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AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new 
production codes embedded with transformational capabilities.

• Technical strategy: projects create, use, and improve a common base 
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific 
Application Development” (right).
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What is Albany?  (high-level description) 

Albany: open-source*, parallel, C++, unstructured-grid, mostly-implicit multi-
physics finite element code that demonstrates AgileComponents vision.

* Albany github repo: https://github.com/SNLComputation/Albany.

Albany houses a variety of diverse algorithmic projects and applications:

Ice sheets Quantum devices Computational mechanics

Additive manufacturing Arctic costal erosion



What is Albany?  (high-level description) 

* Italicized capabilities are in feature branches/tags.

Ice sheets Quantum devices Computational mechanics

Additive manufacturing
Arctic costal erosion

Distinguishing features of Albany:

➢ Funded entirely by applications residing within.

➢ Both a “sand-box” for prototyping new approaches and a production code.

➢ Algorithms/software are developed/matured directly on applications.

➢ Applications are “born” scalable, fast, robust, and...

➢ Equipped with embedded advanced analysis capabilities: sensitivities, 
bifurcation analysis, adjoint-based inversion, embedded UQ*, model reduction*.



The components effort: libraries & tools

: 40+ packages; 120+ libraries

* Trilinos github repo: https://github.com/trilinos/Trilinos.

Components in Albany = cutting-edge technology from Trilinos, SCOREC, 
SierraToolKit, DAKOTA, FASTMath, QUEST, Kitware, etc.

Many components are Trilinos* packages: 

➢ Distributed linear algebra (Tpetra)

➢ Mesh tools (STK)

➢ Discretization tools (Intrepid2)

➢ Nonlinear solver (NOX)

➢ Linear solver (Belos)

➢ Preconditioners (Ifpack2)

➢ Automatic differentiation (Sacado)

➢ Shared memory parallelism (Kokkos)

➢ Optimization (ROL)

➢ Many more… 



What is Albany? (under-the-hood)
Albany = Component Libraries + Abstract Interfaces + “Glue Code”
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“Glue Code” connects 
together interfaces or 

instances of components
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Global discretization abstraction & libraries
Discretization interface: currently has two independent implementations

1. SierraToolKit (STK) package in Trilinos.

• Supports reading in Exodus mesh files (e.g., from CUBIT), inline               
meshing via Pamgen, simple rectangular meshes constructed in Albany.

• Meshes can be structured/unstructured but are static.

2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the      
Scientific Computation Research Center (SCOREC) at RPI.

• Supports VTK mesh files (generated by Symmetrix).

• Goal-oriented generalized error estimation and in-memory mesh adaptation. 

S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012. 



Element types: variety of element types supported, with basis 
functions/quadrature routines from Intrepid2 Trilinos library:

• Isoparametric elements (tet, hex, wedge, …).

• 2D spectral elements of arbitrary orders.

• Some physics-specific elements, e.g., composite                           
10-node tetrahedron for solid mechanics.
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Global discretization abstraction & libraries
Discretization interface: currently has two independent implementations

1. SierraToolKit (STK) package in Trilinos.

• Supports reading in Exodus mesh files (e.g., from CUBIT), inline               
meshing via Pamgen, simple rectangular meshes constructed in Albany.

• Meshes can be structured/unstructured but are static.

2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the      
Scientific Computation Research Center (SCOREC) at RPI.

• Supports VTK mesh files (generated by Symmetrix).

• Goal-oriented generalized error estimation and in-memory mesh adaptation. 

S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012. 

Albany is a Continuous Galerkin (CG) unstructured grid finite element code.
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Purpose of problem abstraction & FEA: given a 
mesh, evaluate discrete FE residual and Jacobian

→ involves three key ingredients…

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

2.



1. Templated-based automatic differentiation

• Template equation implementation on scalar type.

• Libraries (Sacado) provides new scalar types that 
overload the math operators to propagate 
embedded quantities via chain rule.

➢ Derivatives: DFad<double>

➢ Hessians: DFad<SFad<double,N>>

➢ Stochastic Galerkin resid: PCE<double>

➢ Stochastic Galerkin Jac: DFad<PCE<double>

➢ Sensitivities: DFad<double>

Automatic differentiation (AD) provides 
exact derivatives without time/effort of 

deriving and hand-coding them.

No finite difference truncation error!

