

Model Reduction at Sandia National Laboratories

PRESENTED BY

Irina Tezaur

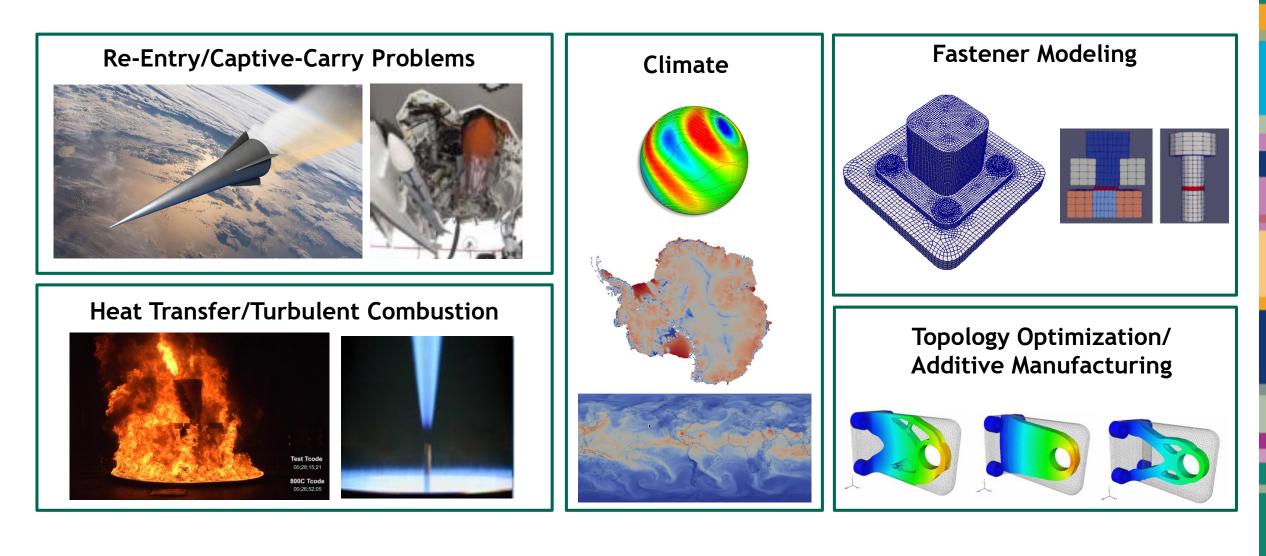
Principal Member of Technical Staff Quantitative Modeling & Analysis Department Sandia National Laboratories, Livermore, CA

AIAA SciTech 2021 Jan. 20, 2021 SAND2021-0425C

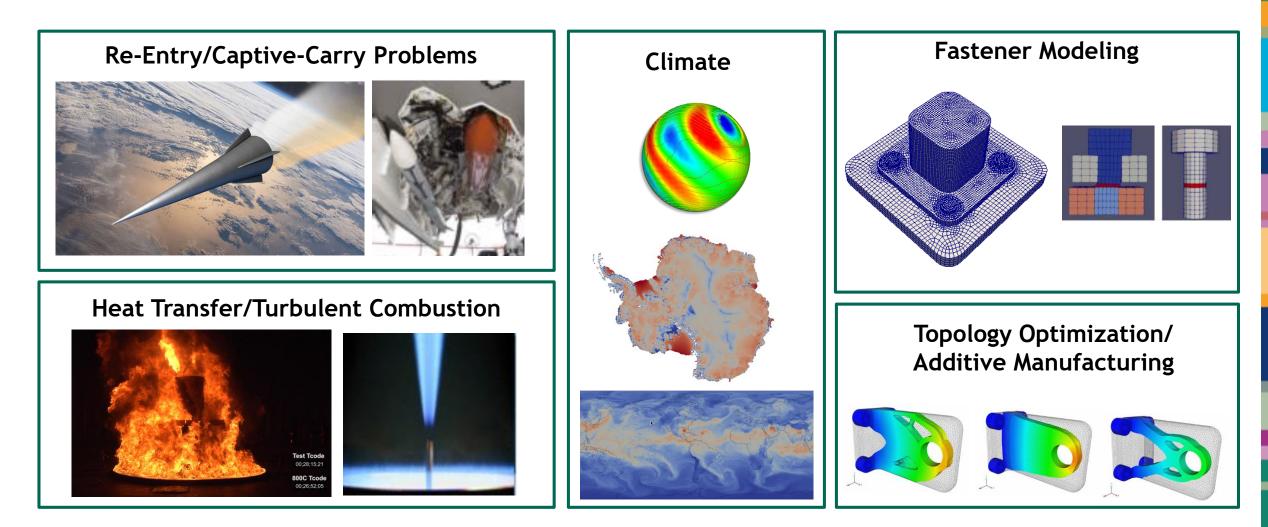
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

² About Sandia National Labs (SNL)

- Sandia is a **multidisciplinary** national lab and Federally Funded Research & Development Center (FFRDC).
- Contractor for the U.S. DOE's National Nuclear Security Administration (NNSA).
- Two main sites: Albuquerque, NM and Livermore, CA (above).


