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* Proposal for follow-up funding 
under SciDaC4 in preparation.
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Goal: support DOE 
climate missions

* Proposal for follow-up funding 
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Sandia’s Role in PISCEES
Sandia’s Role in the PISCEES Project: to develop and support a robust and scalable land 

ice solver based on the “First-Order” (FO) Stokes equations → Albany/FELIX*

Requirements for Albany/FELIX: 

• Unstructured grid finite elements.
• Scalable, fast and robust.
• Verified and validated.
• Portable to new/emerging 

architecture machines (multi-core, 
many-core, GPU).

• Advanced analysis capabilities: 
deterministic inversion, calibration, 
uncertainty quantification.

*Finite Elements for Land Ice eXperiments



Sandia’s Role in PISCEES
Sandia’s Role in the PISCEES Project: to develop and support a robust and scalable land 

ice solver based on the “First-Order” (FO) Stokes equations → Albany/FELIX*

Requirements for Albany/FELIX: 

• Unstructured grid finite elements.
• Scalable, fast and robust.
• Verified and validated.
• Portable to new/emerging 

architecture machines (multi-core, 
many-core, GPU).

• Advanced analysis capabilities: 
deterministic inversion, calibration, 
uncertainty quantification.

*Finite Elements for Land Ice eXperiments

As part of ACME DOE earth system 
model, solver will provide actionable 
predictions of 21st century sea-level 

rise (including uncertainty).

Albany/FELIX = 
production code!



The First-Order Stokes Model
• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).
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*Assumption: aspect ratio 𝛿 is small and normals to upper/lower surfaces are almost vertical.

(𝑛 = 3)

• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

• Quasi-static model with momentum balance given by “First-Order” Stokes PDEs: “nice” 
elliptic approximation* to Stokes’ flow equations.
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Thickness & Temperature Equations

• Model for evolution of the boundaries (thickness 
evolution equation):

𝜕𝐻

𝜕𝑡
= −𝛻 ∙ ഥ𝒖𝐻 + ሶ𝑏

where ഥ𝒖 = vertically averaged velocity, ሶ𝑏 = surface mass 
balance (conservation of mass).

• Temperature equation (advection-diffusion):

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

(energy balance). 

• Flow factor 𝐴 in Glen’s law depends on temperature 𝑇: 
𝐴 = 𝐴(𝑇).

• Ice sheet grows/retreats depending on thickness 𝐻.

time 𝑡0

Ice-covered (“active”) 
cells shaded in white

(𝐻 > 𝐻𝑚𝑖𝑛)
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Thickness & Temperature Equations
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Summary of Ice Sheet Equations & Codes

Momentum Balance: First-Order Stokes PDEs

൞
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𝜕𝑥

−𝛻 ∙ (2𝜇 ሶ𝝐𝟐) = −𝜌𝑔
𝜕𝑠

𝜕𝑦

,    in Ω

Albany/FELIX

with Glen’s law viscosity 𝜇 =
1

2
𝐴(𝑇)−

1

3
1

2
σ𝑖𝑗 ሶ𝝐𝑖𝑗

2
−
2

3
. 

Conservation of Mass: thickness evolution PDE 

𝜕ℎ

𝜕𝑡
= −𝛻 ∙ ഥ𝒖ℎ + ሶ𝑏

Energy Balance: temperature advection-diffusion PDE

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ (𝑘𝛻𝑇) − 𝜌𝑐𝒖 ∙ 𝛻𝑇 + 2 ሶ𝝐𝝈

Albany/FELIX

Code:

CISM/Albany
MPAS/Albany

C++

Fortran



CISM-Albany and MPAS-Albany

7/20

Albany/FELIX (C++)
velocity solve

CISM (Fortran)
Thickness evolution,  
temperature solve, 
coupling to CESM

cism_driver

C++/Fortran
Interface, Mesh 

Conversion

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 

coupling to DOE-ESM

C++/Fortran 
Interface, Mesh 

Conversion

LandIce_model

CISM-
Albany

MPAS-
Albany

• Structured 
hexahedral meshes 
(rectangles extruded 
to hexes).

• Tetrahedral meshes (dual of 
hexaganonal mesh, 
extruded to tets).

