
Photos placed in horizontal position

with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Trilinos/Kokkos-based strategy towards achieving a
performance portable land-ice model

Irina Tezaur1, Jerry Watkins1, Ray Tuminaro1, Mauro Perego1, Andy Salinger1, Steve Price2

1Sandia National Laboratories. 2Los Alamos National Laboratory.

BiRS Workshop: Math. Model. in Glaciology Banff, AB, Canada January 13-17, 2020

SAND2020-0015C

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

• Earth system models (ESMs) and ice sheet models (ISMs) need
more computational power to achieve higher resolutions.

• High performance computing (HPC) architectures are becoming
increasingly more heterogeneous in a move towards exascale.

• Climate models need to adapt to execute correctly & efficiently on
new HPC architectures with drastically different memory models.

Motivation for performance portability

An application is “performance portable” if it achieves a consistent
level of performance across a variety of computer architectures.

Trends in HPC architectures

GPU and heterogeneous (CPU+GPU) architectures
seem to be the future in moving towards exascale.

CPUs:
• Intel Xeon (Ivy Bridge, Haswell, Skylake), AMD

Epyc, ARM

KNLs:
• NERSC Cori, ALCF Theta (→ 2021)
• Follow on KNH architecture cancelled

GPUs:
• OLCF Summit, 15MW of NVIDIA V100s
• NERSC Perlmutter (NVIDIA GPU+AMD CPU): 2020
• OLCF Frontier (AMD GPUs) in 2021: exascale in

2021 for 30MW
• ALCF Aurora (Intel GPUs): 2021

 Computations are cheap, memory transfer is expensive.

 MPI alone is not enough to exploit available parallelism.

MPI+X programming model/approaches

1. Architecture specific approaches such as CUDA.

 Recent paper on FastICE v1.0 CUDA-based ISM: (R ሷass et al., GMDD, 2019).

 Conversion to HIP for AMD GPU supposed to be simple, but not portable.

2. Directive-based approaches such as OpenMP and OpenACC.

 Some success in achieving performance portability for climate, e.g. OpenACC port of
HOMME atmosphere dycore (Norman et al., J Comput. Sci., 2015).

 Relies on compiler to address all the standards.

3. Abstraction layers of data/task parallelism such as Kokkos and RAJA.

 Performance-portable, “future proof”: optimal data layout selected at compile-time.

 Requires code to be written using C++.

 Kokkos is path forward for DOE E3SM (SCREAM, ProSPect): (Demeshko et al. J. HPC.
Appl., 2018), (Bertagna et al., GMD, 2019), (Watkins et al. LNCSE, 2020).

MPI+X Approach: two levels of parallelism for CPU+accelerator

 MPI for inter-node parallelism (for CPU)
 X for intra-node parallelism (for accelerator, e.g. GPU)

MPI+X programming model/approaches

1. Architecture specific approaches such as CUDA.

 Recent paper on FastICE v1.0 CUDA-based ISM: (R ሷass et al., GMDD, 2019).

 Conversion to HIP for AMD GPU supposed to be simple, but not portable.

2. Directive-based approaches such as OpenMP and OpenACC.

 Some success in achieving performance portability for climate, e.g. OpenACC port of
HOMME atmosphere dycore (Norman et al., J Comput. Sci., 2015).

 Relies on compiler to address all the standards.

3. Abstraction layers of data/task parallelism such as Kokkos and RAJA.

 Performance-portable, “future proof”: optimal data layout selected at compile-time.

 Requires code to be written using C++.

 Kokkos is path forward for DOE E3SM (SCREAM, ProSPect): (Demeshko et al. J. HPC.
Appl., 2018), (Bertagna et al., GMD, 2019), (Watkins et al. LNCSE, 2020).

MPI+X Approach: two levels of parallelism for CPU+accelerator

 MPI for inter-node parallelism (for CPU)
 X for intra-node parallelism (for accelerator, e.g. GPU)

Our strategy and this talk!

