

: a Trilinos-based multi-physics partial differential equation research tool created using the AgileComponents code development strategy

Irina Tezaur

Quantitative Modeling & Analysis Dept., Sandia National Laboratories, Livermore, CA.

SIAM CSE 2019 Spokane, WA Feb. 25 - Mar. 1 2019

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-1842 C

Acknowledgements

"Father" of Albany, early advocate for AgileComponents strategy:

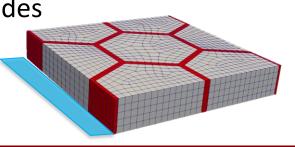
• Andy Salinger [SNL]

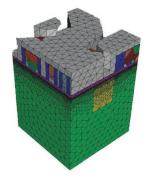
Albany contributors (58, from github):

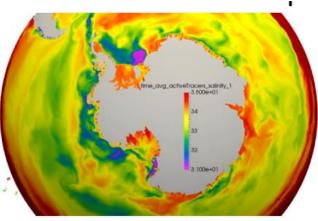
- I. Tezaur [SNL]
- A. Mota [SNL]
- D. Ibanez [RPI/SNL]
- G. Hansen [SNL]
- M. Perego [FSU/SNL]
- L. Bertagna [FSU/SNL]
- A. Bradley [SNL]
- J. Ostien [SNL]
- B. Granzow [RPI/SNL]
- A. Salinger [SNL]
- D. Littlewood [SNL]
- J. Foulk [SNL]
- C. Alleman [SNL]
- J. Overfelt [SNL]
- E. Nielsen [SNL]
- I. Demeshko [LANL]
- O. Guba [SNL]
- M. Juha [U de La Sabana]

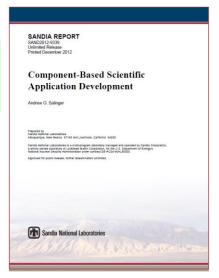
- E. Phipps [SNL]
- J. Frederick [SNL]
- J. Watkins [SNL]
- J. Robbins [SNL]
- T. Smith [SNL]
- R. Jones [SNL]
- B. Spotz [SNL]
- S. Besu [RPI]
- J. Foucar [SNL]
- Q. Chen [Clemson]
- P. Lindsay [SNL]
- J. Fike [SNL]
- S. Gao [SNL]
- J. Redhorse [SNL]
- S. Bova [SNL]
- P. Bosler [SNL]
- H. Yuan [Tokyo]
- C. Siefert [SNL]

- T. Voth [SNL]
- T. Wildey [SNL]
- C. Smith [RPI]
- J. Clough [USC]
- W. Sun [Columbia]
- Z. Wang [USC]
- T. Fuller [SNL]
- A. Vacanti [Kitware]
- R. Tuminaro [SNL]
- M. Parks [SNL]
- J. Robbins [SNL]
- M. Hoffman [LANL]
- R. Pawlowski [SNL]
- M. Bloomfield [RPI]
- G. Phlipot [CalTech]
- B. Perschbacher [SNL]
- J. Willenbring [SNL]
- •

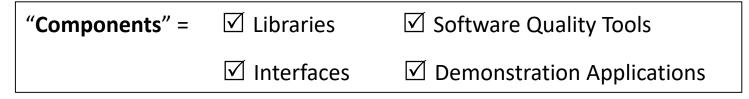



Outline


- 1. AgileComponents code-development strategy
- 2. What is Albany?
- 3. Albany code design
 - Global discretization & libraries
 - Problem abstraction & finite element assembly
 - Nonlinear model abstraction & libraries
 - Linear model abstraction & libraries
 - Software quality tools
- 4. Applications hosted by Albany
- 5. Algorithmic projects hosted by Albany
- 6. Coupling with other codes
- 7. Summary



<u>Strategic Goal</u>: To enable the rapid development of new production codes embedded with transformational capabilities.


- <u>Technical strategy</u>: projects create, use, and improve a common base of modular, independent-yet-interoperable, software components
 - 2012 white paper by A. Salinger: "Component-Based Scientific Application Development" (right).

<u>Strategic Goal</u>: To enable the rapid development of new production codes embedded with transformational capabilities.

- <u>Technical strategy</u>: projects create, use, and improve a common base of modular, independent-yet-interoperable, software components
 - 2012 white paper by A. Salinger: "Component-Based Scientific Application Development" (right).

<u>Strategic Goal</u>: To enable the rapid development of new production codes embedded with transformational capabilities.

- <u>Technical strategy</u>: projects create, use, and improve a common base of modular, independent-yet-interoperable, software components
 - 2012 white paper by A. Salinger: "Component-Based Scientific Application Development" (right).

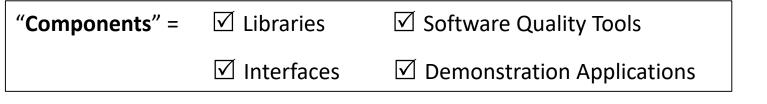
"Components" =	✓ Libraries	✓ Software Quality Tools
	✓ Interfaces	Demonstration Applications

• <u>Business strategy</u>:

<u>Strategic Goal</u>: To enable the rapid development of new production codes embedded with transformational capabilities.

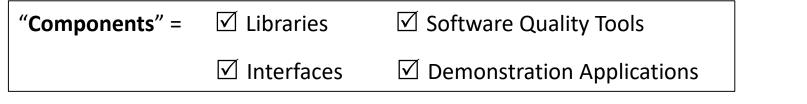
- <u>Technical strategy</u>: projects create, use, and improve a common base of modular, independent-yet-interoperable, software components
 - 2012 white paper by A. Salinger: "Component-Based Scientific Application Development" (right).

• **Business strategy**:



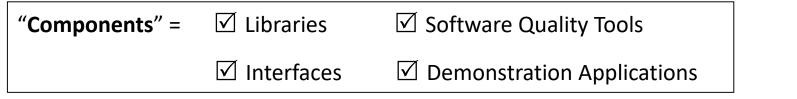
Strategic Goal: To enable the **rapid** development of new **production** codes embedded with **transformational** capabilities.

- *Technical strategy:* projects create, use, and improve a common base of modular, independent-yet-interoperable, software **components**
 - **2012 white paper by A. Salinger**: "Component-Based Scientific Application Development" (right).


Business strategy:

<u>Strategic Goal</u>: To enable the rapid development of new production codes embedded with transformational capabilities.

- <u>Technical strategy</u>: projects create, use, and improve a common base of modular, independent-yet-interoperable, software components
 - 2012 white paper by A. Salinger: "Component-Based Scientific Application Development" (right).

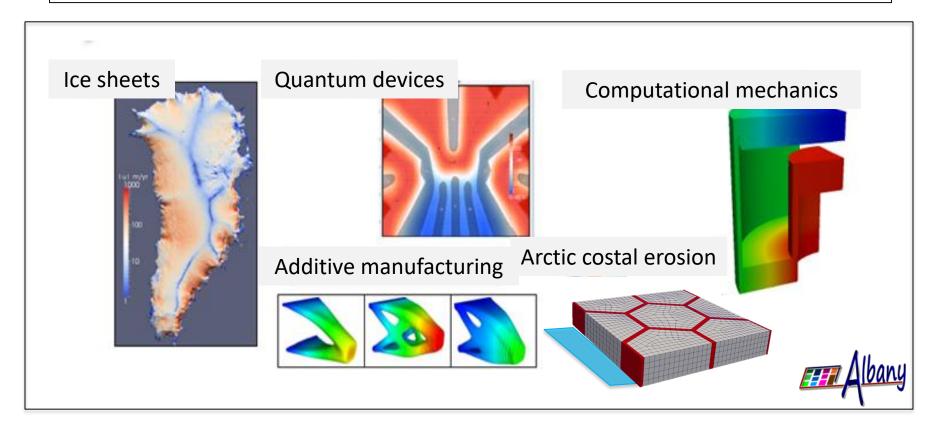

• Business strategy:

<u>Strategic Goal</u>: To enable the rapid development of new production codes embedded with transformational capabilities.

- <u>Technical strategy</u>: projects create, use, and improve a common base of modular, independent-yet-interoperable, software components
 - 2012 white paper by A. Salinger: "Component-Based Scientific Application Development" (right).

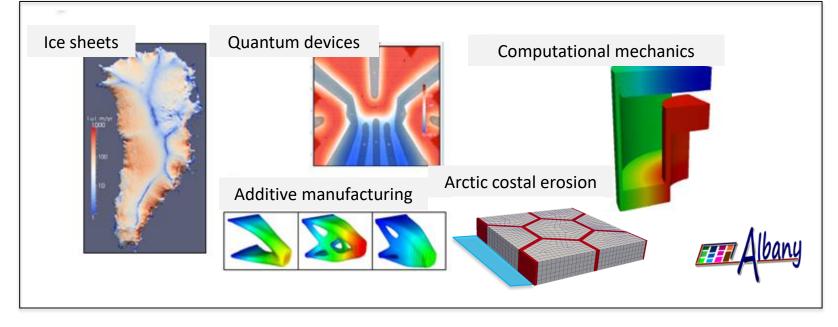
• Business strategy:

What is Albany? (high-level description)


Sandia National Laboratories

What is Albany? (high-level description)

Albany: open-source*, parallel, C++, unstructured-grid, mostly-implicit multiphysics finite element code that demonstrates **AgileComponents** vision.


Albany houses a variety of **diverse algorithmic projects** and **applications**:

* Albany github repo: https://github.com/SNLComputation/Albany.

What is Albany? (high-level description)

Distinguishing features of Albany:

- > Funded entirely by applications residing within.
- > Both a **"sand-box"** for prototyping **new approaches** and a **production** code.
- > Algorithms/software are developed/matured directly on applications.
- > Applications are "**born**" scalable, fast, robust, and...
- Equipped with embedded advanced analysis capabilities: sensitivities, bifurcation analysis, adjoint-based inversion, embedded UQ*, model reduction*.

The components effort: libraries & tools

Utilities

Input File Parser Parameter List

Memory Management

I/O Management Communicators

Runtime Compiler Architecture-Dependent Kernels

> Multi-Core Accelerators

QOI Computation Model Reduction

Post Processing In-situ Visualization Verification

Physics Fill PDE Terms Source Terms

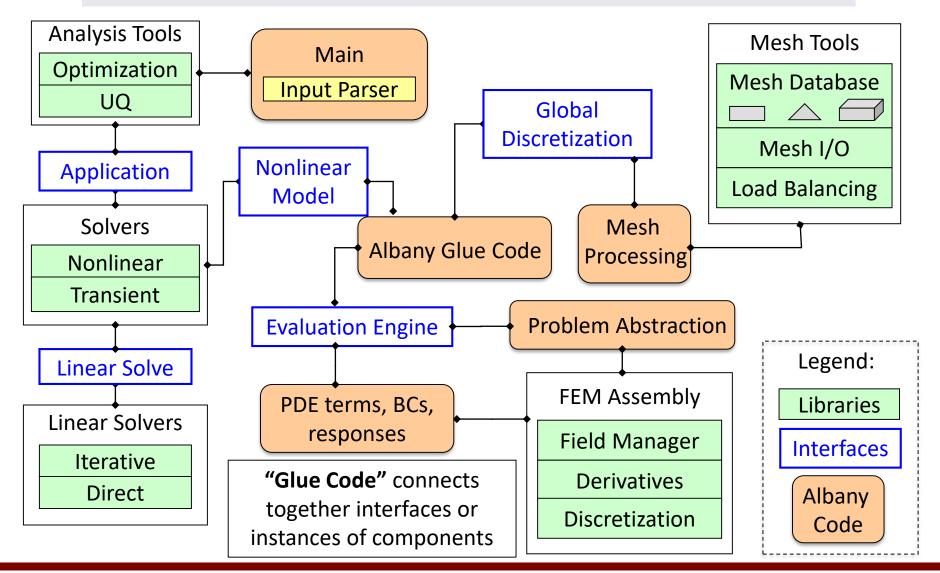
BCs Material Models Responses

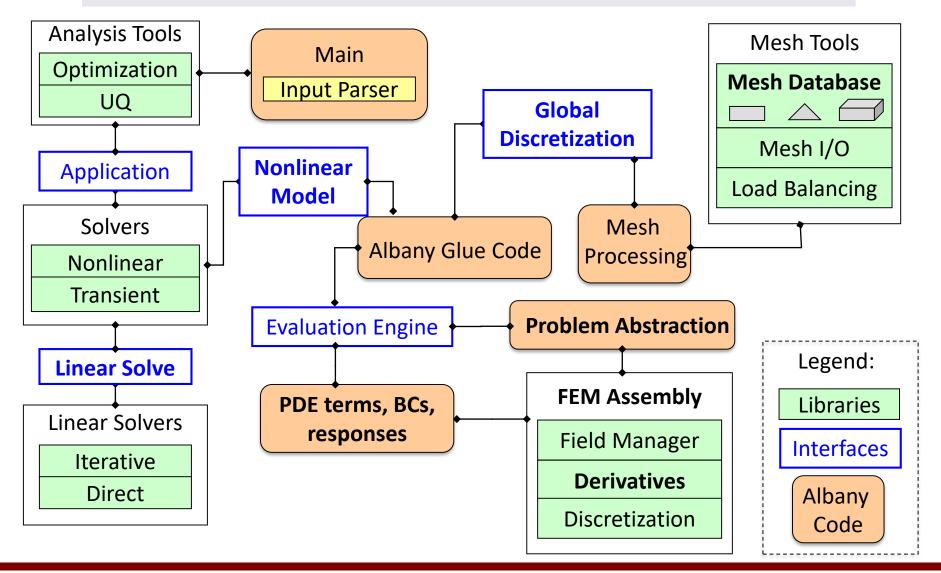
Parameters

Components in Albany = cutting-edge technology from Trilinos, SCOREC, SierraToolKit, DAKOTA, FASTMath, QUEST, Kitware, etc.