Operation Overloaded AD impl

𝑐 = 𝑎 ± 𝑏 ሶ𝑐 = ሶ𝑎 ± ሶ𝑏

𝑐 = 𝑎𝑏 ሶ𝑐 = 𝑎 ሶ𝑏 + ሶ𝑎𝑏

𝑐 = 𝑎/𝑏 ሶ𝑐 = ( ሶ𝑎 − 𝑐 ሶ𝑏)/𝑏

𝑐 = 𝑎𝑟 ሶ𝑐 = 𝑟𝑎𝑟−1 ሶ𝑎

𝑐 = sin(𝑎) ሶ𝑐 = cos(𝑎) ሶ𝑎

𝑐 = cos(𝑎) ሶ𝑐 = −sin(𝑎) ሶ𝑎

𝑐 = exp(𝑎) ሶ𝑐 = 𝑐 ሶ𝑎

𝑐 = log(𝑎) ሶ𝑐 = ሶ𝑎/𝑎

double DFad<double>

E. Phipps et. al. Efficient expression templates for operator overloading-based AD, LNCSE, 309–319, 2012.

• Great for multi-physics codes (e.g., many 
Jacobians) and advanced analysis (e.g., 
sensitivities, optimization)



2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Scatter Residual

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis 
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage 

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):
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R. Pawlowski et. al. Sci. Program., 2012.
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→ Global, linear algebra storage
→ Local, element storage 

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Employs AD 
overloads 
(Sacado, 
Stokhos)

Albany Finite Element Assembly (FEA):

Enables advanced analyses 
(sensitivities, optimization, …)



3. Graph-based finite element assembly (FEA)

Assembly of physics pieces 
comes down to the evaluation

of a directed acyclic graph (DAG) 
of computations of field data.

Phalanx package:  Local field evaluation kernel 
designed for assembly of arbitrary equation 

sets (i.e. evaluating residuals/Jacobians). 

• Decomposes a complex model into a 
graph of simple kernels (functors)

• A node in the graph evaluates one or more 
temporary fields

• Runtime DAG construction of graph

• Achieves flexible multi-physics assembly

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.
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Assembly of physics pieces 
comes down to the evaluation

of a directed acyclic graph (DAG) 
of computations of field data.

Phalanx package:  Local field evaluation kernel 
designed for assembly of arbitrary equation 

sets (i.e. evaluating residuals/Jacobians). 

• Decomposes a complex model into a 
graph of simple kernels (functors)

• A node in the graph evaluates one or more 
temporary fields

• Runtime DAG construction of graph

• Achieves flexible multi-physics assembly

DAG-based assembly enables flexibility, extensibility, rapid development:   
to add new PDE, all you need to code is problem-specific residual 𝑅𝑢

𝑖 !

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.
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physics pieces are required to 
satisfy nonlinear model abstraction

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

3.



Nonlinear model abstraction & libraries

• Interface is general to accommodate computation of Jacobians, user-defined 
preconditioners, and stochastic Galerkin expansions.

• Enables “beyond-forward analysis”: analysts/physics experts are not burdened with 
analysis algorithm requirements, i.e., programming sensitivities for implicit solvers, 
optimization, stability, bifurcation analysis.

➢ Advanced capabilities: optimization (ROL), homotopy continuation (LOCA), 
embedded UQ (Stokhos).

“ModelEvaluator”:

Given: Computes:

𝑥 𝑓( ሶ𝑥, ሷ𝑥, 𝑥, 𝑝, 𝑡)

ሶ𝑥 𝑊 = 𝛼
𝑑𝑓

𝑑 ሶ𝑥
+ 𝛽

𝑑𝑓

𝑑𝑥
+𝜔

𝑑𝑓

ሷ𝑑𝑥
, 𝑊𝑝𝑟𝑒𝑐

ሷ𝑥 𝑑𝑓

𝑑𝑝

𝑝 𝑔

𝑡 𝑑𝑔

𝑑𝑥
, 
𝑑𝑔

𝑑𝑝

𝑓 = residual; 𝑥 = solution; 𝑝 = params; 
𝑔 = responses; 𝑡 = time; 

𝑊 = Jacobian; 𝑊𝑝𝑟𝑒𝑐= Preconditioner

Analysis Tools 
(embedded)

Solvers
Access to Trilinos

embedded solvers 
requires satisfaction of 

ModelEvaluator
(nonlinear model) 

abstraction.

Nonlinear solver

Time integration

Continuation

Sensitivity analysis

Stability analysis

Optimization

UQ solver
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Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany 
Code

PDE terms, BCs, 
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

nonlinear solver invokes 
linear solver when needed

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

4.