Outline

1. Overview of the Albany/Land Ice (ALI)
model/code developed under
ProSPect SciDAC.

2. Performance portability of the finite
element assembly in ALI using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion

This talk describes our efforts towards creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

Outline

1. Overview of the Albany/Land Ice (ALI)
model/code developed under
ProSPect SciDAC.

2. Performance portability of the finite
element assembly in ALI using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion

This talk describes our efforts towards creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

ProSPect project for land-ice modeling

Sandia’s Role in the ProSPect Project: to develop and support a robust and scalable land
ice solver based on the “First-Order” (FO) Stokes equations → Albany/Land Ice (ALI)*

Requirements for Albany/Land Ice (ALI)*:

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

“ProSPect” = Probabilistic Sea Level Projections from ISMs and ESMs
5 year SciDAC4 project (2017-2022), https://doe-prospect.github.io/

* Formerly Albany/FELIX.

Hooked up to DOE’s E3SM Earth
System Model through MPAS

(MPAS + ALI = MALI)

https://doe-prospect.github.io/

ProSPect project for land-ice modeling

Sandia’s Role in the ProSPect Project: to develop and support a robust and scalable land
ice solver based on the “First-Order” (FO) Stokes equations → Albany/Land Ice (ALI)*

Requirements for Albany/Land Ice (ALI)*:

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

“ProSPect” = Probabilistic Sea Level Projections from ISMs and ESMs
5 year SciDAC4 project (2017-2022), https://doe-prospect.github.io/

* Formerly Albany/FELIX.

Hooked up to DOE’s E3SM Earth
System Model through MPAS

(MPAS + ALI = MALI)

https://doe-prospect.github.io/

Albany finite element C++ code base

Land Ice Equation
Set (ALI)

Other
Equation Sets

The Albany/Land Ice First Order Stokes
solver is implemented in a Sandia open-
source parallel C++ multi-physics finite

element code known as…

• Discretizations/meshes
• Solver libraries
• Preconditioners
• Automatic differentiation
• Performance portable kernels
• Many others!

• Parameter estimation
• Uncertainty

quantification
• Optimization
• Bayesian inference

“Agile Components”

Trilinos: https://github.com/trilinos/Trilinos
Dakota: https://dakota.sandia.gov/

Albany:
https://github.com/SNL

Computation/Albany

By using software components, we
have been able to leverage years of
R&D in algorithms, software, and

performance portability!

https://github.com/trilinos/Trilinos
https://dakota.sandia.gov/
https://github.com/SNLComputation/Albany

First-Order (FO) Stokes model

Algorithmic choices for ALI:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear
solvers.

• Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Ice sheet

Algorithmic choices for ALI:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear
solvers.

• Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Implicit solver:

Ice sheet

FEA* = 50%
CPU-time

Linear solve =
50% CPU-time

* Finite Element Assembly

First-Order (FO) Stokes model

First-Order (FO) Stokes model

Algorithmic choices for ALI:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with
automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear
solvers.

• Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Implicit solver:

Ice sheet

FEA* = 50%
CPU-time

Linear solve =
50% CPU-time

* Finite Element Assembly

Performance-
portable

Performant
(towards portability)

Outline

1. Overview of the Albany/Land Ice (ALI)
model/code developed under ProSPect
SciDAC.

2. Performance portability of the finite
element assembly in ALI using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion

This talk describes our experience in creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

• Kokkos* is a C++ library that provides performance portability across multiple
shared memory computing architectures using the MPI+X programming model

 A programming model as much as a software library.

 Provides automatic access to OpenMP, CUDA, Pthreads, ...

 Templated meta-programming: parallel_for, parallel_reduce

 Memory layout abstraction (“array of structs” vs. “struct of arrays”, locality).

Performance portability via Kokkos

We need to be able to run ALI/E3SM on new architecture
machines (GPUs, KNLs) and hybrid (CPU+GPU) systems.

With Kokkos, you write an algorithm once, and just change a template
parameter to get the optimal data layout for your hardware.

• Allows researchers to focus on application development instead of architecture
specific programming.

• Finite element assembly in ALI has been rewritten using Kokkos functors.

* https://github.com/kokkos/kokkos

https://github.com/kokkos/kokkos

• Piro manages the nonlinear solve

• Tpetra manages distributed memory linear
algebra (MPI+X)

• Phalanx manages shared memory
computations (X)

 Gather fills element local solution

 Interpolate solution/gradient to
quadrature points

 Evaluate residual/Jacobian

 Scatter fills global residual/Jacobian

• Jacobians (+ sensitivities, Hessians, ...) obtained
via automatic differentiation (Sacado).