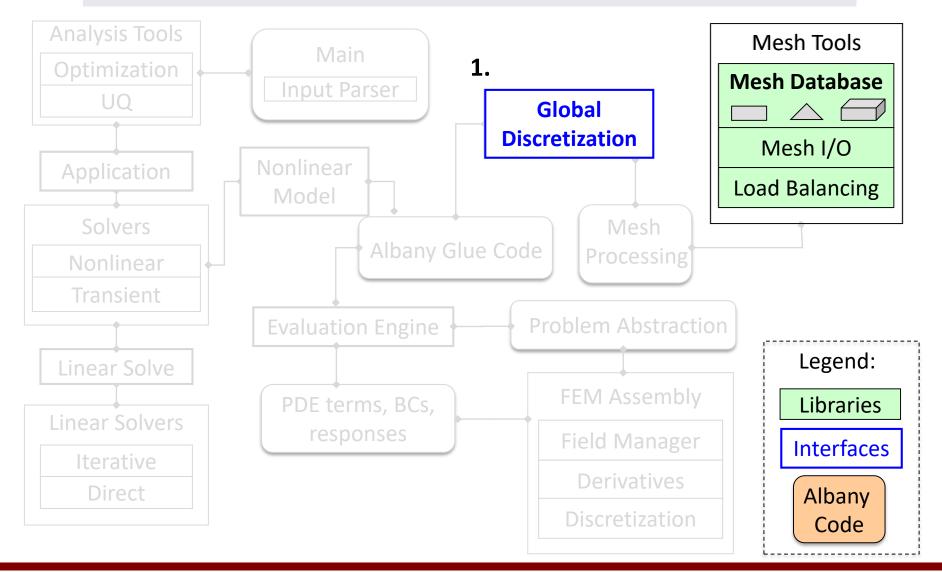
Many components are Trilinos* packages:

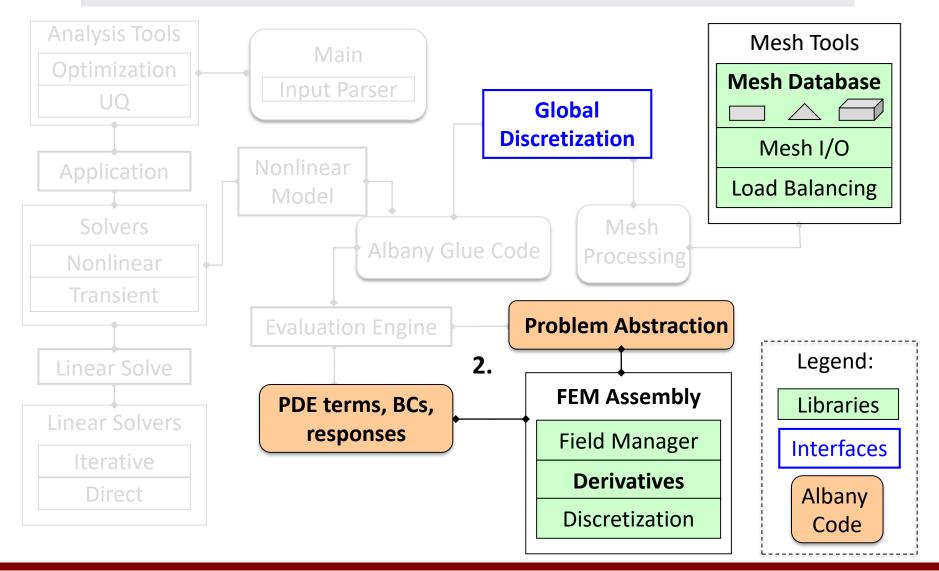
- Distributed linear algebra (*Tpetra*)
- Mesh tools (STK)
- Discretization tools (Intrepid2)
- ➢ Nonlinear solver (NOX)
- Linear solver (Belos)
- Preconditioners (Ifpack2)
- Automatic differentiation (Sacado)
- Shared memory parallelism (Kokkos)
- Optimization (ROL)
- Many more...

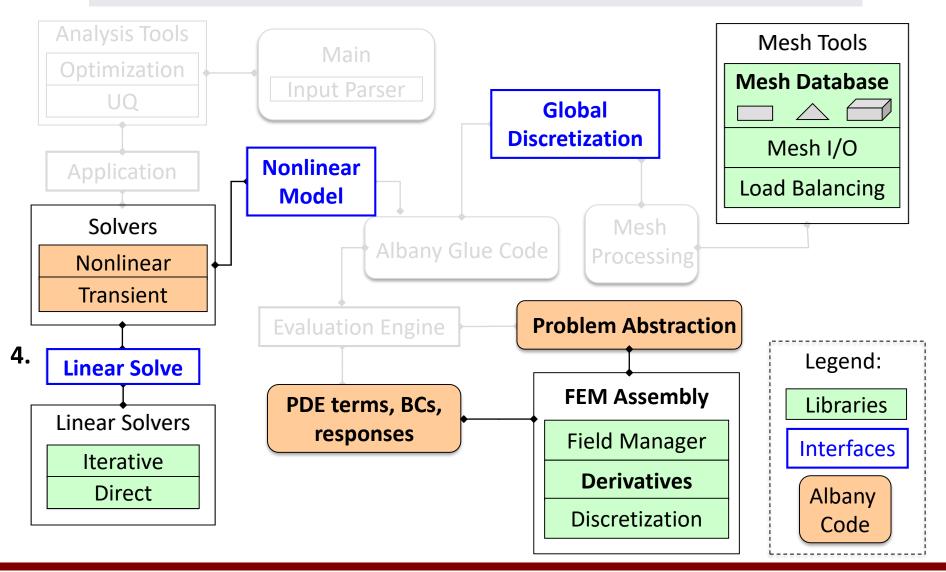

Analysis Tools (black-box)	Mesh Tools	Uti
	Mesh I/O	I
Optimization	Inline Meshing	
UQ (sampling)	Partitioning	Me
Parameter Studies	Load Balancing	I
Calibration	Adaptivity	
Reliability	Grid Transfers	R
Composite Physics	Quality Improvement	
	Search	Dep
MultiPhysics Coupling	DOF map	Dep
System UQ		
Analysis Tools	Mash Databasa	
Analysis Tools (<i>embedded</i>)	Mesh Database	Po
Nonlinear Solver	Mesh Database	In
Time Integration	Geometry Database	
Continuation	Solution Database	G
Sensitivity Analysis	Checkpoint/Restart	
Stability Analysis		
Constrained Solves	Loca	I Fill
Optimization	Discretizations	
UQ Solver	Discretization Library	Ph
	Field Manager	
Linear Algebra		5
Data Structures	Derivative Tools	
Iterative Solvers	Sensitivities	М
Direct Solvers	Derivatives	
Eigen Solver	Adjoints	
Preconditioners	UQ / PCE	
Multi-Level Methods	Propagation	

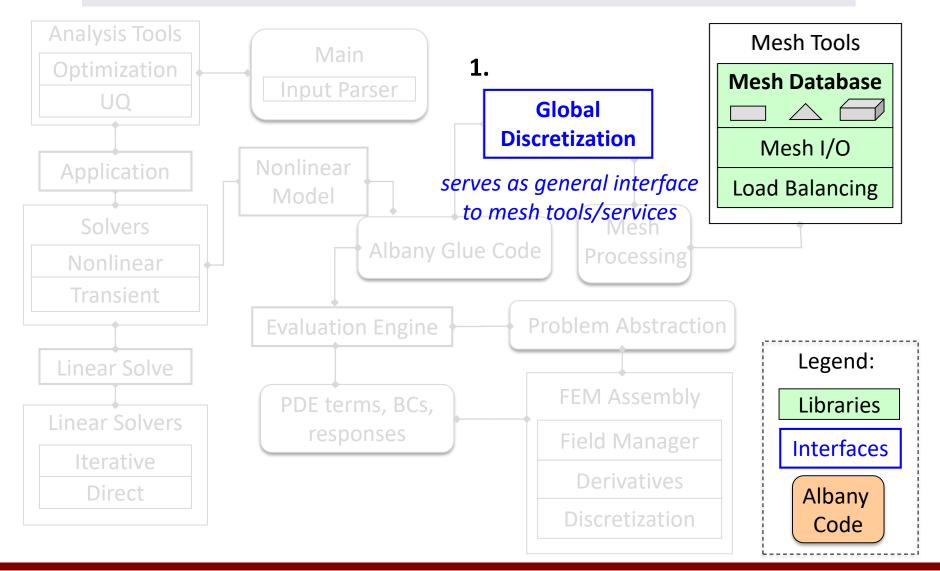

: 40+ packages; 120+ libraries

* Trilinos github repo: https://github.com/trilinos/Trilinos.









S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012.

Global discretization abstraction & libraries

Discretization interface: currently has *two independent implementations*

- 1. SierraToolKit (STK) package in Trilinos.
 - Supports reading in Exodus mesh files (e.g., from CUBIT), inline meshing via Pamgen, simple rectangular meshes constructed in Albany.
 - Meshes can be **structured/unstructured** but are **static**.
- 2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the Scientific Computation Research Center (SCOREC) at RPI.
 - Supports VTK mesh files (generated by Symmetrix).
 - Goal-oriented generalized error estimation and in-memory mesh adaptation.

Global discretization abstraction & libraries

Discretization interface: currently has *two independent implementations*

- 1. SierraToolKit (STK) package in Trilinos.
 - Supports reading in Exodus mesh files (e.g., from CUBIT), inline meshing via Pamgen, simple rectangular meshes constructed in Albany.
 - Meshes can be **structured/unstructured** but are **static**.
- 2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the Scientific Computation Research Center (SCOREC) at RPI.
 - Supports VTK mesh files (generated by Symmetrix).
 - Goal-oriented generalized error estimation and in-memory mesh adaptation.

<u>Element types</u>: variety of element types supported, with basis functions/quadrature routines from *Intrepid2* Trilinos library:

- Isoparametric elements (tet, hex, wedge, ...).
- 2D spectral elements of arbitrary orders.
- Some physics-specific elements, e.g., composite 10-node tetrahedron for solid mechanics.

S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012.

 V_2

Global discretization abstraction & libraries

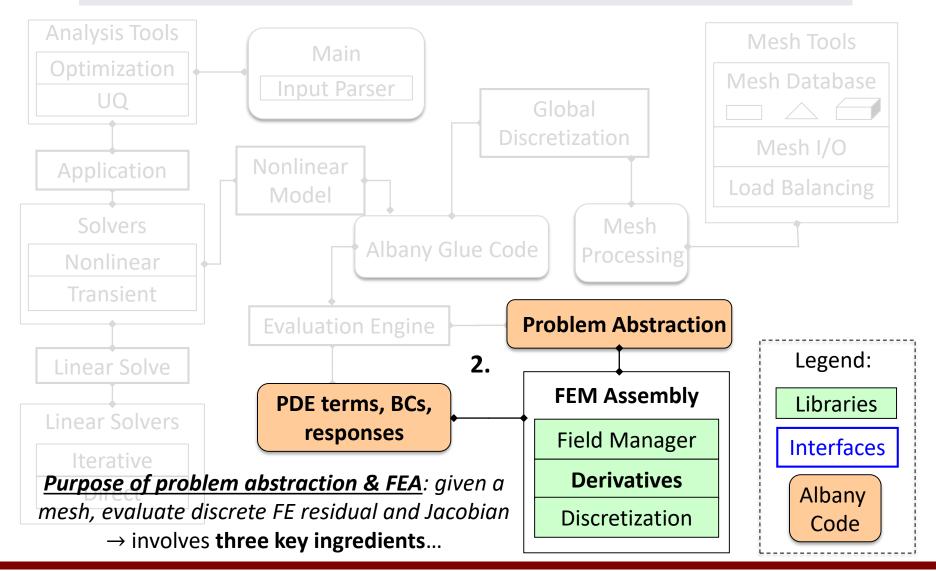
Discretization interface: currently has *two independent implementations*

- 1. SierraToolKit (STK) package in Trilinos.
 - Supports reading in Exodus mesh files (e.g., from CUBIT), inline meshing via Pamgen, simple rectangular meshes constructed in Albany.
 - Meshes can be structured/unstructured but are static.
- 2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the Scientific Computation Research Center (SCOREC) at RPI.
 - Supports VTK mesh files (generated by Symmetrix).
 - Goal-oriented generalized error estimation and in-memory mesh adaptation.

Albany is a **Continuous Galerkin (CG)** unstructured grid finite element code.

<u>Element types</u>: variety of element types supported, with basis functions/quadrature routines from *Intrepid2* Trilinos library:

- Isoparametric elements (tet, hex, wedge, ...).
- 2D spectral elements of arbitrary orders.
- Some physics-specific elements, e.g., composite
 10-node tetrahedron for solid mechanics.


S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012.

E. Phipps et. al. Efficient expression templates for operator overloading-based AD, LNCSE, 309–319, 2012.

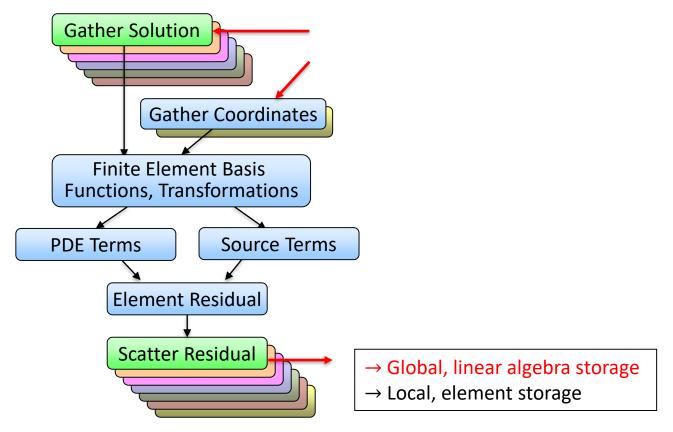
1. Templated-based automatic differentiation

Automatic differentiation (AD) provides exact derivatives without time/effort of deriving and hand-coding them.