Linear solver abstraction & libraries

• Linear solver abstraction provides full access to all Trilinos linear solvers (direct and 
iterative), eigensolvers and preconditioners through Stratimikos interface. 

• Factory class supports run-time solution configuration through input file options.

• Available direct solvers: Amesos, Amesos2 (UMFPACK, MUMPS, SuperLU, SCALAPACK, etc.).

• Available iterative solvers: AztecOO, Belos (CG, GMRES)

• Available preconditioners: Ifpack, Ifpack2 (ILU); ML, MueLu (AMG); Teko (block)

• Eigensolvers: Anasazi 

Linear Algebra

Linear Solvers

Given:
• Matrix operator (𝑨)
• RHS vector (𝒃)
• Matrix entries (optional)
• Parameter/options list 

➢ Tolerance
Compute:
• Solution (𝒙, with 𝑨𝒙 = 𝒃)
• Eigenvalues/vectors

Linear Solver

Belos

Amesos2

Ifpack2

Teko

Stratimikos
Linear Solver and 

Preconditioner Wrappers

…
…

Data structures

Iterative solvers

Direct solvers

Eigen-solver

Preconditioners

Multi-level methods



Software quality tools & processes

Performance monitored via 
CDash nightly testing on a 

variety of architecture including 
GPU (P100, V100), Xeon Phi, 

Skylake, ARM platforms.

Repository*

Version control

Build system

Config mgmt

Regression tests

Nightly test harness

Unit tests

Verification tests

Code coverage

Performance tests

Mailing lists

Issue tracking

Web pages

Licensing

Release process

* Albany github repo: https://github.com/SNLComputation/Albany.



Software quality tools & processes

Slowdown 
identified by 
nightly CDash

testing!

Performance monitored via 
CDash nightly testing on a 

variety of architecture including 
GPU (P100, V100), Xeon Phi, 

Skylake, ARM platforms.

Repository*

Version control

Build system

Config mgmt

Regression tests

Nightly test harness

Unit tests

Verification tests

Code coverage

Performance tests

Mailing lists

Issue tracking

Web pages

Licensing

Release process

* Albany github repo: https://github.com/SNLComputation/Albany.



Applications hosted by Albany

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran).
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Albany enabled the rapid development of a production land-ice dycore
for providing actionable predictions of 21st century sea-level rise as a 

part of the DOE Energy Exascale Earth System Model (E3SM).

Capabilities:

• Unstructured grid finite elements.

• Scalable, fast and robust

• Verified and validated

• Advanced analysis: inversion, UQ

• Portable to GPU, KNL, … via Kokkos

• Multi-physics: velocity-temperature, 
velocity-thickness, velocity-hydrology

Ice sheets: Albany Land-Ice (ALI)

I. Tezaur, et. al. GMD. (2015).

Above: Thwaites glacier retreat under 
parametrized submarine melting



• “Sand-box” for new algorithms/methods:

➢ Composite 10-node tetrahedron

➢ Pressure projection stabilization

➢ Multi-scale coupling via Schwarz

➢ In-memory mesh adaptation

• Models: elasticity, Neohookean, J2 plasticity,   
crystal plasticity, elasto-visco-plastic, …

• Physics (PDEs): elasticity, mechanics,                    
electro-mechanics, thermo-mechanics,                 
thermo-poro-mechanics, …

• Fracture and damage simulation capabilities

Laboratory for computational mechanics (LCM)
The Albany LCM suite contains sophisticated material 
models, physics and technologies for solid mechanics.

Multi-physics: thermo-mechanical  
response of heated (pressurized) can

Multi-scale: tensile specimen with 
micro-structure in the middle



Arctic Coastal Erosion (ACE)
Mechanistic modeling within Albany is advancing state-of-

the-art coastal erosion/permafrost modeling.

Permafrost modeling background:

• Predominant geomorphology is ice-
wedge polygons (right). 

• State-of-the-art erosion modeling:     
trend projection, empirical relation-
ships, 1D steady-state heat flow, …

Albany modeling of degradation:

• Leverages years of LCM R&D. 

• Time-varying input variables over        
the duration of a storm (water level, 
temperature, salinity)

• Multi-physics FEM model of coastline: finite 
deformation plasticity model + 3D unsteady thermal 
flow + chemical characteristics

➢ Failure modes develop from constitutive 
relationships (no empirical model!)



Algorithmic projects hosted by Albany

Algorithms and software are matured directly on applications.

