
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5141 C

Albany: a Trilinos-based multi-physics partial differential equation research tool
created using the AgileComponents code development strategy

Irina Tezaur

Quantitative Modeling & Analysis Dept., Sandia National Laboratories, Livermore, CA.

SIAM CSE 2019 Spokane, WA Feb. 25 - Mar. 1 2019
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-1842 C

Acknowledgements
“Father” of Albany, early advocate for AgileComponents strategy:
• Andy Salinger [SNL]

Albany contributors (58, from github):

• I. Tezaur [SNL]
• A. Mota [SNL]
• D. Ibanez [RPI/SNL]
• G. Hansen [SNL]
• M. Perego [FSU/SNL]
• L. Bertagna [FSU/SNL]
• A. Bradley [SNL]
• J. Ostien [SNL]
• B. Granzow [RPI/SNL]
• A. Salinger [SNL]
• D. Littlewood [SNL]
• J. Foulk [SNL]
• C. Alleman [SNL]
• J. Overfelt [SNL]
• E. Nielsen [SNL]
• I. Demeshko [LANL]
• O. Guba [SNL]
• M. Juha [U de La Sabana]

• E. Phipps [SNL]
• J. Frederick [SNL]
• J. Watkins [SNL]
• J. Robbins [SNL]
• T. Smith [SNL]
• R. Jones [SNL]
• B. Spotz [SNL]
• S. Besu [RPI]
• J. Foucar [SNL]
• Q. Chen [Clemson]
• P. Lindsay [SNL]
• J. Fike [SNL]
• S. Gao [SNL]
• J. Redhorse [SNL]
• S. Bova [SNL]
• P. Bosler [SNL]
• H. Yuan [Tokyo]
• C. Siefert [SNL]

• T. Voth [SNL]
• T. Wildey [SNL]
• C. Smith [RPI]
• J. Clough [USC]
• W. Sun [Columbia]
• Z. Wang [USC]
• T. Fuller [SNL]
• A. Vacanti [Kitware]
• R. Tuminaro [SNL]
• M. Parks [SNL]
• J. Robbins [SNL]
• M. Hoffman [LANL]
• R. Pawlowski [SNL]
• M. Bloomfield [RPI]
• G. Phlipot [CalTech]
• B. Perschbacher [SNL]
• J. Willenbring [SNL]
• …

1. AgileComponents code-development strategy

2. What is Albany?

3. Albany code design

• Global discretization & libraries

• Problem abstraction & finite element assembly

• Nonlinear model abstraction & libraries

• Linear model abstraction & libraries

• Software quality tools

4. Applications hosted by Albany

5. Algorithmic projects hosted by Albany

6. Coupling with other codes

7. Summary

Outline

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

• Business strategy:

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

• Business strategy:

Base of Software Components

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

• Business strategy:

Base of Software Components Projects

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

• Business strategy:

Base of Software Components Projects

Leverage the base →

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

• Business strategy:

Base of Software Components Projects

Leverage the base →

← Grow the base

• Technical strategy: projects create, use, and improve a common base
of modular, independent-yet-interoperable, software components

➢ 2012 white paper by A. Salinger: “Component-Based Scientific
Application Development” (right).

AgileComponents: a PDE code strategy

Strategic Goal: To enable the rapid development of new
production codes embedded with transformational capabilities.

“Components” = R Libraries R Software Quality Tools

R Interfaces R Demonstration Applications

2008

What is Albany? (high-level description)

What is Albany? (high-level description)

Albany: open-source*, parallel, C++, unstructured-grid, mostly-implicit multi-
physics finite element code that demonstrates AgileComponents vision.

* Albany github repo: https://github.com/SNLComputation/Albany.

Albany houses a variety of diverse algorithmic projects and applications:

Ice sheets Quantum devices Computational mechanics

Additive manufacturing Arctic costal erosion

What is Albany? (high-level description)

* Italicized capabilities are in feature branches/tags.

Ice sheets Quantum devices Computational mechanics

Additive manufacturing
Arctic costal erosion

Distinguishing features of Albany:

➢ Funded entirely by applications residing within.

➢ Both a “sand-box” for prototyping new approaches and a production code.

➢ Algorithms/software are developed/matured directly on applications.

➢ Applications are “born” scalable, fast, robust, and...

➢ Equipped with embedded advanced analysis capabilities: sensitivities,
bifurcation analysis, adjoint-based inversion, embedded UQ*, model reduction*.

The components effort: libraries & tools

: 40+ packages; 120+ libraries

* Trilinos github repo: https://github.com/trilinos/Trilinos.

Components in Albany = cutting-edge technology from Trilinos, SCOREC,
SierraToolKit, DAKOTA, FASTMath, QUEST, Kitware, etc.

Many components are Trilinos* packages:

➢ Distributed linear algebra (Tpetra)

➢ Mesh tools (STK)

➢ Discretization tools (Intrepid2)

➢ Nonlinear solver (NOX)

➢ Linear solver (Belos)

➢ Preconditioners (Ifpack2)

➢ Automatic differentiation (Sacado)

➢ Shared memory parallelism (Kokkos)

➢ Optimization (ROL)

➢ Many more…

What is Albany? (under-the-hood)
Albany = Component Libraries + Abstract Interfaces + “Glue Code”

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

“Glue Code” connects
together interfaces or

instances of components

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Global
Discretization

Mesh Tools

Mesh I/O

Mesh Database

Load Balancing

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

1.

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Global
Discretization

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

Mesh Tools

Mesh I/O

Mesh Database

Load Balancing

2.

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Global
Discretization

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

Mesh Tools

Mesh I/O

Mesh Database

Load Balancing

Solvers

Nonlinear
Model

Nonlinear

Transient

3.

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Global
Discretization

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

Mesh Tools

Mesh I/O

Mesh Database

Load Balancing

Solvers

Nonlinear
Model

Nonlinear

Transient

Linear Solvers

Iterative

Direct

Linear Solve4.

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Global
Discretization

Mesh Tools

Mesh I/O

Mesh Database

Load Balancingserves as general interface
to mesh tools/services

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

1.