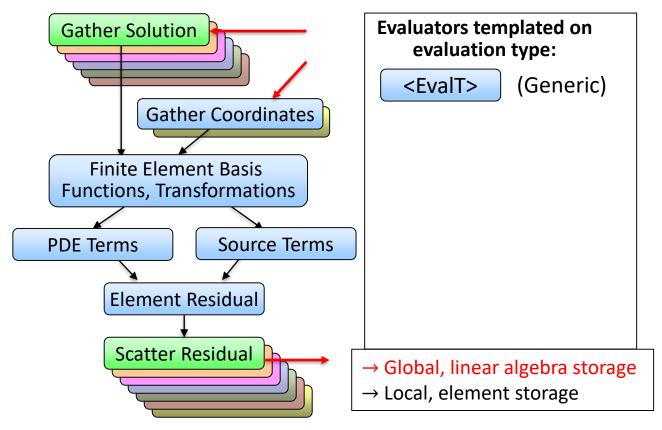
- Template equation implementation on scalar type.
- Libraries (Sacado) provides new scalar types that overload the math operators to propagate embedded quantities via chain rule.
 - Derivatives: DFad<double>
 - Hessians: DFad<SFad<double,N>>
 - Stochastic Galerkin resid: PCE<double>
 - Stochastic Galerkin Jac: DFad<PCE<double>
 - Sensitivities: DFad<double>

No finite difference truncation error!

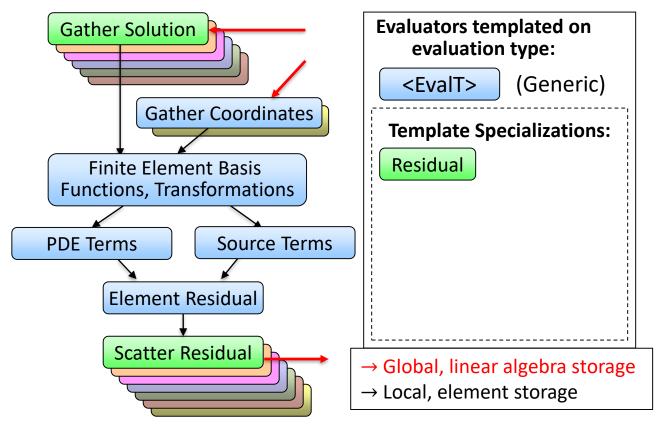
 Great for *multi-physics codes* (e.g., many Jacobians) and *advanced analysis* (e.g., sensitivities, optimization)


double	DFad <double></double>
Operation	Overloaded AD impl
$c = a \pm b$	$\dot{c} = \dot{a} \pm \dot{b}$
c = ab	$\dot{c} = a\dot{b} + \dot{a}b$
c = a/b	$\dot{c} = (\dot{a} - c\dot{b})/b$
$c = a^r$	$\dot{c} = ra^{r-1}\dot{a}$
$c = \sin(a)$	$\dot{c} = \cos(a)\dot{a}$
$c = \cos(a)$	$\dot{c} = -\sin(a)\dot{a}$
$c = \exp(a)$	$\dot{c} = c\dot{a}$
$c = \log(a)$	$\dot{c} = \dot{a}/a$

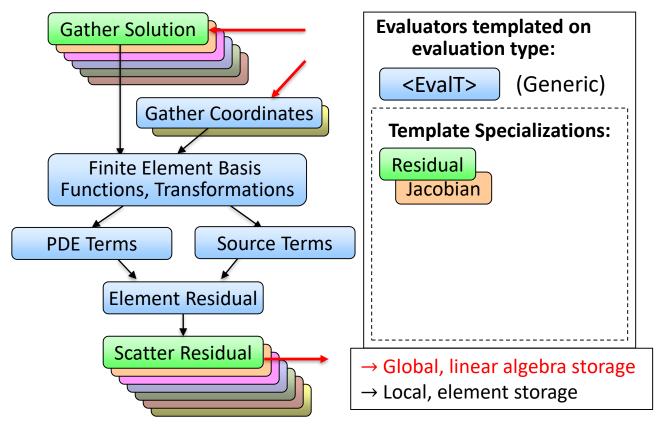
template <typename ScalarT>
void computeF(ScalarT* x, ScalarT* f)
{
 f[0] = 2.0 * x[0] + x[1] * x[1];
 f[1] = x[0] * x[0] * x[0] + sin(x[1]);
}



Albany Finite Element Assembly (FEA):


- **Gather Solution** extracts values from global structures, puts in element local structures
- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures

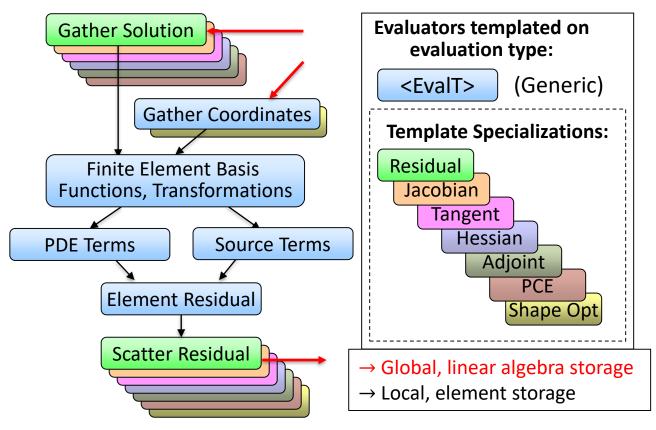
Albany Finite Element Assembly (FEA):


- Gather Solution extracts values from global structures, puts in element local structures
- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

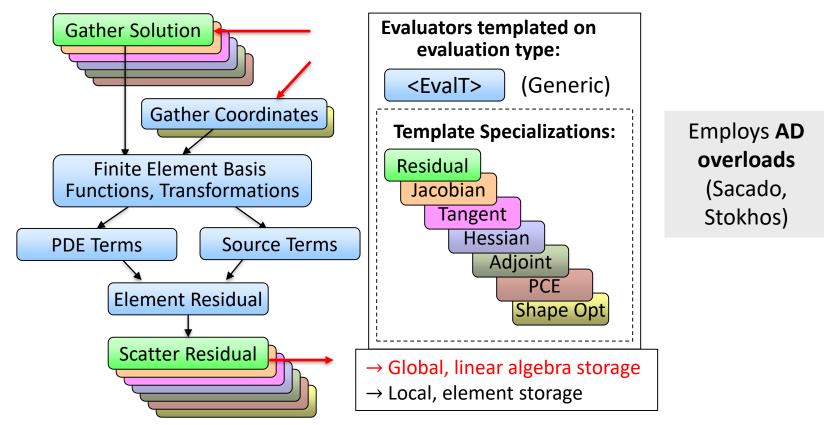

- Gather Solution extracts values from global structures, puts in element local structures
- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):


- Gather Solution extracts values from global structures, puts in element local structures
- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

- Gather Solution extracts values from global structures, puts in element local structures
- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures


Albany Finite Element Assembly (FEA):

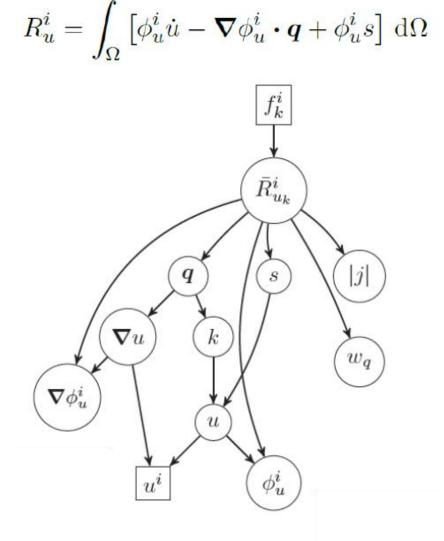
- Gather Solution extracts values from global structures, puts in element local structures
- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures

Enables **advanced analyses** (sensitivities, optimization, ...)

Albany Finite Element Assembly (FEA):

Gather Solution extracts values from global structures, puts in element local structures

- Evaluators operate on element local data structures
- Scatter adds local contributions to global structures

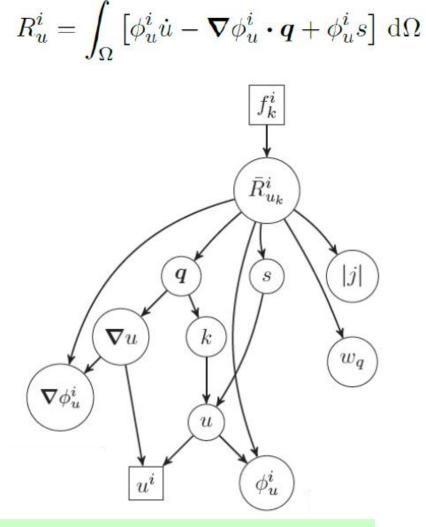

Enables **advanced analyses** (sensitivities, optimization, ...)

3. Graph-based finite element assembly (FEA) ^{Sandia} ^{Mational} Laboratories

Assembly of physics pieces comes down to the evaluation of a directed acyclic graph (DAG) of computations of field data.

Phalanx package: Local field evaluation kernel designed for assembly of arbitrary equation sets (i.e. evaluating residuals/Jacobians).

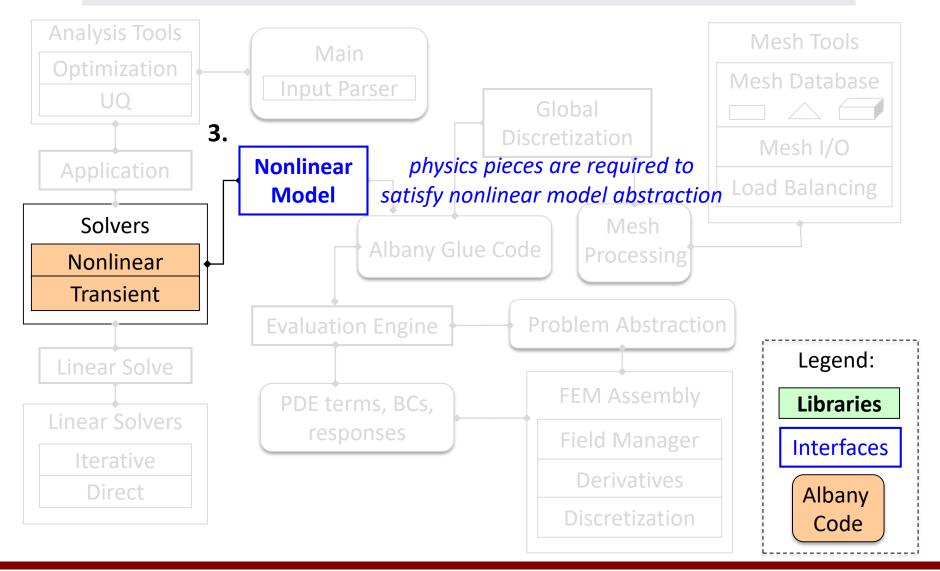
- Decomposes a complex model into a graph of **simple kernels** (functors)
- A node in the graph evaluates one or more ٠ temporary fields
- **Runtime** DAG construction of graph ٠
- Achieves flexible multi-physics assembly



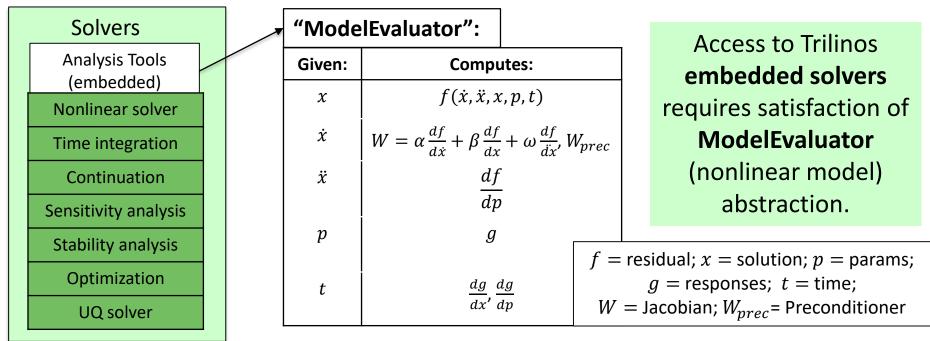
3. Graph-based finite element assembly (FEA) in Sandia Laboratories

Assembly of physics pieces comes down to the evaluation of a directed acyclic graph (DAG) of computations of field data.

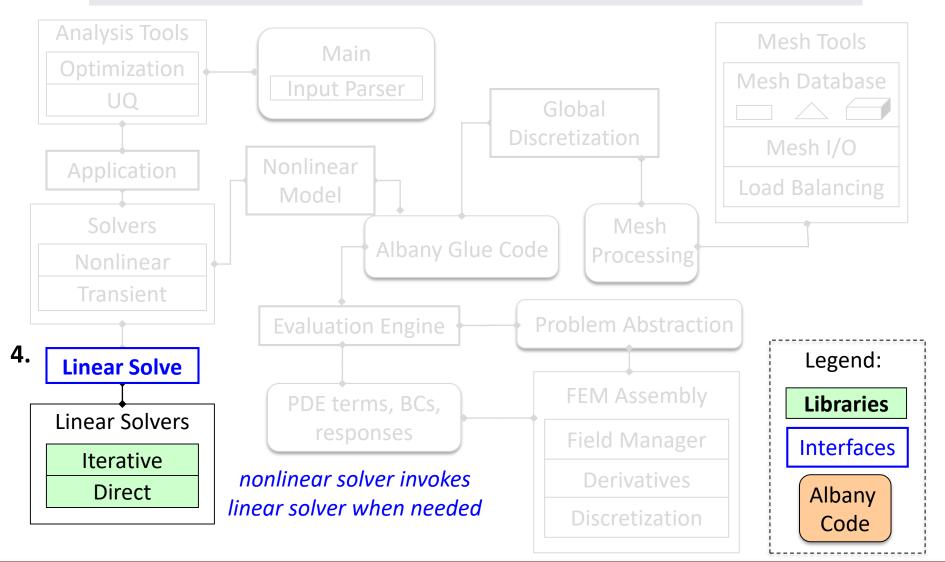
Phalanx package: Local field evaluation kernel designed for assembly of arbitrary equation sets (i.e. evaluating residuals/Jacobians).