Algorithmic projects within Albany:

➢ Scalable multi-level solvers (PISCEES/ProSPect) – R. Tuminaro,  I. Tezaur.

➢ Nonlinear solvers (FASTMath) – R. Pawlowski, M. Perego

➢ In-memory mesh adaptation (FASTMath) – M. Sheppard, M. Bloomfield (RPI), A. Oberai, J. 
Smith (USC), D. Ibanez, B. Granzow, G. Hansen

➢ Multi-scale coupling via Schwarz (P&EM) – A. Mota, I. Tezaur, C. Alleman, G. Phlipot 
(CalTech)

➢ Stabilized mechanics (FASTMath) – A. Bradley, J. Ostien, G. Hansen

➢ Adjoint-based inversion (FASTMath) – M. Perego, E. Phipps, ROL team

➢ Optimization-based coupling (ASCR) – M. Perego, M. D’Elia, D. Littlewood, P. Bochev

➢ UQ workflow (PISCEES) – J. Jakeman, I. Tezaur, M. Perego

➢ Embedded UQ (Equinox) – E.   Phipps, J. Fike

➢ Performance portable FEM (PISCEES/ProSPect/ATDM) – I. Demeshko (LANL), E. Phipps, R. 
Pawlowski, E. Cyr, I. Tezaur, A. Bradley, J. Watkins

➢ Development of composite tet-10 for solid mechanics (PE&M) – J. Foulk, J. Ostien, A. Mota
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Adjoint-based optimization/inversion
AD & TBGP in Albany enabled the efficient solution of adjoint-

based PDE-constrained optimization/inversion problems.

M. Perego et. al.  J. Geophys. Res. 2014. 

𝛽 (kPa y/m) obtained 
through inversion

𝒖 (m/yr) computed 
with estimated 𝛽

𝒖 (m/yr) for observed 
surface velocity

Application: inversion for basal friction and ice thickness in Albany Land-Ice 
model to initialize dynamic simulation.

➢ Inversion approach significantly reduces non-physical transients.

Inversion problem solved 
robustly for O(100K) 

parameters!



Multi-scale coupling via Schwarz

• Targeted application: failure of bolted components.

• “Plug-and-play” framework: simplifies meshing complex geometries! 

➢ Couple regions with different non-conformal meshes, element 
types, levels of refinement, solvers/time-integrators.

A domain decomposition alternating-Schwarz-based method has been 
developed in Albany for concurrent multi-scale coupling in solid mechanics*.

Schwarz coupling:       
hex + composite tet 10

* See talk by A. Mota: MS 350, Fri. Mar. 1, 10:10-10:30AM, Room 302B



In-memory mesh adaptation

➢ Automated parallel goal-oriented adaptive simulation

• Use adjoint solution to drive mesh adaptation

• ~100× DoF-efficiency observed

• Scaling out to at least 8K MPI ranks

• Performance portable via Kokkos

* Scientific Computation Research Center at RPI (Mark Shephard et al.)

Some applications: 

➢ 3D manufacturing (right)

➢ Creep/plasticity in large 
solder joint arrays

➢ Coupled dislocation 
dynamics

Uniform 
refinement

Goal-oriented 
adaptation

Er
ro

r

Degrees of Freedom

Additive manufacturing simulation showing 
temperature in evolving geometry 

Collaboration with SCOREC*: development of mesh adaptation capabilities
in Albany to enable multi-scale/multi-physics adaptive simulation

Some applications: 

➢ 3D manufacturing (right)

➢ Creep/plasticity in large 
solder joint arrays

➢ Coupled dislocation 
dynamics



Coupling with other codes

➢ Albany-Peridigm: local-nonlocal coupling of                                                                
continuum mechanics + peridynamics

➢ Albany-ParaDis: coupled dislocation dynamics

➢ Albany-PLATO: Advanced Topology Optimization (ATO)

➢ MPAS-Albany-Land-Ice (MALI): ice sheets/coupling to E3SM

➢ CISM-Albany-Land-Ice (CALI): ice sheets/coupling to CESM

➢ Albany-PFLOTRAN (Albotran): coupled geomechanics problems

Albany has been interfaced/coupled with a number of other codes.

External Code     
(C++ or Fortran)

C++/Fortran 
Interface

MPAS-Albany (MALI) Albany-Peridigm Albany-PLATO (ATO)

Albany-ParaDis



Summary
Albany: open-source, parallel, C++, unstructured-grid, mostly-implicit multi-
physics finite element code that demonstrates AgileComponents vision and 

can enable rapid development of new physics/algorithms.

