Energy-Stable Galerkin Reduced Order Models for Prediction and Control of Fluid Systems

I. Kalashnikova ${ }^{1}$, S. Arunajatesan² ${ }^{2}$, B. van Bloemen Waanders ${ }^{1}$
${ }^{1}$ Numerical Analysis \& Applications Department, Sandia National Laboratories*, Albuquerque, NM, U.S.A.
${ }^{2}$ Aerosciences Department, Sandia National Laboratories*, Albuquerque, NM, U.S.A.

SIAM Conference on Computational Science \& Engineering (CS\&E13)
Boston, Massachusetts
February 25 - March 1, 2013

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Sandia
National
laboratories

Target Cavity Flow Control Problem

- Configuration/Plant: compressible non-linear fluid flow over open cavity containing components.

Target Cavity Flow Control Problem

- Configuration/Plant: compressible non-linear fluid flow over open cavity containing components.
- Physical Control Problem: using upstream actuation, control oscillations within cavity caused by pressure fluctuations propagating between downstream wall and shear layer.

Target Cavity Flow Control Problem

- Configuration/Plant: compressible non-linear fluid flow over open cavity containing components.
- Physical Control Problem: using upstream actuation, control oscillations within cavity caused by pressure fluctuations propagating between downstream wall and shear layer.
- Mathematical Control Problem: compute optimal body-force actuation input $\mathbf{u}_{\text {opt }}$ to minimize the RMS pressure halfway up the downstream wall.

$$
\left.\begin{array}{rl}
\text { input } \mathbf{u}: & \mathbf{q}^{T}=\left(\begin{array}{llll}
0, & f(t), & 0 & 0
\end{array} 0\right.
\end{array}\right)^{T},
$$

ROM-Based Cavity Flow Control Road Map

(1) Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$
\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}_{i}\right), \quad \mathbf{y}_{i}=\mathbf{h}\left(\mathbf{x}, \mathbf{u}_{i}\right)
$$

for some set of inputs $\left\{\mathbf{u}_{i}(t)\right\}$, and construct empirical basis (POD, BPOD) from this snapshot set.
$\left\{\mathbf{u}_{i}(t)\right\}$

Plant (Cavity)
Non-linear CFD

ROM-Based Cavity Flow Control

 Road Map- Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$
\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}_{i}\right), \quad \mathbf{y}_{i}=\mathbf{h}\left(\mathbf{x}, \mathbf{u}_{i}\right)
$$

for some set of inputs $\left\{\mathbf{u}_{i}(t)\right\}$, and construct empirical basis (POD, BPOD) from this snapshot set.
(2) Build a ROM for the fluid system, or approximation of fluid system.

ROM-Based Cavity Flow Control

 Road Map- Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$
\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}_{i}\right), \quad \mathbf{y}_{i}=\mathbf{h}\left(\mathbf{x}, \mathbf{u}_{i}\right)
$$

for some set of inputs $\left\{\mathbf{u}_{i}(t)\right\}$, and construct empirical basis (POD, BPOD) from this snapshot set.
(2) Build a ROM for the fluid system, or approximation of fluid system.
(3) Compute optimal controller $\mathbf{u}_{\text {opt }}(t)$ using ROM.

ROM-Based Cavity Flow Control

 Road Map- Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$
\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}_{i}\right), \quad \mathbf{y}_{i}=\mathbf{h}\left(\mathbf{x}, \mathbf{u}_{i}\right)
$$

for some set of inputs $\left\{\mathbf{u}_{i}(t)\right\}$, and construct empirical basis (POD, BPOD) from this snapshot set.
(2) Build a ROM for the fluid system, or approximation of fluid system.
(3) Compute optimal controller $\mathbf{u}_{\text {opt }}(t)$ using ROM.
(4) Apply ROM-based controller to non-linear cavity problem.

Controller Linear ROM

ROM-Based Cavity Flow Control

 Road Map- Collect snapshots from non-linear high-fidelity CFD cavity simulation

$$
\dot{\mathbf{x}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}_{i}\right), \quad \mathbf{y}_{i}=\mathbf{h}\left(\mathbf{x}, \mathbf{u}_{i}\right)
$$

for some set of inputs $\left\{\mathbf{u}_{i}(t)\right\}$, and construct empirical basis (POD, BPOD) from this snapshot set.
(2) Build a ROM for the fluid system, or approximation of fluid system.
(3) Compute optimal controller $\mathbf{u}_{\text {opt }}(t)$ using ROM.
(4) Apply ROM-based controller to non-linear cavity problem.

Controller Linear ROM

3D Full (Non-Linear) Compressible Navier-Stokes Equations

- 3D compressible Navier-Stokes equations:

$$
\begin{array}{ll}
\rho \frac{D u_{1}}{d t} & =-\frac{\partial p}{\partial x_{1}}+\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}}\left\{\mu\left(\frac{\partial u_{1}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{1}}\right)+\lambda \delta_{1 j} \nabla \cdot \mathbf{u}\right\}, \\
\rho \frac{D u_{2}}{d t} & =-\frac{\partial p}{\partial x_{2}}+\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}}\left\{\mu\left(\frac{\partial u_{2}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{2}}\right)+\lambda \delta_{2 j} \nabla \cdot \mathbf{u}\right\}, \\
\rho \frac{D u_{3}}{d t} & =-\frac{\partial p}{\partial x_{3}}+\sum_{j=1}^{3} \frac{\partial}{\partial x_{j}}\left\{\mu\left(\frac{\partial u_{3}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{3}}\right)+\lambda \delta_{3 j} \nabla \cdot \mathbf{u}\right\}, \tag{1}\\
\rho C_{v} \frac{D T}{d t} & =-p \nabla \cdot \mathbf{u}+\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(\kappa \frac{\partial T}{\partial x_{i}}\right), \\
\frac{D \rho}{\partial t} & =-\rho \nabla \cdot \mathbf{u} .
\end{array}
$$

- ROM approach is based on local linearization of full non-linear equations (1):
- Full non-linear equations (1) are solved to generate snapshots in high-fidelity code.
- Linearized approximation of (1) is projected onto reduced basis modes in building the ROM.

