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Motivation
• The future is GPUs:

OLCF Summit – IBM POWER9 

CPU + NVIDIA V100 GPU

ALCF Aurora (2022, >1 EF) –
Intel Xeon CPU + Intel Xe GPU

OLCF Frontier (2021, >1.5 EF) –
AMD EPYC CPU + AMD GPUs

NERSC Perlmutter (2021) –
AMD EPYC CPU + NVIDIA A100 GPU

“The top priority today is the continued progress to 

exascale.” – U.S. DOE Office of Science HPC Initiative

• Current scientific software must adapt to changing HPC architectures

• New scientific software must be designed to mitigate issues from changing HPC architectures

4

Performance portability: achieving a reasonable level of performance 

across a wide range of architectures using the same code base.

MPI-only

MPI+X
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The Albany code base
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Albany: open-source1, parallel, C++, unstructured-grid multi-physics finite element 

code built for rapid application development from Trilinos2 Agile Components

Component Examples (package name)

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear solver (NOX)

• Preconditioners (Ifpack2)

• Linear solver (Belos)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Distributed memory linear algebra (Tpetra)

• Shared memory parallelism (Kokkos)

• Many more…

1 https://github.com/SNLComputation/Albany.  2 https://github.com/trilinos/Trilinos. 

Funded entirely by 

applications residing within

Both a “sand-box” and 

a production code

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos


The Albany code base (cont’d) 
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Albany finite element assembly (FEA):

• Tpetra manages distributed memory linear algebra 

(MPI+X)

• Phalanx manages shared memory computations (X)
➢ Gather fills element local solution

➢ Interpolate solution/gradient to quad points

➢ Evaluate residual/Jacobian

➢ Scatter fills global residual/Jacobian

Trilinos Packages

FEA Overview

Memory Model

Albany provides the “glue” that connects 

components (via abstract interfaces).

Adding new PDEs requires just 

implementing a new Evaluate routine

Albany design highlights:

• Piro manages the solve (e.g., Newton, time-stepper)

• Jacobians (+ sensitivities, Hessians, etc.) obtained via 

automatic differentiation (Sacado)

• Kokkos achieves performance portability using MPI+X



Albany supporting tools: Kokkos – performance 
portability
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• Kokkos1 is a C++ library that provides performance 

portability across multiple shared memory 

computing architectures

➢ Examples: Multicore CPU, NVIDIA GPU, Intel KNL 

and much more…

• Abstract data layouts and hardware features for 

optimal performance on current and future

architectures

• Allows researchers to focus on application or

algorithmic development instead of architecture 

specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures. 

Template parameters are used to get hardware specific features.

1https://github.com/kokkos/kokkos. 

https://github.com/kokkos/kokkos


Albany supporting tools: Phalanx Evaluator –
templated Phalanx node 
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• A Phalanx node (evaluator) is constructed 
as a C++ class

• Each evaluator is templated on an 
evaluation type (e.g., residual, Jacobian)

• The evaluation type is used to determine 
the data type (e.g., double, Sacado data 
types)

• Kokkos RangePolicy is used to parallelize 
over cells over an Execution Space (e.g., 
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
➢ Serial/OpenMP – LayoutRight (row-major)

➢ CUDA – LayoutLeft (col-major)

typedef Kokkos::CUDA Execution Space; 

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION 

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node){

Residual(cell,node,0)=0.;

} 

}

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

} 

}

}

}
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Albany supporting tools: Phalanx –
directed acyclic graph (DAG)
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Advantages:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Extension:

• Performance gain through memoization

Disadvantage:

• Performance loss through fragmentation

DAG Example 

(memoization)

DAG Example

Single CPU socket or GPU



Albany supporting tools: Sacado – automatic 
differentiation (AD)
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• AD provides exact derivatives − no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, Hessian

➢ Examples: optimization, sensitivity analysis

• Sacado data types are used for derivative components via class templates

➢ DFad (most flexible) – size set at run-time

➢ SLFad (flexible/efficient) –max size set at compile-time

➢ SFad (most efficient) – size set at compile-time

Fad Type Comparison (Serial, OpenMP (12 threads), CUDA)

Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

There are significant 

speedups when 

derivative array sizes 

are known at compile 

time on GPU (50-250x)
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ProSPect project for land-ice modeling
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Goal: to develop and support a robust and scalable land ice solver based 

on the “First-Order” (FO) Stokes equations → Albany Land Ice (ALI)

Requirements for Albany Land Ice (ALI):

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities: deterministic inversion, 

calibration, uncertainty quantification, sensitivity analysis.

