
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Performance-portability of the
Albany multi-physics finite element
code on the road to exascale

Jerry Watkins1, Max Carlson1,2, Irina Tezaur1

1 Sandia National Laboratories, Livermore, CA.
2 University of Utah, Salt Lake City, UT.

SAND2021-7742PE

Platform for Advanced Scientific Computing (PASC) 2021

Wednesday, July 7, 2021

Outline

2

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

Outline

3

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

Motivation
• The future is GPUs:

OLCF Summit – IBM POWER9

CPU + NVIDIA V100 GPU

ALCF Aurora (2022, >1 EF) –
Intel Xeon CPU + Intel Xe GPU

OLCF Frontier (2021, >1.5 EF) –
AMD EPYC CPU + AMD GPUs

NERSC Perlmutter (2021) –
AMD EPYC CPU + NVIDIA A100 GPU

“The top priority today is the continued progress to

exascale.” – U.S. DOE Office of Science HPC Initiative

• Current scientific software must adapt to changing HPC architectures

• New scientific software must be designed to mitigate issues from changing HPC architectures

4

Performance portability: achieving a reasonable level of performance

across a wide range of architectures using the same code base.

MPI-only

MPI+X

Outline

5

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

The Albany code base

6

Albany: open-source1, parallel, C++, unstructured-grid multi-physics finite element

code built for rapid application development from Trilinos2 Agile Components

Component Examples (package name)

• Mesh tools (STK)

• Discretization tools (Intrepid2)

• Nonlinear solver (NOX)

• Preconditioners (Ifpack2)

• Linear solver (Belos)

• Field DAG (Phalanx)

• Automatic differentiation (Sacado)

• Distributed memory linear algebra (Tpetra)

• Shared memory parallelism (Kokkos)

• Many more…

1 https://github.com/SNLComputation/Albany. 2 https://github.com/trilinos/Trilinos.

Funded entirely by

applications residing within

Both a “sand-box” and

a production code

https://github.com/SNLComputation/Albany
https://github.com/trilinos/Trilinos

The Albany code base (cont’d)

7

Albany finite element assembly (FEA):

• Tpetra manages distributed memory linear algebra

(MPI+X)

• Phalanx manages shared memory computations (X)
➢ Gather fills element local solution

➢ Interpolate solution/gradient to quad points

➢ Evaluate residual/Jacobian

➢ Scatter fills global residual/Jacobian

Trilinos Packages

FEA Overview

Memory Model

Albany provides the “glue” that connects

components (via abstract interfaces).

Adding new PDEs requires just

implementing a new Evaluate routine

Albany design highlights:

• Piro manages the solve (e.g., Newton, time-stepper)

• Jacobians (+ sensitivities, Hessians, etc.) obtained via

automatic differentiation (Sacado)

• Kokkos achieves performance portability using MPI+X

Albany supporting tools: Kokkos – performance
portability

8

• Kokkos1 is a C++ library that provides performance

portability across multiple shared memory

computing architectures

➢ Examples: Multicore CPU, NVIDIA GPU, Intel KNL

and much more…

• Abstract data layouts and hardware features for

optimal performance on current and future

architectures

• Allows researchers to focus on application or

algorithmic development instead of architecture

specific programming

With Kokkos, you write an algorithm once for multiple hardware architectures.

Template parameters are used to get hardware specific features.

1https://github.com/kokkos/kokkos.

https://github.com/kokkos/kokkos

Albany supporting tools: Phalanx Evaluator –
templated Phalanx node

9

• A Phalanx node (evaluator) is constructed
as a C++ class

• Each evaluator is templated on an
evaluation type (e.g., residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g., double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an Execution Space (e.g.,
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
➢ Serial/OpenMP – LayoutRight (row-major)

➢ CUDA – LayoutLeft (col-major)

typedef Kokkos::CUDA Execution Space;

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node){

Residual(cell,node,0)=0.;

}

}

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

}

Albany supporting tools: Phalanx Evaluator –
templated Phalanx node

10

• A Phalanx node (evaluator) is constructed
as a C++ class

• Each evaluator is templated on an
evaluation type (e.g., residual, Jacobian)