Github: https://github.com/SNLComputation/Albany

Paper: A. Salinger et al.  "Albany: Using Agile Components to Develop a Flexible, Generic 
Multiphysics Analysis Code", IJMCE 14(4) (2016) 415-438.

Albany User Meeting (AUM): every ~2 years (TBD)

Ice sheets Quantum devices Computational mechanics

Additive manufacturing Arctic costal erosion



Summary
Albany: open-source, parallel, C++, unstructured-grid, mostly-implicit multi-
physics finite element code that demonstrates AgileComponents vision and 

can enable rapid development of new physics/algorithms.

Ice sheets Quantum devices Computational mechanics

Additive manufacturing Arctic costal erosion

Github: https://github.com/SNLComputation/Albany

Paper: A. Salinger et al.  "Albany: Using Agile Components to Develop a Flexible, Generic 
Multiphysics Analysis Code", IJMCE 14(4) (2016) 415-438.

Albany User Meeting (AUM): every ~2 years (TBD)

Thank you!  Questions?
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: a component-based finite element code

• Started by A. Salinger in 2008 as first DemoApp for AgileComponents code 
development strategy.

• During next 10 years, Albany became:

• a friendly early adopter of cutting-edge technology from Trilinos, SCOREC, 
SierraToolKit, DAKOTA, FASTMath, QUEST, Kitware.

• a model for a Trilinos-based and Office of Science application.

• a demonstration of transformational analysis spanning template-based 
generic programming to optimization and UQ

• 11 years later, Albany is: 

• an open-source parallel, mostly-implicit unstructured-grid multi-physics 
finite element code that demonstrates the AgileComponents vision by 
using, maturing, and spinning-off reusable libraries/abstract interfaces.

• an attractive environment for the development of open-source 
application codes and research.

• a Meso-App for maturation of MPI+X programming model for next 
generation architecture

• the code base underlying a number of research projects and applications.

2019

2008
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Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities
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Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities

• Depends on discretization abstraction (serves as general interface to a mesh service)
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• Depends on discretization abstraction (serves as general interface to a mesh service)

• Employs evaluation engine to construct PDEs, BCs, and response calculations
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Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities

• Depends on discretization abstraction (serves as general interface to a mesh service)

• Employs evaluation engine to construct PDEs, BCs, and response calculations

• Uses physics pieces to satisfy nonlinear model abstraction (e.g., compute resid/Jac)
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Global discretization abstraction

• Mesh framework: defines geometry, element topologies, connectivities, boundary 
info, mesh-dependent fields.

• Global discretization abstraction: gives the finite element assembly process access 
to all of the data distribution information required by the linear algebra objects.

• Mesh info is contained in in-memory mesh database accessed through abstract 
global discretization interface class. 



Problem abstraction & finite element assembly

Purpose of problem abstraction & finite element assembly: given  
a finite element mesh, evaluate discrete finite element residual, 

Jacobian, and (if applicable) parameter derivatives.

3 key ingredients facilitating multi-
physics implementations in Albany:

1. Template-based generic 
programming (TBGP) 

2. Graph-based finite element 
assembly (FEA)

➢ Handled by Phalanx package

3. Templated-based automatic 
differentiation 

➢ Handled by Sacado package

FEM Assembly

Field Manager

Derivatives

PDE terms, BCs, 
responses

Discretization

Problem Definition

Shape Opt
PCE

Adjoint
Hessian

Tangent
Jacobian

Residual

Evaluators Templated 
on Evaluation Type:

<EvalT>

Template Specializations:

(Generic)



Automatic differentiation via Sacado

• How does AD work?  → freshman calculus!

• Computations are composition of 
simple operations (+, *, sin(), etc.)

• Derivatives computed line by line 
then combined via chain rule.

• Great for multi-physics codes (e.g., many 
Jacobians) and advanced analysis (e.g., 
sensitivities)

• Albany uses Trilinos package Sacado for AD

• AD accomplished via operator 
overloading + templating: 
floats/double data types replaced by 
AD types.

Automatic Differentiation (AD) provides exact 
derivatives w/o time/effort of deriving and 

hand-coding them! 

Automatic Differentiation Example:

Derivatives are as accurate as 
analytic computation – no finite 

difference truncation error!



Nonlinear model abstraction & libraries

• Access to the embedded solvers in Trilinos requires 
satisfaction of ModelEvaluator (nonlinear model) 
abstraction.