“ProSPect1” = Probabilistic Sea Level Projections from Ice Sheet & 

Earth System Models (5 year SciDAC4 project, 2017-2022)

As part of U.S. DOE E3SM2 Earth System Model, solver will 

provide actionable predictions of 21st century sea-level 

change (including uncertainty bounds).

1https://doe-prospect.github.io 2Energy Exascale Earth System Model

https://doe-prospect.github.io/


Albany Land Ice (ALI) model
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• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Ice sheet

Implicit solver:

FEA = 50% 

CPU-time

Linear solve = 

50% CPU-time

* Finite Element Assembly

Algorithmic choices for ALI:

• 3D unstructured grid FEM discretization 

(unstructured in 𝑥-𝑦, structured in 𝑧).

• Newton method nonlinear solver with 

automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear 

solvers.

Glen’s Flow Law Viscosity



Specialized linear solvers
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Status: Linear solve is ported to GPU but not optimized

• Multigrid tuning for GPU is work in progress

• Performance-portable block smoothers for fine grid coming soon (FY22)

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG

Solution: Matrix dependent semi-coarsening 

algebraic multigrid (MDSC-AMG)1

• First, apply algebraic structured multigrid to coarsen 

vertically

• Second, apply SA-AMG on single layer

Problem: Ice sheet meshes are thin with high aspect 

ratios

1 See (Tezaur et al., 2015), (Tuminaro et al., 2016)
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Performance study: Architectures
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Architectures:

• Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)] 

9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

• Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

• Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

• Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

• Weaver (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)

• Summit (OLCF): 4600 nodes [2 P9 (22 cores) + V100 (6 GPUs)]

• Kahuna (SNL): 4 nodes [2 Zen2 (64 cores) + A100 (1 GPU)] PCIe Gen 4

• Mutrino (SNL): 100 Haswell nodes [2 Haswell (32 cores)],

100 KNL nodes [1 KNL (68 cores)]

• Vortex (SNL): 72 nodes [2 POWER9 (44 cores) + V100 (4 GPUs)]

Future Targets: Aurora Intel GPU (ALCF), Frontier AMD GPU (OLCF), Perlmutter (NERSC)

Ride

Performance-portability of ALI has been tested across multiple architectures: Intel Sandy Bridge, 

Intel Skylake, IBM POWER8, IBM POWER9, Keplar/Pascal/Volta/Ampere GPUs, KNL Xeon Phi

Models:

• 2 models: MPI-only, MPI+GPU

➢ MPI+GPU: MPI ranks assigned a single core per GPU, CUDA UVM 

used for host to device communication



Performance study: Cases
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Case 1: Antarctica’s Thwaites glacier

• First-Order Stokes equations

• 1-10km variable resolution

• 1,395,680 wedge elements

• 100 evaluations of FEA + linear solve results

• Strong scaling analysis

➢ 32-core Haswell per node

➢ 4 V100 GPUs per node 

Case 2: Greenland ice sheet

• First-Order Stokes equations (+ Enthalpy equation)

• 1km-7km variable resolution

• 14.4 million tetrahedral elements

• FEA-only results (100 evaluations) highlighting 

recent performance improvements in Albany

Architectures:

➢ Haswell 

➢ KNL 

➢ POWER9

➢ V100 GPU



4 8 16

Haswell CPUs 87.2051 43.6626 22.0101

V100 GPUs 7.89909 4.41412 2.8328

Speedup 11.03989194 9.891575218 7.769733126

Cells/GPU 87230 43615 21807

1

10

100

Finite Element Assembly Strong Scaling

Wall-clock time(s) vs. Nodes
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• 11x speedup V100 over Haswell node

• WIP: Reduce memory usage

➢ UVM degrades performance when using 
more than 87,230 Cells/GPU

Performance study: Thwaites Glacier

• 1.6x speedup V100 over Haswell (4 nodes)

• WIP: Optimize GPU solve

➢ Linear solve is 86% of total solve time on GPU!

