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Abstract

This paper presents a discontinuous enrichment method for the solution of the 2D
advection-diffusion equation, the usual model for the Navier-Stokes equations, the
central equations in fluid dynamics. The enrichment basis consists of the free-space
solutions to the governing homogeneous PDE. Continuity of the solution across el-
ement boundaries is enforced using Lagrange multipliers. Preliminary results reveal
that whereas the Galerkin solution exhibits spurious oscillations unless a very fine
mesh is used, the DEM solution is excellent on a significantly coarser grid.

1 Introduction

In the standard Galerkin finite element method (FEM), the solution is ap-
proximated by continuous, piecewise polynomial basis functions. The FEM is
considered quasi-optimal for elliptic boundary value problems (BVPs), mean-
ing the approximate solutions generated by this method reproduce the prop-
erties of the “best approximations” in the underlying finite element space.
Although this property assures good performance at any mesh resolution for
the Laplace operator, the FEM can be prohibitively expensive for many other
BVPs, particularly those whose solutions exhibit sharp gradients or rapid os-
cillations, e.g., problems involving boundary layers.

In the discontinuous enrichment method (DEM) [1], the standard finite
element polynomial field is “enriched” by the free-space solutions of the ho-
mogeneous partial differential equation (PDE) governing the BVP. Since the
enrichment field is related to the underlying equation, it is more effective in
resolving sharp gradients and rapid oscillations than piecewise polynomial ba-
sis functions. As continuity across element boundaries is no longer automatic,
it must be enforced weakly using appropriate Lagrange multipliers (LMs).

The DEM has shown much promise when applied to the 2-dimensional
(2D) and 3-dimensional (3D) Helmholtz equation by Farhat et al. [1]. The
Helmholtz equation describes acoustic vibrations in a fluid and may lose el-
lipticity with increasing wave number k. This causes a pollution effect in the
Galerkin solution, which leads to spurious dispersion in the computation and
makes the Galerkin FEM intractable for medium to high frequency simulations
due to overwhelming cost. 3-dimensional (3D) hexahedral DEM elements have
been developed, tested and shown to be superior to polynomial approxima-
tions for a scattering problem by a capped cylinder. For elements with roughly
the same convergence rates, 4 − 8 times fewer degrees of freedom (dofs) are
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required to achieve the same level of accuracy. This translates to a measured
decrease in computation time up to a factor of 60.

Given the stellar performance of the DEM in acoustic scattering problems,
it is natural to ask whether the method will perform equally well for other
BVPs in which standard finite elements run into difficulties. One such prob-
lem is the advection-diffusion equation in fluid mechanics, governed by the
asymmetric operator Lu = −∆u + 2k · ∇u and the usual model for the more
challenging Navier-Stokes equations. When the Peclet number is high (the
equation is advection-dominated), spurious oscillations pollute the Galerkin
solution unless a very fine mesh is used in the region of the sharp gradient
present in the solution. Preliminary results for the 2D problem show that the
DEM solution, on the other hand, is virtually indistinguishable from the exact
solution in the entire domain even when very few elements are used.

This paper is organized as follows. In §2, a model 2D advection-diffusion
BVP is presented in its strong and its hybrid variational form, and the deriva-
tion of the enrichment basis and LMs is discussed. The so-called R − 8 − 2
element is constructed in §3. Its numerical performance is then evaluated and
compared to the Galerkin Q1 and Q2 elements. Conclusions are offered in §4.

2 2D advection-diffusion boundary value problem

Consider the following BVP for the advection-diffusion equation:
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Fig. 1. Domain Ω for BVP (∗)
where k = 1

2
(a b)T , Ω is the unit square [0, 1] × [0, 1] rotated clockwise

by the angle α = tan−1(b/a) and gi, hi for i = 1, 2 are its boundaries (see
Fig. 1). Ω is partitioned into nel non-overlapping, square elements Ωe with
boundaries Γe. We denote the intersection of two element boundaries Γe and
Γe′ by Γe,e′ = Γe ∪ Γe′. a and b are constant x and y advection coefficients,
respectively; the diffusion coefficient is taken to be 1. The exact solution to
(∗), derived using separation of variables, is a function having a sharp gradient
whose steepness depends on the values of the advection coefficients a and b:

uex =
1

e−
√

a2+b2 − 1

[

eax+by−
√

a2+b2 − 1
]