3D Linearized Compressible Navier-Stokes Equations

- Appropriate when a compressible fluid system can be described by viscous, small-amplitude perturbations about a steady-state mean (or base) flow.
- Linearization of full compressible Navier-Stokes equations:

$$
\mathbf{q}^{T}(\mathbf{x}, t) \equiv\left(\begin{array}{lllll}
u_{1}, & u_{2}, \quad u_{3}, \quad T, \quad \rho
\end{array}\right) \equiv \underbrace{\overline{\mathbf{q}}^{T}(\mathbf{x})}_{\text {mean }}+\underbrace{\mathbf{q}^{T}(\mathbf{x}, t)}_{\text {fluctuation }} \in \mathbb{R}^{5}
$$

- Simplest linearization: neglect $\nabla \overline{\mathbf{q}}$ terms (uniform base flow)

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- More accurate linearization: retain $\nabla \overline{\mathbf{q}}$ terms

$$
\mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}+\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
$$

$$
\begin{array}{rlr}
\mathbf{A}_{i}(\overline{\mathbf{q}}): & & \text { convective flux matrices } \\
\mathbf{K}_{i j}(\overline{\mathbf{q}}): & & \text { diffusive flux matrices } \\
\mathbf{K}_{i}^{v w}(\overline{\mathbf{q}}): & \text { viscous work matrices }
\end{array}
$$

Outline

This talk focuses on how to construct a Galerkin ROM that is stable a priori
(1) Stability Definitions
(2) POD/Galerkin Approach to Model Reduction

3 Energy-Stable ROMs for Linearized Compressible Flow

- Stability via Continuous Projection
- Stability via Discrete Projection

4 Numerical Experiments

- Implementation
- Driven Pulse in Uniform Base Flow
- Laminar Viscous Driven Cavity
(5) Summary \& Future Work
(6) References
(7) Appendix

Energy-Stability

- Practical Definition: Numerical solution does not "blow up" in finite time.

Energy-Stability

- Practical Definition: Numerical solution does not "blow up" in finite time.
- More Precise Definition: Numerical discretization does not introduce any spurious instabilities inconsistent with natural instability modes supported by the governing continuous PDEs.

Energy-Stability

- Practical Definition: Numerical solution does not "blow up" in finite time.
- More Precise Definition: Numerical discretization does not introduce any spurious instabilities inconsistent with natural instability modes supported by the governing continuous PDEs.

Numerical solutions must maintain a proper energy balance

Energy-Stability

- Practical Definition: Numerical solution does not "blow up" in finite time.
- More Precise Definition: Numerical discretization does not introduce any spurious instabilities inconsistent with natural instability modes supported by the governing continuous PDEs.

Numerical solutions must maintain a proper energy balance

Energy-Stability

- Practical Definition: Numerical solution does not "blow up" in finite time.
- More Precise Definition: Numerical discretization does not introduce any spurious instabilities inconsistent with natural instability modes supported by the governing continuous PDEs.

Numerical solutions must maintain a proper energy balance

Linearized Compressible Navier-Stokes Equations:

$$
\frac{d E}{d t} \leq 0
$$

Non-increasing energy [5]

Compressible NavierStokes Equations:

Clausius-Duhem Inequality Non-decreasing entropy [4]

- Analyzed using the Energy Method: Uses an equation for the evolution of numerical solution "energy" (or "entropy") to determine stability.

Connection to Lyapunov Stability*

$$
\dot{\mathbf{x}}_{N}=\mathbf{f}_{N}\left(\mathbf{x}_{N}\right), \quad \mathbf{x}_{N} \in \mathbb{R}^{N}
$$

- Lyapunov Stability: If there exists a Lyapunov function V such that
- $V>0$ (positive-definite), and
- $\frac{d V}{d t}=\frac{d V}{d \mathbf{x}} \mathbf{f}(\mathbf{x}) \leq 0$ (negative semi-definite along system trajectories) in $B_{r}\left(\mathbf{x}_{s}\right)$, then \mathbf{x}_{s} is locally stable in the sense of Lyapunov [8].
- Energy Stability: Let

$$
E_{N} \equiv \frac{1}{2}\left\|\mathbf{x}_{N}\right\|^{2}
$$

denote the system energy. If

$$
\frac{d E_{N}}{d t} \leq 0
$$

the system is energy-stable.
*Manuscript in preparation.

Connection to Lyapunov Stability*

$$
\dot{\mathbf{x}}_{N}=\mathbf{f}_{N}\left(\mathbf{x}_{N}\right), \quad \mathbf{x}_{N} \in \mathbb{R}^{N}
$$

- Lyapunov Stability: If there exists a Lyapunov function V such that
- $V>0$ (positive-definite), and
- $\frac{d V}{d t}=\frac{d V}{d \mathbf{x}} \mathbf{f}(\mathbf{x}) \leq 0$ (negative semi-definite along system trajectories) in $B_{r}\left(\mathbf{x}_{s}\right)$, then \mathbf{x}_{s} is locally stable in the sense of Lyapunov [8].
- Energy Stability: Let

$$
E_{N} \equiv \frac{1}{2}\left\|\mathbf{x}_{N}\right\|^{2}
$$

denote the system energy. If

$$
\frac{d E_{N}}{d t} \leq 0
$$

the system is energy-stable.

Remark: System energy E_{N} satisfies the definition of a Lyapunov function!
*Manuscript in preparation.