Albany/FELIX has been coupled to two land ice dycores: Community Ice Sheet 
Model (CISM) and Model for Prediction Across Scales for Land-Ice (MPAS) 

output fileoutput file



Meshes and Data



Meshes and Data
Meshes: can use any mesh but interested specifically in 

• CISM-Albany: structured hexahedral meshes
• MPAS-Albany: tetrahedral meshes (Delaunay triangle                    

mesh = dual of hexaganonal mesh, extruded to tets).

• Unstructured Delaunay triangle meshes w/ regional 
refinement based on gradient of surface velocity.

• Unstructured adaptively-refined meshes generated in memory 
using PAALS* (Parallel Albany Adaptive Loop w/ SCOREC). 

*See talks by RPI folks and Glen Hansen.
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*See talks by RPI folks and Glen Hansen.

All meshes are extruded (structured) in vertical 
direction as tetrahedra or hexahedra.

Meshes: can use any mesh but interested specifically in 

• CISM-Albany: structured hexahedral meshes
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mesh = dual of hexaganonal mesh, extruded to tets).
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using PAALS* (Parallel Albany Adaptive Loop w/ SCOREC). 



Meshes and Data

*See talks by RPI folks and Glen Hansen.

All meshes are extruded (structured) in vertical 
direction as tetrahedra or hexahedra.

Data: needs to be imported into code to run “real” 
problems (Greenland, Antarctica).

• Surface data are available from measurements    
(satellite infrarometry, radar, altimetry): ice extent,                               
surface topography, surface velocity, surface mass balance.

• Interior ice data (ice thickness, basal friction) cannot be measured; 
estimated by solving an inverse problem.

Meshes: can use any mesh but interested specifically in 

• CISM-Albany: structured hexahedral meshes
• MPAS-Albany: tetrahedral meshes (Delaunay triangle                    

mesh = dual of hexaganonal mesh, extruded to tets).

• Unstructured Delaunay triangle meshes w/ regional 
refinement based on gradient of surface velocity.

• Unstructured adaptively-refined meshes generated in memory 
using PAALS* (Parallel Albany Adaptive Loop w/ SCOREC). 



Performance: Robustness 
and Scalability



Robustness of Newton’s Method via 
Homotopy Continuation (LOCA)
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Robustness of Newton’s Method via 
Homotopy Continuation (LOCA)
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Newton most robust with full step + homotopy 
continuation of 𝛾 → 10−10: converges out-of-the-box! 
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Scalability via Algebraic Multi-Grid 
Preconditioning with Semi-Coarsening

Bad aspect ratios (𝑑𝒙 ≫ 𝑑𝑧) ruin 
classical AMG convergence rates!
• relatively small horizontal 

coupling terms, hard to 
smooth horizontal errors

 Solvers (AMG and ILU) must 
take aspect ratios into account

New AMG solver based on 
aggressive semi-coarsening has 
been developed by R. Tuminaro

(available in ML/MueLu
packages of Trilinos)

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

Scalability studies (next slides): 
New AMG preconditioner vs. ILU

See (Tezaur et al., 2015),
(Tuminaro et al., 2016).



Greenland Controlled Weak Scalability Study

• Weak scaling study with fixed 
dataset, 4 mesh bisections.

• ~70-80K dofs/core.

• Conjugate Gradient (CG)
iterative method for linear solves 
(faster convergence than 
GMRES).

• New AMG preconditioner 
developed by R. Tuminaro based 
on semi-coarsening (coarsening 
in 𝑧-direction only).

• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner!

4 cores
334K dofs

8 km Greenland, 
5 vertical layers

16,384 cores
1.12B dofs(!)

0.5 km Greenland, 
80 vertical layers

× 84

scale up

New AMG preconditioner 
preconditioner
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• Significant improvement in 
scalability with new AMG 
preconditioner over ILU 
preconditioner!

4 cores
334K dofs

8 km Greenland, 
5 vertical layers

16,384 cores
1.12B dofs(!)

0.5 km Greenland, 
80 vertical layers

× 84

scale up

New AMG preconditioner 
preconditioner

ILU preconditioner



Albany/FELIX Glimmer/CISM

Antarctica Weak Scalability Study

16 

cores 
1024 

cores 

16 

cores 
# cores

AMG preconditioner less sensitive to 
ill-conditioning caused by ice shelves than ILU

(ice shelves → Green’s function with modest horizontal 
decay → ILU is less effective).