• Interface is general to accommodate computation of 
Jacobians, user-defined preconditioners, and 
stochastic Galerkin expansions.

• Advanced capabilities: embedded UQ (Stokhos), 
optimization (ROL), homotopy continuation (LOCA).

“ModelEvaluator” Abstraction:

Given: Computes:

𝑥 𝑓( ሶ𝑥, ሷ𝑥, 𝑥, 𝑝, 𝑡)

ሶ𝑥
𝑊 = 𝛼

𝑑𝑓

𝑑 ሶ𝑥
+ 𝛽

𝑑𝑓

𝑑𝑥
+ 𝜔

𝑑𝑓

ሷ𝑑𝑥

ሷ𝑥 𝑑𝑓

𝑑𝑝

𝑝 𝑔

𝑡 𝑑𝑔

𝑑𝑥

𝑑𝑓

𝑑𝑝

𝑓 = residual; 𝑥 = solution vec; 
𝑝 = parameters; 𝑔 = responses; 

𝑡 = time; 𝑊 = Jacobian



Core building blocks of Albany

➢ Component-based design.

➢ Template-based generic programming.

➢ Assembly/field evaluation via Phalanx.

➢ Automatic differentiation.

➢ Discretizations/meshes, mesh adaptivity.

➢ Solvers, time-integration schemes.

➢ Performance-portable kernels.

➢ Software quality tools: git cmake, ctest, CDash.



Phalanx package:  Local field evaluation kernel 
designed for assembly of arbitrary equation 

sets (i.e. evaluating residuals/Jacobians). 

Evaluator common to 
all FEAs

Template-specialized
evaluators

Problem-specific 
evaluator

DAG from Albany: 
Elasticity 

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

Assembly of physics pieces 
comes down to the evaluation

of a directed acyclic graph (DAG) 
of computations of field data.

Graph-based finite element assembly (FEA)



Phalanx package:  Local field evaluation kernel 
designed for assembly of arbitrary equation 

sets (i.e. evaluating residuals/Jacobians). 

Evaluator common to 
all FEAs

Template-specialized
evaluators

Problem-specific 
evaluator

To add new PDE, 
all you need to 

code is problem-
specific evaluator!

DAG from Albany: 
Elasticity 

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

Assembly of physics pieces 
comes down to the evaluation

of a directed acyclic graph (DAG) 
of computations of field data.

Graph-based finite element assembly (FEA)



Analysis tools abstraction & libraries

Optimization and UQ can be done through 
DAKOTA:

• Optimization algorithms: gradient-based 
local algorithms, pattern searches, and 
genetic algorithms, etc.

• UQ algorithms: Latin hypercube stochastic 
sampling, stochastic collocation, PCE, MCMC, 
etc. 

“Black box” analysis tools at top level 
of software stack can perform a single 

forward solve, sensitivity analysis, 
parameter studies, bifurcation 

analysis, optimization, and UQ runs.



Libraries/algorithms whose development was 
significantly aided by Albany

Libraries Matured in Albany:
➢ Tempus
➢ Phalanx
➢ STK
➢ ModelEvaluator
➢ Stratimikos
➢ TPetra
➢ PUMI
➢ ROL
➢ DTK
➢ Intrepid2/Kokkos
➢ DynRankView
➢ And counting…

Libraries Developed in Albany:
➢ Piro
➢ TriKota
➢ MiniTensor
➢ Razor (MOR)
➢ buildAgainstTrilinos

Libraries Driven by Albany:
➢ Stokhos Embedded UQ
➢ Semi-Coarsening AMG
➢ PAALS
➢ Advanced Topological Opt
➢ Embedded Ensembles
➢ CUBIT Mesh-Morpher



Quantum device modeling (QCAD)
Albany enabled the rapid stand-up of a world-class quantum device design tool. 
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1. Solid Model
2. GUI

QCAD = “Quantum 
Computer Aided Design”

• Application: quantum computing

• Objective: simulation/optimization of 
semiconductor quantum double dots

➢ Provide fast feedback on which 
device layouts are most likely to 
lead to few-electron behavior 

• Key to QCAD’s success: interfaces

➢ Various multi-physics couplings 
of Poisson + Schrodinger

➢ DAKOTA* for optimization.