Global discretization abstraction & libraries
Discretization interface: currently has two independent implementations

1. SierraToolKit (STK) package in Trilinos.

• Supports reading in Exodus mesh files (e.g., from CUBIT), inline
meshing via Pamgen, simple rectangular meshes constructed in Albany.

• Meshes can be structured/unstructured but are static.

2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the
Scientific Computation Research Center (SCOREC) at RPI.

• Supports VTK mesh files (generated by Symmetrix).

• Goal-oriented generalized error estimation and in-memory mesh adaptation.

S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012.

Element types: variety of element types supported, with basis
functions/quadrature routines from Intrepid2 Trilinos library:

• Isoparametric elements (tet, hex, wedge, …).

• 2D spectral elements of arbitrary orders.

• Some physics-specific elements, e.g., composite
10-node tetrahedron for solid mechanics.

Global discretization abstraction & libraries
Discretization interface: currently has two independent implementations

1. SierraToolKit (STK) package in Trilinos.

• Supports reading in Exodus mesh files (e.g., from CUBIT), inline
meshing via Pamgen, simple rectangular meshes constructed in Albany.

• Meshes can be structured/unstructured but are static.

2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the
Scientific Computation Research Center (SCOREC) at RPI.

• Supports VTK mesh files (generated by Symmetrix).

• Goal-oriented generalized error estimation and in-memory mesh adaptation.

S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012.

Element types: variety of element types supported, with basis
functions/quadrature routines from Intrepid2 Trilinos library:

• Isoparametric elements (tet, hex, wedge, …).

• 2D spectral elements of arbitrary orders.

• Some physics-specific elements, e.g., composite
10-node tetrahedron for solid mechanics.

Global discretization abstraction & libraries
Discretization interface: currently has two independent implementations

1. SierraToolKit (STK) package in Trilinos.

• Supports reading in Exodus mesh files (e.g., from CUBIT), inline
meshing via Pamgen, simple rectangular meshes constructed in Albany.

• Meshes can be structured/unstructured but are static.

2. Parallel Unstructured Mesh Infrastructure (PUMI) package, developed at the
Scientific Computation Research Center (SCOREC) at RPI.

• Supports VTK mesh files (generated by Symmetrix).

• Goal-oriented generalized error estimation and in-memory mesh adaptation.

S. Seol et. al. PUMI, High Performance Computing, Networking, Storage and Analysis (SCC), 2012.

Albany is a Continuous Galerkin (CG) unstructured grid finite element code.

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

Purpose of problem abstraction & FEA: given a
mesh, evaluate discrete FE residual and Jacobian

→ involves three key ingredients…

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

2.

1. Templated-based automatic differentiation

• Template equation implementation on scalar type.

• Libraries (Sacado) provides new scalar types that
overload the math operators to propagate
embedded quantities via chain rule.

➢ Derivatives: DFad<double>

➢ Hessians: DFad<SFad<double,N>>

➢ Stochastic Galerkin resid: PCE<double>

➢ Stochastic Galerkin Jac: DFad<PCE<double>

➢ Sensitivities: DFad<double>

Automatic differentiation (AD) provides
exact derivatives without time/effort of

deriving and hand-coding them.

No finite difference truncation error!

Operation Overloaded AD impl

𝑐 = 𝑎 ± 𝑏 ሶ𝑐 = ሶ𝑎 ± ሶ𝑏

𝑐 = 𝑎𝑏 ሶ𝑐 = 𝑎 ሶ𝑏 + ሶ𝑎𝑏

𝑐 = 𝑎/𝑏 ሶ𝑐 = (ሶ𝑎 − 𝑐 ሶ𝑏)/𝑏

𝑐 = 𝑎𝑟 ሶ𝑐 = 𝑟𝑎𝑟−1 ሶ𝑎

𝑐 = sin(𝑎) ሶ𝑐 = cos(𝑎) ሶ𝑎

𝑐 = cos(𝑎) ሶ𝑐 = −sin(𝑎) ሶ𝑎

𝑐 = exp(𝑎) ሶ𝑐 = 𝑐 ሶ𝑎

𝑐 = log(𝑎) ሶ𝑐 = ሶ𝑎/𝑎

double DFad<double>

E. Phipps et. al. Efficient expression templates for operator overloading-based AD, LNCSE, 309–319, 2012.

• Great for multi-physics codes (e.g., many
Jacobians) and advanced analysis (e.g.,
sensitivities, optimization)

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Scatter Residual

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Scatter Residual

Evaluators templated on
evaluation type:

<EvalT> (Generic)

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Scatter Residual

Residual

Evaluators templated on
evaluation type:

<EvalT>

Template Specializations:

(Generic)

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Scatter Residual

Jacobian
Residual

Evaluators templated on
evaluation type:

<EvalT>

Template Specializations:

(Generic)

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Shape Opt
PCE

Adjoint
Hessian

Scatter Residual

Tangent
Jacobian

Residual

Evaluators templated on
evaluation type:

<EvalT>

Template Specializations:

(Generic)

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Shape Opt
PCE

Adjoint
Hessian

Scatter Residual

Tangent
Jacobian

Residual

Evaluators templated on
evaluation type:

<EvalT>

Template Specializations:

(Generic)

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Albany Finite Element Assembly (FEA):

Enables advanced analyses
(sensitivities, optimization, …)

2. Template-based generic programming (TBGP)

R. Pawlowski et. al. Sci. Program., 2012.

Shape Opt
PCE

Adjoint
Hessian

Scatter Residual

Tangent
Jacobian

Residual

Evaluators templated on
evaluation type:

<EvalT>

Template Specializations:

(Generic)

Element Residual

Gather Solution

Gather Coordinates

Finite Element Basis
Functions, Transformations

PDE Terms Source Terms

→ Global, linear algebra storage
→ Local, element storage

➢ Gather Solution extracts values from global structures, puts in element local structures

➢ Evaluators operate on element local data structures

➢ Scatter adds local contributions to global structures

Employs AD
overloads
(Sacado,
Stokhos)

Albany Finite Element Assembly (FEA):

Enables advanced analyses
(sensitivities, optimization, …)

3. Graph-based finite element assembly (FEA)

Assembly of physics pieces
comes down to the evaluation

of a directed acyclic graph (DAG)
of computations of field data.