Model Reduction Approach

High-Fidelity
CFD Simulations:

Snapshot 1
Snapshot 2
\vdots
Snapshot K

Fluid Modal
Decomposition (POD):
Step 1
1

$\xrightarrow{\text { Step } 2}$
Galerkin Projection of Fluid PDEs:

$$
\left(\phi_{j}, \dot{\mathbf{u}}_{M}+\nabla \cdot \mathbf{F}\left(\mathbf{u}_{M}\right)\right)=0
$$

Step 1: Constructing the Modes

High-Fidelity
CFD Simulations

Snapshot 1	
Snapshot 2	
	Step 1
Decomposition (POD):	
$\mathbf{u}_{M}=\sum_{k=1}^{M} a_{k}(t) \phi_{k}(\mathbf{x})$	

$\xrightarrow{\text { Step } 2}$
Galerkin Projection of Fluid PDEs:

Snapshot K

- POD basis $\left\{\phi_{i}\right\}_{i=1}^{M}$ with $M \ll K$ maximizes the energy in the projection of snapshots onto span $\left\{\boldsymbol{\phi}_{i}\right\}$.
- POD SVD problem:
$\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$
$\left(\boldsymbol{\phi}_{1}, \cdots, \boldsymbol{\phi}_{M}\right)=\mathbf{U}(:, 1: M)$

$$
\dot{a}_{k}=f\left(a_{1}, \ldots, a_{M}\right)
$$

Step 2: Galerkin Projection

High-Fidelity

CFD Simulations:

Snapshot 1
Step 1
Snapshot 2

Snapshot K

$\xrightarrow{\text { Step } 2}$

$\left(\phi_{j}, \dot{\mathbf{u}}_{M}+\nabla \cdot \mathbf{F}\left(\mathbf{u}_{M}\right)\right)=0$

Discrete vs. Continuous Projection

DISCRETE APPROACH

Governing Equations

$$
\mathbf{u}_{t}=\mathcal{L} u
$$

$$
\begin{gathered}
\text { CFD Model } \\
\begin{array}{c}
\dot{\mathbf{u}}_{N}=\mathbf{A}_{N} \mathbf{u}_{N} \\
\downarrow
\end{array}
\end{gathered}
$$

Discrete Modal Basis Φ
\downarrow
Projection of CFD Model
(Matrix Operation)
\downarrow

$$
\begin{gathered}
\mathrm{ROM} \\
\dot{\mathbf{a}}=\Phi^{T} \mathbf{A}_{N} \Phi \mathbf{a}
\end{gathered}
$$

CONTINUOUS APPROACH

Governing Equations

$$
\mathbf{u}_{t}=\stackrel{\mathcal{L} u}{ }
$$

$$
\begin{gathered}
\text { CFD Model } \\
\dot{\mathbf{u}}_{N}=\mathbf{A}_{N} \mathbf{u}_{N} \\
\downarrow
\end{gathered}
$$

Continuous Modal Basis* $\phi_{j}(\mathbf{x})$

Projection of Governing Equations (Numerical Integration)

$$
\begin{gathered}
\mathrm{ROM} \\
\dot{a}_{j}=\left(\phi_{j}, \mathcal{L} \phi_{k}\right) a_{k}
\end{gathered}
$$

Energy-Stable ROM via Continuous Projection

Energy stability of the Galerkin ROM can be proven [1] following "symmetrization" the linearized compressible Navier-Stokes equations.

- Linearized compressible Navier-Stokes system is "symmetrizable" [5].
- Pre-multiply equations by symmetric positive definite matrix:
$\mathbf{H} \equiv\left(\begin{array}{ccccc}\bar{\rho} & 0 & 0 & 0 & 0 \\ 0 & \bar{\rho} & 0 & 0 & 0 \\ 0 & 0 & \rho & 0 & 0 \\ 0 & 0 & 0 & \frac{\bar{\rho} R}{\bar{T}(\gamma-1)} & 0 \\ 0 & 0 & 0 & 0 & \frac{R \bar{T}}{\bar{\rho}}\end{array}\right) \Rightarrow \mathbf{H q _ { , t } ^ { \prime } + \mathbf { H } \mathbf { A } _ { i } \mathbf { q } _ { , i } ^ { \prime } - \mathbf { H } [\mathbf { K } _ { i j } \mathbf { q } _ { , i } ^ { \prime }] _ { , j } + \cdots = \mathbf { F }}$
- H is called the "symmetrizer" of the system:
- The convective flux matrices $\mathbf{H A}_{i}$ are all symmetric.
- The following augmented viscosity matrix

$$
\mathbf{K}^{S} \equiv\left(\begin{array}{lll}
\mathbf{H K}_{11} & \mathbf{H K}_{12} & \mathbf{H K}_{13} \\
\mathbf{H K}_{21} & \mathbf{H K}_{22} & \mathbf{H K}_{23} \\
\mathbf{H K}_{31} & \mathbf{H K} & \mathbf{H K}_{32}
\end{array}\right)
$$

is symmetric positive semi-definite.

Symmetry Inner Product \& A Stable Galerkin ROM

- Define the "symmetry" inner product and "symmetry" norm:

$$
\begin{equation*}
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{\prime(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega, \quad\left\|\mathbf{q}^{\prime}\right\|_{(\mathbf{H}, \Omega)} \equiv\left(\mathbf{q}^{\prime}, \mathbf{q}^{\prime}\right)_{(\mathbf{H}, \Omega)} \tag{2}
\end{equation*}
$$

Symmetry Inner Product \& A Stable Galerkin ROM

- Define the "symmetry" inner product and "symmetry" norm:

$$
\begin{equation*}
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{\prime(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega, \quad\left\|\mathbf{q}^{\prime}\right\|_{(\mathbf{H}, \Omega)} \equiv\left(\mathbf{q}^{\prime}, \mathbf{q}^{\prime}\right)_{(\mathbf{H}, \Omega)} \tag{2}
\end{equation*}
$$

- Stability analysis reveals that the symmetry inner product (and not the L^{2} inner product!) is the energy inner product for this equation set.