Sandia's **primary mission** is ensuring the U.S. nuclear arsenal is safe, secure and reliable, and can fully support our nation's deterrence policy.

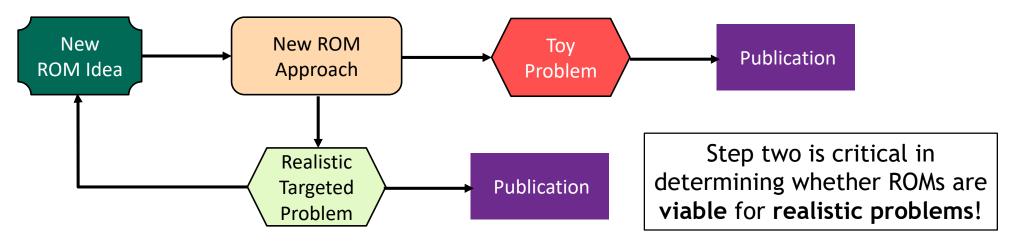
We have **programs** in the following areas:


- Nuclear Deterrence
- Defense Nuclear Nonproliferation
- National Security
- Global Security
- Energy & Climate
- Advanced Science & Technology

3 SNL Applications Requiring ROMs

4 SNL Applications Requiring ROMs

These are not toy problems that are prevalent in the ROM literature!


5 Sandia's ROM Development/Deployment Strategy

Targeted problems present **unique numerical challenges** that you don't run into with toy problems!

(e.g., strong nonlinearities, huge differences scales, turbulence/chaos, multiphysics, multi-D shocks, etc.)

Approach:

• <u>Step 1:</u> New ideas/methods are first verified/prototyped on simple benchmarks (e.g., 1D Burgers).

• Step 2: Apply methods to targeted realistic problems - presents new challenges, requiring new R&D

To facilitate step two, we have been developing an open-source tool called

Fressio

An **open-source*** **non-intrusive** computational framework aimed at providing performant projection-based ROMs for generic application codes

Pressic

Main idea:

- Separate the "application" and the ROM
- \succ ROM methods are contained in the Pressio framework
- Pressio "plugs in" to an application code

Salient features:

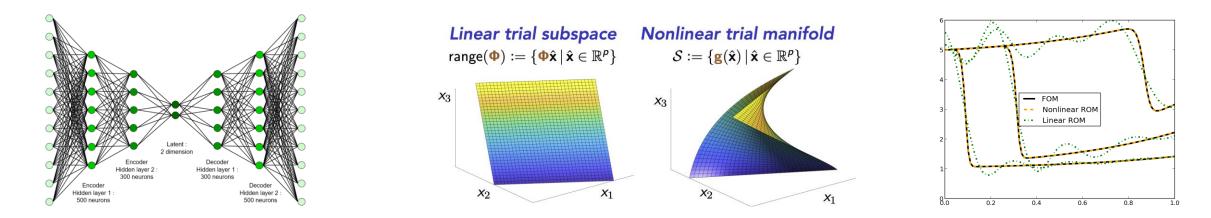
- Header-only C++ library
- Supports HPC performance portability via Kokkos
- Supports Python API
- Supports Galerkin, LSPG, and WLS ROMs (with hyperreduction)
- Pressio's API requires application to expose two main routines: residual and applyJacobian

rom \boldsymbol{x}, t, ϕ Adapter (if needed) Side Application \boldsymbol{x}, t, ϕ int main() Application Core Code $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, t; \boldsymbol{\mu})$ $\boldsymbol{x}(0;\boldsymbol{\mu}) = \boldsymbol{x}_0(\boldsymbol{\mu})$

Advantages:

- > Pressio can be used to easily add ROM capabilities to any generic HPC code!
- > Methods added to Pressio are at the fingertips of users of HPC codes hooked up to Pressio!

^{*} https://github.com/Pressio


7 Research Gaps & Directions

Research Gaps:

- ROMs with quantified/guaranteed accuracy/robustness in the predictive regime.
- ROMs for practical nonlinear multiscale problems exhibiting **shocks**, **chaos**, slow decay of Kolmogorov *n*-width (**convection-dominated**).
- Relative dearth of ROMs for **compressible flows**.

Current Research Directions at Sandia:

- Windowed least-squares (WLS) ROMs [Parish, Carlberg, 2020; Shimizu, Parish, 2021].
- ROM preconditioners to improve ROM predictability [Fike, Lindsay, Tezaur, Carlberg, 2021].
- Domain decomposed ROMs for networks [Hoang, Choi, Carlberg, 2020].
- Nonlinear manifold ROMs using autoencoders [Lee, Carlberg, 2020].

Suggestions for Benchmarks & ROM Evaluation Strategies

There should be benchmarks that go beyond simple 1D/2D toy problems.

