A minimal subspace rotation approach for stabilizing and fine-tuning projection-based reduced order models for fluid applications

<u>Irina Tezaur</u>¹ Maciej Balajewicz²

¹Quantitative Modeling and Analysis Department Sandia National Laboratories*

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

> ²Aerospace Engineering Department University of Illinois at Urbana-Champaign

West Coast ROM Workshop 2015 Livermore, CA November 19, 2015

Targeted application: compressible fluid flow (e.g., captive carry).

- Majority of MOR approaches in the literature for fluids are for incompressible flow.
- Some works on MOR for compressible flows:
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et. al, 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method:** Carlberg *et al.*, 2013 (nonlinear).

Targeted application: compressible fluid flow (e.g., captive carry).

 Majority of MOR approaches in the literature for fluids are for incompressible flow.

Some works on MOR for compressible flows:

- Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et. al, 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
- **GNAT method:** Carlberg *et al.*, 2013 (nonlinear).

Targeted application: compressible fluid flow (e.g., captive carry).

- Majority of MOR approaches in the literature for fluids are for incompressible flow.
- Some works on MOR for compressible flows:
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et. al, 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method:** Carlberg *et al.*, 2013 (nonlinear).

Targeted application: compressible fluid flow (e.g., captive carry).

- Majority of MOR approaches in the literature for fluids are for incompressible flow.
- Some works on MOR for compressible flows:
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et. al, 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method:** Carlberg *et al.*, 2013 (nonlinear).

Targeted application: compressible fluid flow (e.g., captive carry).

- Majority of MOR approaches in the literature for fluids are for incompressible flow.
- Some works on MOR for compressible flows:
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et. al, 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method:** Carlberg *et al.*, 2013 (nonlinear).

Targeted application: compressible fluid flow (e.g., captive carry).

- Majority of MOR approaches in the literature for fluids are for incompressible flow.
- Some works on MOR for compressible flows:
 - Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 2007 (linear); Serre et. al, 2012 (linear); Kalashnikova et al., 2014 (nonlinear).
 - **GNAT method:** Carlberg *et al.*, 2013 (nonlinear).

Governing equations

We consider the 3D compressible Navier-Stokes equations in primitive specific volume form:

$$\begin{aligned} \zeta_{,t} + \zeta_{j}u_{j} - \zeta u_{j,j} &= 0, \\ u_{i,t} + u_{i,j}u_{j} + \zeta p_{,i} - \frac{1}{Re}\zeta \tau_{ij,j} &= 0, \\ p_{,t} + u_{j}p_{,j} + \gamma u_{j,j}p - \left(\frac{\gamma}{PrRe}\right)(\kappa(p\zeta)_{,j})_{,j} - \left(\frac{\gamma-1}{Re}\right)u_{i,j}\tau_{ij} &= 0. \end{aligned}$$
(1)
For the compressible Navier-Stokes equations (1), spectral discretization $\left(q(x,t) \approx \sum_{i=1}^{n} a_{i}(t) U_{i}(x)\right) + \text{Galerkin}$ projection yields a system of *n* coupled quadratic ODEs $\frac{da}{dt} = C + La + \left[a^{T}Q^{(1)}a a^{T}Q^{(2)}a \cdots a^{T}Q^{(n)}a\right]^{T}$ (2)

where $\boldsymbol{C} \in \mathbb{R}^{n}$, $\boldsymbol{L} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{Q}^{(i)} \in \mathbb{R}^{n \times n}$, $\forall i = 1, \dots, n$.

Tezaur, Balajewicz

Governing equations

We consider the 3D compressible Navier-Stokes equations in primitive specific volume form:

$$\begin{aligned} \zeta_{,t} + \zeta_{,j} u_j - \zeta u_{j,j} &= 0, \\ u_{i,t} + u_{i,j} u_j + \zeta p_{,i} - \frac{1}{Re} \zeta \tau_{ij,j} &= 0, \\ p_{,t} + u_j p_{,j} + \gamma u_{j,j} p - \left(\frac{\gamma}{PrRe}\right) \left(\kappa(p\zeta)_{,j}\right)_{,j} - \left(\frac{\gamma-1}{Re}\right) u_{i,j} \tau_{ij} &= 0. \end{aligned}$$

$$(1)$$

For the compressible Navier-Stokes equations (1), spectral discretization $\left(\boldsymbol{q}(\boldsymbol{x},t) \approx \sum_{i=1}^{n} a_i(t) \boldsymbol{U}_i(\boldsymbol{x}) \right)$ + Galerkin projection yields a system of *n* coupled quadratic ODEs