Trilinos Packages

FEA Overview

Memory Model

ALI Finite Element Assembly (FEA)

Albany Land Ice performance is split between
the linear solve (50%) and FEA (50%)

MPI+X FEA via Kokkos

ExecutionSpace parameter
tailors code for device (e.g.,

OpenMP, CUDA, etc.)

MPI-only FEA MPI+X FEA

• Unstructured tetrahedral element meshes

• Wall-clock time averaged over 100 global assembly
evaluations (residual + Jacobian)

• Performance analysis focuses on finite element
assembly

• Notation for performance results:

Mesh Resolution # Elements

GIS4k-20k 4km-20km 1.51 million

GIS1k-7k 1km-7km 14.4 million

𝑟 MPI + 𝑗X , X ∈ {OMP, GPU}

𝑟 = # MPI ranks
𝑗 = # OpenMP threads or GPUs/rank

X = architecture for shared memory parallelism

Performance study: Greenland Ice Sheet (GIS)

Architectures:

• Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]
9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

• Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

• Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

• Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

• Waterman (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)

Compilers: gcc/icpc/xlC

Models:

• 3 models: MPI-only, MPI+OpenMP, MPI+CUDA

• MPI+OpenMP: MPI ranks are mapped to cores,
OpenMP threads are mapped to hardware-threads

• MPI+GPU: MPI ranks assigned a single core per GPU

 CUDA UVM used for host to device communication

Performance study: Architectures

Ride

Performance-portability of FEA in Albany has been tested across multiple architectures:
Intel Sandy Bridge, Intel Skylake, IBM Power8/9, Keplar/Pascal/Volta GPUs, KNL Xeon Phi

Performance results: Node utilization

Node: Single dual-socket CPU or quad-GPU

• Speedup achieved across most execution spaces
 Kokkos Serial vs. OpenMP or CUDA
 12.6x speedup on POWER8+P100, 2.0x speedup on POWER9+V100 (~16x speedup would be

expected if memory bound, but we are latency bound due to Export/Import).
 In general, should expect no speedup with MPI+OpenMP – slight speedups on Mayer and Cori

may be due to thread caching.

• Tpetra Export poor on GPU machines (WIP within Albany and GPUDirect issue on
POWER systems: CUDA does not play well with MPI!)

Blue (SMAssembly): shared memory local/global assembly (assembly/computation)
Yellow (DMAssembly): distributed memory global assembly handled by Tpetra (mostly communication)

Performance results: Strong scalability

• Reasonable scaling across all devices without machine-specific
optimization in Albany
 Poor GPU scaling (Export WIP within Albany and GPUDirect issue on POWER)

 Best case: Skylake at 32 devices (768 cores)

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

Outline

1. Overview of the Albany/Land Ice (ALI)
model/code developed under ProSPect
SciDAC.

2. Performance portability of the finite
element assembly in ALI using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion

This talk describes our efforts towards creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

Motivation for linear solvers work
• Linear solver takes ~50% of total CPU time for ALI diagnostic solve

 FEA is only half the story: we need to make linear solver performant (and
ultimately performance portable)

Greenland Ice Sheet Antarctic Ice Sheet

Motivation for linear solvers work

Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

* Algebraic Multi-Grid.

Why is scalability so bad for off-the-shelf preconditioners?

1. Ice sheet geometries have bad aspect ratios 𝑑𝒙 ≫ 𝑑𝑧 .

2. Ice shelves can generate problematic linear systems.

3. Islands and hinged peninsulas lead to solver failures.

Greenland Ice Sheet Antarctic Ice Sheet

Motivation for linear solvers work

* Algebraic Multi-Grid.

Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

We mitigate these difficulties
through the development of:

• New AMG* preconditioner
based on semi-coarsening.

• Island/hinge removal algorithm.

Greenland Ice Sheet Antarctic Ice Sheet

* Algebraic Multi-Grid.

Motivation for linear solvers work

Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

Why is scalability so bad for off-the-shelf preconditioners?