Phalanx package: Local field evaluation kernel
designed for assembly of arbitrary equation

sets (i.e. evaluating residuals/Jacobians).

• Decomposes a complex model into a
graph of simple kernels (functors)

• A node in the graph evaluates one or more
temporary fields

• Runtime DAG construction of graph

• Achieves flexible multi-physics assembly

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

3. Graph-based finite element assembly (FEA)

Assembly of physics pieces
comes down to the evaluation

of a directed acyclic graph (DAG)
of computations of field data.

Phalanx package: Local field evaluation kernel
designed for assembly of arbitrary equation

sets (i.e. evaluating residuals/Jacobians).

• Decomposes a complex model into a
graph of simple kernels (functors)

• A node in the graph evaluates one or more
temporary fields

• Runtime DAG construction of graph

• Achieves flexible multi-physics assembly

DAG-based assembly enables flexibility, extensibility, rapid development:
to add new PDE, all you need to code is problem-specific residual 𝑅𝑢

𝑖 !

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

physics pieces are required to
satisfy nonlinear model abstraction

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

3.

Nonlinear model abstraction & libraries

• Interface is general to accommodate computation of Jacobians, user-defined
preconditioners, and stochastic Galerkin expansions.

• Enables “beyond-forward analysis”: analysts/physics experts are not burdened with
analysis algorithm requirements, i.e., programming sensitivities for implicit solvers,
optimization, stability, bifurcation analysis.

➢ Advanced capabilities: optimization (ROL), homotopy continuation (LOCA),
embedded UQ (Stokhos).

“ModelEvaluator”:

Given: Computes:

𝑥 𝑓(ሶ𝑥, ሷ𝑥, 𝑥, 𝑝, 𝑡)

ሶ𝑥 𝑊 = 𝛼
𝑑𝑓

𝑑 ሶ𝑥
+ 𝛽

𝑑𝑓

𝑑𝑥
+𝜔

𝑑𝑓

ሷ𝑑𝑥
, 𝑊𝑝𝑟𝑒𝑐

ሷ𝑥 𝑑𝑓

𝑑𝑝

𝑝 𝑔

𝑡 𝑑𝑔

𝑑𝑥
,
𝑑𝑔

𝑑𝑝

𝑓 = residual; 𝑥 = solution; 𝑝 = params;
𝑔 = responses; 𝑡 = time;

𝑊 = Jacobian; 𝑊𝑝𝑟𝑒𝑐= Preconditioner

Analysis Tools
(embedded)

Solvers
Access to Trilinos

embedded solvers
requires satisfaction of

ModelEvaluator
(nonlinear model)

abstraction.

Nonlinear solver

Time integration

Continuation

Sensitivity analysis

Stability analysis

Optimization

UQ solver

What is Albany? (under-the-hood)

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Abstraction

Mesh
Processing

Legend:

nonlinear solver invokes
linear solver when needed

Albany = Component Libraries + Abstract Interfaces + “Glue Code”

4.

Linear solver abstraction & libraries

• Linear solver abstraction provides full access to all Trilinos linear solvers (direct and
iterative), eigensolvers and preconditioners through Stratimikos interface.

• Factory class supports run-time solution configuration through input file options.

• Available direct solvers: Amesos, Amesos2 (UMFPACK, MUMPS, SuperLU, SCALAPACK, etc.).

• Available iterative solvers: AztecOO, Belos (CG, GMRES)

• Available preconditioners: Ifpack, Ifpack2 (ILU); ML, MueLu (AMG); Teko (block)

• Eigensolvers: Anasazi

Linear Algebra

Linear Solvers

Given:
• Matrix operator (𝑨)
• RHS vector (𝒃)
• Matrix entries (optional)
• Parameter/options list

➢ Tolerance
Compute:
• Solution (𝒙, with 𝑨𝒙 = 𝒃)
• Eigenvalues/vectors

Linear Solver

Belos

Amesos2

Ifpack2

Teko

Stratimikos
Linear Solver and

Preconditioner Wrappers

…
…

Data structures

Iterative solvers

Direct solvers

Eigen-solver

Preconditioners

Multi-level methods

Software quality tools & processes

Performance monitored via
CDash nightly testing on a

variety of architecture including
GPU (P100, V100), Xeon Phi,

Skylake, ARM platforms.

Repository*

Version control

Build system

Config mgmt

Regression tests

Nightly test harness

Unit tests

Verification tests

Code coverage

Performance tests

Mailing lists

Issue tracking

Web pages

Licensing

Release process

* Albany github repo: https://github.com/SNLComputation/Albany.

Software quality tools & processes

Slowdown
identified by
nightly CDash

testing!

Performance monitored via
CDash nightly testing on a

variety of architecture including
GPU (P100, V100), Xeon Phi,

Skylake, ARM platforms.

Repository*

Version control

Build system

Config mgmt

Regression tests

Nightly test harness

Unit tests

Verification tests

Code coverage

Performance tests

Mailing lists

Issue tracking

Web pages

Licensing

Release process

* Albany github repo: https://github.com/SNLComputation/Albany.

Applications hosted by Albany

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran).

Applications hosted by Albany

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran).

Applications are “born”
scalable, fast, robust, and
equipped with advanced

analysis capabilities!

Applications hosted by Albany

➢ Quantum Devices (QCAD)

➢ Ice Sheets (Albany Land-Ice)

➢ Mechanics (LCM)

➢ Atmosphere Dynamics (Aeras)

➢ Particle-continuum coupling (Peridigm-LCM)

➢ Additive Manufacturing Design (ATO)

➢ Additive Manufacturing Processing (AMP)

➢ Arctic Coastal Erosion (ACE)

➢ Coupled Geomechanics (Albotran).

Applications are “born”
scalable, fast, robust, and
equipped with advanced

analysis capabilities!