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + \boldsymbol{L}\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}} (2)$$

where $\boldsymbol{C} \in \mathbb{R}^{n}$, $\boldsymbol{L} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{Q}^{(i)} \in \mathbb{R}^{n \times n}$, $\forall i = 1, \dots, n$.

Summary of technical challenges

- Projection-based MOR necessitates <u>truncation</u>.
- POD is, by definition and design, biased towards the large, energy producing scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a data compression point of view (i.e., small POD eigenvalues) but are crucial for the dynamical equations.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> and thus, low-dimensional ROMs are often inaccurate and sometimes unstable.
- For a ROM to be stable and accurate, truncated/unresolved subspace must be accounted for (e.g., <u>turbulence modeling</u>, subspace rotation).

Tezaur, Balajewicz

Summary of technical challenges

- Projection-based MOR necessitates <u>truncation</u>.
- POD is, by definition and design, biased towards the *large, energy producing* scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a data compression point of view (i.e., small POD eigenvalues) but are crucial for the dynamical equations.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> and thus, low-dimensional ROMs are often inaccurate and sometimes unstable.
- For a ROM to be stable and accurate, truncated/unresolved subspace must be accounted for (e.g., <u>turbulence modeling</u>, subspace rotation).

<u>Tezaur</u>, Balajewicz

Summary of technical challenges

- Projection-based MOR necessitates <u>truncation</u>.
- POD is, by definition and design, biased towards the large, energy producing scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a <u>data compression</u> point of view (i.e., small POD eigenvalues) but are crucial for the *dynamical equations*.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> and thus, low-dimensional ROMs are often inaccurate and sometimes unstable.
- For a ROM to be stable and accurate, truncated/unresolved subspace must be accounted for (e.g., <u>turbulence modeling</u>, subspace rotation).

Tezaur, Balajewicz

Summary of technical challenges

- Projection-based MOR necessitates <u>truncation</u>.
- POD is, by definition and design, biased towards the large, energy producing scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a <u>data compression</u> point of view (i.e., small POD eigenvalues) but are crucial for the *dynamical equations*.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> and thus, low-dimensional ROMs are often inaccurate and sometimes unstable.
- For a ROM to be stable and accurate, truncated/unresolved subspace must be accounted for (e.g., <u>turbulence modeling</u>, subspace rotation).

Summary of technical challenges

- Projection-based MOR necessitates <u>truncation</u>.
- POD is, by definition and design, biased towards the large, energy producing scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a <u>data compression</u> point of view (i.e., small POD eigenvalues) but are crucial for the *dynamical equations*.
- For fluid flow applications, higher-order modes are associated with energy <u>dissipation</u> and thus, low-dimensional ROMs are often inaccurate and sometimes unstable.
- For a ROM to be stable and accurate, truncated/unresolved subspace must be accounted for (e.g., <u>turbulence modeling</u>, subspace rotation).

Tezaur, Balajewicz

Traditional linear eddy-viscosity approach

 Dissipative dynamics of truncated higher-order modes are modeled using additional linear term

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\nu})\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}}$$

• L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).

Disadvantages of this approach:

- Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
- Calibration necessary to derive optimal L_ν and optimal value is flow dependent.
- 3. Inherently a <u>linear</u> model \rightarrow cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Traditional linear eddy-viscosity approach

 Dissipative dynamics of truncated higher-order modes are modeled using additional linear term

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\nu})\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}}$$

- L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).
- Disadvantages of this approach:
 - 1. Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
 - Calibration necessary to derive optimal L_ν and optimal value is flow dependent.
 - 3. Inherently a <u>linear</u> model \rightarrow cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Traditional linear eddy-viscosity approach

 Dissipative dynamics of truncated higher-order modes are modeled using additional linear term

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\nu})\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}}$$

• L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).

