNL) (P8,P100) (SKX) (TX2) (P9,V100)
Clusters Clusters

* Speedup achieved across most execution spaces
» Kokkos Serial vs. OpenMP or CUDA

» 12.6x speedup on POWER8+P100, 2.0x speedup on POWER9+V100 (~16x speedup would be
expected if memory bound, but we are latency bound due to Export/Import).

» In general, should expect no speedup with MPI+OpenMP — slight speedups on Mayer and Cori
may be due to thread caching.

* Tpetra Export poor on GPU machines (WIP within Albany and GPUDirect issue on
POWER systems: CUDA does not play well with MPI!)

Blue (SMAssembly): shared memory local/global assembly (assembly/computation)
Yellow (DMAssembly): distributed memory global assembly handled by Tpetra (mostly communication)




Performance results: Strong scalability @&,

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

&)

o y

] ]

< 10! < 10!
= =

= =

107 10!
Devices Devices

 Reasonable scaling across all devices without machine-specific
optimization in Albany

» Poor GPU scaling (Export WIP within Albany and GPUDirect issue on POWER)
» Best case: Skylake at 32 devices (768 cores)
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Motivation for linear solvers work rh) i

* Linear solver takes ~50% of total CPU time for ALI diagnostic solve

» FEA is only half the story: we need to make linear solver performant (and
ultimately performance portable)




Motivation for linear solvers work rh) i

Greenland Ice Sheet Antarctic Ice Sheet
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Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

* Algebraic Multi-Grid.
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Greenland Ice Sheet Antarctic Ice Sheet
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Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

Why is scalability so bad for off-the-shelf preconditioners?

1. Ice sheet geometries have bad aspect ratios (dx > dz).
2. Ice shelves can generate problematic linear systems.
3. Islands and hinged peninsulas lead to solver failures.

* Algebraic Multi-Grid.
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Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

Why is scalability so bad for off-the-shelf preconditioners? We mitigate these difficulties
through the development of:

1. Ice sheet geometries have bad aspect ratios (dx > dz).
« New AMG* preconditioner

2. Ice shelves can generate problematic linear systems. e

3. Islands and hinged peninsulas |lead to solver failures. « Island/hinge removal algorithm.

* Algebraic Multi-Grid.
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Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

Why is scalability so bad for off-the-shelf preconditioners? We mitigate these difficulties
through the development of:

1. Ice sheet geometries have bad aspect ratios (dx > dz).
* New AMG?* preconditioner

2. Ice shelves can generate problematic linear systems. e

3. Islands and hinged peninsulas |lead to solver failures. « Island/hinge removal algorithm.

* Algebraic Multi-Grid.




How Does Multi-Grid Work? ) e

Basic idea: accelerate convergence of an iterative method on a given
grid by solving a series of (cheaper) problems on coarser grids.

* Create set of coarse approximations.

* Apply restriction operator R, to interpolate
from fine to coarse grid.

e Solve problem on coarse grid.

* Apply prolongation operator P; to get back
to original (fine) grid.

* Smoothers are applied throughout procedure
to reduce short wavelength errors.

Solve A;u; = f,

Smooth A;u; = f;.Set f, = R,r,. Setu; = u; + P,u,. Smooth A;u; = f,.
Smooth A,u, = f,.Set f, = R,r,. Setu, = u, + P,u,. Smooth 4A,u, = f,.

Solve A,u, = f, directly.




Scalable Algebraic Multi-Grid (AMG)
Preconditioners

Sandia
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Bad aspect ratios (dx > dz) ruin

classical AMG convergence rates!

* relatively small horizontal
coupling terms, hard to
smooth horizontal errors

= Solvers (AMG and ILU) must

take aspect ratios into account!

We developed a new AMG
solver based on aggressive
semi-coarsening (available in
ML/Muelu packages of Trilinos)

See (Tezaur et al., Procedia CS, 2015),
(Tuminaro et al., SISC, 2016).

%nos

Algebraic
Structured MG

Algebraic
Structured MG

Unstructured
AMG




Weak scalability: Greenland

Weak Scalability: 8km, dkm, 2km, 1km, 500m GIS

3
10 F

time (sec)

—=— Total Time - Mesh Import
—=— Total Linear Zoke Time
—*— Finite Element Assembly Time 1

10 E——
1

4 cores
334K dofs
8 km Greenland,
5 vertical layers

2 3 4 a
10 10 10 10
¥ cores
16,384 cores
1.12B dofs(!)
x 84 " 0.5 km Greenland,

scale up 80 vertical layers
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Weak scaling study with fixed
dataset, 4 mesh bisections.