• QCAD is used by experimentalist in 
Sandia’s world-class experimental 
facilities (CINT) as design tool for 
quantum device fabrication

➢ iQCAD: GUI for experimentalists
X. Gao, et al., J. Appl. Phys. 2013

* https://dakota.sandia.gov



Advanced Topology Optimization (ATO)

Goals:

➢ Qualification: assure quality
➢ Design:  effectively utilize AM

PDE-constrained optimization:

➢ Physics: elastostatics, Poisson
➢ Objectives: compliance, p-norm
➢ Constraints: volume/mass

Multiple simultaneous Albany runs can inform                     
a single design optimization by PLATO:

➢ Albany implements objective + gradient               
evaluation, optimization loop

➢ New “meshless” ATO capability: allows user                         
to include arbitrarily many simultaneous load                        
cases (linear thermal/electrical, mechanical)

Coupling of Albany code and PLATO* engine for 
optimization-based topology optimization.  

Powder bed fusion

Thermal 
Spray

Laser Engineered 
Net Shaping

Direct WriteRobocasting

Additive 
Manufacturing 
Processes

* Topology optimization-based design environment developed by SNL.



Advanced Topology Optimization (ATO)
Coupling of Albany code and PLATO* engine for 

optimization-based topology optimization.  

* PLAtform for Topology Optimization: topology optimization-based design environment developed by SNL.

Deflection: 2.5 mm

Deflection: 5.4 mm

Deflection: 6.0 mm

Right: cellular 
structures with 

optimized stiffness

Goals:

➢ Qualification: assure quality
➢ Design:  effectively utilize AM

PDE-constrained optimization:

➢ Physics: elastostatics, Poisson
➢ Objectives: compliance, p-norm
➢ Constraints: volume/mass

Multiple simultaneous Albany runs can inform                        
a single design optimization by PLATO:

➢ Albany implements objective + gradient                                
evaluation, optimization loop

➢ New “meshless” capability: geometry defined in constructive 
solid geometry (CSG) format and meshed inline
❖ Allows user to include arbitrarily many simultaneous 

load cases (linear thermal/electrical, mechanical, etc.)



Hoffman et al. (in prep.)

Above: ABUMIP-Antarctica experiment

Right: Thwaites glacier retreat under 
parametrized submarine melting.

Ice sheets: Albany Land-Ice (ALI)
Albany enabled the rapid development of a production land-ice dycore
for providing actionable predictions of 21st century sea-level rise as a 

part of the DOE Energy Exascale Earth System Model (E3SM).

I. Tezaur, et. al. GMD. (2015).



Multi-scale coupling via Schwarz

• Crux of Method: use solutions in simple domains to iteratively                
build a solution for the more complex domain.

• Targeted application: failure of bolted components.

• “Plug-and-play” framework: simplifies meshing complex geometries! 

➢ Couple regions with different non-conformal meshes, element 
types, levels of refinement, solvers/time-integrators.

Ω1

Ω0

+

https://github.com/ORNL-
CEES/DataTransferKit

A domain decomposition alternating-Schwarz-based method has been 
developed in Albany for concurrent multi-scale coupling in solid mechanics.



Multi-scale coupling via Schwarz

Single domain Schwarz coupling of hex (parts) + 
composite tet 10 (bolts) elements               
(J2 material model from LCM suite)

A. Mota et. al. "The Schwarz alternating method in solid mechanics", CMAME. 319 (2017), 19-51. 

A domain decomposition alternating-Schwarz-based method has been 
developed in Albany for concurrent multi-scale coupling in solid mechanics.

See talk by A. Mota: MS 350, Fri. Mar. 1, 
10:10-10:30AM, Room 302B

Future work: 
extend method 

for multi-physics 
coupling



Performance-portable FEM

Kokkos*: C++ library/programming model providing 
performance portability for applications

* Kokkos github repo: https://github.com/kokkos/Kokkos I. Demeshko et. al., 2018.

Talk by J. Watkins, 
MS 121, Tues. Feb. 26

• Algorithm is written once for 
multiple architectures

• Template parameters specify 
optimal data layout for a 
given architecture.



Performance-portable FEM

Kokkos*: C++ library/programming model providing 
performance portability for applications

* Kokkos github repo: https://github.com/kokkos/Kokkos I. Demeshko et. al., 2018.

Performance-portability of Albany FEA achieved using Kokkos; 
Albany usage has in turn led to Kokkos improvements
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Talk by J. Watkins, 
MS 121, Tues. Feb. 26

• Algorithm is written once for 
multiple architectures

• Template parameters specify 
optimal data layout for a 
given architecture.



In-memory mesh adaptation
Collaboration with SCOREC*: development of  

mesh adaptation capabilities in Albany to enable 
multi-scale/multi-physics adaptive simulation

PAALS (Parallel Albany Adaptive Loop with SCOREC)

➢ Fully-coupled in-memory adaptation, solution transfer.