Disadvantages of this approach:

- 1. Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
- 2. Calibration necessary to derive optimal L_{ν} and optimal value is *flow dependent*.
- Inherently a <u>linear</u> model → cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Tezaur, Balajewicz

Traditional linear eddy-viscosity approach

 Dissipative dynamics of truncated higher-order modes are modeled using additional linear term

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\nu})\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}}$$

• L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).

Disadvantages of this approach:

- 1. Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
- 2. Calibration necessary to derive optimal L_{ν} and optimal value is *flow dependent*.
- 3. Inherently a <u>linear</u> model \rightarrow cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Tezaur, Balajewicz

Traditional linear eddy-viscosity approach

 Dissipative dynamics of truncated higher-order modes are modeled using additional linear term

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\nu})\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}}$$

• L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).

Disadvantages of this approach:

- 1. Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
- 2. Calibration necessary to derive optimal L_{ν} and optimal value is *flow dependent*.
- Inherently a *linear* model → cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Traditional linear eddy-viscosity approach

 Dissipative dynamics of truncated higher-order modes are modeled using additional linear term

$$\frac{d\boldsymbol{a}}{dt} = \boldsymbol{C} + (\boldsymbol{L} + \boldsymbol{L}_{\nu})\boldsymbol{a} + \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(1)} \boldsymbol{a} & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(2)} \boldsymbol{a} & \cdots & \boldsymbol{a}^{\mathrm{T}} \boldsymbol{Q}^{(n)} \boldsymbol{a} \end{bmatrix}^{\mathrm{T}}$$

• L_{ν} is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_{\nu}$ (for stability).

Disadvantages of this approach:

- 1. Additional term destroys <u>consistency</u> between ROM and Navier-Stokes equations.
- 2. Calibration necessary to derive optimal L_{ν} and optimal value is *flow dependent*.
- Inherently a <u>linear</u> model → cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Tezaur, Balajewicz

Proposed new approach

- Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime.
- ► Standard approach: retain only the most energetic POD modes, i.e., U₁, U₂, U₃, U₄...
- Proposed approach: choose some higher order basis to increase dissipation, i.e., U₁, U₂, U₆, U₈, ...
- That is, approximate the solution using a linear superposition of n + p (with p > 0) most energetic modes:

$$\tilde{\boldsymbol{U}}_{i} = \sum_{j=1}^{n+p} X_{ji} \boldsymbol{U}_{j} \quad i = 1, \cdots, n,$$
(3)

where $\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n}$ is an orthonormal $(\boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{I}_{n \times n})$ "rotation" matrix.

Tezaur, Balajewicz

Proposed new approach

- Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime.
- Standard approach: retain only the most energetic POD modes, i.e., U₁, U₂, U₃, U₄ ...
- Proposed approach: choose some higher order basis to increase dissipation, i.e., U₁, U₂, U₆, U₈, ...
- That is, approximate the solution using a linear superposition of n + p (with p > 0) most energetic modes:

$$\tilde{\boldsymbol{U}}_{i} = \sum_{j=1}^{n+p} X_{ji} \boldsymbol{U}_{j} \quad i = 1, \cdots, n,$$
(3)

where $\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n}$ is an orthonormal $(\boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{I}_{n \times n})$ "rotation" matrix.

Tezaur, Balajewicz

Proposed new approach

- Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime.
- ► Standard approach: retain only the most energetic POD modes, i.e., U₁, U₂, U₃, U₄...
- Proposed approach: choose some higher order basis to increase dissipation, i.e., U₁, U₂, U₆, U₈, ...
- That is, approximate the solution using a linear superposition of n + p (with p > 0) most energetic modes:

$$\tilde{\boldsymbol{U}}_{i} = \sum_{j=1}^{n+p} X_{ji} \boldsymbol{U}_{j} \quad i = 1, \cdots, n,$$
(3)

where $\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n}$ is an orthonormal $(\boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{I}_{n \times n})$ "rotation" matrix.

