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> | Motivation

Despite improved algorithms and powerful supercomputers, “high-fidelity”
models are often too expensive for use in a design or analysis setting.

Sandia application areas in which this situation arises:

« Captive-carry and re-entry environments: Large Eddy
Simulations (LES) runs require very fine meshes and can take
on the order of weeks.

« Fastener failure modeling: modeling fastener
behavior in a full system presents meshing and
computational challenges, which limits the
number of configurations that can be studied.

= « Climate modeling (e.g., land-ice, atmosphere): high-fidelity
simulations too costly for uncertainty quantification (UQ);
Bayesian inference of high-dimensional parameter fields is
intractable.




POD/LSPG* Approach to Model Reduction

Full Order Model (FOM) =

Ordinary Differential Equation (ODE):

dx
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*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al.,

2011; K. Carlberg et al., 2017]
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POD/LSPG Approach to Model Reduction

Advantages of POD/LSPG projection:

« Computes a solution that minimizes the [,-norm of the time-discrete residual arising in each At

» Ensures that adding basis vectors yields a monotonic decrease in the least-squares objective
function defining the underlying minimization problem [Carlberg et al., 2011]

» Possesses better stability and accuracy than POD/Galerkin for certain classes of problems (e.g.,
compressible flow) [Carlberg et al., 2013; Carlberg et al., 2017; Tezaur et al., 2018].

Room for improvement for realistic predictive applications:

Accuracy for predictive problems can be inadequate

Method may fail to converge for some realistic problems run
in the predictive regime

Method may struggle when applied to problems with disparate
scales [Washabaugh, 2016]

— FOM

-- 1000 mode POD/LSPG ROM
— 2000 mode POD/LSPG ROM
— 3000 mode POD/LSPG ROM

f\wwwwmvw

Reproductive Predictive

Time

Solution: introduction of preconditioning into LSPG ROM formulation.



s | Preconditioned LSPG ROMs

LSPG Formulation:

X = argmin ||r(®y)||3
yERM

Optimization problem
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Preconditioned LSPG ROMs

Adding preconditioning to the POD/LSPG formulation can improve
not only ROM efficiency but also ROM accuracy.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

« Upper limit on ROM accuracy is obtained by taking solution increment computed by FOM, §x®), at
each time step k and projecting it onto the POD basis:

%) = (DT P) 1pT 5xK) (1)

« Ideal preconditioned ROM (M = (J())~1) gives rise to “projected solution increment” solution (1)

« As quality of preconditioner is improved (M — (J®*))~1) the ROM solution approaches the most
accurate ROM solution possible for a given basis @.

Preconditioning ensures all residual components are on approximately the same scale.

* Minimizing the raw (unweighted) residual r can be problematic for systems of PDEs where different variables
have drastically different magnitudes (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].

« Adding a preconditioner amounts to scaling the ROM residual to get all the equations to be roughly the same
order.



Numerical Examples: Albany and SPARC codes

7

element code

‘bﬁﬂg multi-physics finite SPARC3 Flow Solver

* Next-generation transonic and hypersonic C++

° - 1
Open-source’, parallel, C++ code CFD code developed at Sandia

« Component-based design for rapid development - Simulates compressible flow

« Contains a wide variety of constitutive models for

mechanical/thermo-mechanical problems. * Used for analyses involving captive carry and

reentry vehicles
* Makes extensive use of libraries from the open-

source Trilinos project?, including preconditioners
from the Ifpack library

* Primary discretization is cell-centered finite
volume method

« Leverages libraries from the Trilinos project?

Problems tested: quasi-static mechanical and

, ) o Problems tested: transient compressible laminar
thermo-mechanical with prediction across

flow over an open cavity with prediction in time

material parameter space.

Thttps://github.com/SNLComputation/Albany/releases/tag/MOR_support_end 3Sandia Parallel Aerodynamics and Reentry Code
Zhttps://github.com/trilinos/trilinos



https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end
https://github.com/trilinos/trilinos

s | Thermo-Mechanical Pressure Vessel (Albany)

Table 1. Parameters in block B, for thermo-
mechanical pressure vessel problem.