- Decomposes a complex model into a graph of simple kernels (functors)
- A node in the graph evaluates one or more temporary fields
- Runtime DAG construction of graph
- Achieves flexible multi-physics assembly

DAG-based assembly enables **flexibility**, **extensibility**, **rapid development**: to add new PDE, all you need to code is problem-specific residual R_u^i !

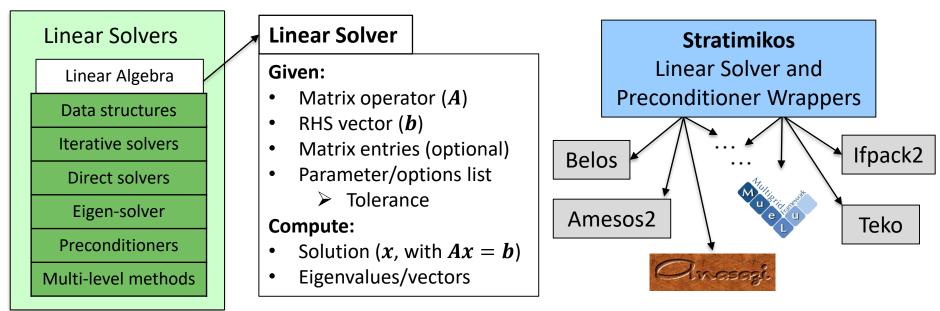

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

Nonlinear model abstraction & libraries



- Interface is general to accommodate computation of Jacobians, user-defined preconditioners, and stochastic Galerkin expansions.
- Enables "beyond-forward analysis": analysts/physics experts are not burdened with analysis algorithm requirements, i.e., programming sensitivities for implicit solvers, optimization, stability, bifurcation analysis.
 - Advanced capabilities: optimization (ROL), homotopy continuation (LOCA), embedded UQ (Stokhos).

What is Albany? (under-the-hood)



Albany = Component Libraries + Abstract Interfaces + "Glue Code"

Linear solver abstraction & libraries

- Linear solver abstraction provides full access to all Trilinos linear solvers (direct and iterative), eigensolvers and preconditioners through Stratimikos interface.
- Factory class supports run-time solution configuration through input file options.
- Available direct solvers: Amesos, Amesos2 (UMFPACK, MUMPS, SuperLU, SCALAPACK, etc.).
- **<u>Available iterative solvers</u>**: AztecOO, Belos (CG, GMRES)
- **Available preconditioners**: Ifpack, Ifpack2 (ILU); ML, MueLu (AMG); Teko (block)
- Eigensolvers: Anasazi

Software quality tools & processes

Repository*	
Version control	
Build system	
Config mgmt	
Regression tests	

Nightly test harness	Mailing lists
Unit tests	Issue tracking
Verification tests	Web pages
Code coverage	Licensing
Performance tests	Release process

Performance monitored via **CDash nightly testing** on a variety of architecture including GPU (P100, V100), Xeon Phi, Skylake, ARM platforms.

Albany	Albany									
Dashboard	Calendar Previous Cu	rrent Next	Project							
oject										
	Project		Configure	1011		Build			Test	
	Project	Error	Warning	Pass	Error	Warning	Pass	Not Run	Fail	Pass
and the second	Albany 🐨	0	18	24	1	20	4	0	6	3201
IbProjects										
	Project		Configure			Build			Test	
	rigeet	Error	Warning	Pass	Error	Warning	Pass	Not Run	Fail	Pass
	Peridigm	0	0	1	1	1	0			
	TrilinosIntel	0	1	1	0	1	0			
	AlbanyIntel	0	0	1	0	0	1	0	1	347
	IKTCismAlbany	0	1	1	0	1	0	0	0	5
	KTCismAlbanyEpetra	0	1	1	0	1	0	0	0	5
IKT	[AlbanyFunctorOpenMP	0	1	1	0	1	0	0	0	278
	Trilinos	0	1	1	0	1	0			
	TrilinosClang	0	1	. 1	0	1	0			
	Albany64BitClang	0	0	1	0	1	0	0	1	166
	IKTRideTrilinosCUDA	0	1	1	0	1	0			
	IKTRideAlbanyCUDA	0	2	2	0	2	0	0	2	186
albany_cluster-tos	s3_skybridge-login5_serial-intel-release	0	1	1	0	0	1	0	1	288
	Albany64Bit	0	0	1	0	1	0	0	1	317
	IKTAlbany	0	1	1	0	1	0	0	0	372
	IKTAlbanyNoEpetra	0	1	1	0	1	0	0	0	261
	TrilinosDbg	0	1	1	0	1	0			
	Albany64BitDbg	0	0	1	0	0	4	0	0	225
trilinos_cluster-tos	s3_skybridge-login5_serial-intel-release	0	1	1	0	1	0			
	IKTMayerARMTrilinos	0	1	1	0	1	0			
	IKTMayerARMAlbany	0	0	1	0	0	- 1	0	0	294
IKT	WatermanTrilinosCUDA	0	1	1	0	1	0			
IKT	WatermanAlbanyCUDA	0	1	1	0	1	0	0	0	94
IK	TAlbanyFPECheckDbg	0	1	1	0	1	0	0	0	363

* Albany github repo: https://github.com/SNLComputation/Albany.

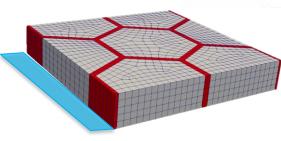
Software quality tools & processes

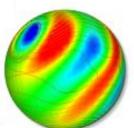
Repository*	Nightly test ha
Version control	Unit tests
Build system	Verification t
Config mgmt	Code covera
Regression tests	Performance

ightly test harness	Mailing lists
Unit tests	Issue tracking
Verification tests	Web pages
Code coverage	Licensing
Performance tests	Release process

Performance monitored via **CDash nightly testing** on a variety of architecture including GPU (P100, V100), Xeon Phi, Skylake, ARM platforms.

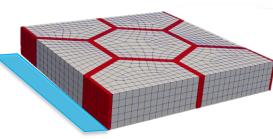
Z Albany Dashboard	Albany Calendar Previous	Current	Next	Project							
		current	IIGAL	, iologi							
oject				Configure			Build				
	Project		Error	Warning	Pass	Error	Warning	Pass	Not Run	Test Fail	Slowdow
	Albany 🐨		0	18	24	1	20	4	0	6	
ibProjects	Aburry o		U		24		20				identified
isi rojecta				Configure		1	Build			Test	
	Project		Error	Warning	Pass	Error	Warning	Pass	Not Run	Fail	nightly CDa
	Peridigm		0	0	1	1	1	0			testing!
	TrilinosIntel		0	1	1	0	1	0			
	AlbanyIntel		0	0	1	0	0	1	0	1	347
	IKTCismAlbany		0	1	1	0	1	0	0	0	5
IK	TCismAlbanyEpetra		0	1	1	0	1	0	4		Execution The (seconds)
IKTA	AlbanyFunctorOpenMP		0	1	1	0	1	0			Execution True (seconds)
	Trilinos		0	1	1	0	1	0	00		ľ
	TrilinosClang		0	1	1	0	1	0	-		
	Albany64BitClang		0	0	1	0	1	0	~		
IK	TRideTrilinosCUDA		0	1	1	0	1	0	80		
IK	CTRideAlbanyCUDA		0	2	2	0	2	0			
albany_cluster-toss	3_skybridge-login5_serial-intel-relea	ise	0	1	1	0	0	1	40		
	Albany64Bit		0	0	1	0	1	0			
	IKTAlbany		0	1	1	0	1	0	2202 28	222 2	2222222
1	KTAlbanyNoEpetra		0	1	1	0	1	0			
	TrilinosDbg		0	1	1	0	1	0	Dec 22 Dec 25	Dec 28 Dec 31	Jan 03 Jan 06 Jan 09 Ja
	Albany64BitDbg		0	0	1	0	0	1	0	0	225
trilinos_cluster-toss	3_skybridge-login5_serial-intel-relea	se	0	1	1	0	1	0			
IK	TMayerARMTrilinos		0	1	1	0	1	0			
IK	CTMayerARMAlbany		0	0	1	0	0	1	0	0	294
IKTV	VatermanTrilinosCUDA		0	1	1	0	1	0			
IKTV	Vaterman Albany CUDA		0	1	1	0	1	0	0	0	94
IKT	AlbanyFPECheckDbg		0	1	1	0	1	0	0	0	363


* Albany github repo: https://github.com/SNLComputation/Albany.


Applications hosted by Albany

Quantum Devices (QCAD)

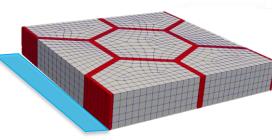
- Ice Sheets (Albany Land-Ice)
- Mechanics (LCM)
- Atmosphere Dynamics (Aeras)
- Particle-continuum coupling (Peridigm-LCM)
- Additive Manufacturing Design (ATO)
- Additive Manufacturing Processing (AMP)
- Arctic Coastal Erosion (ACE)
- Coupled Geomechanics (Albotran).

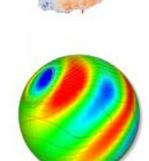


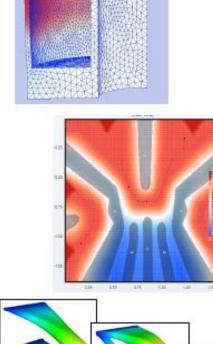
Applications hosted by Albany

Applications are "**born**" scalable, fast, robust, and equipped with advanced analysis capabilities!

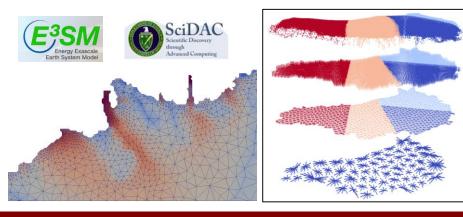
- Ice Sheets (Albany Land-Ice)
- Mechanics (LCM)
- Atmosphere Dynamics (Aeras)
- Particle-continuum coupling (Peridigm-LCM)
- Additive Manufacturing Design (ATO)
- Additive Manufacturing Processing (AMP)
- Arctic Coastal Erosion (ACE)
- Coupled Geomechanics (Albotran).

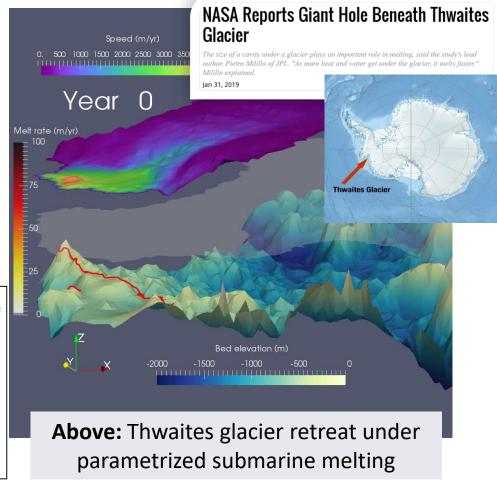



Applications hosted by Albany


Applications are "**born**" scalable, fast, robust, and equipped with advanced analysis capabilities!

- Ice Sheets (Albany Land-Ice)
- Mechanics (LCM)
- Atmosphere Dynamics (Aeras)
- Particle-continuum coupling (Peridigm-LCM)
- Additive Manufacturing Design (ATO)
- Additive Manufacturing Processing (AMP)
- Arctic Coastal Erosion (ACE)
- Coupled Geomechanics (Albotran).

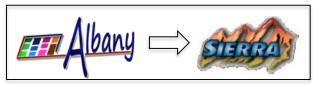

Ice sheets: Albany Land-Ice (ALI)

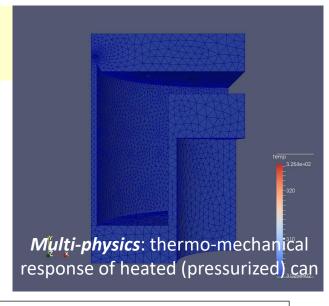


Albany enabled the **rapid development** of a production **land-ice dycore** for providing **actionable predictions** of **21**st **century sea-level rise** as a part of the DOE Energy Exascale Earth System Model (E3SM).

Capabilities:

- Unstructured grid finite elements.
- Scalable, fast and robust
- Verified and validated
- Advanced analysis: inversion, UQ
- *Portable* to GPU, KNL, ... via Kokkos
- *Multi-physics:* velocity-temperature, velocity-thickness, velocity-hydrology




I. Tezaur, et. al. GMD. (2015).

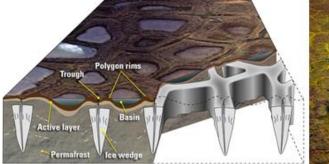
Laboratory for computational mechanics (LCM) The Sandia National Laboratories

The Albany LCM suite contains sophisticated **material models**, **physics** and **technologies** for solid mechanics.