1. Ice sheet geometries have bad aspect ratios 𝑑𝒙 ≫ 𝑑𝑧 .

2. Ice shelves can generate problematic linear systems.

3. Islands and hinged peninsulas lead to solver failures.

We mitigate these difficulties
through the development of:

• New AMG* preconditioner
based on semi-coarsening.

• Island/hinge removal algorithm.

Greenland Ice Sheet Antarctic Ice Sheet

* Algebraic Multi-Grid.

Motivation for linear solvers work

Off-the-shelf linear solvers (ILU, AMG*) do not always work that well!

Why is scalability so bad for off-the-shelf preconditioners?

1. Ice sheet geometries have bad aspect ratios 𝑑𝒙 ≫ 𝑑𝑧 .

2. Ice shelves can generate problematic linear systems.

3. Islands and hinged peninsulas lead to solver failures.

How Does Multi-Grid Work?
Basic idea: accelerate convergence of an iterative method on a given

grid by solving a series of (cheaper) problems on coarser grids.

Solve 𝑨1𝒖1 = 𝒇1 directly.

Smooth 𝑨3𝒖3 = 𝒇3. Set 𝒇2 = 𝑹2𝒓3.

Smooth 𝑨2𝒖2 = 𝑓2. Set 𝒇1 = 𝑹1𝒓2. Set 𝒖2 = 𝒖2 + 𝑷1𝒖1. Smooth 𝑨2𝒖2 = 𝒇2.

Set 𝒖3 = 𝒖3 + 𝑷2𝒖2. Smooth 𝑨3𝒖3 = 𝒇3.

Solve 𝑨3𝒖3 = 𝒇3

𝑷2 𝑹2

𝑷1 𝑹1

• Create set of coarse approximations.

• Apply restriction operator 𝑹𝑖 to interpolate
from fine to coarse grid.

• Solve problem on coarse grid.

• Apply prolongation operator 𝑷𝑖 to get back
to original (fine) grid.

• Smoothers are applied throughout procedure
to reduce short wavelength errors.

Scalable Algebraic Multi-Grid (AMG)
Preconditioners

Bad aspect ratios (𝑑𝒙 ≫ 𝑑𝑧) ruin
classical AMG convergence rates!
• relatively small horizontal

coupling terms, hard to
smooth horizontal errors

 Solvers (AMG and ILU) must
take aspect ratios into account!

We developed a new AMG
solver based on aggressive

semi-coarsening (available in
ML/MueLu packages of Trilinos)

Algebraic
Structured MG

Unstructured
AMG

Algebraic
Structured MG

See (Tezaur et al., Procedia CS, 2015),
(Tuminaro et al., SISC, 2016).

Weak scalability: Greenland

• Weak scaling study with fixed
dataset, 4 mesh bisections.

• ~70-80K dofs/core.

• Conjugate Gradient (CG)
iterative method for linear solves
(faster convergence than
GMRES).

• New AMG preconditioner
developed by R. Tuminaro based
on semi-coarsening (coarsening
in 𝑧-direction only).

• Significant improvement in
scalability with new AMG
preconditioner over ILU
preconditioner!

4 cores
334K dofs

8 km Greenland,
5 vertical layers

× 84

scale up

16,384 cores
1.12B dofs(!)

0.5 km Greenland,
80 vertical layers

Weak scalability: Greenland

• Weak scaling study with fixed
dataset, 4 mesh bisections.

• ~70-80K dofs/core.

• Conjugate Gradient (CG)
iterative method for linear solves
(faster convergence than
GMRES).

• New AMG preconditioner
developed by R. Tuminaro based
on semi-coarsening (coarsening
in 𝑧-direction only).

• Significant improvement in
scalability with new AMG
preconditioner over ILU
preconditioner!

4 cores
334K dofs

8 km Greenland,
5 vertical layers

× 84

scale up

16,384 cores
1.12B dofs(!)

0.5 km Greenland,
80 vertical layers

New AMG preconditioner
preconditioner ILU preconditioner

Weak scalability: Antarctica

• Weak scaling study: 2.5M → 1.1B dofs, 16 → 8192 cores

• Initialized with realistic basal friction (from deterministic inversion) and temperature field
from BEDMAP2.