Tezaur, Balajewicz

Proposed new approach

- Instead of modeling truncation via additional linear term, model the truncation <u>a priori</u> by "rotating" the projection subspace into a more dissipative regime.
- ► Standard approach: retain only the most energetic POD modes, i.e., U₁, U₂, U₃, U₄...
- Proposed approach: choose some higher order basis to increase dissipation, i.e., U₁, U₂, U₆, U₈, ...
- That is, approximate the solution using a linear superposition of n + p (with p > 0) most energetic modes:

$$\tilde{\boldsymbol{U}}_{i} = \sum_{j=1}^{n+p} X_{ji} \boldsymbol{U}_{j} \quad i = 1, \cdots, n, \qquad (3)$$

where $\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n}$ is an orthonormal $(\boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{I}_{n \times n})$ "rotation" matrix.

Tezaur, Balajewicz

Goals of proposed new approach:

Find **X** such that

- 1. New modes $\widetilde{\boldsymbol{U}}$ remain good approximations of the flow \rightarrow minimize the "rotation" angle, i.e. minimize $||\boldsymbol{X} \boldsymbol{I}_{(n+p),n}||_F$.
- 2. New modes produce stable and accurate ROMs \rightarrow ensure appropriate balance between energy production and energy dissipation.
- \rightarrow Extension of earlier work for **incompressible flow** (Balajewicz et al., 2013).

Once \boldsymbol{X} is found, the result is system of the form (2) with

$$Q_{jk}^{(i)} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q_{qr}^{(s)} X_{qj} X_{rk}, \quad \boldsymbol{L} \leftarrow \boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X}, \quad \boldsymbol{C} \leftarrow \boldsymbol{X}^{\mathsf{T}} \boldsymbol{C}^*.$$

Goals of proposed new approach:

Find **X** such that

- 1. New modes \widetilde{U} remain good approximations of the flow \rightarrow minimize the "rotation" angle, i.e. minimize $||\mathbf{X} \mathbf{I}_{(n+p),n}||_F$.
- 2. New modes produce stable and accurate ROMs \rightarrow ensure appropriate balance between energy production and energy dissipation.
- → Extension of earlier work for **incompressible flow** (Balajewicz et al., 2013).

Once \boldsymbol{X} is found, the result is system of the form (2) with

$$Q_{jk}^{(i)} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q_{qr}^{(s)} X_{qj} X_{rk}, \quad \boldsymbol{L} \leftarrow \boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X}, \quad \boldsymbol{C} \leftarrow \boldsymbol{X}^{\mathsf{T}} \boldsymbol{C}^*.$$

Goals of proposed new approach:

Find **X** such that

- 1. New modes $\widetilde{\boldsymbol{U}}$ remain good approximations of the flow \rightarrow minimize the "rotation" angle, i.e. minimize $||\boldsymbol{X} \boldsymbol{I}_{(n+p),n}||_F$.
- 2. New modes produce stable and accurate ROMs \rightarrow ensure appropriate balance between energy production and energy dissipation.
- \rightarrow Extension of earlier work for incompressible flow (Balajewicz et al., 2013).

Once X is found, the result is system of the form (2) with

$$Q_{jk}^{(i)} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q_{qr}^{(s)} X_{qj} X_{rk}, \quad \boldsymbol{L} \leftarrow \boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X}, \quad \boldsymbol{C} \leftarrow \boldsymbol{X}^{\mathsf{T}} \boldsymbol{C}^*.$$

Goals of proposed new approach:

Find **X** such that

- 1. New modes $\widetilde{\boldsymbol{U}}$ remain good approximations of the flow \rightarrow minimize the "rotation" angle, i.e. minimize $||\boldsymbol{X} \boldsymbol{I}_{(n+p),n}||_F$.
- 2. New modes produce stable and accurate ROMs \rightarrow ensure appropriate balance between energy production and energy dissipation.
- \rightarrow Extension of earlier work for incompressible flow (Balajewicz et al., 2013).