~70-80K dofs/core.

Conjugate Gradient (CG)
iterative method for linear solves

(faster convergence than
GMRES).

New AMG preconditioner
developed by R. Tuminaro based
on semi-coarsening (coarsening
in z-direction only).

Significant improvement in
scalability with new AMG
preconditioner over ILU
preconditioner!



Weak scalability: Greenland ) i
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New AMG preconditioner
preconditioner ILU preconditioner
3
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e Significant improvement in
4 cores 16,384 cores Scalability with new AMG
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8 km Greenland, % g4 0.5 km Greenland, preconditioner!
5 vertical layers scale up 80 vertical layers



Weak scalability: Antarctica ) e,

10 L N Al o L5 |
i Thin floating ice: ILU will not
i ILU solver does not converge work well! Green’s function
10 for finest mesh resolution! ~ constant in thin direction™
4
‘0 :r -t = ¢e 3
o : e
- 10 F P T o o —) o
() ] )¢
£ 5. o 3
=] > &—
10 3 -
F —S— ML Total Time
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0 —— FEA Time
‘0 " i i g3 3924 i i i i raal L L i Al a4
1 2 3 4 . .
10 10 10 10 Thin grounded ice: I
# cores ILU can work well w/
proper ordering

* Weak scaling study: 2.5M — 1.1B dofs, 16 — 8192 cores |

* Initialized with realistic basal friction (from deterministic inversion) and temperature field
from BEDMAP?2.

* lterative linear solver: GMRES.
* Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening.

See (Tuminaro et al., SISC, 2016).

* A1 will have large number of non-zeroes, so approximate inverse ILU preconditioner is ineffective.



Towards linear solver performance portability

 Trilinos templated software stack for sparse algebra interfaces/linear solvers
(Tpetra, Belos, Muelu, Ifpack2) integrates Kokkos for performance portability.

MueLu CoarseMapFactory.hpp — MuelLu CoordinatesTransferFactory kokkos.hpp
MueLu CoordinatesTransferFactory.hpp — MueLu CoarseMapFactory kokkos.hpp
MueLu NullspaceFactory.hpp — MueLu NullspaceFactory kokkos.hpp

e Semi-coarsening algorithm need not be redesigned for GPUs. 60

* Performance portability of Muelu solvers on advanced architectures including
GPUs has been demonstrated for Maxwell and compressible flow equations.

M Mat/vecs, orthogonalizations in Belos done on GPU.

M Smoothers in Ifpack2 created/applied on GPU.

M Coarse grid solve performed on host (direct solvers on GPUs is R&D topic).

Evaluating the performance portability of our AMG semi-coarsening-based
solver in ALl is in the project plan for FY20 — all necessary pieces are in Trilinos!
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e Semi-coarsening algorithm need not be redesigned for GPUs.

* Performance portability of Muelu solvers on advanced architectures including
GPUs has been demonstrated for Maxwell and compressible flow equations.

M Coarse grid solve performed on host (direct solvers on GPUs is R&D topic).

M Mat/vecs, orthogonalizations in Belos done on GPU.

M Smoothers in Ifpack2 created/applied on GPU.

Evaluating the performance portability of our AMG semi-coarsening-based
solver in ALl is in the project plan for FY20 — all necessary pieces are in Trilinos!

We will be looking to hire a summer intern in SNL/CA
to help with this task! Posting coming soon!
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European Seminar on COmputing (ESCO) 2020
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Computational Methodologies for Next-Generation Climate Models

Mauro Perego (mperego@sandia.gov, Sandia National Laboratories, USA), Irina Tezaur (ikalash@sandia.gov, Sandia National
Laboratories, USA)

The development and application of global climate models for understanding and predicting the effects of global climate change and
sea-level rise is critical, since it can direct energy and infrastructure planning, as well as inform public policy. Earth System Models
(ESMs), which are global climate models including biogeochemistry, integrate the interactions between atmosphere, ocean, land, ice,
and biosphere to enable the simulation of the state of regional and global climate under a wide variety of conditions. In recent years,
there has been a push to develop “next generation” ESMs, models which: (1) are able to perform realistic, high-resolution,
continental scale simulations, (2) are robust, efficient and scalable on next-generation hybrid systems (multi-core, many-core, GPU)
towards achieving exascale performance, and (3) possess built-in advanced analysis capabilities (e.g., sensitivity analysis,

optimization, uncertainty quantification).