• Iterative linear solver: GMRES.

• Preconditioner: ILU vs. new AMG based on aggressive semi-coarsening.

cores

ti
m

e
(s

ec
)

ILU solver does not converge
for finest mesh resolution!

Thin floating ice: ILU will not
work well! Green’s function
~ constant in thin direction*

Thin grounded ice:
ILU can work well w/

proper ordering

See (Tuminaro et al., SISC, 2016).

* 𝑨−1 will have large number of non-zeroes, so approximate inverse ILU preconditioner is ineffective.

• Semi-coarsening algorithm need not be redesigned for GPUs.

• Performance portability of MueLu solvers on advanced architectures including
GPUs has been demonstrated for Maxwell and compressible flow equations.

 Mat/vecs, orthogonalizations in Belos done on GPU.

 Smoothers in Ifpack2 created/applied on GPU.

 Coarse grid solve performed on host (direct solvers on GPUs is R&D topic).

Towards linear solver performance portability
• Trilinos templated software stack for sparse algebra interfaces/linear solvers

(Tpetra, Belos, MueLu, Ifpack2) integrates Kokkos for performance portability.

MueLu_CoarseMapFactory.hpp → MueLu_CoordinatesTransferFactory_kokkos.hpp

MueLu_CoordinatesTransferFactory.hpp → MueLu_CoarseMapFactory_kokkos.hpp

MueLu_NullspaceFactory.hpp → MueLu_NullspaceFactory_kokkos.hpp

…

Evaluating the performance portability of our AMG semi-coarsening-based
solver in ALI is in the project plan for FY20 – all necessary pieces are in Trilinos!

Towards linear solver performance portability
• Trilinos templated software stack for sparse algebra interfaces/linear solvers

(Tpetra, Belos, MueLu, Ifpack2) integrates Kokkos for performance portability.

MueLu_CoarseMapFactory.hpp → MueLu_CoordinatesTransferFactory_kokkos.hpp

MueLu_CoordinatesTransferFactory.hpp → MueLu_CoarseMapFactory_kokkos.hpp

MueLu_NullspaceFactory.hpp → MueLu_NullspaceFactory_kokkos.hpp

…

Evaluating the performance portability of our AMG semi-coarsening-based
solver in ALI is in the project plan for FY20 – all necessary pieces are in Trilinos!

We will be looking to hire a summer intern in SNL/CA
to help with this task! Posting coming soon!

• Semi-coarsening algorithm need not be redesigned for GPUs.

• Performance portability of MueLu solvers on advanced architectures including
GPUs has been demonstrated for Maxwell and compressible flow equations.

 Mat/vecs, orthogonalizations in Belos done on GPU.

 Smoothers in Ifpack2 created/applied on GPU.

 Coarse grid solve performed on host (direct solvers on GPUs is R&D topic).

Advertisement: Climate MS at
European Seminar on COmputing (ESCO) 2020
June 8-12, 2020 (abstracts due Feb. 14, 2020)

Pilsen, Czech Republic
https://www.esco2020.femhub.com/

https://www.esco2020.femhub.com/

Outline

1. Overview of the Albany/Land Ice (ALI)
model/code developed under ProSPect
SciDAC.

2. Performance portability of the finite
element assembly in ALI using Kokkos.

3. Performant algebraic multi-grid linear
solvers implemented in Trilinos.

4. Summary and discussion

This talk describes our efforts towards creating a performance
portable implementation of the Albany/Land Ice (ALI) model
using the Kokkos programming model and Trilinos libraries.

Comments/discussion points:

• Kokkos (and similar libraries) not a magic bullet!

 Some algorithms need to be redesigned substantially to be efficient on
GPUs/hybrid architectures (e.g. ILU), and Kokkos will not circumvent this fact.

• How feasible is it to port non-C++/Sandia codes to Kokkos?

 E3SM seems to support C++/Kokkos route: BER-funded SCREAM project is
aimed at rewriting (Fortran) HOMME atmospheric dycore using C++/Kokkos.

• There is always some tradeoff between portability and performance.

 Getting the best possible performance on GPUs using Kokkos may require
some platform-specific optimizations.

• Relying on libraries can be a blessing and a curse.