Albany enabled the rapid development of a production land-ice dycore
for providing actionable predictions of 21st century sea-level rise as a

part of the DOE Energy Exascale Earth System Model (E3SM).

Capabilities:

• Unstructured grid finite elements.

• Scalable, fast and robust

• Verified and validated

• Advanced analysis: inversion, UQ

• Portable to GPU, KNL, … via Kokkos

• Multi-physics: velocity-temperature,
velocity-thickness, velocity-hydrology

Ice sheets: Albany Land-Ice (ALI)

I. Tezaur, et. al. GMD. (2015).

Above: Thwaites glacier retreat under
parametrized submarine melting

• “Sand-box” for new algorithms/methods:

➢ Composite 10-node tetrahedron

➢ Pressure projection stabilization

➢ Multi-scale coupling via Schwarz

➢ In-memory mesh adaptation

• Models: elasticity, Neohookean, J2 plasticity,
crystal plasticity, elasto-visco-plastic, …

• Physics (PDEs): elasticity, mechanics,
electro-mechanics, thermo-mechanics,
thermo-poro-mechanics, …

• Fracture and damage simulation capabilities

Laboratory for computational mechanics (LCM)
The Albany LCM suite contains sophisticated material
models, physics and technologies for solid mechanics.

Multi-physics: thermo-mechanical
response of heated (pressurized) can

Multi-scale: tensile specimen with
micro-structure in the middle

Arctic Coastal Erosion (ACE)
Mechanistic modeling within Albany is advancing state-of-

the-art coastal erosion/permafrost modeling.

Permafrost modeling background:

• Predominant geomorphology is ice-
wedge polygons (right).

• State-of-the-art erosion modeling:
trend projection, empirical relation-
ships, 1D steady-state heat flow, …

Albany modeling of degradation:

• Leverages years of LCM R&D.

• Time-varying input variables over
the duration of a storm (water level,
temperature, salinity)

• Multi-physics FEM model of coastline: finite
deformation plasticity model + 3D unsteady thermal
flow + chemical characteristics

➢ Failure modes develop from constitutive
relationships (no empirical model!)

Algorithmic projects hosted by Albany

Algorithms and software are matured directly on applications.

Algorithmic projects within Albany:

➢ Scalable multi-level solvers (PISCEES/ProSPect) – R. Tuminaro, I. Tezaur.

➢ Nonlinear solvers (FASTMath) – R. Pawlowski, M. Perego

➢ In-memory mesh adaptation (FASTMath) – M. Sheppard, M. Bloomfield (RPI), A. Oberai, J.
Smith (USC), D. Ibanez, B. Granzow, G. Hansen

➢ Multi-scale coupling via Schwarz (P&EM) – A. Mota, I. Tezaur, C. Alleman, G. Phlipot
(CalTech)

➢ Stabilized mechanics (FASTMath) – A. Bradley, J. Ostien, G. Hansen

➢ Adjoint-based inversion (FASTMath) – M. Perego, E. Phipps, ROL team

➢ Optimization-based coupling (ASCR) – M. Perego, M. D’Elia, D. Littlewood, P. Bochev

➢ UQ workflow (PISCEES) – J. Jakeman, I. Tezaur, M. Perego

➢ Embedded UQ (Equinox) – E. Phipps, J. Fike

➢ Performance portable FEM (PISCEES/ProSPect/ATDM) – I. Demeshko (LANL), E. Phipps, R.
Pawlowski, E. Cyr, I. Tezaur, A. Bradley, J. Watkins

➢ Development of composite tet-10 for solid mechanics (PE&M) – J. Foulk, J. Ostien, A. Mota

Algorithmic projects hosted by Albany

Algorithms and software are matured directly on applications.

Algorithmic projects within Albany:

➢ Scalable multi-level solvers (PISCEES/ProSPect) – R. Tuminaro, I. Tezaur.

➢ Nonlinear solvers (FASTMath) – R. Pawlowski, M. Perego

➢ In-memory mesh adaptation (FASTMath) – M. Sheppard, M. Bloomfield (RPI), A. Oberai, J.
Smith (USC), D. Ibanez, B. Granzow, G. Hansen

➢ Multi-scale coupling via Schwarz (P&EM) – A. Mota, I. Tezaur, C. Alleman, G. Phlipot
(CalTech)

➢ Stabilized mechanics (FASTMath) – A. Bradley, J. Ostien, G. Hansen

➢ Adjoint-based inversion (FASTMath) – M. Perego, E. Phipps, ROL team

➢ Optimization-based coupling (ASCR) – M. Perego, M. D’Elia, D. Littlewood, P. Bochev

➢ UQ workflow (PISCEES) – J. Jakeman, I. Tezaur, M. Perego

➢ Embedded UQ (Equinox) – E. Phipps, J. Fike

➢ Performance portable FEM (PISCEES/ProSPect/ATDM) – I. Demeshko (LANL), E. Phipps, R.
Pawlowski, E. Cyr, I. Tezaur, A. Bradley, J. Watkins

➢ Development of composite tet-10 for solid mechanics (PE&M) – J. Foulk, J. Ostien, A. Mota

Adjoint-based optimization/inversion
AD & TBGP in Albany enabled the efficient solution of adjoint-

based PDE-constrained optimization/inversion problems.

M. Perego et. al. J. Geophys. Res. 2014.

𝛽 (kPa y/m) obtained
through inversion

𝒖 (m/yr) computed
with estimated 𝛽

𝒖 (m/yr) for observed
surface velocity

Application: inversion for basal friction and ice thickness in Albany Land-Ice
model to initialize dynamic simulation.

➢ Inversion approach significantly reduces non-physical transients.

Inversion problem solved
robustly for O(100K)

parameters!

Multi-scale coupling via Schwarz

• Targeted application: failure of bolted components.

• “Plug-and-play” framework: simplifies meshing complex geometries!

➢ Couple regions with different non-conformal meshes, element
types, levels of refinement, solvers/time-integrators.

A domain decomposition alternating-Schwarz-based method has been
developed in Albany for concurrent multi-scale coupling in solid mechanics*.