This minisymposium will consist of talks describing new and ongoing research in the development of accurate and tractable “next-
generation” models for stand-alone climate components (e.g., atmosphere, land-ice, sea-ice, ocean, land, biogeochemistry), as well

talks addressing the challenges in coupling climate components for integration into ESMs. Of particular interest are:

1. efficient computational strategies and software for tackling the complex, nonlinear, multi-scale, multi-physics problems arising
in climate modeling, with an eye towards next-generation hybrid platforms, and
2. advanced analysis techniques that can inform/enhance existing models through the incorporation of observational data, e.g.,

approaches for model initialization/calibration, uncertainty quantification and data assimilation.


https://www.esco2020.femhub.com/
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This talk describes our efforts towards creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

1. Overview of the Albany/Land Ice (ALI)
model/code developed under ProSPect
SciDAC.

2. Performance portability of the finite
element assembly in ALl using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion




Summary and discussion points ) e,
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We are making progress towards running Albany/Land Ice on
heterogeneous HPC architectures with the help of Kokkos and Trilinos!

Comments/discussion points:

* Kokkos (and similar libraries) not a magic bullet!

» Some algorithms need to be redesigned substantially to be efficient on
GPUs/hybrid architectures (e.g. ILU), and Kokkos will not circumvent this fact.

* How feasible is it to port non-C++/Sandia codes to Kokkos?

» E3SM seems to support C++/Kokkos route: BER-funded SCREAM project is
aimed at rewriting (Fortran) HOMME atmospheric dycore using C++/Kokkos.

* There is always some tradeoff between portability and performance.

» Getting the best possible performance on GPUs using Kokkos may require
some platform-specific optimizations.

* Relying on libraries can be a blessing and a curse.
» Code can speed up and slow down with no changes on your side!

* Regression/performance testing is critical when targeting multiple architectures!
» Other solvers besides MG for GPUs worth considering (e.g. hierarchical solvers).
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Albany/Land Ice Finite Element Assembly (FEA)

e Gather operation extracts solution values (e meen
. ather on (See .
out of global solution vector. M / ( Generic Template )
" <EvaluationType>

° PhySiCS evaluator functions ope rate on ( Gather Coordinates (Seed) b Template Specializations
workset of elements, store evaluated v ¥ Residual )
quantities in local field arrays. ( Finite Element Basis ) SAcbien

Functions, Transformations

e FEA relies on template based generic Series Expansion
programming + automatic differentiation Source Terms Diffusion Terms ) | Hessian )
for Jacobians, tangents, etc. ¥Convecnon Terms / (_shape Optimization )

e Scatter Operation adds local residua I, Element Residual == Global, Linear Algebra Storage

Jacobian to global residual, Jacobian. — Local, Elemental Storage
Scatter (Extract)
Performance-portability: focus on FEA. !\_: l%

e MPIl-only FEA:

» Each MPI process has workset of cells & Problem Type | % CPU time for FEA
computes nested parallel for loops. Implicit 50%
* MPIH+X FEA: Explicit 99%

» Each MPI process has workset of cells.
» Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.



MPI+X FEA via Kokkos ) e,

e  MPI-only nested for loop:

for (int cell=0; cellcknumCells; ++cell)
for (int node=0; node<numNodes; ++node)
for (int gp=0; qp<numQPs; ++gp)

compute A; MPI process n




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

for (int cell=0; cellcknumCells; ++cell)
for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qgp) Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

A 4

compute A; MPI process n

Single Threading




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

Single Threading

* Unified Virtual Memory.



MPI+X FEA via Kokkos

Thread 1 computes A for
(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested
for loops via Kokkos:

Thread 2 computes A for
(cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g.
typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

Single Threading




MPI+X FEA via Kokkos

Thread 1 computes A for
(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested
for loops via Kokkos:

Thread 2 computes A for
(cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g.
typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch _add

Single Threading




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

for loops via Kokkos: (cell,node,qp)=(0,0,1)

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g. Single Threading

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA
typedef Kokkos::Serial ExecutionSpace; //MPIl-only

e Atomics used to scatter local data to global data structures
Kokkos::atomic_fetch _add

e For MPI+CUDA, data transfer from host to device handled by CUDA UVM*,

* Unified Virtual Memory.