 Code can speed up and slow down with no changes on your side!

• Regression/performance testing is critical when targeting multiple architectures!

• Other solvers besides MG for GPUs worth considering (e.g. hierarchical solvers).

Summary and discussion points
We are making progress towards running Albany/Land Ice on

heterogeneous HPC architectures with the help of Kokkos and Trilinos!

Funding/Acknowledgements

Support for this work was provided through Scientific Discovery through Advanced
Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science

(OSCR), Advanced Scientific Computing Research and Biological and Environmental
Research (BER) → ProSPect SciDAC Application Partnership.

ProSPect team members: K. Evans, M. Hoffman, M. Perego, S. Price, A. Salinger,
I. Tezaur, R. Tuminaro, C. Sockwell, J. Watkins, L. Bertagna, T. Zhang.

Trilinos/DAKOTA collaborators: M. Eldred, J. Jakeman, G. Stadler.

Computing resources: NERSC, OLCF.

References
[1] M.A. Heroux et al. “An overview of the Trilinos project.” ACM Trans. Math. Softw. 31(3) (2005).

[2] A. Salinger, et al. "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics
Analysis Code", Int. J. Multiscale Comput. Engng. 14(4) (2016) 415-438.

[3] I. Tezaur, M. Perego, A. Salinger, R. Tuminaro, S. Price. "Albany/FELIX: A Parallel, Scalable and Robust
Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", Geosci. Model Develop.
8 (2015) 1-24.

[4] C. Edwards, C. Trott, D. Sunderland. “Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns”, J. Par. & Distr. Comput. 74 (12) (2014) 3202-3216.

[5] R. Tuminaro, M. Perego, I. Tezaur, A. Salinger, S. Price. "A matrix dependent/algebraic multigrid
approach for extruded meshes with applications to ice sheet modeling", SIAM J. Sci. Comput. 38(5)
(2016) C504-C532.

[6] I. Tezaur, R. Tuminaro, M. Perego, A. Salinger, S. Price. "On the scalability of the Albany/FELIX first-
order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice
sheets", Procedia Computer Science, 51 (2015) 2026-2035.

[7] I. Demeshko, J. Watkins, I. Tezaur, O. Guba, W. Spotz, A. Salinger, R. Pawlowski, M. Heroux. "Towards
performance-portability of the Albany finite element analysis code using the Kokkos library", E. van
Brummelen, A. Corsini, S. Perotto, G. Rozza, eds. Numerical Methods for Flows: FEF 2017 Selected
Contributions, Elsevier, 2019.

[8] S. Price, M. Hoffman, J. Bonin, T. Neumann, I. Howat, J. Guerber, I. Tezaur, J. Saba, J. Lanaerts, D.
Chambers, W. Lipscomb, M. Perego, A. Salinger, R. Tuminaro. "An ice sheet model validation framework
for the Greenland ice sheet", Geosci. Model Dev. 10 (2017) 255-270

Start of Backup Slides

• Gather operation extracts solution values
out of global solution vector.

• Physics evaluator functions operate on
workset of elements, store evaluated
quantities in local field arrays.

• FEA relies on template based generic
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual,
Jacobian to global residual, Jacobian.

Performance-portability: focus on FEA.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

• MPI-only FEA:

 Each MPI process has workset of cells &
computes nested parallel for loops.

• MPI+X FEA:

 Each MPI process has workset of cells.

 Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.

Albany/Land Ice Finite Element Assembly (FEA)

MPI+X FEA via Kokkos

• MPI-only nested for loop:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A; MPI process n

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)MPI process n

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

* Unified Virtual Memory.

MPI process n

* Unified Virtual Memory.

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

MPI process n

MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

MPI process n

MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

• For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory.

MPI process n

MPI+X FEA via Kokkos

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

for (int node=0; node<numNodes; ++node)

for (int qp=0; qp<numQPs; ++qp)

compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

• For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory. **Hierarchical parallelism can be up to 2x faster on GPU but adds code bloat & requires padding.

MPI process n

MPI+X FEA via Kokkos

Kokkos parallelization in ALI
master is only over cells**.