Schwarz coupling:
hex + composite tet 10

* See talk by A. Mota: MS 350, Fri. Mar. 1, 10:10-10:30AM, Room 302B

In-memory mesh adaptation

➢ Automated parallel goal-oriented adaptive simulation

• Use adjoint solution to drive mesh adaptation

• ~100× DoF-efficiency observed

• Scaling out to at least 8K MPI ranks

• Performance portable via Kokkos

* Scientific Computation Research Center at RPI (Mark Shephard et al.)

Some applications:

➢ 3D manufacturing (right)

➢ Creep/plasticity in large
solder joint arrays

➢ Coupled dislocation
dynamics

Uniform
refinement

Goal-oriented
adaptation

Er
ro

r

Degrees of Freedom

Additive manufacturing simulation showing
temperature in evolving geometry

Collaboration with SCOREC*: development of mesh adaptation capabilities
in Albany to enable multi-scale/multi-physics adaptive simulation

Some applications:

➢ 3D manufacturing (right)

➢ Creep/plasticity in large
solder joint arrays

➢ Coupled dislocation
dynamics

Coupling with other codes

➢ Albany-Peridigm: local-nonlocal coupling of
continuum mechanics + peridynamics

➢ Albany-ParaDis: coupled dislocation dynamics

➢ Albany-PLATO: Advanced Topology Optimization (ATO)

➢ MPAS-Albany-Land-Ice (MALI): ice sheets/coupling to E3SM

➢ CISM-Albany-Land-Ice (CALI): ice sheets/coupling to CESM

➢ Albany-PFLOTRAN (Albotran): coupled geomechanics problems

Albany has been interfaced/coupled with a number of other codes.

External Code
(C++ or Fortran)

C++/Fortran
Interface

MPAS-Albany (MALI) Albany-Peridigm Albany-PLATO (ATO)

Albany-ParaDis

Summary
Albany: open-source, parallel, C++, unstructured-grid, mostly-implicit multi-
physics finite element code that demonstrates AgileComponents vision and

can enable rapid development of new physics/algorithms.

Github: https://github.com/SNLComputation/Albany

Paper: A. Salinger et al. "Albany: Using Agile Components to Develop a Flexible, Generic
Multiphysics Analysis Code", IJMCE 14(4) (2016) 415-438.

Albany User Meeting (AUM): every ~2 years (TBD)

Ice sheets Quantum devices Computational mechanics

Additive manufacturing Arctic costal erosion

Summary
Albany: open-source, parallel, C++, unstructured-grid, mostly-implicit multi-
physics finite element code that demonstrates AgileComponents vision and

can enable rapid development of new physics/algorithms.

Ice sheets Quantum devices Computational mechanics

Additive manufacturing Arctic costal erosion

Github: https://github.com/SNLComputation/Albany

Paper: A. Salinger et al. "Albany: Using Agile Components to Develop a Flexible, Generic
Multiphysics Analysis Code", IJMCE 14(4) (2016) 415-438.

Albany User Meeting (AUM): every ~2 years (TBD)

Thank you! Questions?

References
[1] A. Salinger et al. "Albany: Using Agile Components to Develop a Flexible, Generic
Multiphysics Analysis Code", Int. J. Multiscale Comput. Engng 14(4) (2016) 415-438.

[2] M. Heroux et al. An overview of the Trilinos project, ACM Trans. Math. Softw., vol. 31, no.
3, pp. 397–423, 2005.

[3] I. Tezaur, M. Perego, A. Salinger, R. Tuminaro, S. Price. "Albany/FELIX: A Parallel, Scalable
and Robust Finite Element Higher-Order Stokes Ice Sheet Solver Built for Advanced
Analysis", Geosci. Model Develop. 8 (2015) 1-24.

[4] M. Perego, S. Price, G. Stadler. “Optimal Initial Conditions for Coupling Ice Sheet Models
to Earth System Models”, J. Geophys. Res. 119 (2014) 1894-1917.

[5] I. Demeshko, J. Watkins, I. Tezaur, O. Guba, W. Spotz, A. Salinger, R. Pawlowski, M.
Heroux. "Towards performance-portability of the Albany finite element analysis code using
the Kokkos library", J. HPC Appl. (2018) 1-23.

[6] J. Watkins, I. Tezaur, I. Demeshko. "A study on the performance portability of the finite
element assembly process within the Albany land ice solver", Lecture Notes in
Computational Science and Engineering (accepted).

[7] A. Mota, I. Tezaur, C. Alleman. "The Schwarz alternating method in solid
mechanics", Comput. Meth. Appl. Mech. Engng. 319 (2017), 19-51.

[8] W. Spotz, et al., Aeras: A next generation global atmosphere model, Proc. Comput. Sci. 51
(2015) 2097–2106

References (cont’d)
[9] X. Gao, et al., Quantum computer aided design simulation and optimization of
semiconductor quantum dots, J. Appl. Phys. 114 (2013) 1–19.

[10] S. Slattery, P. Wilson, R. Pawlowski, The data transfer kit: a geometric rendezvous-based
tool for multiphysics data transfer, in: International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and Engineering, American Nuclear
Society, Sun Valley, ID, 2013,

[11] E. Cyr, J. Shadid, R. Tuminaro, Teko: A block preconditioning capability with concrete
example applications in Navier–Stokes and MHD, SIAM J. Sci. Comput. 38 (5) (2016) S307-331.

[12] J. Ostien, et al., A 10-node composite tetrahedral finite element for solid mechanics,
Internat. J. Numer. Methods Engrg. (ISSN: 1097-0207) 107 (2016) 1145–1170.

[13] R. Pawlowski, E. Phipps, A. Salinger, Automating embedded analysis capabilities and
managing software complexity in multiphysics simulation, Part I: Template-based generic
programming, Sci. Program., vol. 20, pp. 197–219, 2012a.

[14] E. Phipps, R. Pawlowski, Efficient expression templates for operator overloading-based
automatic differentiation, in Recent Advances in Algorithmic Differentiation, S. Forth, P.
Hovland, E. Phipps, J. Utke, A. Walther, Eds., Lecture Notes in Computer Science, Springer, pp.
309–319, 2012.