Once \boldsymbol{X} is found, the result is system of the form (2) with

$$Q_{jk}^{(i)} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q_{qr}^{(s)} X_{qj} X_{rk}, \quad \boldsymbol{L} \leftarrow \boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X}, \quad \boldsymbol{C} \leftarrow \boldsymbol{X}^{\mathsf{T}} \boldsymbol{C}^{*}.$$

Trace minimization on Stiefel manifold

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} & -\operatorname{tr} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{I}_{(n+p) \times n} \right) \\ \text{subject to} & \operatorname{tr} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X}) = \eta \end{array}$$
(5)

where $\eta \in \mathbb{R}$ and

$$\mathcal{V}_{(n+p),n} \in \{\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n} : \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = \boldsymbol{I}_{n}, \ p > 0\}.$$
(6)

- Constraint comes from property that averaged total power (= tr(X^TLX)+energy transfer) has to vanish.
- η is a proxy for the balance between energy production and energy dissipation (calculated iteratively using modal energy).
- Equation (5) is solved efficiently offline using method of Lagrange multipliers (Manopt MATLAB toolbox).

Tezaur, Balajewicz

Trace minimization on Stiefel manifold

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} & -\operatorname{tr} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{I}_{(n+p) \times n} \right) \\ \text{subject to} & \operatorname{tr} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X} \right) = \eta \end{array}$$
(5)

where $\eta \in \mathbb{R}$ and

$$\mathcal{V}_{(n+p),n} \in \{\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n} : \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = \boldsymbol{I}_{n}, \ p > 0\}.$$
(6)

- Constraint comes from property that averaged total power (= tr(X^TLX)+energy transfer) has to vanish.
- η is a proxy for the balance between energy production and energy dissipation (calculated iteratively using modal energy).
- Equation (5) is solved efficiently offline using method of Lagrange multipliers (Manopt MATLAB toolbox).

Tezaur, Balajewicz

Trace minimization on Stiefel manifold

$$\min_{\boldsymbol{X} \in \mathcal{V}_{(n+p),n}} - \operatorname{tr} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{I}_{(n+p) \times n} \right)$$
subject to $\operatorname{tr}(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X}) = \eta$

$$(5)$$

where $\eta \in \mathbb{R}$ and

$$\mathcal{V}_{(n+p),n} \in \{\boldsymbol{X} \in \mathbb{R}^{(n+p) \times n} : \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = \boldsymbol{I}_{n}, \ p > 0\}.$$
(6)

- Constraint comes from property that averaged total power (= tr(X^TLX)+energy transfer) has to vanish.
- η is a proxy for the balance between energy production and energy dissipation (calculated iteratively using modal energy).
- Equation (5) is solved efficiently offline using method of Lagrange multipliers (Manopt MATLAB toolbox).

Tezaur, Balajewicz

Trace minimization on Stiefel manifold

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} & -\operatorname{tr} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{I}_{(n+p) \times n} \right) \\ \text{subject to} & \operatorname{tr} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{X} \right) = \eta \end{array}$$
(5)

where $\eta \in \mathbb{R}$ and

$$\mathcal{V}_{(n+p),n} \in \{ \boldsymbol{X} \in \mathbb{R}^{(n+p) \times n} : \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = \boldsymbol{I}_{n}, \ p > 0 \}.$$
(6)

- Constraint comes from property that averaged total power (= tr(X^TLX)+energy transfer) has to vanish.
- η is a proxy for the balance between energy production and energy dissipation (calculated iteratively using modal energy).
- Equation (5) is solved efficiently offline using method of Lagrange multipliers (Manopt MATLAB toolbox).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 - Inherently a <u>nonlinear</u> model → should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz et al., 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Tezaur, Balajewicz

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

Remarks

- Proposed approach may be interpreted as an <u>a priori</u>, <u>consistent</u> formulation of the eddy-viscosity turbulence modeling approach.
- Advantages of proposed approach:
 - 1. Retains consistency between ROM and Navier-Stokes equations \rightarrow no additional turbulence terms required.
 - 2. Inherently a <u>nonlinear</u> model \rightarrow should be expected to outperform linear models.
 - 3. Works with any basis and Petrov-Galerkin projection.
- Disadvantage of proposed approach:
 - 1. Off-line calibration of a free parameter, η is required.
 - 2. Stability cannot be proven like for incompressible case.
 - Existence/uniqueness of solution to (5) is <u>not</u> guaranteed; general rules-of-thumbs are available in (Balajewicz *et al.*, 2015).