- "Sand-box" for new algorithms/methods:
 - Composite 10-node tetrahedron
 - Pressure projection stabilization
 - Multi-scale coupling via Schwarz
 - In-memory mesh adaptation
- Models: elasticity, Neohookean, J₂ plasticity, crystal plasticity, elasto-visco-plastic, ...
- Physics (PDEs): elasticity, mechanics, electro-mechanics, thermo-mechanics, thermo-poro-mechanics, ...
- Fracture and damage simulation capabilities

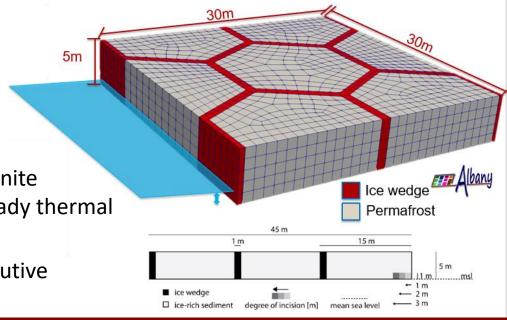
Multi-scale: tensile specimen with micro-structure in the middle

Arctic Coastal Erosion (ACE)


Mechanistic modeling within Albany is advancing state-ofthe-art coastal erosion/permafrost modeling.

Permafrost modeling background:

- Predominant geomorphology is icewedge polygons (right).
- State-of-the-art erosion modeling: trend projection, empirical relationships, 1D steady-state heat flow, ...


Albany modeling of degradation:

- Leverages years of LCM R&D.
- **Time-varying input variables** over the duration of a storm (water level, temperature, salinity)
- Multi-physics FEM model of coastline: finite deformation plasticity model + 3D unsteady thermal flow + chemical characteristics
 - Failure modes develop from constitutive relationships (no empirical model!)

Algorithmic projects hosted by Albany

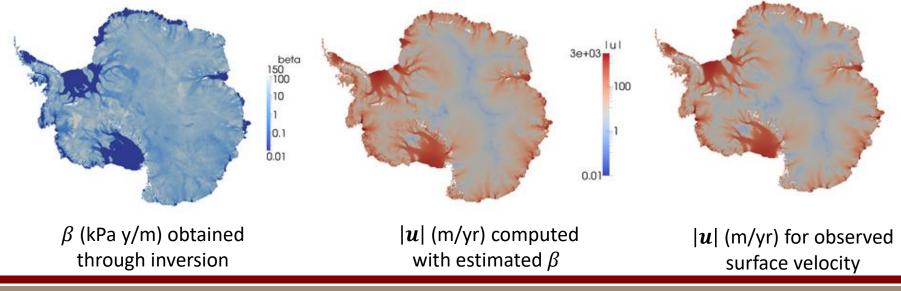
Algorithms and software are matured directly on applications.

Algorithmic projects within Albany:

- Scalable multi-level solvers (PISCEES/ProSPect) R. Tuminaro, I. Tezaur.
- Nonlinear solvers (FASTMath) R. Pawlowski, M. Perego
- In-memory mesh adaptation (FASTMath) M. Sheppard, M. Bloomfield (RPI), A. Oberai, J. Smith (USC), D. Ibanez, B. Granzow, G. Hansen
- Multi-scale coupling via Schwarz (P&EM) A. Mota, I. Tezaur, C. Alleman, G. Phlipot (CalTech)
- Stabilized mechanics (FASTMath) A. Bradley, J. Ostien, G. Hansen
- Adjoint-based inversion (FASTMath) M. Perego, E. Phipps, ROL team
- > Optimization-based coupling (ASCR) M. Perego, M. D'Elia, D. Littlewood, P. Bochev
- > UQ workflow (PISCEES) J. Jakeman, I. Tezaur, M. Perego
- ➤ Embedded UQ (Equinox) E. Phipps, J. Fike
- Performance portable FEM (PISCEES/ProSPect/ATDM) I. Demeshko (LANL), E. Phipps, R. Pawlowski, E. Cyr, I. Tezaur, A. Bradley, J. Watkins
- > Development of composite tet-10 for solid mechanics (PE&M) J. Foulk, J. Ostien, A. Mota

Algorithmic projects hosted by Albany

Algorithms and software are matured directly on applications.


Algorithmic projects within Albany:

- Scalable multi-level solvers (PISCEES/ProSPect) R. Tuminaro, I. Tezaur.
- Nonlinear solvers (FASTMath) R. Pawlowski, M. Perego
- In-memory mesh adaptation (FASTMath) M. Sheppard, M. Bloomfield (RPI), A. Oberai, J. Smith (USC), D. Ibanez, B. Granzow, G. Hansen
- Multi-scale coupling via Schwarz (P&EM) A. Mota, I. Tezaur, C. Alleman, G. Phlipot (CalTech)
- Stabilized mechanics (FASTMath) A. Bradley, J. Ostien, G. Hansen
- > Adjoint-based inversion (FASTMath) M. Perego, E. Phipps, ROL team
- > Optimization-based coupling (ASCR) M. Perego, M. D'Elia, D. Littlewood, P. Bochev
- > UQ workflow (PISCEES) J. Jakeman, I. Tezaur, M. Perego
- Embedded UQ (Equinox) E. Phipps, J. Fike
- Performance portable FEM (PISCEES/ProSPect/ATDM) I. Demeshko (LANL), E. Phipps, R. Pawlowski, E. Cyr, I. Tezaur, A. Bradley, J. Watkins
- > Development of composite tet-10 for solid mechanics (PE&M) J. Foulk, J. Ostien, A. Mota

subject to $f(u, \mathbf{p}) = 0 \leftarrow \text{PDE}$

<u>Application</u>: inversion for basal friction and ice thickness in Albany Land-Ice model to initialize dynamic simulation.

> Inversion approach **significantly reduces non-physical transients**.

Adjoint-based optimization/inversion

 $g(u, \mathbf{p})$

AD & TBGP in Albany enabled the efficient solution of **adjointbased PDE-constrained optimization/inversion** problems.

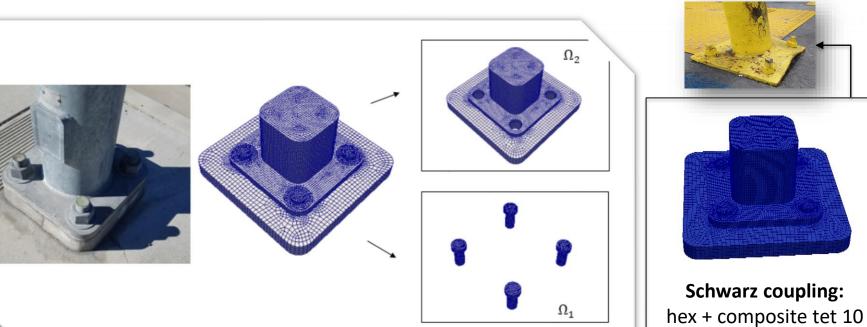
Inversion problem solved

robustly for O(100K)

parameters!

M. Perego et. al. J. Geophys. Res. 2014.

Find p that minimizes

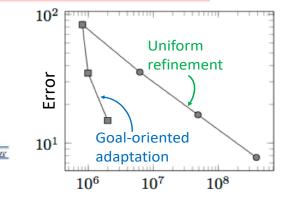

National Laboratories


Multi-scale coupling via Schwarz

A **domain decomposition alternating-Schwarz**-based method has been developed in Albany for **concurrent multi-scale coupling** in solid mechanics*.

- <u>Targeted application</u>: failure of **bolted components**.
- <u>"Plug-and-play" framework</u>: simplifies meshing complex geometries!
 Couple regions with different non-conformal meshes, element types, levels of refinement, solvers/time-integrators.

In-memory mesh adaptation

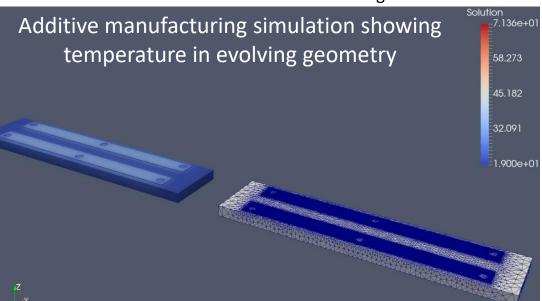


Collaboration with SCOREC*: development of mesh adaptation capabilities in Albany to enable multi-scale/multi-physics adaptive simulation

PUſ

Automated parallel goal-oriented adaptive simulation

- Use adjoint solution to drive mesh adaptation
- ~100× DoF-efficiency observed
- Scaling out to at least 8K MPI ranks
- Performance portable via Kokkos

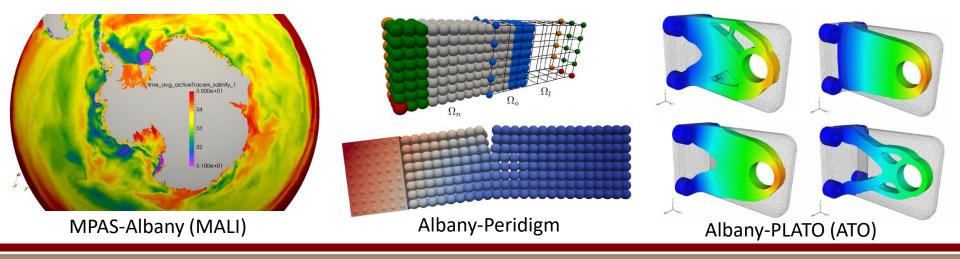


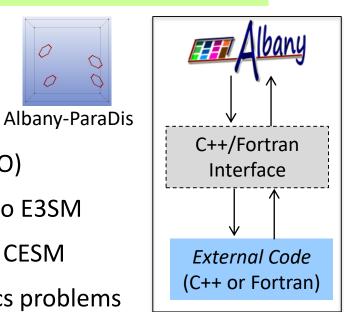
Rensselaer

Some applications:

3D manufacturing (right)

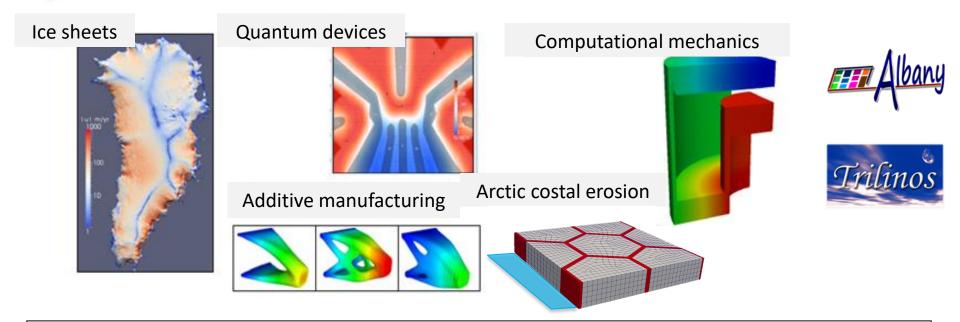
- Creep/plasticity in large solder joint arrays
- Coupled dislocation dynamics


* Scientific Computation Research Center at RPI (Mark Shephard et al.)


Coupling with other codes

Albany has been **interfaced/coupled** with a number of other codes.

- Albany-Peridigm: local-nonlocal coupling of continuum mechanics + peridynamics
- > Albany-ParaDis: coupled dislocation dynamics
- > **Albany-PLATO**: Advanced Topology Optimization (ATO)
- > MPAS-Albany-Land-Ice (MALI): ice sheets/coupling to E3SM
- > CISM-Albany-Land-Ice (CALI): ice sheets/coupling to CESM
- > Albany-PFLOTRAN (Albotran): coupled geomechanics problems

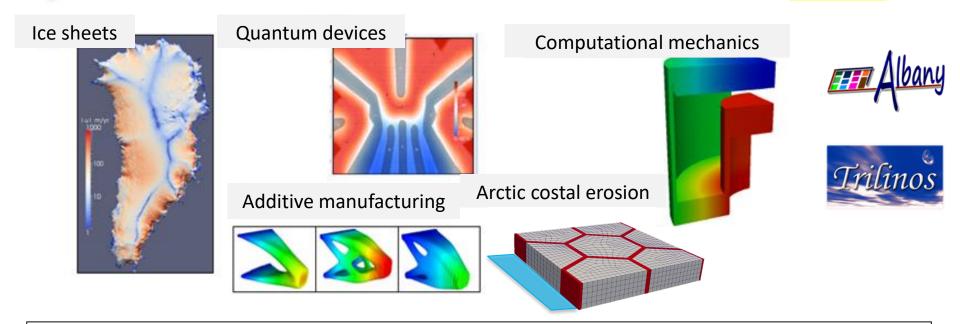


Summary

Albany: open-source, parallel, C++, unstructured-grid, mostly-implicit multiphysics finite element code that demonstrates **AgileComponents** vision and can enable **rapid development** of new physics/algorithms.

Github: https://github.com/SNLComputation/Albany

Paper: A. Salinger *et al.* "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", *IJMCE* 14(4) (2016) 415-438.


Albany User Meeting (AUM): every ~2 years (TBD)

Summary

Thank you! Questions?

Albany: open-source, parallel, C++, unstructured-grid, mostly-implicit multiphysics finite element code that demonstrates **AgileComponents** vision and can enable **rapid development** of new physics/algorithms.

Github: https://github.com/SNLComputation/Albany

Paper: A. Salinger *et al.* "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", *IJMCE* 14(4) (2016) 415-438.

Albany User Meeting (AUM): every ~2 years (TBD)

References

[1] A. Salinger *et al.* "Albany: Using Agile Components to Develop a Flexible, Generic Multiphysics Analysis Code", *Int. J. Multiscale Comput. Engng* 14(4) (2016) 415-438.

[2] M. Heroux *et al.* An overview of the Trilinos project, *ACM Trans. Math. Softw.*, vol. 31, no. 3, pp. 397–423, 2005.