• The evaluation type is used to determine
the data type (e.g., double, Sacado data
types)

• Kokkos RangePolicy is used to parallelize
over cells over an Execution Space (e.g.,
Serial, OpenMP, CUDA)

• Inline functors are used as kernels

• MDField data layouts
➢ Serial/OpenMP – LayoutRight (row-major)

➢ CUDA – LayoutLeft (col-major)

typedef Kokkos::CUDA ExeSpace;

template<typename EvalT, typename Traits>

void StokesFOResid<EvalT, Traits>::

evaluateFields(typename Traits::EvalData workset) {

Kokkos::parallel_for(

Kokkos::RangePolicy<ExeSpace>(0,workset.numCells),

*this);

}

template<typename EvalT, typename Traits>

KOKKOS_INLINE_FUNCTION

void StokesFOResid<EvalT, Traits>::

operator() (const int& cell) const{

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node){

Residual(cell,node,0)=0.;

}

}

for (int cell=0; cell < numCells; cell++) {

for (int node=0; node < numNodes; ++node) {

for (int qp=0; qp < numQPs; ++qp) {

Residual(cell,node,0) +=

Ugrad(cell,qp,0,0)*wGradBF(cell,node,qp,0) +

Ugrad(cell,qp,0,1)*wGradBF(cell,node,qp,1) +

force(cell,qp,0)*wBF(cell,node,qp);

}

}

}

}

Albany supporting tools: Phalanx –
directed acyclic graph (DAG)

11

Advantages:

• Increased flexibility, extensibility, usability

• Arbitrary data type support

• Potential for task parallelism

Extension:

• Performance gain through memoization

Disadvantage:

• Performance loss through fragmentation

DAG Example

(memoization)

DAG Example

Single CPU socket or GPU

Albany supporting tools: Sacado – automatic
differentiation (AD)

12

• AD provides exact derivatives − no Jacobian derivation or hand-coding required

• Allows for advanced analysis capabilities – easily construct any derivative, Hessian

➢ Examples: optimization, sensitivity analysis

• Sacado data types are used for derivative components via class templates

➢ DFad (most flexible) – size set at run-time

➢ SLFad (flexible/efficient) –max size set at compile-time

➢ SFad (most efficient) – size set at compile-time

Fad Type Comparison (Serial, OpenMP (12 threads), CUDA)

Size Example: Tetrahedral elements (4 nodes), 2 equations, ND = 4*2 = 8

There are significant

speedups when

derivative array sizes

are known at compile

time on GPU (50-250x)

Outline

13

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

ProSPect project for land-ice modeling

14

Goal: to develop and support a robust and scalable land ice solver based

on the “First-Order” (FO) Stokes equations → Albany Land Ice (ALI)

Requirements for Albany Land Ice (ALI):

• Unstructured grid meshes.

• Scalable, fast and robust.

• Verified and validated.

• Portable to new architecture machines.

• Advanced analysis capabilities: deterministic inversion,

calibration, uncertainty quantification, sensitivity analysis.

“ProSPect1” = Probabilistic Sea Level Projections from Ice Sheet &

Earth System Models (5 year SciDAC4 project, 2017-2022)

As part of U.S. DOE E3SM2 Earth System Model, solver will

provide actionable predictions of 21st century sea-level

change (including uncertainty bounds).

1https://doe-prospect.github.io 2Energy Exascale Earth System Model

https://doe-prospect.github.io/

Albany Land Ice (ALI) model

15

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

Ice sheet

Implicit solver:

FEA = 50%

CPU-time

Linear solve =

50% CPU-time

* Finite Element Assembly

Algorithmic choices for ALI:

• 3D unstructured grid FEM discretization

(unstructured in 𝑥-𝑦, structured in 𝑧).

• Newton method nonlinear solver with

automatic differentiation Jacobians.

• Preconditioned Krylov iterative linear

solvers.