Symmetry Inner Product \& A Stable Galerkin ROM

- Define the "symmetry" inner product and "symmetry" norm:

$$
\begin{equation*}
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{\prime(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega, \quad\left\|\mathbf{q}^{\prime}\right\|_{(\mathbf{H}, \Omega)} \equiv\left(\mathbf{q}^{\prime}, \mathbf{q}^{\prime}\right)_{(\mathbf{H}, \Omega)} \tag{2}
\end{equation*}
$$

- Stability analysis reveals that the symmetry inner product (and not the L^{2} inner product!) is the energy inner product for this equation set.
- Uniform base flow case: non-increasing energy in Galerkin approximation $\mathbf{q}_{M}^{\prime}=\sum_{i=1}^{M} a_{k}(t) \phi_{k}(\mathbf{x})$

$$
\frac{d E_{M}}{d t} \equiv \frac{1}{2} \frac{d}{d t}\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, t)\right\|_{(\mathbf{H}, \Omega)} \leq 0
$$

Symmetry Inner Product \& A Stable Galerkin ROM

- Define the "symmetry" inner product and "symmetry" norm:

$$
\begin{equation*}
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{\prime(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega, \quad\left\|\mathbf{q}^{\prime}\right\|_{(\mathbf{H}, \Omega)} \equiv\left(\mathbf{q}^{\prime}, \mathbf{q}^{\prime}\right)_{(\mathbf{H}, \Omega)} \tag{2}
\end{equation*}
$$

- Stability analysis reveals that the symmetry inner product (and not the L^{2} inner product!) is the energy inner product for this equation set.
- Uniform base flow case: non-increasing energy in Galerkin approximation $\mathbf{q}_{M}^{\prime}=\sum_{i=1}^{M} a_{k}(t) \boldsymbol{\phi}_{k}(\mathbf{x})$

$$
\frac{d E_{M}}{d t} \equiv \frac{1}{2} \frac{d}{d t}\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, t)\right\|_{(\mathbf{H}, \Omega)} \leq 0
$$

- General case: Galerkin approximation satisfies same energy expression as solutions to the continuous PDEs

$$
\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, t)\right\|_{(\mathbf{H}, \Omega)} \leq e^{\beta t}\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, 0)\right\|_{(\mathbf{H}, \Omega)}
$$

Symmetry Inner Product \& A Stable Galerkin ROM

- Define the "symmetry" inner product and "symmetry" norm:

$$
\begin{equation*}
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{\prime(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega, \quad\left\|\mathbf{q}^{\prime}\right\|_{(\mathbf{H}, \Omega)} \equiv\left(\mathbf{q}^{\prime}, \mathbf{q}^{\prime}\right)_{(\mathbf{H}, \Omega)} \tag{2}
\end{equation*}
$$

- Stability analysis reveals that the symmetry inner product (and not the L^{2} inner product!) is the energy inner product for this equation set.
- Uniform base flow case: non-increasing energy in Galerkin approximation $\mathbf{q}_{M}^{\prime}=\sum_{i=1}^{M} a_{k}(t) \boldsymbol{\phi}_{k}(\mathbf{x})$

$$
\frac{d E_{M}}{d t} \equiv \frac{1}{2} \frac{d}{d t}\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, t)\right\|_{(\mathbf{H}, \Omega)} \leq 0
$$

- General case: Galerkin approximation satisfies same energy expression as solutions to the continuous PDEs

$$
\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, t)\right\|_{(\mathbf{H}, \Omega)} \leq e^{\beta t}\left\|\mathbf{q}_{M}^{\prime}(\mathbf{x}, 0)\right\|_{(\mathbf{H}, \Omega)}
$$

Practical Implication:

Symmetry inner product ensures Galerkin projection step of the ROM is stable (provided system is in stable state) for any basis!

Energy-Stable ROM via Discrete Projection

Symmetry inner product has discrete analog!

- Consider linear discrete (i.e., discretized in space) stable full order system

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{A x} \tag{3}
\end{equation*}
$$

- Lyapunov function for (3): $V(\mathbf{x})=\mathbf{x}^{T} \mathbf{P} \mathbf{x}$ where \mathbf{P} is the solution of the Ricatti equation:

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{P}+\mathbf{P A}=-\mathbf{Q} \tag{4}
\end{equation*}
$$

- S.p.d. solution to (4) exists if \mathbf{Q} is s.p.d. and \mathbf{A} is stable [8].
- Solution to (4) can be obtained using MATLAB control toolbox:

$$
P=\text { lyap (A', Q, [] speye }(n, n)) \text {; }
$$

- Discrete analog of symmetry inner-product: Lyapunov inner product

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

Energy-Stable ROM via Discrete Projection

Symmetry inner product has discrete analog!

- Consider linear discrete (i.e., discretized in space) stable full order system

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{A x} \tag{3}
\end{equation*}
$$

- Lyapunov function for (3): $V(\mathbf{x})=\mathbf{x}^{T} \mathbf{P} \mathbf{x}$ where \mathbf{P} is the solution of the Ricatti equation:

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{P}+\mathbf{P A}=-\mathbf{Q} \tag{4}
\end{equation*}
$$

- S.p.d. solution to (4) exists if \mathbf{Q} is s.p.d. and \mathbf{A} is stable [8].
- Solution to (4) can be obtained using MATLAB control toolbox:

$$
P=\text { lyap }\left(A^{\prime}, Q,[] \text { speye }(n, n)\right) ;
$$

- Discrete analog of symmetry inner-product: Lyapunov inner product

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

- Can show: if ROM for (3) is constructed in Lyapunov inner product,

$$
\frac{d E_{M}}{d t} \equiv \frac{1}{2} \frac{d}{d t}\left\|\mathbf{x}_{M}\right\|_{2}^{2} \leq 0
$$