MPI'I'X FEA V|a KOkkOS Thread 1 computes A for

(cell,node,qp)=(0,0,0)

e Multi-dimensional parallelism for nested Thread 2 computes A for

i . (cell,node,qp)=(0,0,1)
for loops via Kokkos: Kokkos parallelization in ALI

master is only over cells**,

Thread N computes A for
(cell,node,gp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes, (int)numQPs});
Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

e ExecutionSpace defined at compile time, e.g. SIS Threadiag

f—%
typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP “Task1 |
typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA .2
typedef Kokkos::Serial ExecutionSpace; //MPIl-only i

. Thread 1
e Atomics used to scatter local data to global data structures ——
Kokkos::atomic_fetch _add ‘
-
e For MPI+CUDA, data transfer from host to device handled by CUDA UVM*. W

* Unified Virtual Memory. ** can be up to 2x faster on GPU but adds code bloat & requires padding.



Phalanx: DAG*-based assembly h) s

DAG Example Advantages: DAG Example (memoization)
4 * Increased flexibility,
extensibility, usability H
Scatter e Arbitrary data type support
* Potential for task parallelism Scatter
Disadvantage:
Gather * Performance loss through
Fanmeter fragmentation Stored
o Field
Extension:
e " e Performance gain through
nterpolate asis . .
Solution Functions @ mem0|zat|0n Interpolate 4_St0red
Solution Field
(‘7(?";‘{?"{": _ B S\ Assembly
soordinates \;3- 3 DMAssembly
: : 22
% |
(0

Haswell Haswell KNL P100
16MPI 16(MPI+20MP) 683(MPI4+40MP) 1(MPI+GPU)

Single CPU socket or GPU

* Directed acyclic graph.



Phalanx Evaluator: templated Phalanx )
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. Residual
A Phalanx node (evaluator) is constructed as a
C++ class
. template<typename EvalT, typename Traits>
* Each evaluator is templated on an void StokesFOResid<Evalf, Traits>::
. . . evaluateFields (typename Traits::EvalData workset) {
evaluation type (e.g. residual, Jacobian) Kokkos: :parallel for(

Kokkos: :RangePolicy<ExeSpace>(0,workset.numCells)

 The evaluation type is used to determine
the data type (e.g. double, Sacado data )

tyF)ES) template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void StokesFOResid<EvalT, Traits>::

*this) ;

* Kokkos RangePolicy is used to parallelize operator() (const ints cell) const(
. for (int node=0; node<numNodes; ++node) {
over cells over an ExeSpace (e.g. Serial, Residual (cell,node, 0)=0. ;

}
OpenMP, CU DA) for (int node=0; node < numNodes; ++node) {

for (int gp=0; gp < numQPs; ++gp) {
Residual (cell,node,0) +=

* |nline functors are used as kernels

Ugrad(cell,gp,0,0)*wGradBF (cell,node,qp,0) +
° MDField data |ayouts Ugrad(cell,gp,0,1)*wGradBF (cell,node,qgp,l) +
force(cell,qp,0)*wBF (cell,node,qp);
» Serial/OpenMP — LayoutRight (row- -
major) }
» CUDA - LayoutLeft (col-major)




Sacado — Automatic Differentiation (AD) ()
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Sacado data types are used for derivative components (ND = # components)
 DFad (most flexible) — ND is set at run-time

SLFad (flexible/efficient) — maximum ND set at compile-time
SFad (most efficient) — ND set at compile-time

ND Size Example: Tetrahedral elements (4 nodes), 2 equations, ND =4*2 =8

Fad Type Comparison for StokesFO<Jacobian> (Serial, OpenMP (12 threads), CUDA)

X
sedup

E100

_ 91 — svr?;\:—sf;full openmp-sfad B — cuda70-sfad
< serial-sliac - = L [,

= )=} — y slfad &, = cuda70-slfad
=0 serial-dfad £ 10 opemrs & 200 — cudaT0-dfad
= 2 = openmp-dfad - cudat-diac

L ——

Spe
Speec

10° 107 107 10° 10° 10°
Problem Size (Number of Cells) Problem Size (Number of Cells)

0

10°% 104
Problem Size (Number of Cells)




Performance Portability: a response to
heterogeneity

Generic Definition: For an application, a reasonable level of
performance is achieved across a wide variety of computing
architectures with the same source code.