(1)

The fact that the domain Ω is the rotated unit square motivates one to define
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the following transformation from Ω → Ω′ , [0, 1] × [0, 1]: x′ = a√
a2+b2

x +
b√

a2+b2
y, y′ = b√

a2+b2
x + a√

a2+b2
y. In the transformed variables, (1) does not

depend on y′. This observation suggests that an equivalent problem to (∗) can
be formulated and solved on Ω′ with a zero y advection coefficient, and then
rotated and scaled to represent the solution of (∗) on Ω with b 6= 0.

The advection-diffusion equation is governed by the following asymmetric
bilinear operator

a(u, v) =
∫

Ω
(2vk + ∇v) · ∇udΩ (2)

Let V = {v ∈ L2(Ω̃)|v|Ωe ∈ H1(Ωe)} be the space of test functions and denote
the space of LMs by W = {ΠeΠe′<eH

−1/2(Γe,e′)}. Ṽ ⊂ V and W̃ ⊂ W are the
corresponding finite-dimensional approximation spaces. The basic idea of the
DEM is to seek an approximate solution (uh, λh) ∈ Ṽ × W̃ such that

a(uh, vh) + b(λh, vh) = 0, b(µh, uh) = −r(µh), ∀(vh, µh) ∈ Ṽ × W̃ (3)

where, for the BVP (∗),

b(λ, v) =
∑

e

∑

e′<e

∫

Γe,e′
λ(ve′ − ve)dS, r(λ) =

∫

g1

λdy (4)

The variational equation (3) leads to the following element stiffness matrices
and load vectors

ke =







kEE kEC

kECT

0





 , re =







0

−rC





 (5)

The solution vector is (u λ)T , with uh = uE ∈ Ṽ being the primal unknown 1 .
The most efficient way to solve (5) is by eliminating the first of the equations
at the element level using static condensation, taking the Schur complement
fCC = −kECT

(kEE)−1kEC . The global interface problem fλ = r is then built
and assembled. Remark that the cost of computing a statically-condensed
DEM solution is dependent on nλ, the number of LM dofs, and not on nE ,
the number of enrichment functions in the DEM basis.

An infinite set of solutions to the free-space version of (∗) is derived using
separation of variables. This set contains 8 linearly independent functions
(nE = 8), which are used to build up the enrichment field:

uh = e
a
2
(x−xr)+ b

2
(y−yr)

[

e||k||(x−xr)v1 + e||k||(y−yr)v2 + e−||k||(x−xr)v3 + e−||k||(y−yr)v4

+ cosh(
√

2||k||(x − xr)){cos(||k||(y − yr))v5 + sin(||k||(y − yr))v6}
+ cosh(

√
2||k||(y − yr)){cos(||k||(x− xr))v7 + sin(||k||(x − xr))v8}

]

(6)
The vi are the enrichment dofs to be solved for and (xr, yr) is an arbitrary ref-
erence point, added to counteract the ill-conditioning of the element matrices.

It can be shown from the variational form (3) that the LMs should be

1 For the homogeneous equation, we drop the Galerkin polynomial field uP .
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taken as boundary normal derivatives of the enrichment field: λh = ∂uh
e

∂ν
=

−∂uh
e

∂ν
on Γe,e′. In order for the system (5) to have a solution, the number of

LMs should be limited to ≤ neq, the number of equations stemming from the

enrichment basis. Asymptotically, this translates to a global limit of nλ ≤ nE

2

on the number of LMs. Unfortunately, the number of linearly independent
LMs computed as normal derivatives of (6) does not satisfy this global bound.
There are 6 LM dofs/edge on the transformed domain Ω′ 2 :

λtb
1 = eax′

, λtb
2 = e

a
2
x′

, λtb
3 = 1, λtb

4 = e
a
2
x′

cosh
(

a
√

2
2 x′

)