Severe ill-conditioning 
caused by ice shelves!

ILU preconditioner New AMG preconditioner

1024 

cores 
# cores
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• Finite element assembly (FEA) in Albany/FELIX has been rewritten using Kokkos 
functors*.

• Linear solvers in Belos package of Trilinos can run on next-generation platforms with 
simple preconditioners (Jacobi, Gauss-Seidel, Chebyshev, ILU).

*See talk by Jerry Watkins.
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• Finite element assembly (FEA) in Albany/FELIX has been rewritten using Kokkos 
functors*.

• Jerry Watkins currently working on code profiling and optimizations to get the best 
possible performance on GPUs and Intel Xeon Phis.

*See talk by Jerry Watkins.
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Deterministic Inversion: Estimation of 
Ice Sheet Initial State

Objective: find ice sheet initial state that
• Matches observations (e.g., surf. vel., temp., etc.) 
• Matches present-day geometry (elevation, thickness).
• Is in “equilibrium” with climate forcings (SMB).

Unknown/uncertain variables: 
• Basal friction (β).
• Thickness (H).



Deterministic Inversion: Estimation of 
Ice Sheet Initial State

First-Order Stokes PDE Constrained Optimization Problem: 
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Deterministic Inversion*:

• Albany/FELIX (FE assembly)
• Trilinos (linear/nonlinear solvers)
• ROL (gradient-based optimization)

• Limited memory BFGS.
• Backtrack line-search.
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First-Order Stokes PDE Constrained Optimization Problem: 

min 𝐽 𝛽, 𝐻 s.t. FO Stokes PDEs where
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Approach: invert for unknown/uncertain parameters by 
minimizing difference between
• Computed and measured surface velocity (𝒖𝒐𝒃𝒔)
• Computed divergence flux and measured surface mass 

balance (SMB)
• Computed and reference thickness (Hobs)

Software for Adjoint-Based 
Deterministic Inversion*:

• Albany/FELIX (FE assembly)
• Trilinos (linear/nonlinear solvers)
• ROL (gradient-based optimization)

• Limited memory BFGS.
• Backtrack line-search.

Objective: find ice sheet initial state that
• Matches observations (e.g., surf. vel., temp., etc.) 
• Matches present-day geometry (elevation, thickness).
• Is in “equilibrium” with climate forcings (SMB).

Unknown/uncertain variables: 
• Basal friction (β).
• Thickness (H).

→ significantly reduces non-physical model transients

*See talk by Mauro Perego.



Deterministic Inversion: 1km Greenland 
Initial Condition*

*This initial condition was used for validation study, discussed later in the talk.
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Goal: Uncertainty Quantification in 21st century sea level (QoI)

• 3 Stage UQ Workflow Process:

1. Deterministic inversion: perform adjoint-based 
deterministic inversion to estimate initial ice sheet state 
(i.e., characterize the present state of the ice sheet to be 
used for performing prediction runs).

2. Bayesian calibration: construct the posterior 
distribution using Markov Chain Monte Carlo (MCMC) 
run on an emulator of the forward model. 

3. Forward propagation: sample the obtained distribution 
and perform ensemble of forward propagation runs to 
compute the uncertainty in the QoI. 

What are the 
parameters that render 

a given set of 
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What is the impact of 
uncertain parameters in 
the model on quantities 
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Bayesian Calibration
Difficulty in UQ: “Curse of Dimensionality”

The unknown/uncertain fields have 𝑂(100𝐾) dimensions! 
Approach:

• Reduce 𝑂(100𝐾) dimensional problem to 𝑂(10) dimensional problem using, 
e.g., Karhunen-Loeve Expansion (KLE), Hessian eigenvectors, etc. [Trilinos].

• Form Polynomial Chaos Expansion (PCE) emulator for mismatch (over surface 
velocity, SMB, thickness) discrepancy [DAKOTA].

• Markov Chain Monte Carlo (MCMC) calibration using emulator [QUESO].

Basis perturbations: 𝛽i Data-informed directions

Marginal distributions 
of Gaussian posterior

𝛼𝑖: random samples 
from prior distribution

Best fit: ҧ𝛽

Dimension reduction: 
𝛽 = ҧ𝛽 +σ𝑖 𝛼𝑖 𝛽𝑖
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Forward Propagation

Approach:

• Parameter distribution is the result of Bayesian calibration.