Regime Case | E,(x10”) [Pa] U pp(x107%) [kg/m?|  Tyrer [K]
1 1.64424 0.39524 8.33058 311.094
frainine 2 1.771178 0.3(000765 9.6'7843 267.396 i
’ © 3 1.9893 0.32161 7.17625 223.746 I
4 1.45551 0.266385 6.67746 331.116
Costine 1 2.06416 0.391368 7.79804 252.102 I
e 2 1.703 0.32 7.92 293

Coupled thermo-mechanical problem involving Neohookean material

> Multi-physics problem: temperature and displacement solutions
differ by 9 orders of magnitude

2 sets of material blocks, B, and B,, each having set of material params
> Material parameters in block B, (magenta, cyan) are fixed
> Material parameters in block B, (green, yellow, blue) are varied
Pressure vessel is heated and pressurized from the inside
Problem is run quasi-statically to pseudo-time t =720s with 370K dofs

Testing 1 Testing 2
Training is performed for 4 sets of parameters; testing/prediction is

performed for 2 sets of parameters (see Table 1) [Lindsay et al., in prep.]



Thermo-Mechanical Pressure Vessel (Albany)

Global relative error:
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Seven basis sizes evaluated: 2,4,8,16,
32,79,790
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Preconditioned
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to 5 orders of
magnitude more
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LSPG ROMs.

LSPG ROMs do not
converge for larger
basis sizes.

Accuracy is
improved by
improving the
preconditioner.



10 ‘ Thermo-Mechanical Pressure Vessel (Albany)
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1 I Thermo-Mechanical Pressure Vessel (Albany)

Pareto plot confirms competitiveness

of preconditioned LSPG ROMs.
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2 I Compressible Cavity Flow (SPARC)

« 2D viscous laminar flow around an open cavity geometry
» Simple model for the captive carry scenario

* Mach number = 0.6, Reynolds number =~ 3000

* Problem is run non-dimensionally

« Domain is discretized using 104,500 hexahedral cells (right)

« Of primary interest are long-time predictive simulations

» ROM is run at same parameters as FOM but much
longer in time

> Relevant QOIs: statistics of the flow (e.g., pressure
power spectral densities or PSDs)

y-axis

x-axis

[Tezaur et al. 2017; Fike et al. 2018]
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3 ‘ Compressible Cavity Flow (SPARC)

» Figure top left: pressure time history for a point halfway up
the downstream wall of the cavity for an LSPG ROM having
327 modes with a Jacobi preconditioner

» Figure bottom left: pressure PSD for the signal in the top
left figure (solid line is mean PSD, shaded regions indicate
range of values used to construct the mean)

* Preconditioned LSPG ROM captures well the pressure PSD,
including its peaks (Rossiter modes) and the RMS OASPL

« Vanilla LSPG ROM did not run successfully

Method RMS OASPL" in dB | % Difference from
FOM
FOM 66.176 —
|deal 67.552 2.08%
LSPG N/A N/A
LSPG + Jacobi PC 68.033 2.80%

'Overall sound pressure level



4 | Summary & Future Work

Summary:

» Adding preconditioning to the LSPG formulation gives rise to ROMs with improved accuracy and robustness,
especially in the predictive regime

> Preconditioning attempts to emulate projection of FOM solution increment onto POD basis (the ROM
“best-case scenario” for a given basis)

» Preconditioning ensures all components of residual being minimized are of the same magnitude

> Results on predictive (across parameter space) thermo-mechanical and predictive (in time)
compressible flow problems are compelling

Ongoing/future work:

« Two manuscripts on this work are in preparation
> P. Lindsay, J. Fike, K. Carlberg, |. Tezaur. “Preconditioned LSPG Reduced Order Models”, in prep.
> J. Fike, P. Lindsay, K. Carlberg, |. Tezaur. “Preconditioned Least-Squares Petrov-Galerkin Reduced Order
Models for Compressible Flows”, in prep.
« Application of preconditioned LSPG approach to more sophisticated problems relevant to Sandia’s mission
spaces

» Preconditioning LSPG ROMs has been helpful for hypersonic aero, thermal/ablation and reacting
hypersonic flow problems
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Mechanical Beam (Albany)

Mechanical problem involving Neohookean material

Table 2. Parameters in block B,, for
mechanical beam problem.