Energy-Stable ROM via Discrete Projection: vs. Continuous Projection

Symmetry Inner Product

 (Continuous)$$
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega
$$

Lyapunov Inner Product
(Discrete)

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

Energy-Stable ROM via Discrete Projection: vs. Continuous Projection

Symmetry Inner Product

 (Continuous)$$
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega
$$

- For linear system:
- For linear system:

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i} \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j} \mathbf{q}_{, i}^{\prime}\right]_{, j}+\cdots=\mathbf{F}
$$

(Discrete)

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

Lyapunov Inner Product

$$
\mathbf{x}_{, t}=\mathbf{A} \mathbf{x}
$$

Energy-Stable ROM via Discrete Projection: vs. Continuous Projection

Symmetry Inner Product

 (Continuous)$$
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega
$$

- For linear system:

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i} \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j} \mathbf{q}_{, i}^{\prime}\right]_{, j}+\cdots=\mathbf{F}
$$

- Defined for unstable systems, but stability of ROM not guaranteed.

Lyapunov Inner Product (Discrete)

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

- For linear system:

$$
\mathbf{x}_{, t}=\mathbf{A} \mathbf{x}
$$

- Undefined for unstable systems.

Energy-Stable ROM via Discrete Projection: vs. Continuous Projection

Symmetry Inner Product

 (Continuous)$$
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega
$$

- For linear system:

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i} \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j} \mathbf{q}_{, i}^{\prime}\right]_{, j}+\cdots=\mathbf{F}
$$

- Defined for unstable systems, but stability of ROM not guaranteed.
- Induced by Lyapunov function for system.

Lyapunov Inner Product
(Discrete)

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

- For linear system:

$$
\mathbf{x}_{, t}=\mathbf{A} \mathbf{x}
$$

- Undefined for unstable systems.
- Induced by Lyapunov function for system.

Energy-Stable ROM via Discrete Projection: vs. Continuous Projection

Symmetry Inner Product

 (Continuous)$$
\left(\mathbf{q}^{\prime(1)}, \mathbf{q}^{\prime(2)}\right)_{(\mathbf{H}, \Omega)} \equiv \int_{\Omega}\left[\mathbf{q}^{(1)}\right]^{T} \mathbf{H q}^{\prime(2)} d \Omega
$$

- For linear system:

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i} \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j} \mathbf{q}_{, i}^{\prime}\right]_{, j}+\cdots=\mathbf{F}
$$

- Defined for unstable systems, but stability of ROM not guaranteed.
- Induced by Lyapunov function for system.
- Equation-specific (\Rightarrow embedded algorithm).
- Known analytically in closed form.

Lyapunov Inner Product
(Discrete)

$$
\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)_{\mathbf{P}} \equiv \mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}
$$

- For linear system:
- Undefined for unstable systems.
- Induced by Lyapunov function for system.
- Black-box.
- Computed numerically by solving Ricatti equation ($\mathcal{O}\left(N^{3}\right)$ ops).

Implementation

- Stability-Preserving Discrete Implementation of ROM:
- ROM is implemented in a C++ code that uses distributed vector and matrix data structures and parallel eigensolvers from the Trilinos project [7].
- POD modes defined using piecewise smooth finite elements.
- Gauss quadrature rules of sufficient accuracy are used to compute exactly inner products with the help of libmesh library.

> ROM code is potentially compatible with any CFD code that can output a mesh and snapshot data stored at the nodes of this mesh.

- High-fidelity CFD Code: SIGMA CFD
- Sandia in-house finite volume flow solver derived from LESLIE3D [6], a LES flow solver originally developed in the Computational Combustion Laboratory at Georgia Tech.
- Solves the turbulent compressible flow equations using an explicit 2-4 MacCormack scheme.
- A hybrid scheme coupling the MacCormack scheme to flux difference splitting schemes is employed to capture shocks.

Driven Pulse in a Uniform Base Flow

Uniform base flow in $\Omega=(-1,1)^{2}$:

$$
\begin{gathered}
\bar{p}=10.1325 \mathrm{~Pa} \\
\bar{T}=300 \mathrm{~K} \\
\bar{\rho}=\frac{\bar{p}}{R T}=1.17 \times 10^{-4} \mathrm{~kg} / \mathrm{m}^{3} \\
\bar{u}_{1}=\bar{u}_{2}=\bar{u}_{3}=0.0 \mathrm{~m} / \mathrm{s} \\
\bar{c}=347.9693 \mathrm{~m} / \mathrm{s} .
\end{gathered}
$$

- Slip wall boundary conditions applied on all boundaries of Ω.

- Uniform base flow in $\Omega=(-1,1)^{2}$:

$$
\begin{gathered}
\bar{p}=10.1325 \mathrm{~Pa} \\
\bar{T}=300 \mathrm{~K} \\
\bar{\rho}=\frac{\bar{p}}{R T}=1.17 \times 10^{-4} \mathrm{~kg} / \mathrm{m}^{3} \\
\bar{u}_{1}=\bar{u}_{2}=\bar{u}_{3}=0.0 \mathrm{~m} / \mathrm{s} \\
\bar{c}=347.9693 \mathrm{~m} / \mathrm{s} .
\end{gathered}
$$

- Slip wall boundary conditions applied on all boundaries of Ω.
- Force for y-momentum equation drives the flow:

$$
F_{v}(\mathbf{x}, t)=\left(1 \times 10^{-4}\right) \cos (2000 \pi t), \quad \mathbf{x} \in(-0.1,0)^{2}
$$

Driven Pulse in a Uniform Base Flow

- Uniform base flow in $\Omega=(-1,1)^{2}$:

$$
\begin{gathered}
\bar{p}=10.1325 \mathrm{~Pa} \\
\bar{T}=300 \mathrm{~K} \\
\bar{\rho}=\frac{\bar{p}}{R T}=1.17 \times 10^{-4} \mathrm{~kg} / \mathrm{m}^{3} \\
\bar{u}_{1}=\bar{u}_{2}=\bar{u}_{3}=0.0 \mathrm{~m} / \mathrm{s} \\
\bar{c}=347.9693 \mathrm{~m} / \mathrm{s} .
\end{gathered}
$$

- Slip wall boundary conditions applied on all boundaries of Ω.