[3] I. Tezaur, M. Perego, A. Salinger, R. Tuminaro, S. Price. "*Albany/FELIX*: A Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced Analysis", *Geosci. Model Develop.* 8 (2015) 1-24.

[4] M. Perego, S. Price, G. Stadler. "Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models", *J. Geophys. Res.* 119 (2014) 1894-1917.

[5] I. Demeshko, J. Watkins, I. Tezaur, O. Guba, W. Spotz, A. Salinger, R. Pawlowski, M. Heroux. "Towards performance-portability of the Albany finite element analysis code using the Kokkos library", *J. HPC Appl*. (2018) 1-23.

[6] J. Watkins, I. Tezaur, I. Demeshko. "A study on the performance portability of the finite element assembly process within the Albany land ice solver", *Lecture Notes in Computational Science and Engineering* (accepted).

[7] A. Mota, I. Tezaur, C. Alleman. "The Schwarz alternating method in solid mechanics", *Comput. Meth. Appl. Mech. Engng.* 319 (2017), 19-51.

[8] W. Spotz, et al., Aeras: A next generation global atmosphere model, Proc. Comput. Sci. 51 (2015) 2097–2106

References (cont'd)

[9] X. Gao, et al., Quantum computer aided design simulation and optimization of semiconductor quantum dots, J. Appl. Phys. 114 (2013) 1–19.

[10] S. Slattery, P. Wilson, R. Pawlowski, The data transfer kit: a geometric rendezvous-based tool for multiphysics data transfer, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, American Nuclear Society, Sun Valley, ID, 2013,

[11] E. Cyr, J. Shadid, R. Tuminaro, Teko: A block preconditioning capability with concrete example applications in Navier–Stokes and MHD, SIAM J. Sci. Comput. 38 (5) (2016) S307-331.

[12] J. Ostien, et al., A 10-node composite tetrahedral finite element for solid mechanics, Internat. J. Numer. Methods Engrg. (ISSN: 1097-0207) 107 (2016) 1145–1170.

[13] R. Pawlowski, E. Phipps, A. Salinger, Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part I: Template-based generic programming, *Sci. Program.*, vol. 20, pp. 197–219, 2012a.

[14] E. Phipps, R. Pawlowski, Efficient expression templates for operator overloading-based automatic differentiation, in *Recent Advances in Algorithmic Differentiation*, S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther, Eds., Lecture Notes in Computer Science, Springer, pp. 309–319, 2012.

[15] P. Bochev, H. Edwards, R. Kirby, K. Peterson, D. Ridzal, Solving PDEs with Intrepid, *Sci. Program.*, vol. 20, no. 2, pp. 151–180, 2012.

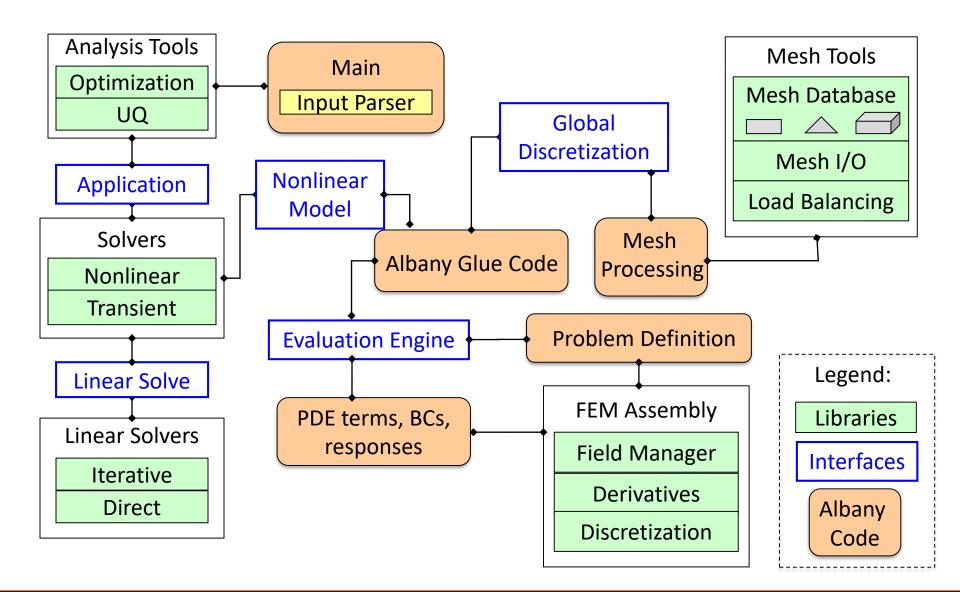
References (cont'd)

[16] S. Seol, C. Smith, D. Ibanez, M. Shephard, A parallel unstructured mesh infrastructure, *High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion*, pp. 1124–1132, doi: 10.1109/SC.Companion.2012.135, 2012.

[17] H. Edwards, A. Williams, G. Sjaardema, D. Baur, W. Cochran, SIERRA toolkit computational mesh conceptual model. Tech. Rep. SAND2010-1192, Sandia National Laboratories, 2010.

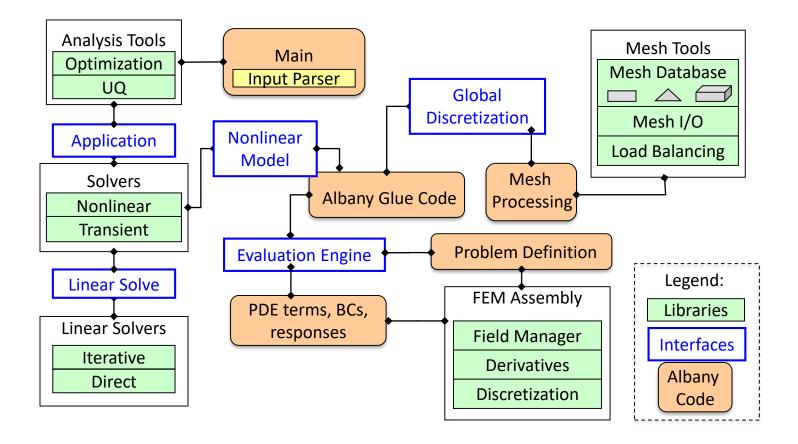
Backup Slides

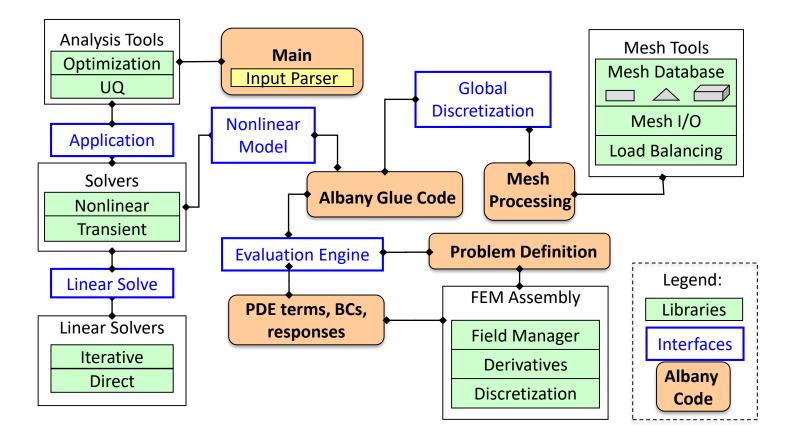
: a component-based finite element code

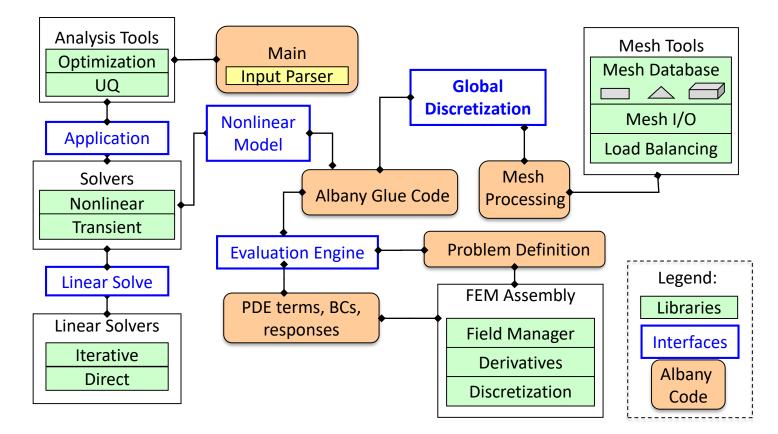

- Started by A. Salinger in 2008 as first DemoApp for AgileComponents code development strategy.
- During **next 10 years**, Albany became:
 - a friendly **early adopter** of cutting-edge technology from Trilinos, SCOREC, SierraToolKit, DAKOTA, FASTMath, QUEST, Kitware.
 - a model for a Trilinos-based and Office of Science application.
 - a demonstration of **transformational analysis** spanning template-based generic programming to optimization and UQ
- 11 years later, Albany is:
 - an open-source parallel, mostly-implicit unstructured-grid multi-physics finite element code that demonstrates the AgileComponents vision by using, maturing, and spinning-off reusable libraries/abstract interfaces.
 - an **attractive environment** for the development of open-source application codes and research.
 - a Meso-App for maturation of **MPI+X programming model** for next generation architecture
 - the code base underlying a number of research projects and applications.

2019

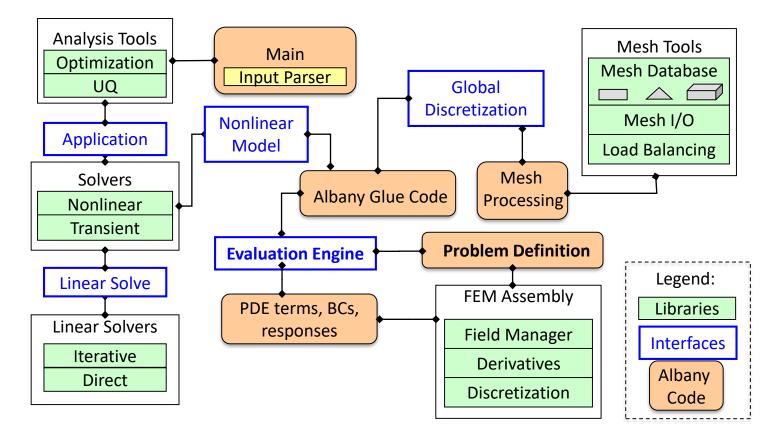
2008


Albany code design

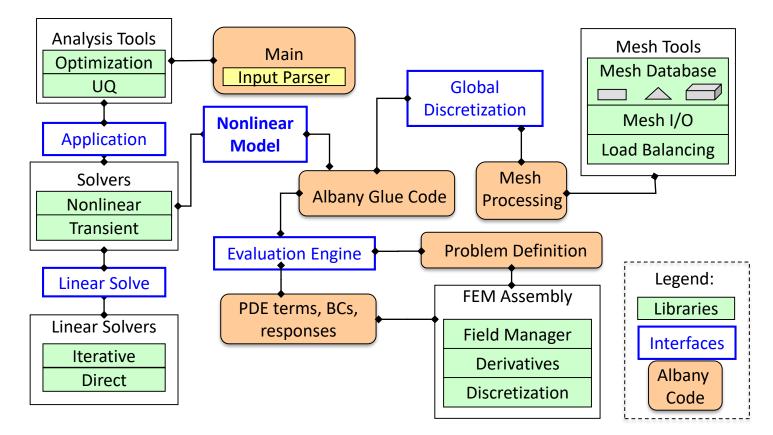

Albany code design



"Glue Code": driver code integrating components + providing overall capabilities

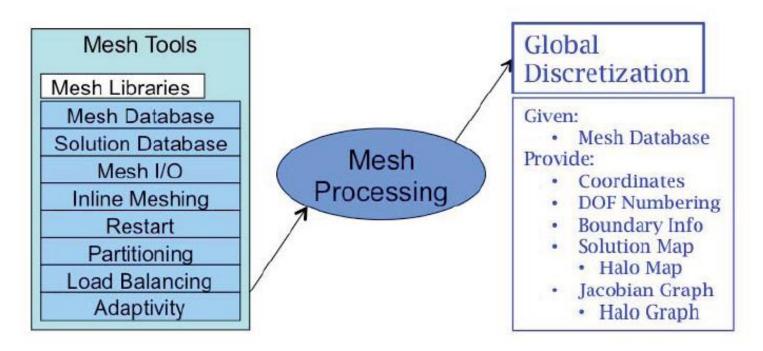

"Glue Code": driver code integrating components + providing overall capabilities

• Depends on discretization abstraction (serves as general interface to a mesh service)


"Glue Code": driver code integrating components + providing overall capabilities

- Depends on discretization abstraction (serves as general interface to a mesh service)
- Employs evaluation engine to construct PDEs, BCs, and response calculations

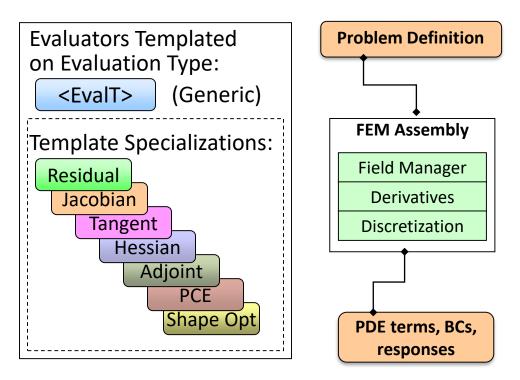
"Glue Code": driver code integrating components + providing overall capabilities



- Depends on discretization abstraction (serves as general interface to a mesh service)
- Employs evaluation engine to construct PDEs, BCs, and response calculations
- Uses physics pieces to satisfy nonlinear model abstraction (e.g., compute resid/Jac)

Global discretization abstraction

- Mesh framework: defines geometry, element topologies, connectivities, boundary info, mesh-dependent fields.
- **Global discretization abstraction**: gives the finite element assembly process access to all of the data distribution information required by the linear algebra objects.
- Mesh info is contained in in-memory mesh database accessed through abstract **global discretization interface** class.