➢ Parallel mesh infrastructure and services via PUMI.

➢ Dynamic load balancing  (ParMetis/Zoltan, ParMA).

➢ Automated parallel goal-oriented adaptive simulation

• Use adjoint solution to drive mesh adaptation

• ~100× DoF-efficiency observed

• Scaling out to at least 8K MPI ranks

➢ Performance portability to GPUs via Kokkos.

➢ Applications: 3D manufacturing, creep/plasticity in    
large solder joint arrays, coupled dislocation dynamics 
(Albany + ParaDis), …

* Scientific Computation Research Center at RPI (Mark Shephard et al.)

Uniform 
refinement

Goal-oriented 
adaptation

Er
ro

r

Degrees of Freedom

Error in von Mises stress



3D manufacturing 
Temperature

Shoulder from 
material boundary

* Maniatty, et al., Comp. Mech., 62:273, 2018.

Left: Additive 
manufacturing 

simulation 
showing 

temperature in 
evolving geometry 

• Additive & subtractive capabilities

• Employs advanced adaptive meshing and 
evolving geometries (using Symmetrix)

• Coupling with feedback control

Right: simulation of subtractive 
manufacturing with picosecond laser*



Albany-Peridigm

* Peridigm github repo: https://github.com/peridigm/peridigm.

Local-nonlocal coupling for integrated fracture modeling 
& multi-physics peridynamics simulations

• Peridynamics: nonlocal extension of continuum mechanics that remains valid at 
discontinuities/cracks

• Peridigm = open-source* peridynamics code

➢ Nonlocal meshfree approach (Silling et al., 2005).

• “Best of both worlds” by combining FEM + peridynamics: peridynamics applied in 
regions susceptible to material failure, easy delivery to applications via FEM.

• Optimization-based local-to-nonlocal coupling using ROL (D’Elia et al. 2016).



Albany-PFLOTRAN (Albotran) 

Albotran seeks to create a multi-physics geomechanical application that couples 
the flow response in PFLOTRAN with a mechanical response from Albany.

Right: Albotran consolidation problem results.  Porosities 
tracked independently in each code are identical

Balance of 
Linear 

Momentum

First Piola-
Kirchoff Stress

Biot
Coefficient

PFLOTRAN

Material 
Parameters

Deformation 
Gradients

Displacements

• Albany + PFLOTRAN coupling strategy can be viewed as hybrid of a 
fully-coupled implicit solver + more loosely coupled iterative-solvers

➢ Integrates extensive domain expertise (Albany/LCM) 

➢ Specialized solvers are not required for either code



Mesh adaptation applications 

Creep/Plasticity in Large Solder Joint Arrays*

• Strategic reliability process in semiconductor 
manufacturing

• Automated workflows with locally refined meshing

• Novel materials models

• Scaling out to 16K processors, 1B+ elements

Coupled Dislocation Dynamics

• Integrates Albany and ParaDis

• Computes dislocation dynamics (DD) in complex 
geometry

• Allows intersection of dislocations with free 
surfaces

• Left: prismatic dislocation loops in finite domain

* Li, et al. Comp. Mech., 62:323, 2018.  Bloomfield, et al. Eng. with Comp., 33: 509, 2017.



Infrastructure work:

• Refactor of code to use block data structures to facilitate multi-physics coupling

➢ “Plug-and-play” different PDEs within Albany 

➢ Ability to use block preconditioners (Teko*)

• Add support for mixed finite elements

➢ Can be accomplished via incorporation of Panzer and DOFManager.

Work in progress

Performance portability:

➢ Code optimizations for finite element assembly

➢ Performance portable solvers [WIP by Trilinos team]

* E. Cyr et. al. SIAM J. Sci. Comput. 2016.



Application-driven development:

Land-ice: 

➢ Improved basal hydrology models for land-ice. 

➢ Level set formulation to track better the calving.

➢ Uncertainty quantification (Bayesian inference, forward propagation).

➢ Seeking funding for developing solid-mechanics-based ice fracture/   
calving models for improved ice sheet models.

LCM: 

➢ Modeling of structural components in hypersonic vehicles with large 
mechanical and thermal loads (USC).

➢ Enhancement of subtractive manufacturing capabilities in Albany (RPI).

ATO: 

➢ Meshless topology optimization using Albany-PLATO.

Much more…!

Work in progress