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs});

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

Phalanx: DAG*-based assembly

Advantages:

• Increased flexibility,
extensibility, usability

• Arbitrary data type support
• Potential for task parallelism
Disadvantage:
• Performance loss through

fragmentation
Extension:
• Performance gain through

memoization

DAG Example (memoization)DAG Example

Single CPU socket or GPU

* Directed acyclic graph.

Phalanx Evaluator: templated Phalanx
node
A Phalanx node (evaluator) is constructed as a
C++ class

• Each evaluator is templated on an
evaluation type (e.g. residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g. double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an ExeSpace (e.g. Serial,
OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts

 Serial/OpenMP – LayoutRight (row-
major)

 CUDA – LayoutLeft (col-major)

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells)

,

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int node=0; node<numNodes; ++node){

Residual(cell,node,0)=0.;

}

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

Sacado – Automatic Differentiation (AD)

Sacado data types are used for derivative components (ND = # components)

• DFad (most flexible) – ND is set at run-time

• SLFad (flexible/efficient) – maximum ND set at compile-time

• SFad (most efficient) – ND set at compile-time

ND Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

Fad Type Comparison for StokesFO<Jacobian> (Serial, OpenMP (12 threads), CUDA)

Performance Portability: a response to
heterogeneity
Generic Definition: For an application, a reasonable level of
performance is achieved across a wide variety of computing
architectures with the same source code.

Let’s be more specific:

• Performance quantified by application execution time while
strong/weak scaling.

• Portability includes conventional CPU, Intel KNL, NVIDIA GPU.

Approach: MPI+X Programming Model

• MPI: distributed memory parallelism – Tpetra
• X: shared memory parallelism – Kokkos

• Examples: OpenMP, CUDA
• Minimize data movement (efficient programming)
• Increase arithmetic intensity (improve compute to memory

transfer ratio)
• Saturate memory bandwidth (expose more parallelism)

Single CPU/GPU shared memory profile
SKX: 24-core V100: 1 GPU

• Residual/Jacobian Evaluation most expensive

• Gather/Scatter becoming increasingly important…

• Other: some auxiliary routines are still expensive on the GPU (~10%)

Hierarchical Parallelism
Hierarchical parallelism is used to expose more parallelism when strong scaling

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::TeamPolicy<ExeSpace>(workset.numCells,Kokkos::AUTO()),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const Member& teamMember) const{

const Index cell = teamMember.league_rank();

// Allocate shared memory

ScratchView qpVals(teamMember.team_shmem(), numQPs, fadSize);

ScratchView nodeVals(teamMember.team_shmem(), numNodes, fadSize);

// Zero nodeVals

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

nodeVals(node) = 0; });

// Fill Ugrad00

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numQPs), [&] (const Index& qp) {

qpVals(qp) = Ugrad(cell,qp,0,0); });

// Calc Ugrad00 contribution

for (Index qp=0; qp < numQPs; ++qp) {

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

nodeVals(node) += qpVals(qp) * wGradBF(cell,node,qp,0); }); }

…

// Copy to Residual0

Kokkos::parallel_for(

Kokkos::TeamThreadRange(teamMember, numNodes), [&] (const Index& node) {

Residual(cell,node,0) = nodeVals(node); });

}

• Kokkos TeamPolicy, TeamThreadRange is used
to parallelize over cells and nodes

• Kokkos scratch space is used to store
node/quadrature values in shared memory

• ~2x speedup for small problem sizes on GPU
(need padding for large problem sizes)

• Slowdown for all problem sizes on CPU (need
different layout)

Residual
Jacobian

CUDA70

Performance results: weak scalability

Reasonable scaling across all devices w/o machine-specific optimization in Albany

• Poor GPU scaling (Export WIP within Tpetra)

• Best case: Skylake at 10 devices (280 cores)

Legend: HSW, SKX=Haswell, Skylake CPU; KNL=Xeon Phi; TX2=ThunderX2; P100,V100=GPU

Single GPU: full profile

Single GPU: Kokkos and non-Kokkos

Solver challenge: Thin meshes

 Problem for multi-grid solvers: if coarsening equally in all three coordinate directions,
horizontal/vertical info gets “jumbled” and it is hard to smooth horizontal errors.

 Point relaxation is inefficient in reducing errors in weak direction.