Glen’s Flow Law Viscosity

Specialized linear solvers

16

Status: Linear solve is ported to GPU but not optimized

• Multigrid tuning for GPU is work in progress

• Performance-portable block smoothers for fine grid coming soon (FY22)

Algebraic
Structured MG

Unstructured
AMG

Algebraic
Structured MG

Solution: Matrix dependent semi-coarsening

algebraic multigrid (MDSC-AMG)1

• First, apply algebraic structured multigrid to coarsen

vertically

• Second, apply SA-AMG on single layer

Problem: Ice sheet meshes are thin with high aspect

ratios

1 See (Tezaur et al., 2015), (Tuminaro et al., 2016)

Outline

17

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

Performance study: Architectures

18

Architectures:

• Cori (NERSC): 2,388 Haswell nodes [2 Haswell (32 cores)]

9,688 KNL nodes [1 Xeon Phi KNL (68 cores)] (Cray Aries)

• Blake (SNL): 40 nodes [2 Skylake (48 cores)] (Intel OmniPath Gen-1)

• Mayer (SNL): 43 nodes [2 ARM64 Cavium ThunderX2 (56 cores)] (Mx EDR IB)

• Ride (SNL): 12 nodes [2 POWER8 (16 cores) + P100 (4 GPUs)] (Mx C-X4 IB)

• Weaver (SNL): 10 nodes [2 POWER9 (40 cores) + V100 (4 GPUs)] (Mx EDR IB)

• Summit (OLCF): 4600 nodes [2 P9 (22 cores) + V100 (6 GPUs)]

• Kahuna (SNL): 4 nodes [2 Zen2 (64 cores) + A100 (1 GPU)] PCIe Gen 4

• Mutrino (SNL): 100 Haswell nodes [2 Haswell (32 cores)],

100 KNL nodes [1 KNL (68 cores)]

• Vortex (SNL): 72 nodes [2 POWER9 (44 cores) + V100 (4 GPUs)]

Future Targets: Aurora Intel GPU (ALCF), Frontier AMD GPU (OLCF), Perlmutter (NERSC)

Ride

Performance-portability of ALI has been tested across multiple architectures: Intel Sandy Bridge,

Intel Skylake, IBM POWER8, IBM POWER9, Keplar/Pascal/Volta/Ampere GPUs, KNL Xeon Phi

Models:

• 2 models: MPI-only, MPI+GPU

➢ MPI+GPU: MPI ranks assigned a single core per GPU, CUDA UVM

used for host to device communication

Performance study: Cases

19

Case 1: Antarctica’s Thwaites glacier

• First-Order Stokes equations

• 1-10km variable resolution

• 1,395,680 wedge elements

• 100 evaluations of FEA + linear solve results

• Strong scaling analysis

➢ 32-core Haswell per node

➢ 4 V100 GPUs per node

Case 2: Greenland ice sheet

• First-Order Stokes equations (+ Enthalpy equation)

• 1km-7km variable resolution

• 14.4 million tetrahedral elements

• FEA-only results (100 evaluations) highlighting

recent performance improvements in Albany

Architectures:

➢ Haswell

➢ KNL

➢ POWER9

➢ V100 GPU

4 8 16

Haswell CPUs 87.2051 43.6626 22.0101

V100 GPUs 7.89909 4.41412 2.8328

Speedup 11.03989194 9.891575218 7.769733126

Cells/GPU 87230 43615 21807

1

10

100

Finite Element Assembly Strong Scaling

Wall-clock time(s) vs. Nodes

20

• 11x speedup V100 over Haswell node

• WIP: Reduce memory usage

➢ UVM degrades performance when using
more than 87,230 Cells/GPU

Performance study: Thwaites Glacier

• 1.6x speedup V100 over Haswell (4 nodes)

• WIP: Optimize GPU solve

➢ Linear solve is 86% of total solve time on GPU!