Let’s be more specific:

* Performance quantified by application execution time while
strong/weak scaling.
* Portability includes conventional CPU, Intel KNL, NVIDIA GPU.

Approach: MPI+X Programming Model

 MPI: distributed memory parallelism — Tpetra
e X:shared memory parallelism — Kokkos

 Examples: OpenMP, CUDA

* Minimize data movement (efficient programming)

* Increase arithmetic intensity (improve compute to memory
transfer ratio)

* Saturate memory bandwidth (expose more parallelism)

Sandia
National
Laboratories




Single CPU/GPU shared memory profile @i,

SKX: 24-core V100: 1 GPU

Other Other
Gather/Scatter

Gather/Scatter

Evaluation

Evaluation
Interpolation

Interpolati

* Residual/Jacobian Evaluation most expensive
* Gather/Scatter becoming increasingly important...

e Other: some auxiliary routines are still expensive on the GPU (~10%)




Hierarchical Parallelism
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Hierarchical parallelism is used to expose more parallelism when strong scaling

* Kokkos TeamPolicy, TeamThreadRange is used
to parallelize over cells and nodes

* Kokkos scratch space is used to store
node/quadrature values in shared memory

* ~2x speedup for small problem sizes on GPU
(need padding for large problem sizes)

* Slowdown for all problem sizes on CPU (need
different layout)

CUDAY0

904 — Residual
— Jacobian

Speedup over original kernel

T

102 103 10* 10 109

Problem Size (Number of Cells)

template<typename EvalT, typename Traits>
void StokesFOResid<EvalT, Traits>::
evaluateFields (typename Traits::EvalData workset) {
Kokkos::parallel for(
Kokkos: :TeamPolicy<ExeSpace>(workset.numCells, Kokkos: :AUTO()),
*this) ;

template<typename EvalT, typename Traits>
KOKKOS INLINE FUNCTION
void StokesFOResid<EvalT, Traits>::
operator () (const Member& teamMember) const{
const Index cell = teamMember.league rank();
// Allocate shared memory
ScratchView gpVals(teamMember.team shmem(), numQPs, fadSize);
ScratchView nodeVals (teamMember.team shmem(), numNodes, fadSize);
// Zero nodeVals
Kokkos::parallel for(
Kokkos: :TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {
nodeVals (node) = 0; });
// Fill Ugrad00
Kokkos::parallel for(
Kokkos: :TeamThreadRange (teamMember, numQPs), [&]
gpVals(gp) = Ugrad(cell,qp,0,0); });
// Calc Ugrad00 contribution
for (Index gp=0; gp < numQPs; ++gp) {
Kokkos::parallel for(
Kokkos: :TeamThreadRange (teamMember, numNodes), [&] (const Index& node)
nodeVals (node) += gpVals(gp) * wGradBF(cell,node,qp,0); }); }

(const Index& gp) {

// Copy to Residual0

Kokkos::parallel for(

Kokkos: :TeamThreadRange (teamMember, numNodes), [&] (const Index& node) {
Residual (cell,node,0) = nodeVals(node); });




Performance results: weak scalability rh) e,

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,v100=GPU

4 x 109 4 % 100

_3x 100 —e— HSW 3% 10 == SKX

T x| T KM < o] T TR

= U s P10 g “” —as= V100

s s

S g i S g

I O = o ———— —— i " — § T —

= —— = < P ap——

= 6x 10! = 6x 107! - —

4% 1071 ' e 1
* 107 0 10! SRR 10!
Devices Devices

Reasonable scaling across all devices w/o machine-specific optimization in Albany
e Poor GPU scaling (Export WIP within Tpetra)
* Best case: Skylake at 10 devices (280 cores)




Single GPU: full profile ) g

KokkosProfileOverviewV100 ProfileOverviewV100
non-Kokkos Other

Gather/Scatter

Evaluation

Interpolati




Single GPU: Kokkos and non-Kokkos ) .