[15] P. Bochev, H. Edwards, R. Kirby, K. Peterson, D. Ridzal, Solving PDEs with Intrepid, Sci.
Program., vol. 20, no. 2, pp. 151–180, 2012.

References (cont’d)
[16] S. Seol, C. Smith, D. Ibanez, M. Shephard, A parallel unstructured mesh infrastructure,
High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion,
pp. 1124–1132, doi: 10.1109/SC.Companion.2012.135, 2012.

[17] H. Edwards, A. Williams, G. Sjaardema, D. Baur, W. Cochran, SIERRA toolkit
computational mesh conceptual model. Tech. Rep. SAND2010-1192, Sandia National
Laboratories, 2010.

Backup Slides

: a component-based finite element code

• Started by A. Salinger in 2008 as first DemoApp for AgileComponents code
development strategy.

• During next 10 years, Albany became:

• a friendly early adopter of cutting-edge technology from Trilinos, SCOREC,
SierraToolKit, DAKOTA, FASTMath, QUEST, Kitware.

• a model for a Trilinos-based and Office of Science application.

• a demonstration of transformational analysis spanning template-based
generic programming to optimization and UQ

• 11 years later, Albany is:

• an open-source parallel, mostly-implicit unstructured-grid multi-physics
finite element code that demonstrates the AgileComponents vision by
using, maturing, and spinning-off reusable libraries/abstract interfaces.

• an attractive environment for the development of open-source
application codes and research.

• a Meso-App for maturation of MPI+X programming model for next
generation architecture

• the code base underlying a number of research projects and applications.

2019

2008

FEM Assembly
Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Definition

Mesh
Processing

Legend:

Albany code design

FEM Assembly

Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Definition

Mesh
Processing

Legend:

Albany code design

Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities

FEM Assembly

Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Definition

Mesh
Processing

Legend:

Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities

• Depends on discretization abstraction (serves as general interface to a mesh service)

FEM Assembly

Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Definition

Mesh
Processing

Legend:

Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities

• Depends on discretization abstraction (serves as general interface to a mesh service)

• Employs evaluation engine to construct PDEs, BCs, and response calculations

FEM Assembly

Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Definition

Mesh
Processing

Legend:

Albany “glue code”
“Glue Code”: driver code integrating components + providing overall capabilities

• Depends on discretization abstraction (serves as general interface to a mesh service)

• Employs evaluation engine to construct PDEs, BCs, and response calculations

• Uses physics pieces to satisfy nonlinear model abstraction (e.g., compute resid/Jac)

FEM Assembly

Linear Solvers

Analysis Tools
Main

Solvers

Field Manager

Derivatives

Albany Glue Code

Nonlinear
Model

Nonlinear

Transient

Optimization

UQ

Iterative

Direct

Mesh Tools

Mesh I/O

Mesh Database
Global

Discretization

Evaluation Engine

Application

Linear Solve

Load Balancing

Input Parser

Libraries

Interfaces

Albany
Code

PDE terms, BCs,
responses

Discretization

Problem Definition

Mesh
Processing

Legend:

Global discretization abstraction

• Mesh framework: defines geometry, element topologies, connectivities, boundary
info, mesh-dependent fields.

• Global discretization abstraction: gives the finite element assembly process access
to all of the data distribution information required by the linear algebra objects.

• Mesh info is contained in in-memory mesh database accessed through abstract
global discretization interface class.

Problem abstraction & finite element assembly

Purpose of problem abstraction & finite element assembly: given
a finite element mesh, evaluate discrete finite element residual,

Jacobian, and (if applicable) parameter derivatives.

3 key ingredients facilitating multi-
physics implementations in Albany:

1. Template-based generic
programming (TBGP)

2. Graph-based finite element
assembly (FEA)

➢ Handled by Phalanx package

3. Templated-based automatic
differentiation

➢ Handled by Sacado package

FEM Assembly

Field Manager

Derivatives

PDE terms, BCs,
responses

Discretization

Problem Definition

Shape Opt
PCE

Adjoint
Hessian

Tangent
Jacobian

Residual

Evaluators Templated
on Evaluation Type:

<EvalT>

Template Specializations:

(Generic)

Automatic differentiation via Sacado

• How does AD work? → freshman calculus!

• Computations are composition of
simple operations (+, *, sin(), etc.)

• Derivatives computed line by line
then combined via chain rule.

• Great for multi-physics codes (e.g., many
Jacobians) and advanced analysis (e.g.,
sensitivities)

• Albany uses Trilinos package Sacado for AD

• AD accomplished via operator
overloading + templating:
floats/double data types replaced by
AD types.

Automatic Differentiation (AD) provides exact
derivatives w/o time/effort of deriving and

hand-coding them!

Automatic Differentiation Example:

Derivatives are as accurate as
analytic computation – no finite

difference truncation error!

Nonlinear model abstraction & libraries

• Access to the embedded solvers in Trilinos requires
satisfaction of ModelEvaluator (nonlinear model)
abstraction.

• Interface is general to accommodate computation of
Jacobians, user-defined preconditioners, and
stochastic Galerkin expansions.

• Advanced capabilities: embedded UQ (Stokhos),
optimization (ROL), homotopy continuation (LOCA).

“ModelEvaluator” Abstraction:

Given: Computes:

𝑥 𝑓(ሶ𝑥, ሷ𝑥, 𝑥, 𝑝, 𝑡)

ሶ𝑥
𝑊 = 𝛼

𝑑𝑓

𝑑 ሶ𝑥
+ 𝛽

𝑑𝑓

𝑑𝑥
+ 𝜔

𝑑𝑓

ሷ𝑑𝑥

ሷ𝑥 𝑑𝑓

𝑑𝑝

𝑝 𝑔

𝑡 𝑑𝑔

𝑑𝑥

𝑑𝑓

𝑑𝑝

𝑓 = residual; 𝑥 = solution vec;
𝑝 = parameters; 𝑔 = responses;

𝑡 = time; 𝑊 = Jacobian

Core building blocks of Albany

➢ Component-based design.

➢ Template-based generic programming.