High angle of attack laminar airfoil

▶ 2D flow around an inclined NACA0012 airfoil at Mach 0.7, Re = 500, Pr = 0.72, AOA = 20° ⇒ n = 4 ROM (86% snapshot energy).

Figure 1: Contours of velocity magnitude at time of final snapshot.

```
Tezaur, Balajewicz
```

High angle of attack laminar airfoil

Figure 2: Nonlinear model reduction of the laminar airfoil. Evolution of modal energy (a), and phase plot of the first and second temporal basis, $a_1(t)$ and $a_2(t)$ (b); DNS (thick gray line), standard n = 4 ROM (dashed blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation matrix, **X** (c). Rotation is small: $||\mathbf{X} - \mathbf{I}_{(n+p)\times n}||_F/n = 0.083$, $\mathbf{X} \approx \mathbf{I}_{(n+p)\times n}$.

Tezaur, Balajewicz

Figure 3: Snapshot of high angle of attack airfoil at final snapshot; contours of velocity magnitude. DNS (left), standard n = 4 ROM (middle), and stabilized n, p = 4 ROM (right)

Channel driven cavity: low Reynolds number case

► Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72 ⇒ n = 4 ROM (91% snapshot energy).

Figure 4: Domain and mesh for viscous channel driven cavity problem

```
Tezaur, Balajewicz
```

Channel driven cavity: low Reynolds number case

Figure 5: Nonlinear model reduction of channel drive cavity at Re \approx 1500. Evolution of modal energy (a) and phase plot of the first and second temporal basis, $a_1(t)$ and $a_2(t)$ (b); DNS (thick gray line), standard n = 4 ROM (dashed blue line), stabilized n, p = 4 ROM (solid black line). Stabilizing rotation matrix, **X** (c). Rotation is small: $||\mathbf{X} - \mathbf{I}_{(n+p) \times n}||_F / n = 0.118$, $\mathbf{X} \approx \mathbf{I}_{(n+p) \times n}$.

Tezaur, Balajewicz

Channel driven cavity: low Reynolds number case

Figure 6: Snapshot of channel drive cavity $\text{Re} \approx 1500$; contours of *u*-velocity magnitude at the final snapshot. DNS (left), standard n = 4 ROM (middle) and stabilized n, p = 4 ROM (right)

Channel driven cavity: low Reynolds number case

Figure 7: PSD of $p(\mathbf{x}, t)$ where $\mathbf{x} = (2, -1)$ of channel drive cavity Re \approx 1500. DNS (thick gray line), stabilized n, p = 4 ROM (black line)

Channel driven cavity: moderate Reynolds number case

▶ Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72⇒ n = 20 ROM (71.8% snapshot energy).

Figure 8: Domain and mesh for viscous channel driven cavity problem

```
Tezaur, Balajewicz
```

Channel driven cavity: moderate Reynolds number case

Figure 9: Nonlinear model reduction of channel drive cavity at Re \approx 5500. Evolution of modal energy (a); DNS (thick gray line), standard n = 20 ROM (dashed blue line), stabilized n, p = 20 ROM (solid black line). Stabilizing rotation matrix, **X** (b). Rotation is small: $||\mathbf{X} - \mathbf{I}_{(n+p) \times n}||_F / n = 0.038$, $\mathbf{X} \approx \mathbf{I}_{(n+p) \times n}$.

Channel driven cavity: moderate Reynolds number case

Figure 10: Snapshot of channel drive cavity $\text{Re} \approx 5500$; contours of *u*-velocity magnitude at the final snapshot. DNS (left), standard n = 20 ROM (middle), and stabilized n, p = 20 ROM (right)

Channel driven cavity: moderate Reynolds number case

Figure 11: CPSD of $p(\mathbf{x}_1, t)$ and $p(\mathbf{x}_2, t)$ where $\mathbf{x}_1 = (2, -0.5)$ and $\mathbf{x}_2 = (0, -0.5)$ of channel driven cavity at $\text{Re} \approx 5500$. DNS (thick gray line), stabilized n, p = 20 ROM (black line)

- Power and phase lag at the fundamental frequency, and first two super harmonics are predicted accurately using the fine-tuned ROM.
- Phase lag at these three frequencies as predicted by the CFD and the stabilized ROM is identified by red squares and blue triangles, respectively.