Problem abstraction & finite element assembly

Purpose of problem abstraction & finite element assembly: given a finite element mesh, evaluate discrete finite element residual, Jacobian, and (if applicable) parameter derivatives.

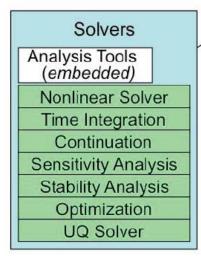
<u>3 key ingredients facilitating multi-</u> physics implementations in Albany:

- 1. Template-based generic programming (TBGP)
- 2. Graph-based finite element assembly (FEA)
 - Handled by Phalanx package
- 3. Templated-based automatic differentiation
 - Handled by Sacado package

Automatic differentiation via Sacado

Automatic Differentiation (AD) provides exact derivatives w/o time/effort of deriving and hand-coding them!

- How does AD work? → **freshman calculus**!
 - Computations are composition of simple operations (+, *, sin(), etc.)
 - Derivatives computed line by line then combined via chain rule.
- Great for multi-physics codes (e.g., many Jacobians) and advanced analysis (e.g., sensitivities)
- Albany uses Trilinos package Sacado for AD
 - AD accomplished via operator overloading + templating: floats/double data types replaced by AD types.


Automatic Differentiation Example:

$y = \mathrm{s}$	$ in(e^x + x \log x), x $	c=2
$egin{array}{ll} x \leftarrow 2 \ t \leftarrow e^x \ u \leftarrow \log x \end{array}$	$\begin{aligned} \frac{dx}{dx} &\leftarrow 1\\ \frac{dt}{dx} \leftarrow t \frac{dx}{dx}\\ \frac{du}{dx} \leftarrow \frac{1}{x} \frac{dx}{dx} \end{aligned}$	$\frac{d}{dx}$ 1.000 7.389 0.500
$v \leftarrow xu$	$\frac{dv}{dx} \leftarrow u \frac{dx}{dx} + x \frac{du}{dx}$	1.301
$w \leftarrow t + v$	$rac{dw}{dx} \leftarrow rac{dt}{dx} + rac{dv}{dx}$	8.690
$y \leftarrow \sin w$	$\frac{dy}{dx} \leftarrow \cos(w) \frac{dw}{dx}$	-1.188

Derivatives are *as accurate as analytic computation* – no finite difference truncation error!

Nonlinear model abstraction & libraries

Given	n:
•	Solution
	Time Derivative
	Parameters
•	Time
	Random Variables
Com	pute:
	Residual
	Jacobian Matrix
	Preconditioner
	Tangent
	Responses
	Response Gradient
•	Stochastic Residual

- Access to the embedded solvers in Trilinos requires satisfaction of ModelEvaluator (nonlinear model) abstraction.
- Interface is general to accommodate computation of Jacobians, user-defined preconditioners, and stochastic Galerkin expansions.
- <u>Advanced capabilities</u>: embedded UQ (Stokhos), optimization (ROL), homotopy continuation (LOCA).

"ModelEvaluator" Abstraction:

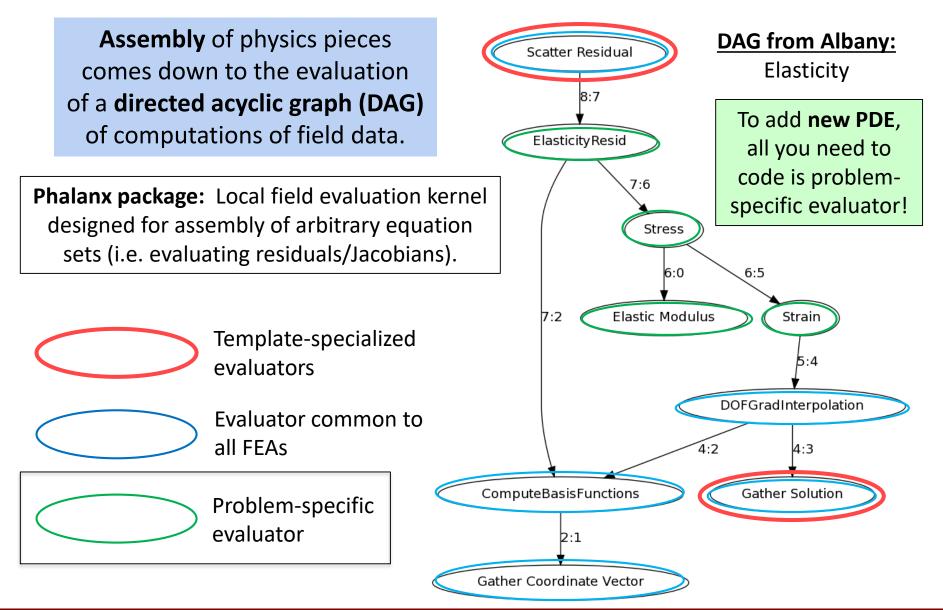
Given:	Computes:
x	$f(\dot{x},\ddot{x},x,p,t)$
<i>x</i>	$W = \alpha \frac{df}{d\dot{x}} + \beta \frac{df}{dx} + \omega \frac{df}{d\dot{x}}$
ÿ	$\frac{df}{dp}$
p	g
t	$\frac{dg}{dx}$
	dx
	$\frac{df}{dp}$
	$d\overline{p}$

f = residual; x = solution vec; p = parameters; g = responses; t = time; W = Jacobian

Core building blocks of Albany

- Component-based design.
- Template-based generic programming.
- Assembly/field evaluation via Phalanx.
- > Automatic differentiation.
- Discretizations/meshes, mesh adaptivity.
- Solvers, time-integration schemes.
- Performance-portable kernels.
- Software quality tools: git cmake, ctest, CDash.

Graph-based finite element assembly (FEA)

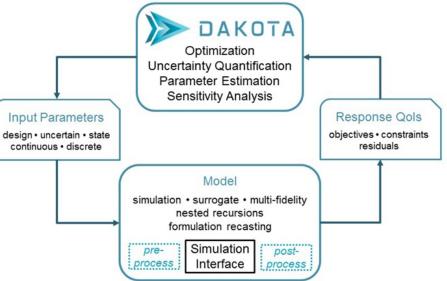


Assembly of physics pieces DAG from Albany: Scatter Residual comes down to the evaluation Elasticity 8:7 of a directed acyclic graph (DAG) of computations of field data. ElasticityResid 7:6 Phalanx package: Local field evaluation kernel designed for assembly of arbitrary equation Stress sets (i.e. evaluating residuals/Jacobians). 6:5 6:0 Elastic Modulus Strain 7:2 Template-specialized 5:4 evaluators DOFGradInterpolation Evaluator common to all FEAs 4:2 4:3 ComputeBasisFunctions Gather Solution **Problem-specific** evaluator 2:1 Gather Coordinate Vector

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

Graph-based finite element assembly (FEA)

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.


Analysis tools abstraction & libraries

Optimization and **UQ** can be done through DAKOTA:

- <u>Optimization algorithms</u>: gradient-based local algorithms, pattern searches, and genetic algorithms, etc.
- <u>UQ algorithms</u>: Latin hypercube stochastic sampling, stochastic collocation, PCE, MCMC, etc.

Libraries/algorithms whose development was significantly aided by Albany

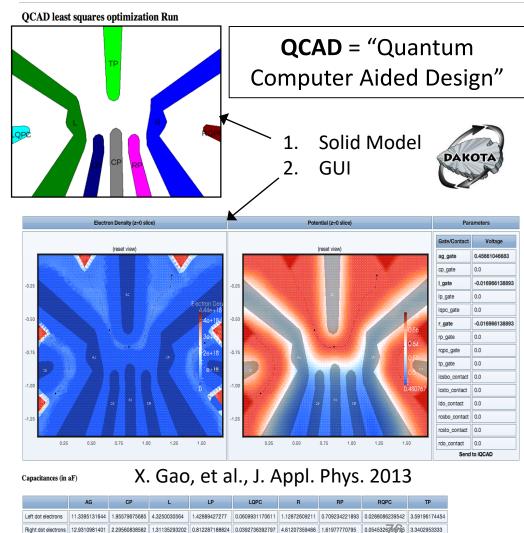
Libraries Developed in Albany:

- Piro
- TriKota
- MiniTensor
- ➢ Razor (MOR)
- buildAgainstTrilinos

Libraries Driven by Albany:

- Stokhos Embedded UQ
- Semi-Coarsening AMG
- PAALS
- Advanced Topological Opt
- Embedded Ensembles
- CUBIT Mesh-Morpher

Libraries Matured in Albany:


- Tempus
- Phalanx
- ≻ STK
- ModelEvaluator
- Stratimikos
- > TPetra
- > PUMI
- > ROL
- DTK
- Intrepid2/Kokkos
- DynRankView
- And counting...

Quantum device modeling (QCAD)

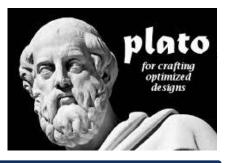
Albany enabled the rapid stand-up of a world-class quantum device design tool.

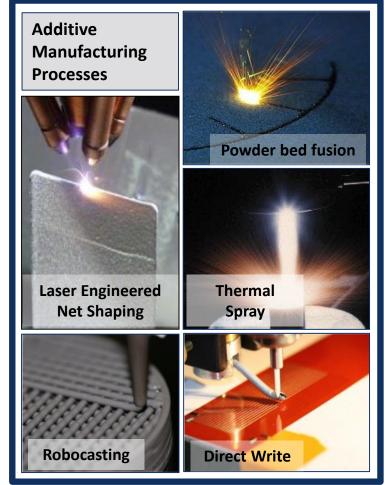
- Application: quantum computing
- Objective: simulation/optimization of semiconductor quantum double dots
 - Provide fast feedback on which device layouts are most likely to lead to few-electron behavior
- Key to QCAD's success: interfaces
 - Various multi-physics couplings of Poisson + Schrodinger
 - > DAKOTA* for **optimization**.
- QCAD is used by experimentalist in Sandia's world-class experimental facilities (CINT) as design tool for quantum device fabrication
 - iQCAD: GUI for experimentalists

Advanced Topology Optimization (ATO)

Coupling of Albany code and **PLATO*** engine for **optimization-based topology optimization**.

Goals:


- Qualification: assure quality
- Design: effectively utilize AM


PDE-constrained optimization:

- Physics: elastostatics, Poisson
- Objectives: compliance, p-norm
- Constraints: volume/mass

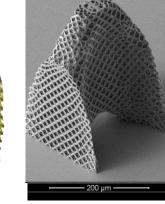
Multiple simultaneous Albany runs can inform a single design optimization by PLATO:

- Albany implements objective + gradient evaluation, optimization loop
- New "meshless" ATO capability: allows user to include arbitrarily many simultaneous load cases (linear thermal/electrical, mechanical)

* Topology optimization-based design environment developed by SNL.

Advanced Topology Optimization (ATO)

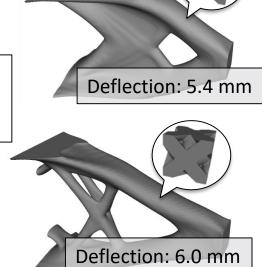

Coupling of Albany code and **PLATO*** engine for **optimization-based topology optimization**.


Goals:

- Qualification: assure quality
- Design: effectively utilize AM

PDE-constrained optimization:

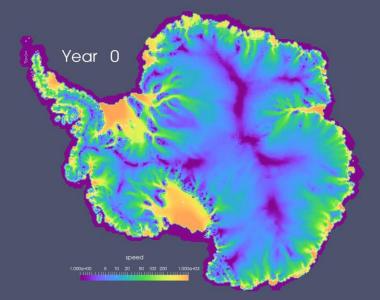
- Physics: elastostatics, Poisson
- Objectives: compliance, p-norm
- Constraints: volume/mass



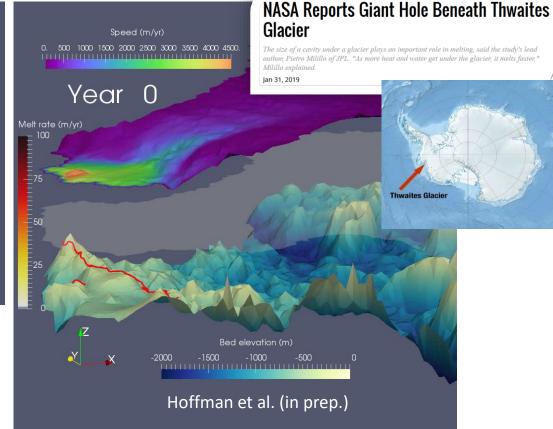
Multiple simultaneous Albany runs can informa single design optimization by PLATO:Righ

- Albany implements objective + gradient evaluation, optimization loop
- New "meshless" capability: geometry defined in constructive solid geometry (CSG) format and meshed inline
 - Allows user to include arbitrarily many simultaneous load cases (linear thermal/electrical, mechanical, etc.)