KokkosProfile V100 nonKokkosProfileV100
Other

Celllnterp

Gather/Scatter
Evaluation

BC

Interpola




Solver challenge: Thin meshes ) e,
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Meshes with anisotropy/bad aspect ratios: ice sheets are thin
(thickness up to 4 km, horizontal extension of thousands km)

» Problem for multi-grid solvers: if coarsening equally in all three coordinate directions,
horizontal/vertical info gets “jumbled” and it is hard to smooth horizontal errors.

¢ Point relaxation is inefficient in reducing errors in weak direction.

Right: point Jacobi error after 30 iterations. Errors are oscillatory in x-
dimension. y-dimension is analogous to thin dimension in 3D land ice mesh.

Above left: illustration of multi-grid solver (V-cycle). Above right: thin extruded meshes




Antarctica solver challenge: Floating ice ()&=,
lll-conditioning associated with floating ice boundary condition.

» Grounded ice (GIS): Green’s function shows rapid decay in horizontal direction
= preconditioner need not approximate long distance horizontal couplings

+» Vertical line solvers or ILU w/ layer-wise ordering + 2D parallel DD
(right) can work well (vertical coupling accurately captured)

» Floating ice (AIS): Green’s function is nearly constant in thin direction

«»* ILU will not work well: large Krylov space is needed to capture
Green’s function, preconditioner with spatially global character is insufficient

| Horizontal Green’s function decay
(Tuminaro et al., SISC 2016)

»
>
&
04

Thin grounded ice: ILU
can work well with

proper ordering /




Solver challenge: Islands hinged peninsulas g
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Islands and certain hinged b S

eninsulas lead to solver failures 2%
P f ANVt

* Rigid body translations and x-y plane rotations of islands/
peninsulas are correspond to nullspace components.

* We have developed an algorithm to detect/remove problematic
hinged peninsulas & islands based on coloring and repeated use
of connected component algorithms (Tuminaro et al. SISC, 2016).

* Solves are ~2x faster with hinges removed.

WIP: C++ implementation within Greenland Problem
B 3 S
8km/5 878 sec, 693 sec, 254 sec, 220 sec,
layers 84 iter/solve 71 iter/solve | 11iter/solve 9 iter/solve
4km/10 1953 sec, 1969 sec, 285 sec, 245 sec,

layers 160 iter/solve 160 iter/solve | 13 iter/solve 12 iter/solve

2km/20 10942 sec, 5576 sec, 482 sec, 294 sec,
layers 710 iter/solve 426 iter/solve | 24 iter/solve 15 iter/solve

1km/40 -- 15716 sec, 668 sec, 378 sec,
layers 881 iter/solve | 34 iter/solve 20 iter/solve




Summary and outlook ) e,
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* A performance portable implementation of the FEA in the ALl model was created
using Kokkos within the Albany code base.

» With this implementation, the same code can run on devices with drastically different
memory models (many-core CPU, GPU, Intel Xeon Phi, etc.).

» Only “optimization” we have done for portability involved minimizing data
movement (via memoization), which improved code performance on all architectures.

» Further optimization can be done to improve resource utilization.

See (Demeshko et al., J. HPC. Appl., 2018) and (Watkins et al., LNCSE, 2020) for
more details on our performance portability efforts in Albany using Kokkos.

» Scalable, fast and robust linear solve is achieved via algebraic multigrid (AMG)
preconditioner that takes advantage of layered nature of meshes.

» Performance portability of linear solve is work in progress.

See (Tezaur et al., Procedia CS, 2015) and (Tuminaro et al., SISC, 2016) for
more details on our AMG preconditioner/linear solver work.

We are making progress towards running Albany/Land Ice on
heterogeneous HPC architectures with the help of Kokkos and Trilinos!
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Ongoing and future work ) i

Finite Element Assembly (FEA):
* Profiling on CPUs and GPUs.

 Methods for improving performance:
- Reduce excess memory usage.
- Replace CUDA UVM with manual memory transfer.
- Further research into portable hierarchical parallelism.
- Improve matrix export (FECrsMatrix in Tpetra).

* Large-scale runs on Cori and Summit.

Linear Solve:

* Performance-portability of preconditioned iterative linear solve using Kokkos
for implicit problems in Albany (e.g., ALI).
- All the pieces are there in Belos/Ifpack2/Muelu for us to try running on GPUs and
other advanced architectures

- We are also looking at other solvers, e.g., hierarchical solvers, Shylu (FAST-ILU, multi-
threaded GS).