- > How to "release"/formulate these is a challenge, as high-fidelity code is likely required.
- Software like Pressio can help bridge the gap between ROM and application developers and give ROM developers access to more realistic problems to test their methods.
- Publishing problem formulations/datasets may help researchers set up more realistic tests in their own codes ("bake-of" problems or "model intercomparison" problems).

It's important to evaluate ROMs in the predictive regime.

8

> Many researchers/authors never make it past reproductive regime.

In evaluating ROMs, one needs to carefully design relevant QOIs/metrics of success.

- Very application specific e.g., for compressible flow ROM, analysts care about pressure PSD, not entire solution field.
- > While ROMs cannot be expected to reproduce the entire solution field to a specified tolerance for an arbitrarily complex predictive problem, there *is* some hope of a ROM reproducing some relevant QOI.

Applying ROM to more **realistic** problems using appropriate **QOIs/metrics** will tell us how **viable** ROMs can be beyond the space of "toy" problems.

Research Team

9

Marco Arienti

Patrick Blonigan

Victor Brunini

David Ching

Chi Hoang

Micah Howard

Kookjin Lee

Samuel Majors

Flint Pierce

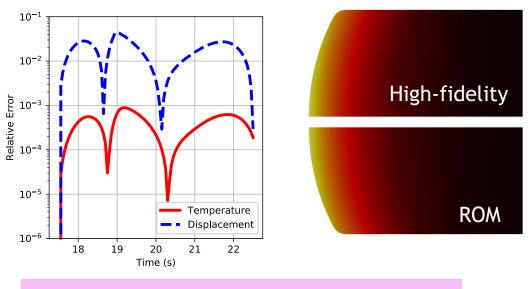
Kevin Potter

Jaideep Ray

Francesco Rizzi

Yuki Shimizu

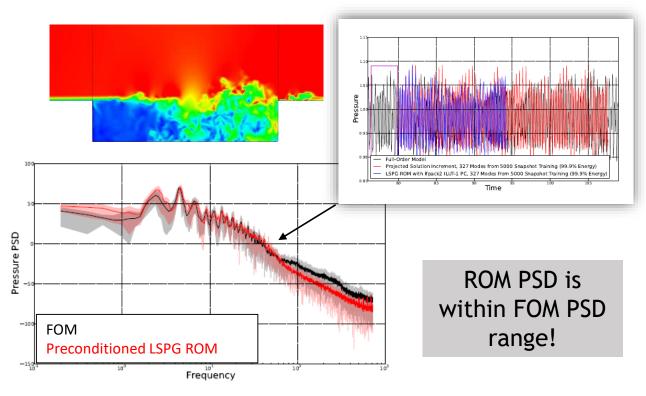
Irina Tezaur



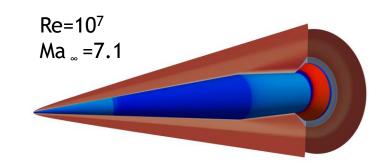
Karen Willcox

10 Recent ROM Successes at SNL

ROM accelerates **ablation** simulation with SPARC compressible flow solver


- First applications of ROMs to ablation
- Large differences in scales (7 orders of magnitude)
- Iso-q with prescribed axisymmetric heat- and mass-transfer boundary conditions

~17x savings in core-hours
<0.1% error in temp, <4% error in disp</pre>

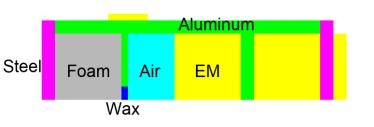

Time-predictive preconditioned **captivecarry** ROM in SPARC demonstrated to have sufficiently accurate pressure PSD

- Laminar compressible cavity problem (Ma = 0.6, Re = 3000).
- Primarily interested in prediction in time.

Recent ROM Successes at SNL (cont'd)

ROM accelerates **hypersonics** simulation (HiFIRE-1 experiment) using in-house compressible flow solver (SPARC)

- Prediction across param space (Ma, ρ)
- POD-LSPG + Sample Mesh:

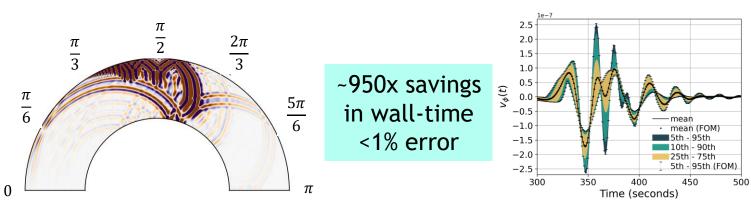

11

~300-1000x savings in core-hrs <1% error in density, momentum, energy ~1-2% error in integrated wall heat flux

[Blonigan, Carlberg, Rizzi, Howard, Fike, 2020]

ROM accelerates transient conduction/thermochemistry in Aria

- Transient thermochemistry test
 - Foam decomposition
 - Heat conduction
 - Exothermic chemical reactions



~9000x savings in core-hrs <1°C error in temp.

ROM accelerates seismic wave propagation

- Synthetic seismogram data
- One shot UQ: simultaneous simulation of many trajectories