➢ Linear solve needs block relaxation

0

5

10

15

20

25

30

35

Haswell CPUs V100 GPUs

Total Solve Time (s)

Assembly Linear Solve

21

Implement Tpetra::FECrsMatrix

• Original − on-the-fly host memory allocations

• Addressed by Tpetra via FECrsMatrix (2.1x) –
single memory allocation during setup

Refactor of boundary conditions

• Boundary data converted to contiguous
data structures

• Kernels constructed for boundary
conditions

• 8.7x speedup on GPU relative to
original* with boundary kernels on host
(StokesFO)

Refactor of Enthalpy equation

• Kernels constructed using Kokkos

• 66x speedup on GPU relative to
original* with all kernels on host

Tpetra::FECrsMatrix: Luca Bertagna, Mauro Perego, Chris Siefert; Refactor: Max Carlson

Performance study: Greenland Perf. Improvements

*Original: running on host with device transfers

Outline

22

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

Performance testing: maintaining performance &
portability

23

• Nightly testing is needed to secure investments in performance & portability in evolving software

➢ Changes in code base could cause performance deterioration

➢ Performance improvements in one architecture could decrease performance in another

➢ Manual analysis is time consuming and imprecise

Solution: changepoint detection algorithm

automatically applied to nightly performance test

data to identify/flag large changes in performance.

• Infrastructure is provided in a Jupyter notebook, exported as

html to a website (https://ikalash.github.io)

• Daily email provides nightly performance test summary

Figure below: Total simulation time for a 2-20km

resolution Antarctica problem, executed nightly

With Kyle Shan (Micron Technology, formerly Stanford U)

https://ikalash.github.io/

Outline

24

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

Automated parameter/performance tuning

25

Problem: hand-tuning solver parameters can be a long/painful process, does not translate b/w architectures.

Solution: create a framework for determining optimal parameter values to achieve best performance

(smallest CPU time) on HPC systems using offline and real-time data.

CPU1

GPU2

Preliminary results: optimization over linear solver parameter space using random search

for coarse resolution 3-20km mesh Greenland problem (100 iterations)

Parameters

to optimize

Future work: more

sophisticated

algorithms for

parameter

optimization (e.g.,

Bayesian

optimization)

With Carolyn Kao (Stanford U)1 8 nodes, Skylake CPU
2 2 nodes, V100 GPU

Outline

26

1. Motivation

2. Albany and its supporting tools

3. Case study: Albany Land Ice (ALI)
• Overview of ALI model

• Performance study

• Automated performance testing

• Automated parameter/performance tuning

4. Summary & future work

Summary

27

• HPC architectures are changing rapidly which poses a significant challenge for open-science

• The Albany/Trilinos/Kokkos software stack offers an efficient way to meet this challenge for

large scale finite element analysis

• Albany Land Ice is currently being used to provide sea-level change predictions

• Performance on next generation computing architectures is a work in progress

➢ 11x speedup of V100 node over Haswell node for finite element assembly

➢ Performance on V100 is ~2x faster than on Haswell node for the full solve

• Maintaining performance and portability is crucial for an active code base

➢ A change-point detection algorithm can help identify performance variation

• Optimal solver parameters can be determined for a specific architecture automatically using

black-box optimization algorithms

➢ A simple random grid search algorithm can improve performance by up to 1.5x.

Future work

28

- Further optimizations of FEA (e.g., reduce memory footprint further)
- Optimization of solver parameters

- Block smoother for solver
- Large-scale performance analysis – Summit, Perlmutter, Cori

- More sophisticated autotuning algorithms
- Optimization, MALI, E3SM

Finite Element Assembly:

• Further optimization of FEA (e.g., reduce memory footprint)

• Remove UVM (work in progress in Trilinos)

Linear Solver:

• Block smoother for linear solver

• Optimization of linear solver for GPU

• More sophisticated auto-tuning algorithms (e.g., Bayesian optimization)

General:

• Large-scale performance analysis on Cori, Summit and Perlmutter

Funding/Acknowledgements

29

Support for this work was provided by Scientific Discovery through Advanced Computing (SciDAC)

projects funded by the U.S. Department of Energy, Office of Science (OS), Advanced Scientific

Computing Research (ASCR) and Biological and Environmental Research (BER).

Computing resources provided by the National Energy Research Scientific

Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (OLCF).