Regime Case | Ep(x10') [Pa] Vp oy [kg/m3]
1 1.38002 0.28028 9194.74
2 2.11826 0.332646  7683.22
training 3 1.82559 0.395908 6150.4
4 1.56036 0.350415  9067.35
5 1.68463 0.256473  T466.27
1 1.50293 0.244704  6466.96
e 2 1.54545 0.304329  6774.12
testing , , ,
N 3 1.47145 0.367092  8362.44
4 1.703 0.32 7920

2 sets of material blocks, B, and B,,, each having set of material params

» Material parameters in block B, are fixed
> Material parameters in block B, are varied (see Table 2)

Linearly varying time-dependent pressure BC is prescribed on I;; other

boundaries are fixed

Problem is run quasi-statically to pseudo-time t =7200s with 1340 dofs

Training is performed for 6 sets of parameters; testing/prediction is

performed for 4 sets of parameters (see Table 2)

0.

Mechanical: rel diff in |disp| at (0.08, -0.008, -0.016)
5

0181

relative difference

— Training 2
Training 3
Training 4
Training 5
— — —Testing 1
— — —Testing 2
— — —Testing 3
Testing 4

6000

time (s)

BOOO

> Nontrivial variations in displacement (up to 20%) are observed with the parameter variations considered

(right figure)

[Lindsay et al., in prep.]



17| Mechanical Beam (Albany)

» Figure plots global relative error in
approximate ROM solutions:

P ~
i=0||xi - xillz

lP=0||xi||2
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* Preconditioners evaluated: Jacobi,

Gauss-Seidel, ILU and (J%))~1 (denoted
by “ldeal”)

* Nonlinear solver for unpreconditioned
LSPG ROM did not converge for any of
the basis sizes considered.

» More sophisticated preconditioners
deliver smaller errors.
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18| Mechanical Beam (Albany)

Testing Case 2

; Testing Case 1 107
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Mechanical Beam (Albany)

Figures shows CPU-times for all ROMs
considered

As expected, the projected solution
increment is the most expensive to

compute
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20| Mechanical Beam (Albany)

W
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21 ‘ Thermo-Mechanical Beam (Albany) Table 3. Parameters in block B, for

thermo-mechanical beam problem.

Regime Case | Ep(x10°) [Pa) Vb p(x1077) [kg/m?] Ty rer [K]
1 2.01313 0.285907 7.94827 273.657
2 1.71637 0.332083 6.93965 318.406
training 3 1.96881 0.3478 9.37181 301.406
- 4 1.28954 0.29427 9.14636 365.378
51 1.61326 0.262464 6.32164 223.434
6 1.54724 0.374118 7.31561 245.778
1 1.52473 0.27925 8.80694 266.674
testing 2 1.31153 0.345538 7.58234 333.462
' - 3 1.37015 0.246513 7.73303 345.942
4 1.703 0.32 7.92 293

* Coupled thermo-mechanical problem involving Neohookean material

- 2 sets of material blocks, B, and B,,, each having set of material params T e e
> Material parameters in block B, are fixed
> Material parameters in block B,, are varied (see Table 3) T

« Linearly varying time-dependent pressure and temperature BC is
prescribed on I'; and I, respectively; other boundaries are fixed

0.35

relative difference

0.25

- Problem is run quasi-statically to pseudo-time t =7200s with 2100 dofs JJ{ SECEEEEEEE
- Training is performed for 6 sets of parameters; testing/prediction is ——
performed for 4 sets of parameters (see Table 3) Tt e ey e
» Significant variations in displacement (up to 60%) are observed with the parameter variations considered
(right figure)

[Lindsay et al., in prep.]



22‘ Thermo-Mechanical Beam (Albany)

Thermo-mechanical Beam - Testing Case 1

10° - .
—¥— LSPG
—¥%— Jacobi
¥ Gauss-Seidel
LU 3
= === |deal
o il
= E
1T
@
=
-
Y
m | —
(n el
W - - =
10° 10!
.10"1[] 1 L 1
10° 10’ 107 10°

Basis Size



‘ Thermo-Mechanical Beam (Albany)

Thermo-mechanical Beam - Testing Case 2
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‘ Thermo-Mechanical Beam (Albany)

Thermo-mechanical Beam - Testing Case 3
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‘ Thermo-Mechanical Beam (Albany)

Thermo-mechanical Beam - Testing Case 4
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26‘ Thermo-Mechanical Beam (Albany)
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27‘ Thermo-Mechanical Beam (Albany)

Thermo-mechanical Beam - Testing Case 1 Thermo-mechanical Beam - Testing Case 2
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26| Thermo-Mechanical Beam (Albany)

Thermo-mechanical Beam
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