CPU times (CPU-hours) for off-line and on-line computations

	Numerical Experiment		
Procedure	Airfoil	Cavity,	Cavity,
		Low-Re	Moderate-Re
FOM # of DOF	360,000	288,250	243,750
Time-integration of FOM	7.8 hrs	72 hrs	179 hrs
Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs	3.44 hrs
Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs	14.8 hrs
Stabilization	28 sec	14 sec	170 sec
ROM # of DOF	4	4	20
Time-integration of ROM	0.31 sec	0.16 sec	0.83 sec
Online computational speed-up	$9.1 imes10^4$	$1.6 imes10^{6}$	$7.8 imes10^5$

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are "rotated" into a more dissipative regime to account for the dynamics in higher order modes truncated by the standard POD method.
- The new method is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- This constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are "rotated" into a more dissipative regime to account for the dynamics in higher order modes truncated by the standard POD method.
- The new method is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- This constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are "rotated" into a more dissipative regime to account for the dynamics in higher order modes truncated by the standard POD method.
- The new method is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- This constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are "rotated" into a more dissipative regime to account for the dynamics in higher order modes truncated by the standard POD method.
- The new method is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- This constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are "rotated" into a more dissipative regime to account for the dynamics in higher order modes truncated by the standard POD method.
- The new method is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- This constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are "rotated" into a more dissipative regime to account for the dynamics in higher order modes truncated by the standard POD method.
- The new method is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- This constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

- Extension of the proposed approach to problems with generic non-linearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and geometry.
- Selecting different objectives and constraints in our optimization problem:

$$\begin{array}{l} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} \quad f(\boldsymbol{X}) \\ \text{subject to} \quad g(\boldsymbol{X}, \boldsymbol{L}) \end{array}$$

(7)

e.g.,

Maximize parametric robustness: $f = \sum_{i=1}^{k} \beta_i || \boldsymbol{U}^*(\mu_i) \boldsymbol{X} - \boldsymbol{U}^*(\mu_i) ||_F$ Model on the parameter of the

- Extension of the proposed approach to problems with generic non-linearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and geometry.
- Selecting different objectives and constraints in our optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} & f(\boldsymbol{X}) \\ \text{subject to} & g(\boldsymbol{X}, \boldsymbol{L}) \end{array}$$

e.g.,

Maximize parametric robustness: $f = \sum_{i=1}^{k} \beta_i || \boldsymbol{U}^*(\mu_i) \boldsymbol{X} - \boldsymbol{U}^*(\mu_i) ||_F$ ODE constraints: $\boldsymbol{g} = || \mathbf{a}(t) - \mathbf{a}^*(t) - \mathbf{a}^$

Tezaur, Balajewicz

- Extension of the proposed approach to problems with generic non-linearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and geometry.
- Selecting different objectives and constraints in our optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+\rho),n}}{\text{minimize}} & f(\boldsymbol{X}) \\ \text{subject to} & g(\boldsymbol{X}, \boldsymbol{L}) \end{array}$$
(7)

e.g.,

 Maximize parametric robustness: f = ∑^k_{i=1} β_i||**U**^{*}(μ_i)**X** − **U**^{*}(μ_i)||_F.
 ODE constraints: g = ||**a**(t) − **a**^{*}(t)||.

- Extension of the proposed approach to problems with generic non-linearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and geometry.
- Selecting different objectives and constraints in our optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+\rho),n}}{\text{minimize}} & f(\boldsymbol{X}) \\ \text{subject to} & g(\boldsymbol{X}, \boldsymbol{L}) \end{array}$$
(7)

e.g.,

 Maximize parametric robustness: f = ∑_{i=1}^k β_i||**U**^{*}(µ_i)**X** − **U**^{*}(µ_i)||_F.
 ODE constraints: g = ||a(t) − a^{*}(t)||.