Force for y-momentum equation drives the flow:

$$
F_{v}(\mathbf{x}, t)=\left(1 \times 10^{-4}\right) \cos (2000 \pi t), \quad \mathbf{x} \in(-0.1,0)^{2}
$$

- High-fidelity CFD simulation run on 3362 node mesh until time $T=0.5$ seconds.
- 2500 snapshots (saved every 2×10^{-5} seconds), used to construct a 20 mode POD basis.

Uncontrolled Symmetry ROM Results

u velocity snapshot \#1
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#2
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#3
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#4
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#5
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#6
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#7
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#8
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#9
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#10
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#11
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#12
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#13
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#14
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#15
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#16
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#17
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#18
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#19
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#20
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#21
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#22
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#23
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#24
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#25
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#26
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#27
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#28
Figure below shows:

- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#29
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#30
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#31
Figure below shows:

- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#32
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#33
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#34
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#35
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#36
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#37
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#38
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#39
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#40
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- $-: t$ vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#41
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#42
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- $-: t$ vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#43
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- $-: t$ vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#44
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#45
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#46
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#47
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#48
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#49
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- $-: t$ vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#50
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#51
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#52
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#53
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#54
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#55
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#56
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#57
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#58
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#59
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#60
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#61

Figure below shows:

- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#62
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#63
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#64
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#65
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#66
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#67
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#68
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#69
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#71

Figure below shows:

- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#72
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#73
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#74
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#75
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#76
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#77
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#78
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#79
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#80
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#81

Figure below shows:

- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#82
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#83
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#84
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#85
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#86
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#87
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#88
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#89
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#91
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#92
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#93
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#94
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#95
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#96
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#97
Figure below shows:

- $0: t$ vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#98
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

u velocity snapshot \#99
Figure below shows:

- $\mathrm{o}: t$ vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathrm{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

Uncontrolled Symmetry ROM Results

Figure below shows:

- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows u-velocity snapshot (top) vs. 20 mode symmetry ROM solution for u (bottom).

20 mode Symmetry ROM, snapshot \#100

Uncontrolled Symmetry ROM Results

LQR Control of Driven Pulse

Control problem: compute actuation that will minimize p^{\prime} at $(x, y)=(1,0)$.

- Compute LQR controller feedback law $u_{M}=-\mathbf{K x}_{M}$ to minimize quadratic cost functional using ROM*:

$$
J \equiv \frac{1}{T} \int_{0}^{T}\left[p^{\prime 2}(1,0 ; t)+\tau u^{2}\right] d t
$$

* The computation of $\mathbf{K}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{X}$ requires solution of algebraic Ricatti equation $\mathbf{A}^{T} \mathbf{X}+\mathbf{X A}-\frac{1}{\tau} \mathbf{X B B} \mathbf{B}^{T} \mathbf{X}+\mathbf{C}^{T} \mathbf{C}=\mathbf{0}$ [8].

Sandia
National
Laboratories

LQR Control of Driven Pulse

Control problem: compute actuation that will minimize p^{\prime} at $(x, y)=(1,0)$.

- Compute LQR controller feedback law $u_{M}=-\mathbf{K x}_{M}$ to minimize quadratic cost functional using ROM*:

$$
J \equiv \frac{1}{T} \int_{0}^{T}\left[p^{\prime 2}(1,0 ; t)+\tau u^{2}\right] d t
$$

* The computation of $\mathbf{K}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{X}$ requires solution of algebraic Ricatti equation $\mathbf{A}^{T} \mathbf{X}+\mathbf{X A}-\frac{1}{\tau} \mathbf{X} \mathbf{B B}^{T} \mathbf{X}+\mathbf{C}^{T} \mathbf{C}=\mathbf{0}$ [8].

Sandia
National
Laboratories

Laminar Viscous Driven Cavity Problem

- Mach = 0.6, Re= 1898 (laminar regime).

- Mach =0.6, Re= 1898 (laminar regime).
- Force for y-momentum equation drives the flow:

$$
F_{v}(\mathbf{x}, t)=\frac{1}{2} \cos (2000 \pi t), \quad \mathbf{x} \in \Omega_{c}
$$

Laminar Viscous Driven Cavity Problem

- Mach = 0.6, Re= 1898 (laminar regime).
- Force for y-momentum equation drives the flow:

$$
F_{v}(\mathbf{x}, t)=\frac{1}{2} \cos (2000 \pi t), \quad \mathbf{x} \in \Omega_{c}
$$

- High-fidelity CFD simulation was run on 343,408 node mesh until time $T=0.202$ seconds.
- 101 snapshots were saved (every 2×10^{-4} seconds), to construct a 20 mode POD basis.

Laminar Viscous Driven Cavity Problem

- Mach =0.6, $\mathrm{Re}=1898$ (laminar regime).
- Force for y-momentum equation drives the flow:

$$
F_{v}(\mathbf{x}, t)=\frac{1}{2} \cos (2000 \pi t), \quad \mathbf{x} \in \Omega_{c}
$$

- High-fidelity CFD simulation was run on 343,408 node mesh until time $T=0.202$ seconds.
- 101 snapshots were saved (every 2×10^{-4} seconds), to construct a 20 mode POD basis.

Inherently non-linear problem!
High-fidelity solution obtained by solving full non-linear Navier-Stokes equations.