• Run 𝑀 forward CISM/MPAS-Albany runs each for 𝑁 years w/ parameter 
sampled from its distribution and build emulator from these runs [DAKOTA].

• Use MCMC and emulator to perform uncertainty propagation [QUESO].  

Propagate distribution obtained in Bayesian calibration through the model 
to get distributions on total ice mass loss/gain during 21st century

Sea level time-history for 1000 50-year 
forward runs with steady state forcing PDFs of SLR



Verification and Validation



Verification
Stage 1: solution verification on 2D MMS problems.

Stage 2: code-to-code comparisons on canonical ice 
sheet benchmarks (Albany/FELIX – left; LifeV – right).

Stage 3: full 3D mesh convergence study on Greenland 
w.r.t. reference solution. 

Stage 4: reasonable solutions for large-scale realistic GIS & 
AIS problems (Albany/FELIX – left; reference solution – right).

Is the code bug free?
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• There are currently (up to) 2 decades of large-scale satellite
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ICESat1 2003 – 2009

GRACE 2002 – 201? (ongoing)

• Validation time periods: 2003-2009 (IceSAT), 2003-2011 (GRACE)

Validation Workflow (with LANL & NASA):

• Run CISM-Albany for period where observations exist.
• Process model output and observations for comparison.
• Evaluate model performance relative to observations.

• ICESat:  ice sheet surface elevation [state comparison]
• GRACE:  rate of mass change [trend comparison]
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Validation: Definition & Workflow
Validation: how well does model represent the real ice sheet?

• There are currently (up to) 2 decades of large-scale satellite
observations of  Greenland ice sheet geometry change:

ICESat1 2003 – 2009

GRACE 2002 – 201? (ongoing)

Validation Workflow (with LANL & NASA):

• Run CISM-Albany for period where observations exist.
• Process model output and observations for comparison.
• Evaluate model performance relative to observations.

• ICESat:  ice sheet surface elevation [state comparison]
• GRACE:  rate of mass change [trend comparison]

• Validation time periods: 2003-2009 (IceSAT), 2003-2011 (GRACE)

• Model forcing:  monthly surface mass balance (SMB) anomalies 
from RACMO2 and/or outlet glacier flux-forcing (FF) at grounding 
line applied.

• Initial condition (1km GIS) obtained through deterministic 
inversion (shown on earlier slide). 
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Surface elevation predictions 
(states) agree well with GLAS
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System aboard ICESat): 
mean differences are <1 m

Oct. 07 bilinear differences

Histogram of Oct. 07 bilinear differences
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simulations (black line).  
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Current generation ice sheet models, when appropriately 
forced, show skill at mimicking ice sheet observations 

• Clear improvement over a decade ago: SLR projections from ice sheet models were not 
included in the IPCC’s AR4 b/c models could not explain observed ice dynamical behaviors.

Main Takeaway from Validation Study

Whole Ice Sheet Mass Trends [GRACE]



Cool Movie of Validation Results

Video acknowledgement: B. Carvey (SNL) 



Albany/FELIX work not covered in this talk:

• Semi-implicit FO Stokes-thickness coupling methods.
• Temperature solver in Albany/FELIX.
• More sophisticated basal hydrology models.
• FO Stokes model on spherical grids via stereographic projection.

Summary and Future Work

Ongoing/future work:

• Science runs using CISM-Albany and MPAS-Albany. 
• Code optimizations for new architecture machines (GPUs, Intel Xeon Phis).
• Improving UQ workflow / algorithms, towards paper. 
• Proposal for follow-up funding (SciDaC4). 
• Delivering code to climate community and coupling to ESMs.

Summary:

• We have developed the Albany/FELIX land-ice solver, which is: 
• Scalable, fast, robust.
• Coupled to CISM and MPAS codes for dynamic runs and integration into ESMs.
• Verified and validated.
• Portable to new and emerging architecture machines.
• Equipped with advanced analysis capabilities (deterministic inversion, UQ).
• A production code in Albany.
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Stokes Ice Flow Equations

Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) and 
is modeled using nonlinear incompressible Stokes’ equations.

• Nonlinear incompressible Stokes’ ice flow equations (momentum balance):
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→“nasty” saddle point problem