➢ Linear solve needs block relaxation

0

5

10

15

20

25

30

35

Haswell CPUs V100 GPUs

Total Solve Time (s) 

Assembly Linear Solve
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Implement Tpetra::FECrsMatrix

• Original − on-the-fly host memory allocations

• Addressed by Tpetra via FECrsMatrix (2.1x) –
single memory allocation during setup

Refactor of boundary conditions

• Boundary data converted to contiguous 
data structures

• Kernels constructed for boundary 
conditions

• 8.7x speedup on GPU relative to 
original* with boundary kernels on host 
(StokesFO)

Refactor of Enthalpy equation

• Kernels constructed using Kokkos

• 66x speedup on GPU relative to 
original* with all kernels on host

Tpetra::FECrsMatrix: Luca Bertagna, Mauro Perego, Chris Siefert; Refactor: Max Carlson

Performance study: Greenland Perf. Improvements

*Original: running on host with device transfers
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Performance testing: maintaining performance & 
portability
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• Nightly testing is needed to secure investments in performance & portability in evolving software

➢ Changes in code base could cause performance deterioration

➢ Performance improvements in one architecture could decrease performance in another

➢ Manual analysis is time consuming and imprecise

Solution: changepoint detection algorithm 

automatically applied to nightly performance test 

data to identify/flag large changes in performance.

• Infrastructure is provided in a Jupyter notebook, exported as 

html to a website (https://ikalash.github.io)

• Daily email provides nightly performance test summary

Figure below: Total simulation time for a 2-20km 

resolution Antarctica problem, executed nightly

With Kyle Shan (Micron Technology, formerly Stanford U)

https://ikalash.github.io/


Outline

24

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model 

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work



Automated parameter/performance tuning
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Problem: hand-tuning solver parameters can be a long/painful process, does not translate b/w architectures.

Solution: create a framework for determining optimal parameter values to achieve best performance 

(smallest CPU time) on HPC systems using offline and real-time data.

CPU1

GPU2

Preliminary results: optimization over linear solver parameter space using random search 

for coarse resolution 3-20km mesh Greenland problem (100 iterations)

Parameters           

to optimize

Future work: more 

sophisticated 

algorithms for 

parameter 

optimization (e.g., 

Bayesian 

optimization)

With Carolyn Kao (Stanford U)1 8 nodes, Skylake CPU
2 2 nodes, V100 GPU
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Summary
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• HPC architectures are changing rapidly which poses a significant challenge for open-science

• The Albany/Trilinos/Kokkos software stack offers an efficient way to meet this challenge for 

large scale finite element analysis

• Albany Land Ice is currently being used to provide sea-level change predictions

• Performance on next generation computing architectures is a work in progress

➢ 11x speedup of V100 node over Haswell node for finite element assembly

➢ Performance on V100 is ~2x faster than on Haswell node for the full solve 

• Maintaining performance and portability is crucial for an active code base

➢ A change-point detection algorithm can help identify performance variation

• Optimal solver parameters can be determined for a specific architecture automatically using 

black-box optimization algorithms

➢ A simple random grid search algorithm can improve performance by up to 1.5x.



Future work
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- Further optimizations of FEA (e.g., reduce memory footprint further)
- Optimization of solver parameters

- Block smoother for solver
- Large-scale performance analysis – Summit, Perlmutter, Cori 

- More sophisticated autotuning algorithms 
- Optimization, MALI, E3SM

Finite Element Assembly:

• Further optimization of FEA (e.g., reduce memory footprint)

• Remove UVM (work in progress in Trilinos)

Linear Solver:

• Block smoother for linear solver

• Optimization of linear solver for GPU

• More sophisticated auto-tuning algorithms  (e.g., Bayesian optimization)

General:

• Large-scale performance analysis on Cori, Summit and Perlmutter
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