➢ Assembly/field evaluation via Phalanx.

➢ Automatic differentiation.

➢ Discretizations/meshes, mesh adaptivity.

➢ Solvers, time-integration schemes.

➢ Performance-portable kernels.

➢ Software quality tools: git cmake, ctest, CDash.

Phalanx package: Local field evaluation kernel
designed for assembly of arbitrary equation

sets (i.e. evaluating residuals/Jacobians).

Evaluator common to
all FEAs

Template-specialized
evaluators

Problem-specific
evaluator

DAG from Albany:
Elasticity

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

Assembly of physics pieces
comes down to the evaluation

of a directed acyclic graph (DAG)
of computations of field data.

Graph-based finite element assembly (FEA)

Phalanx package: Local field evaluation kernel
designed for assembly of arbitrary equation

sets (i.e. evaluating residuals/Jacobians).

Evaluator common to
all FEAs

Template-specialized
evaluators

Problem-specific
evaluator

To add new PDE,
all you need to

code is problem-
specific evaluator!

DAG from Albany:
Elasticity

R. Pawlowski, Phalanx web site, http://trilinos.sandia.gov/packages/phalanx/ 2015.

Assembly of physics pieces
comes down to the evaluation

of a directed acyclic graph (DAG)
of computations of field data.

Graph-based finite element assembly (FEA)

Analysis tools abstraction & libraries

Optimization and UQ can be done through
DAKOTA:

• Optimization algorithms: gradient-based
local algorithms, pattern searches, and
genetic algorithms, etc.

• UQ algorithms: Latin hypercube stochastic
sampling, stochastic collocation, PCE, MCMC,
etc.

“Black box” analysis tools at top level
of software stack can perform a single

forward solve, sensitivity analysis,
parameter studies, bifurcation

analysis, optimization, and UQ runs.

Libraries/algorithms whose development was
significantly aided by Albany

Libraries Matured in Albany:
➢ Tempus
➢ Phalanx
➢ STK
➢ ModelEvaluator
➢ Stratimikos
➢ TPetra
➢ PUMI
➢ ROL
➢ DTK
➢ Intrepid2/Kokkos
➢ DynRankView
➢ And counting…

Libraries Developed in Albany:
➢ Piro
➢ TriKota
➢ MiniTensor
➢ Razor (MOR)
➢ buildAgainstTrilinos

Libraries Driven by Albany:
➢ Stokhos Embedded UQ
➢ Semi-Coarsening AMG
➢ PAALS
➢ Advanced Topological Opt
➢ Embedded Ensembles
➢ CUBIT Mesh-Morpher

Quantum device modeling (QCAD)
Albany enabled the rapid stand-up of a world-class quantum device design tool.

76

1. Solid Model
2. GUI

QCAD = “Quantum
Computer Aided Design”

• Application: quantum computing

• Objective: simulation/optimization of
semiconductor quantum double dots

➢ Provide fast feedback on which
device layouts are most likely to
lead to few-electron behavior

• Key to QCAD’s success: interfaces

➢ Various multi-physics couplings
of Poisson + Schrodinger

➢ DAKOTA* for optimization.

• QCAD is used by experimentalist in
Sandia’s world-class experimental
facilities (CINT) as design tool for
quantum device fabrication

➢ iQCAD: GUI for experimentalists
X. Gao, et al., J. Appl. Phys. 2013

* https://dakota.sandia.gov

Advanced Topology Optimization (ATO)

Goals:

➢ Qualification: assure quality
➢ Design: effectively utilize AM

PDE-constrained optimization:

➢ Physics: elastostatics, Poisson
➢ Objectives: compliance, p-norm
➢ Constraints: volume/mass

Multiple simultaneous Albany runs can inform
a single design optimization by PLATO:

➢ Albany implements objective + gradient
evaluation, optimization loop

➢ New “meshless” ATO capability: allows user
to include arbitrarily many simultaneous load
cases (linear thermal/electrical, mechanical)

Coupling of Albany code and PLATO* engine for
optimization-based topology optimization.

Powder bed fusion

Thermal
Spray

Laser Engineered
Net Shaping

Direct WriteRobocasting

Additive
Manufacturing
Processes

* Topology optimization-based design environment developed by SNL.

Advanced Topology Optimization (ATO)
Coupling of Albany code and PLATO* engine for

optimization-based topology optimization.

* PLAtform for Topology Optimization: topology optimization-based design environment developed by SNL.

Deflection: 2.5 mm

Deflection: 5.4 mm

Deflection: 6.0 mm

Right: cellular
structures with

optimized stiffness

Goals:

➢ Qualification: assure quality
➢ Design: effectively utilize AM

PDE-constrained optimization:

➢ Physics: elastostatics, Poisson
➢ Objectives: compliance, p-norm
➢ Constraints: volume/mass

Multiple simultaneous Albany runs can inform
a single design optimization by PLATO:

➢ Albany implements objective + gradient
evaluation, optimization loop

➢ New “meshless” capability: geometry defined in constructive
solid geometry (CSG) format and meshed inline
❖ Allows user to include arbitrarily many simultaneous

load cases (linear thermal/electrical, mechanical, etc.)

Hoffman et al. (in prep.)

Above: ABUMIP-Antarctica experiment

Right: Thwaites glacier retreat under
parametrized submarine melting.

Ice sheets: Albany Land-Ice (ALI)
Albany enabled the rapid development of a production land-ice dycore
for providing actionable predictions of 21st century sea-level rise as a

part of the DOE Energy Exascale Earth System Model (E3SM).

I. Tezaur, et. al. GMD. (2015).

Multi-scale coupling via Schwarz

• Crux of Method: use solutions in simple domains to iteratively
build a solution for the more complex domain.

• Targeted application: failure of bolted components.

• “Plug-and-play” framework: simplifies meshing complex geometries!

➢ Couple regions with different non-conformal meshes, element
types, levels of refinement, solvers/time-integrators.

Ω1

Ω0

+

https://github.com/ORNL-
CEES/DataTransferKit

A domain decomposition alternating-Schwarz-based method has been
developed in Albany for concurrent multi-scale coupling in solid mechanics.