Expected ROM Performance

ROM based on Navier-Stokes equations linearized around snapshot mean.

Expected ROM Performance

ROM based on Navier-Stokes equations linearized around snapshot mean.

Non-linear dynamics of flow are captured in
POD reduced basis modes.

u mode 2
(23.7\% energy)

u mode $37{ }^{\text {Sandia }}$
(6.93\% and labataies

Expected ROM Performance

ROM based on Navier-Stokes equations linearized around snapshot mean.

Non-linear dynamics of flow are captured in POD reduced basis modes.

Non-linear dynamics of the flow are not fully captured in equations projected onto POD modes.

u mode 1
(24.9\% energy)

u mode 2
(23.7\% energy)

u mode (6.93\% energy)

Sandia
National
Laboratories

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \overline{\mathrm{q}}$ Terms

$$
\mathbf{q}_{, t}^{\prime}+\mathbf{A}_{i}(\overline{\mathbf{q}}) \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right]_{, i}=\mathbf{F}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- -: t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Neglecting $\nabla \bar{q}$ Terms

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. ($\left.\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{, t}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{\prime}}^{\prime}+\left[\mathbf{A}_{i}(\overline{\mathbf{q}})-\mathbf{K}_{i}^{v w}(\nabla \overline{\mathbf{q}})\right] \mathbf{q}_{, i}^{\prime}-\left[\mathbf{K}_{i j}(\overline{\mathbf{q}}) \mathbf{q}_{, j}^{\prime}\right], i \\
& +\mathbf{C}(\nabla \overline{\mathbf{q}}) \mathbf{q}^{\prime}=\mathbf{F}
\end{aligned}
$$

- Figure below shows:
- o: t vs. $a_{i}(t)$ (ROM coefficients).
- - : t vs. $\left(\mathbf{q}_{C F D}^{\prime}(\mathbf{x}, t), \phi_{i}(\mathbf{x})\right)$ (projection of snapshots onto modes).
- Movie on right shows v-velocity snapshot (top) vs. 20 mode symmetry ROM solution v (bottom).

ROM based on Linearized NavierStokes Retaining $\nabla \bar{q}$ Terms

Summary \& Future Work

- A Galerkin ROM in which the continuous equations are projected onto the basis modes in a continuous inner product is proposed.
- The choice of inner product for the Galerkin projection step is crucial to stability of the ROM.
- For linearized compressible flow, Galerkin projection in the "symmetry" inner product leads to a ROM that is stable for any choice of basis.
- Continuous "symmetry" inner product has discrete counterpart that can be determined in a black box fashion for any stable linear system.
- Extensions to non-linear compressible flows based on a local linearization of the governing equations prior to projection is described.
- Performance of the proposed POD/Galerkin ROM is examined on a linear as well as a non-linear test case.
- LQR controller design/performance demonstrated on linear test case (driven inviscid pulse).
- Importance of retaining velocity gradient terms in ROM equations illustrated on non-linear test case (driven cavity)

Future Work: Controller design for non-linear cavity problems

References (www.sandia.gov/~ikalash)

[1] I. Kalashnikova, S. Arunajatesan. "A Stable Galerkin Reduced Order Model (ROM) for Compressible Flow". WCCM Paper No. 2012-18407, 10th World Congress for Computational Mechanics (WCCM), Sao Paulo, Brazil (July 2012).
[2] I. Kalashnikova, M.F. Barone. "On the Stability and Convergence of a Galerkin Reduced Order Model (ROM) of Compressible Flow with Solid Wall and Far-Field Boundary Treatment". Int. J. Numer. Meth. Engng. 83 (2010) 1345-1375.
[3] M.F. Barone, I. Kalashnikova, D.J. Segalman, H. Thornquist. "Stable Galerkin Reduced Order Models for Linearized Compressible Flow". J. Comput. Phys. 288 (2009) 1932-1946.
[4] I. Kalashnikova, M.F. Barone. "Stable and Efficient Galerkin Reduced Order Model for Non-Linear Fluid Flow". AIAA Paper No. 2011-3110, 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI (June 2011).
[5] J.S. Hesthaven, D. Gottlieb. "A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions." SIAM J. Sci. Comput. 17(3) 579-612 (1996).
[6] V. Sankaran, S. Menon. "LES of Scalar Mixing in Supersonic Shear Layers." Proceedings of the Combustion Institute, 30(2) 2835-2842 (2004).
[7] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley. "An overview of the Trilinos project". ACM Trans. Math. Softw. 31(3) (2005).
[8] R.M. Murray, K.J. Astrom. "Feedback systems: an introduction for scientists and engineers." Princeton University Press, 2008.

Laboratories

References (www.sandia.gov/~ikalash)

[1] I. Kalashnikova, S. Arunajatesan. "A Stable Galerkin Reduced Order Model (ROM) for Compressible Flow". WCCM Paper No. 2012-18407, 10th World Congress for Computational Mechanics (WCCM), Sao Paulo, Brazil (July 2012).
[2] I. Kalashnikova, M.F. Barone. "On the Stability and Convergence of a Galerkin Reduced Order Model (ROM) of Compressible Flow with Solid Wall and Far-Field Boundary Treatment". Int. J. Numer. Meth. Engng. 83 (2010) 1345-1375.
[3] M.F. Barone, I. Kalashnikova, D.J. Segalman, H. Thornquist. "Stable Galerkin Reduced Order Models for Linearized Compressible Flow". J. Comput. Phys. 288 (2009) 1932-1946.
[4] I. Kalashnikova, M.F. Barone. "Stable and Efficient Galerkin Reduced Order Model for Non-Linear Fluid Flow". AIAA Paper No. 2011-3110, 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI (June 2011).
[5] J.S. Hesthaven, D. Gottlieb. "A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions." SIAM J. Sci. Comput. 17(3) 579-612 (1996).
[6] V. Sankaran, S. Menon. "LES of Scalar Mixing in Supersonic Shear Layers." Proceedings of the Combustion Institute, 30(2) 2835-2842 (2004).
[7] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley. "An overview of the Trilinos project". ACM Trans. Math. Softw. 31(3) (2005).
[8] R.M. Murray, K.J. Astrom. "Feedback systems: an introduction for scientists and engineers." Princeton University Press, 2008.