,

λtb
5 = e

a
2
x′

cos
(

a
√

2
2 x′

)

, λtb
6 = e

a
2
x′

sin
(

a
√

2
2 x′

)

λlr
1 = 1, λlr

2 = e
a
2
y′

, λlr
3 = e−

a
2
y′

, λlr
4 = cos

(

a
2y′

)

, λlr
5 = sin

(

a
2y′

)

, λlr
6 = cosh

(

a
√

2
2 y′

)

(7)

Choosing which LMs to include in the LM basis is not so obvious a priori.
Sending h → 0, observe that

λtb
6 → λtb

3 , λtb
4 , λtb

5 → λtb
2 , λlr

4 , λlr
5 , λlr

6 → λlr
1 (8)

These limits suggest keeping λtb
2 and λtb

3 on the top/bottom edges and λlr
1

on the left/right edges and motivates the construction of the so-called R −
8 − 2 element, a rectangular element with 8 enrichment basis functions and
2 LMs/edge. Implementation confirms that this theoretically “best” choice of
LMs does indeed produce the smallest error in the DEM solution. Although
the bound nλ ≤ nE

2
would allow as many as 4 LMs/edge, in practice, using

more than 2 results in severe ill-conditioning of the global matrices, which
takes away any benefit the additional LMs would have in theory. If static
condensation is implemented, the asymptotic number of dofs is 4n2, making
the element comparable to the Galerkin Q2 element in computational cost.

3 Numerical results

Since the DEM uses free-space solutions of the governing PDE, it is ex-
pected to deliver a very accurate solution using few elements. Preliminary nu-
merical results show just that. The plots below compare the standard Galerkin
FEM solution using the Q1 element and the DEM solution at nel = 100 and
a = b = 25. One can see clearly that the Galerkin FEM solution exhibits
spurious oscillations and overshoots the exact solution (plotted in black) in
the region of the sharp gradient. Indeed, at nel = 100, the L2 relative error for
the R − 8 − 2 element is of order 10−15, compared to 8% for the Q1 and 3%
for the Q2. Because the true solution to the BVP is represented in the DEM
basis, it turns out that a single element having only 12 LM dofs will yield the
exact solution, continuous to machine precision, with a relative error of order

2 λtb are the LMs on the top/bottom edges and λlb are those on the left/right edges. The LMs in (7) are
computed for b = 0, since the transformation discussed at the beginning of §2 shows that (∗) is equivalent
to a problem on Ω′ = [0, 1] × [0, 1] with zero y advection coefficient.
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Fig. 2. Q1 solution vs. uex (left), R − 8 − 2 solution vs. uex (right)

10−9. The Q1 element, on the other hand, requires almost 800 dofs and a Q2

around 625 dofs to achieve only a 1% relative error.

4 Conclusions

In this paper, the discontinuous enrichment method [1] is extended to
the advection-diffusion equation. The enrichment basis, spanned by free space
solutions to the governing homogeneous PDE, is derived. Continuity across
element boundaries is enforced weakly using LMs, taken as normal traces of
the enrichment field. Following a discussion of the choice of the LM field, the
R − 8 − 2 element is constructed and its numerical performance is evaluated.

As in the 2D Helmholtz equation considered in [1], preliminary testing
on the 2D Neumann-Dirichlet BVP shows that the DEM solution is continu-
ous and exact to machine precision whereas spurious oscillations pollute the
Galerkin solution for larger Peclet numbers. The numerical results and plots
presented above demonstrate the potential of the method, suggesting that it
is a cost effective choice for cases in which the standard finite element method
runs into difficulties. The chosen BVP is a simple model problem and the best
case scenario for DEM; the full version of this paper will report on similar
results for more challenging problems. Since the ultimate goal is to extend
the DEM to the more challenging Navier-Stokes equations, arguably the most
important equations in fluid flow, research in this domain has a significant
potential for improving finite element computations in the field of fluid me-
chanics.

References

[1] C. Farhat, I. Harari, L. P. Franca. The discontinuous enrichment method.
Comput. Methods Appl. Mech. Engrg., 190:455-6479, 2001.

5