Multi-scale coupling via Schwarz

Single domain Schwarz coupling of hex (parts) +
composite tet 10 (bolts) elements
(J2 material model from LCM suite)

A. Mota et. al. "The Schwarz alternating method in solid mechanics", CMAME. 319 (2017), 19-51.

A domain decomposition alternating-Schwarz-based method has been
developed in Albany for concurrent multi-scale coupling in solid mechanics.

See talk by A. Mota: MS 350, Fri. Mar. 1,
10:10-10:30AM, Room 302B

Future work:
extend method

for multi-physics
coupling

Performance-portable FEM

Kokkos*: C++ library/programming model providing
performance portability for applications

* Kokkos github repo: https://github.com/kokkos/Kokkos I. Demeshko et. al., 2018.

Talk by J. Watkins,
MS 121, Tues. Feb. 26

• Algorithm is written once for
multiple architectures

• Template parameters specify
optimal data layout for a
given architecture.

Performance-portable FEM

Kokkos*: C++ library/programming model providing
performance portability for applications

* Kokkos github repo: https://github.com/kokkos/Kokkos I. Demeshko et. al., 2018.

Performance-portability of Albany FEA achieved using Kokkos;
Albany usage has in turn led to Kokkos improvements

Le
ve

ra
ge

 t
h

e
b

as
e
→

←
G

ro
w

 t
h

e
b

as
e

Talk by J. Watkins,
MS 121, Tues. Feb. 26

• Algorithm is written once for
multiple architectures

• Template parameters specify
optimal data layout for a
given architecture.

In-memory mesh adaptation
Collaboration with SCOREC*: development of

mesh adaptation capabilities in Albany to enable
multi-scale/multi-physics adaptive simulation

PAALS (Parallel Albany Adaptive Loop with SCOREC)

➢ Fully-coupled in-memory adaptation, solution transfer.

➢ Parallel mesh infrastructure and services via PUMI.

➢ Dynamic load balancing (ParMetis/Zoltan, ParMA).

➢ Automated parallel goal-oriented adaptive simulation

• Use adjoint solution to drive mesh adaptation

• ~100× DoF-efficiency observed

• Scaling out to at least 8K MPI ranks

➢ Performance portability to GPUs via Kokkos.

➢ Applications: 3D manufacturing, creep/plasticity in
large solder joint arrays, coupled dislocation dynamics
(Albany + ParaDis), …

* Scientific Computation Research Center at RPI (Mark Shephard et al.)

Uniform
refinement

Goal-oriented
adaptation

Er
ro

r

Degrees of Freedom

Error in von Mises stress

3D manufacturing
Temperature

Shoulder from
material boundary

* Maniatty, et al., Comp. Mech., 62:273, 2018.

Left: Additive
manufacturing

simulation
showing

temperature in
evolving geometry

• Additive & subtractive capabilities

• Employs advanced adaptive meshing and
evolving geometries (using Symmetrix)

• Coupling with feedback control

Right: simulation of subtractive
manufacturing with picosecond laser*

Albany-Peridigm

* Peridigm github repo: https://github.com/peridigm/peridigm.

Local-nonlocal coupling for integrated fracture modeling
& multi-physics peridynamics simulations

• Peridynamics: nonlocal extension of continuum mechanics that remains valid at
discontinuities/cracks

• Peridigm = open-source* peridynamics code

➢ Nonlocal meshfree approach (Silling et al., 2005).

• “Best of both worlds” by combining FEM + peridynamics: peridynamics applied in
regions susceptible to material failure, easy delivery to applications via FEM.

• Optimization-based local-to-nonlocal coupling using ROL (D’Elia et al. 2016).

Albany-PFLOTRAN (Albotran)

Albotran seeks to create a multi-physics geomechanical application that couples
the flow response in PFLOTRAN with a mechanical response from Albany.

Right: Albotran consolidation problem results. Porosities
tracked independently in each code are identical

Balance of
Linear

Momentum

First Piola-
Kirchoff Stress

Biot
Coefficient

PFLOTRAN

Material
Parameters

Deformation
Gradients

Displacements

• Albany + PFLOTRAN coupling strategy can be viewed as hybrid of a
fully-coupled implicit solver + more loosely coupled iterative-solvers

➢ Integrates extensive domain expertise (Albany/LCM)

➢ Specialized solvers are not required for either code

Mesh adaptation applications

Creep/Plasticity in Large Solder Joint Arrays*

• Strategic reliability process in semiconductor
manufacturing

• Automated workflows with locally refined meshing

• Novel materials models

• Scaling out to 16K processors, 1B+ elements

Coupled Dislocation Dynamics

• Integrates Albany and ParaDis

• Computes dislocation dynamics (DD) in complex
geometry

• Allows intersection of dislocations with free
surfaces

• Left: prismatic dislocation loops in finite domain

* Li, et al. Comp. Mech., 62:323, 2018. Bloomfield, et al. Eng. with Comp., 33: 509, 2017.

Infrastructure work:

• Refactor of code to use block data structures to facilitate multi-physics coupling

➢ “Plug-and-play” different PDEs within Albany

➢ Ability to use block preconditioners (Teko*)

• Add support for mixed finite elements

➢ Can be accomplished via incorporation of Panzer and DOFManager.

Work in progress

Performance portability:

➢ Code optimizations for finite element assembly

➢ Performance portable solvers [WIP by Trilinos team]

* E. Cyr et. al. SIAM J. Sci. Comput. 2016.

Application-driven development:

Land-ice:

➢ Improved basal hydrology models for land-ice.

➢ Level set formulation to track better the calving.

➢ Uncertainty quantification (Bayesian inference, forward propagation).

➢ Seeking funding for developing solid-mechanics-based ice fracture/
calving models for improved ice sheet models.

LCM:

➢ Modeling of structural components in hypersonic vehicles with large
mechanical and thermal loads (USC).

➢ Enhancement of subtractive manufacturing capabilities in Albany (RPI).

ATO:

➢ Meshless topology optimization using Albany-PLATO.

Much more…!

Work in progress