- Extension of the proposed approach to problems with generic non-linearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and geometry.
- Selecting different objectives and constraints in our optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathcal{V}_{(n+\rho),n}}{\text{minimize}} & f(\boldsymbol{X}) \\ \text{subject to} & g(\boldsymbol{X}, \boldsymbol{L}) \end{array}$$
(7)

e.g.,

 Maximize parametric robustness: f = ∑_{i=1}^k β_i||**U**^{*}(µ_i)**X** − **U**^{*}(µ_i)||_F.
 ODE constraints: g = ||**a**(t) − **a**^{*}(t)||.

Thank you!

References

- BALAJEWICZ, M. & DOWELL, E. 2012 Stabilization of projection-based reduced order models of the Navier-Stokes equation. Nonlinear Dynamics 70 (2), 1619–1632.
- BALAJEWICZ, M. & DOWELL, E. & NOACK, B. 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation. *Journal of Fluid Mechanics* 729, 285–308.
- BALAJEWICZ, M., TEZAUR, I. & DOWELL, E. 2015 Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier-Stokes equations. ArXiV: http://arxiv.org/abs/1504.06661.
- BARONE, M., KALASHNIKOVA, I., SEGALMAN, D. & THORNQUIST, H. 2009 Stable Galerkin reduced order models for linearized compressible flow. J. Computat. Phys. 228 (6), 1932–1946.
- CARLBERG, K., FARHAT, C., CORTIAL, J. & AMSALLEM, D. 2013 The GNAT method for nonlinear model reduction: effective implementation and application to computational uid dynamics and turbulent flows. J. Comput. Phys. 242 623–647.
- KALASHNIKOVA, I., ARUNAJATESAN, S., BARONE, M., VAN BLOEMEN WAANDERS, B. & FIKE, J. 2014 Reduced order modeling for prediction and control of large-scale systems. Sandia Tech. Report.
- ROWLEY, C., COLONIUS, T. & MURRAY, R. 2004 Model reduction for compressible ows using pod and galerkin projection. *Physica D: Nonlinear Phenomena* 189 (1) 115–129.
- SERRE, G., LAFON, P., GLOERFELT, X. & BAILLY, C. 2012 Reliable reduced-order models for timedependent linearized euler equations. J. Computat. Phys. 231 (15) 5176–5194.
- AUBRY, N., HOLMES, P., LUMLEY, J. L., & STONE E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192 (115) 115–173.
- OSTH, J., NOACK, B. R., KRAJNOVIC, C., BARROS, D., & BOREE, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body. J. Fluid Mech. 747 518–544.

Appendix: Accounting for modal truncation

Appendix: Stabilization algorithm: returns stabilizing rotation matrix **X**.

Inputs: Initial guess $\eta^{(0)} = tr(L(1:n, 1:n))$ ($\mathbf{X} = \mathbf{I}_{(n+p)\times n}$), ROM size *n* and $p \ge 1$, ROM matrices associated with the first n + p most energetic POD modes, convergence tolerance *TOL*, maximum number of iterations k_{max} .

for $k = 0, \cdots, k_{max}$

Solve constrained optimization problem on Stiefel manifold:

$$\begin{array}{ll} \underset{\boldsymbol{X}^{(k)} \in \mathcal{V}_{(n+p),n}}{\min } & -\operatorname{tr}\left(\boldsymbol{X}^{(k)\mathrm{T}}\boldsymbol{I}_{(n+p)\times n}\right) \\ \text{subject to} & \operatorname{tr}(\boldsymbol{X}^{(k)\mathrm{T}}\boldsymbol{L}\boldsymbol{X}^{(k)}) = \eta^{(k)}. \end{array}$$

Construct new Galerkin matrices using (4). Integrate numerically new Galerkin system. Calculate "modal energy" $E(t)^{(k)} = \sum_{i}^{n} (a(t)_{i}^{(k)})^{2}$. Perform linear fit of temporal data $E(t)^{(k)} \approx c_{1}^{(k)}t + c_{0}^{(k)}$, where $c_{1}^{(k)} =$ energy growth. Calculate ϵ such that $c_{1}^{(k)}(\epsilon) = 0$ (no energy growth) using root-finding algorithm. Perform update $\eta^{(k+1)} = \eta^{(k)} + \epsilon$. if $||c_{1}^{(k)}|| < TOL$ $\mathbf{X} := \mathbf{X}^{(k)}$. terminate the algorithm.

end