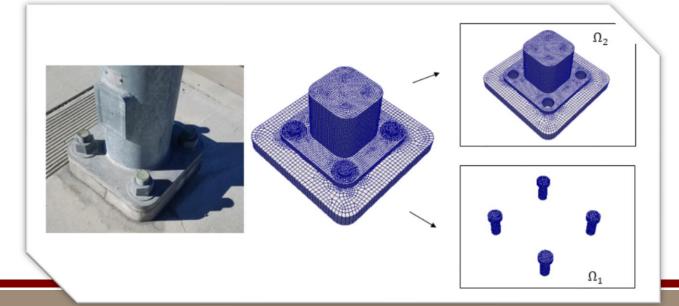
Right: cellular structures with optimized stiffness

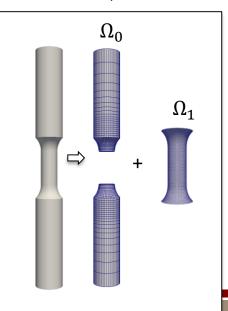

Deflection: 2.5 mm

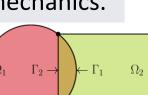
* PLAtform for Topology Optimization: topology optimization-based design environment developed by SNL.


Ice sheets: Albany Land-Ice (ALI)

Albany enabled the **rapid development** of a production **land-ice dycore** for providing **actionable predictions** of **21st century sea-level rise** as a part of the DOE Energy Exascale Earth System Model (E3SM).


Above: ABUMIP-Antarctica experiment <u>**Right**</u>: Thwaites glacier retreat under parametrized submarine melting.



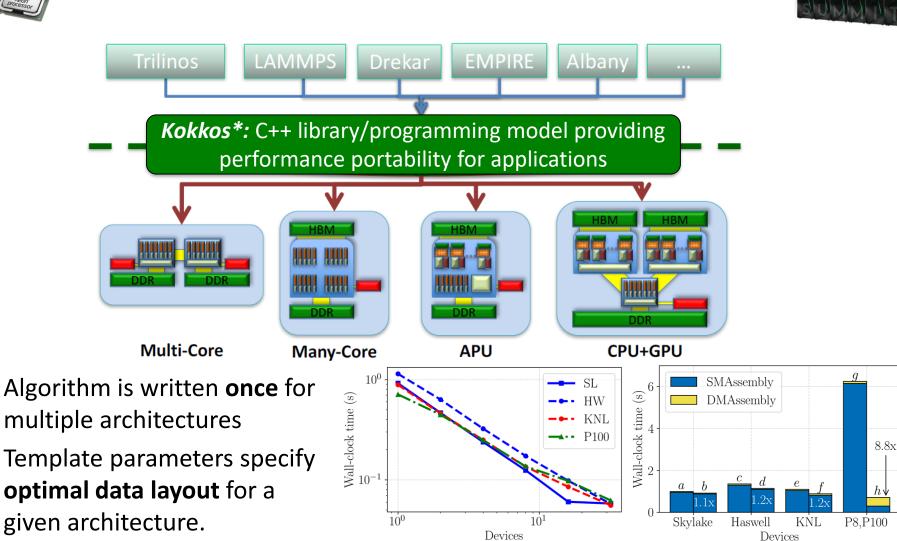

Multi-scale coupling via Schwarz

A **domain decomposition alternating-Schwarz**-based method has been developed in Albany for **concurrent multi-scale coupling** in solid mechanics.

- <u>Crux of Method</u>: use solutions in simple domains to iteratively build a solution for the more complex domain.
- Targeted application: failure of bolted components.
- <u>"Plug-and-play" framework</u>: simplifies meshing complex geometries!
 Couple regions with different non-conformal meshes, element types, levels of refinement, solvers/time-integrators.

Multi-scale coupling via Schwarz

A **domain decomposition alternating-Schwarz**-based method has been developed in Albany for **concurrent multi-scale coupling** in solid mechanics.



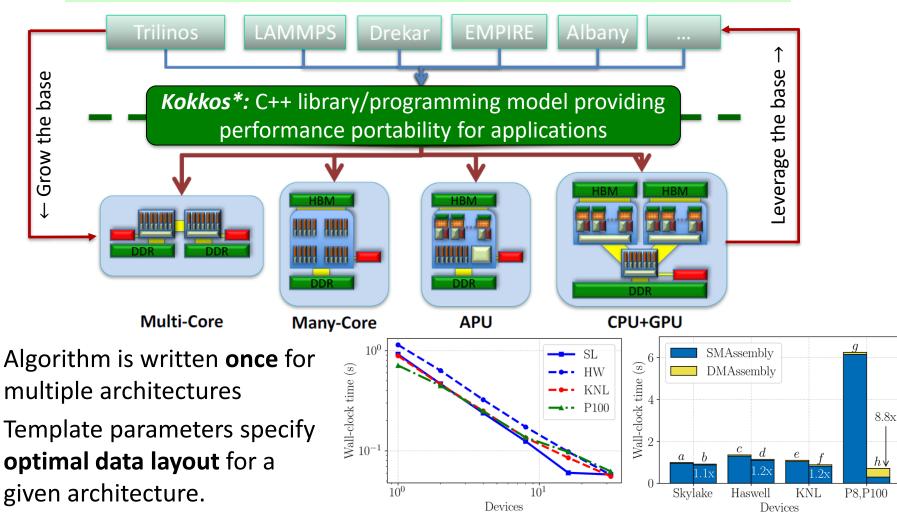
A. Mota et. al. "The Schwarz alternating method in solid mechanics", CMAME. 319 (2017), 19-51.

Performance-portable FEM

* Kokkos github repo: https://github.com/kokkos/Kokkos

I. Demeshko *et. al.,* 2018.

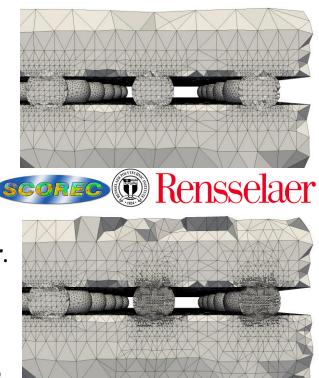
Performance-portable FEM

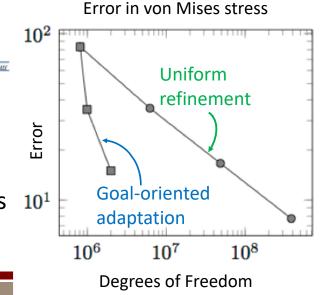

Talk by J. Watkins, MS 121, Tues. Feb. 26

Performance-portability of Albany FEA achieved using *Kokkos;* Albany usage has in turn led to *Kokkos improvements*

* Kokkos github repo: https://github.com/kokkos/Kokkos

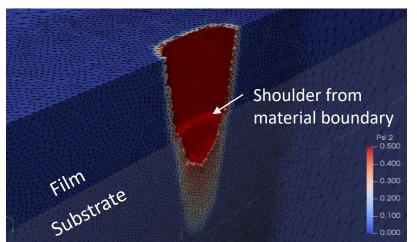
I. Demeshko *et. al.,* 2018.

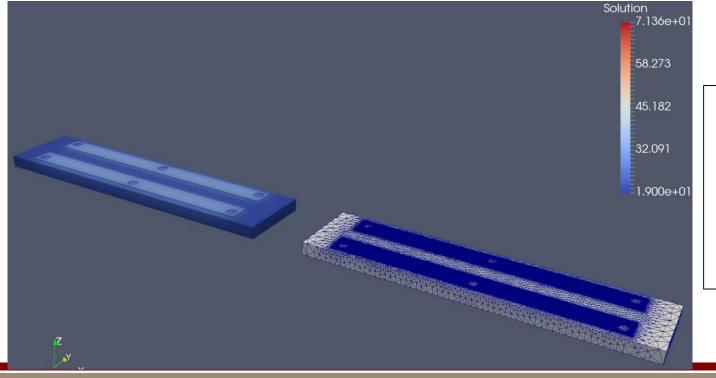

In-memory mesh adaptation


Collaboration with SCOREC*: development of mesh adaptation capabilities in Albany to enable multi-scale/multi-physics adaptive simulation

PAALS (Parallel Albany Adaptive Loop with SCOREC)

- > Fully-coupled *in-memory adaptation, solution transfer*.
- > Parallel mesh infrastructure and services via PUMI.
- > **Dynamic load balancing** (ParMetis/Zoltan, ParMA).
- Automated parallel goal-oriented adaptive simulation
 - Use adjoint solution to drive mesh adaptation
 - ~100× DoF-efficiency observed
 - Scaling out to at least 8K MPI ranks
- Performance portability to GPUs via Kokkos.
- Applications: <u>3D manufacturing</u>, creep/plasticity in large solder joint arrays, coupled dislocation dynamics (Albany + ParaDis), ...





3D manufacturing

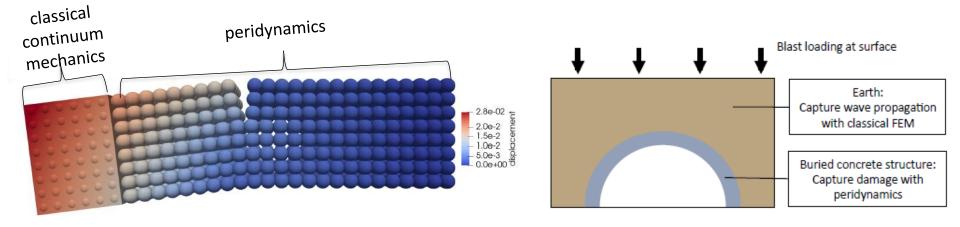
- Additive & subtractive capabilities
- Employs advanced adaptive meshing and evolving geometries (using Symmetrix)
- Coupling with feedback control

<u>*Right*</u>: simulation of subtractive manufacturing with picosecond laser*

Left: Additive manufacturing simulation showing temperature in evolving geometry

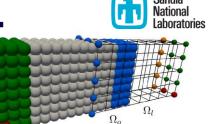
* Maniatty, et al., *Comp. Mech.*, 62:273, 2018.

Albany-Peridigm


Local-nonlocal coupling for integrated fracture modeling & multi-physics peridynamics simulations

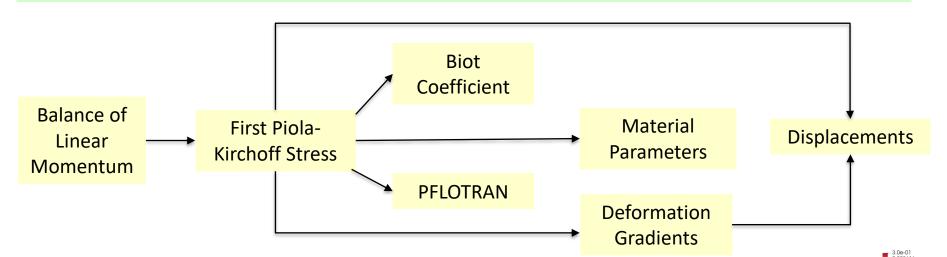
Peridigm

Peridynamics: nonlocal extension of continuum mechanics that remains valid at discontinuities/cracks


bany

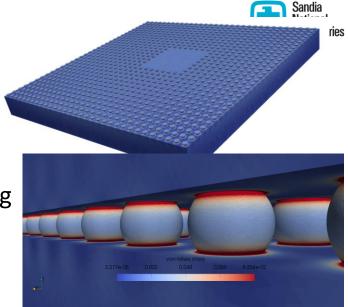
- **Peridigm** = open-source* peridynamics code
 - > Nonlocal meshfree approach (Silling *et al.*, 2005).
- "Best of both worlds" by combining FEM + peridynamics: peridynamics applied in regions susceptible to material failure, easy delivery to applications via FEM.
- **Optimization-based** local-to-nonlocal **coupling** using ROL (D'Elia *et al.* 2016).

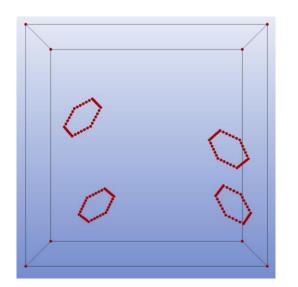
* Peridigm github repo: https://github.com/peridigm/peridigm.



Albany-PFLOTRAN (Albotran)

Albotran seeks to create a **multi-physics** geomechanical application that couples the flow response in **PFLOTRAN** with a mechanical response from **Albany**.


- Albany + PFLOTRAN coupling strategy can be viewed as hybrid of a fully-coupled implicit solver + more loosely coupled iterative-solvers
 - Integrates extensive domain expertise (Albany/LCM)
 - Specialized solvers are **not required** for either code


Right: Albotran consolidation problem results. Porosities tracked independently in each code are identical

Mesh adaptation applications

Creep/Plasticity in Large Solder Joint Arrays*

- Strategic reliability process in semiconductor manufacturing
- Automated workflows with locally refined meshing
- Novel materials models
- Scaling out to 16K processors, 1B+ elements

Coupled Dislocation Dynamics

- Integrates Albany and ParaDis
- Computes dislocation dynamics (DD) in complex geometry
- Allows intersection of dislocations with free surfaces
- *Left*: prismatic dislocation loops in finite domain

* Li, et al. Comp. Mech., 62:323, 2018. Bloomfield, et al. Eng. with Comp., 33: 509, 2017.

Work in progress

Performance portability:

- Code optimizations for finite element assembly
- Performance portable solvers [WIP by Trilinos team]

Infrastructure work:

- Refactor of code to use **block data structures** to facilitate **multi-physics** coupling
 - "Plug-and-play" different PDEs within Albany
 - Ability to use **block preconditioners** (Teko*)
- Add support for **mixed finite elements**
 - > Can be accomplished via incorporation of **Panzer** and **DOFManager**.

Work in progress

Application-driven development:

Land-ice:

- Improved basal hydrology models for land-ice.
- Level set formulation to track better the calving.
- Uncertainty quantification (Bayesian inference, forward propagation).
- Seeking funding for developing solid-mechanics-based ice fracture/ calving models for improved ice sheet models.

LCM:

- Modeling of structural components in hypersonic vehicles with large mechanical and thermal loads (USC).
- Enhancement of subtractive manufacturing capabilities in Albany (RPI).
 ATO:
 - Meshless topology optimization using Albany-PLATO.

Much more...!