Right: point Jacobi error after 30 iterations. Errors are oscillatory in x-
dimension. y-dimension is analogous to thin dimension in 3D land ice mesh.

𝑷2 𝑹2

𝑷1 𝑹1

Above left: illustration of multi-grid solver (V-cycle). Above right: thin extruded meshes

Meshes with anisotropy/bad aspect ratios: ice sheets are thin
(thickness up to 4 km, horizontal extension of thousands km)

Antarctica solver challenge: Floating ice

 Grounded ice (GIS): Green’s function shows rapid decay in horizontal direction
⟹ preconditioner need not approximate long distance horizontal couplings

 Vertical line solvers or ILU w/ layer-wise ordering + 2D parallel DD
(right) can work well (vertical coupling accurately captured)

 Floating ice (AIS): Green’s function is nearly constant in thin direction

 ILU will not work well: large Krylov space is needed to capture
Green’s function, preconditioner with spatially global character is insufficient

Thin grounded ice: ILU
can work well with

proper ordering

Horizontal Green’s function decay
(Tuminaro et al., SISC 2016)

Ill-conditioning associated with floating ice boundary condition.

Solver challenge: Islands hinged peninsulas

Islands and certain hinged
peninsulas lead to solver failures

• Rigid body translations and 𝑥-𝑦 plane rotations of islands/
peninsulas are correspond to nullspace components.

• We have developed an algorithm to detect/remove problematic
hinged peninsulas & islands based on coloring and repeated use
of connected component algorithms (Tuminaro et al. SISC, 2016).

• Solves are ~2x faster with hinges removed.

• WIP: C++ implementation within
Trilinos for integration into dycores.

Resolu-
tion

ILU –
hinges

ILU – no
hinges

ML –
hinges

ML – no
hinges

8km/5
layers

878 sec,
84 iter/solve

693 sec,
71 iter/solve

254 sec,
11 iter/solve

220 sec,
9 iter/solve

4km/10
layers

1953 sec,
160 iter/solve

1969 sec,
160 iter/solve

285 sec,
13 iter/solve

245 sec,
12 iter/solve

2km/20
layers

10942 sec,
710 iter/solve

5576 sec,
426 iter/solve

482 sec,
24 iter/solve

294 sec,
15 iter/solve

1km/40
layers

-- 15716 sec,
881 iter/solve

668 sec,
34 iter/solve

378 sec,
20 iter/solve

Greenland Problem

• A performance portable implementation of the FEA in the ALI model was created
using Kokkos within the Albany code base.

 With this implementation, the same code can run on devices with drastically different
memory models (many-core CPU, GPU, Intel Xeon Phi, etc.).

 Only “optimization” we have done for portability involved minimizing data
movement (via memoization), which improved code performance on all architectures.

 Further optimization can be done to improve resource utilization.

Summary and outlook

See (Demeshko et al., J. HPC. Appl., 2018) and (Watkins et al., LNCSE, 2020) for
more details on our performance portability efforts in Albany using Kokkos.

• Scalable, fast and robust linear solve is achieved via algebraic multigrid (AMG)
preconditioner that takes advantage of layered nature of meshes.

 Performance portability of linear solve is work in progress.

We are making progress towards running Albany/Land Ice on
heterogeneous HPC architectures with the help of Kokkos and Trilinos!

See (Tezaur et al., Procedia CS, 2015) and (Tuminaro et al., SISC, 2016) for
more details on our AMG preconditioner/linear solver work.

Ongoing and future work

Finite Element Assembly (FEA):

• Profiling on CPUs and GPUs.

• Methods for improving performance:
- Reduce excess memory usage.
- Replace CUDA UVM with manual memory transfer.
- Further research into portable hierarchical parallelism.
- Improve matrix export (FECrsMatrix in Tpetra).

• Large-scale runs on Cori and Summit.

Linear Solve:

• Performance-portability of preconditioned iterative linear solve using Kokkos
for implicit problems in Albany (e.g., ALI).
- All the pieces are there in Belos/Ifpack2/MueLu for us to try running on GPUs and

aaaaother advanced architectures
- We are also looking at other solvers, e.g., hierarchical solvers, Shylu (FAST-ILU, multi-

cccccthreaded GS).