Thank you! Questions? ikalash@sandia.gov

Sandia
National
Laboratories

Linearized ROM System Matrices

$$
\begin{aligned}
& \mathbf{A}_{1}=\left(\begin{array}{ccccc}
\bar{u}_{1} & 0 & 0 & R & \frac{R \overline{\bar{D}}}{\bar{o}} \\
0 & \bar{u}_{1} & 0 & 0 & 0 \\
0 & 0 & \bar{u}_{1} & 0 & 0 \\
\bar{T}(\gamma-1) & 0 & 0 & \bar{u}_{1} & 0 \\
\bar{\rho} & 0 & 0 & 0 & \bar{u}_{1}
\end{array}\right), \quad \mathbf{A}_{2}=\left(\begin{array}{ccccc}
\bar{u}_{2} & 0 & 0 & 0 & 0 \overline{\bar{u}_{2}} \\
0 & \bar{u}_{2} & 0 & R & \frac{R \overline{\bar{O}}}{\bar{\rho}} \\
0 & 0 & \bar{u}_{2} & 0 & 0 \\
0 & \bar{T}(\gamma-1) & 0 & \bar{u}_{2} & 0 \\
0 & \bar{\rho} & 0 & 0 & \bar{u}_{2}
\end{array}\right) \\
& \mathbf{A}_{3}=\left(\begin{array}{ccccc}
\bar{u}_{3} & 0 & 0 & 0 & 0 \\
0 & \bar{u}_{3} & 0 & 0 & 0 \\
0 & 0 & \bar{u}_{3} & R & \frac{R \bar{T}}{\bar{\rho}} \\
0 & 0 & \bar{T}(\gamma-1) & \bar{u}_{3} & 0 \\
0 & 0 & \bar{\rho} & 0 & \bar{u}_{3}
\end{array}\right), \quad \mathbf{K}_{11} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
2 \mu+\lambda & 0 & 0 & 0 & 0 \\
0 & \mu & 0 & 0 & 0 \\
0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & \frac{\gamma \kappa}{P r} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \mathbf{K}_{12} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
0 & \lambda & 0 & 0 & 0 \\
\mu & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathbf{K}_{13} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
0 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\mu & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Linearized ROM System Matrices
 (continued)

$$
\begin{aligned}
& \mathbf{K}_{23} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 \\
0 & \mu & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathbf{K}_{31} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\lambda & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \mathbf{K}_{32} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mu & 0 & 0 \\
0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathbf{K}_{33} \equiv \frac{1}{\bar{\rho} R e}\left(\begin{array}{ccccc}
\mu & 0 & 0 & 0 & 0 \\
0 & \mu & 0 & 0 & 0 \\
0 & 0 & 2 \mu+\lambda & 0 & 0 \\
0 & 0 & 0 & \frac{\gamma \kappa}{P r} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \mathbf{K}_{1}^{v w} \equiv\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{11} & \frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{12} & \frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{13} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \mathbf{K}_{2}^{v w} \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
\frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{21} & \frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{22} \\
0
\end{array}\right. \\
& \mathbf{K}_{3}^{v w} \equiv\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{31} & \frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{32} & \frac{(\gamma-1)}{R \bar{\rho}} \bar{\tau}_{33} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Linearized ROM System Matrices
 (continued)

$$
\mathbf{C}=\left(\begin{array}{ccccc}
\frac{\partial \bar{u}}{\partial x} & \frac{\partial \bar{u}}{\partial y} & \frac{\partial \bar{u}}{\partial z} & \frac{R}{\bar{\rho}} \frac{\partial \bar{\rho}}{\partial x} & \frac{1}{\bar{\rho}}\left(\overline{\mathbf{u}} \cdot \nabla \bar{u}+R \frac{\partial \bar{T}}{\partial x}\right) \\
\frac{\partial \bar{v}}{\partial x} & \frac{\partial \bar{v}}{\partial y} & \frac{\partial \bar{v}}{\partial z} & \frac{R}{\bar{\rho}} \frac{\partial \bar{\rho}}{\partial y} & \frac{1}{\bar{\rho}}\left(\overline{\mathbf{u}} \cdot \nabla \bar{v}+R \frac{\partial \bar{T}}{\partial y}\right) \\
\frac{\partial \bar{w}}{\partial x} & \frac{\partial \bar{w}}{\partial y} & \frac{\partial \bar{w}}{\partial z} & \frac{R}{\bar{\rho}} \frac{\partial \bar{\rho}}{\partial z} & \frac{1}{\bar{\rho}}\left(\overline{\mathbf{u}} \cdot \nabla \bar{w}+R \frac{\partial \bar{T}}{\partial z}\right) \\
\frac{\partial \bar{T}}{\partial x} & \frac{\partial \bar{T}}{\partial y} & \frac{\partial \bar{T}}{\partial z} & (\gamma-1) \nabla \cdot \overline{\mathbf{u}} & \frac{1}{\bar{\rho}}(\overline{\mathbf{u}} \cdot \nabla \bar{T}+(\gamma-1) \bar{T} \nabla \cdot \overline{\mathbf{u}}) \\
\frac{\partial \bar{\rho}}{\partial x} & \frac{\partial \bar{\rho}}{\partial y} & \frac{\partial \bar{\rho}}{\partial z} & 0 & \nabla \cdot \overline{\mathbf{u}}
\end{array}\right)
$$

