

Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models for Fluid and Solid Mechanics Problems

Payton Lindsay¹, Jeff Fike¹, Kevin Carlberg², **Irina Tezaur**¹ ¹Sandia National Labs, ²Facebook Reality Labs

MMLDT-CSET2021

Wednesday, September 28, 2021

SAND2021-11141C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

² Motivation

Despite improved algorithms and powerful supercomputers, **"high-fidelity" models** are often too expensive for use in a design or analysis setting.

Sandia application areas in which this situation arises:

• **Captive-carry** and **re-entry environments:** Large Eddy Simulations (LES) runs require very fine meshes and can take on the order of *weeks*.

Fastener failure modeling: modeling fastener behavior in a full system presents meshing and computational challenges, which limits the number of configurations that can be studied.

Climate modeling (e.g., land-ice, atmosphere): high-fidelity simulations too costly for uncertainty quantification (UQ); Bayesian inference of high-dimensional parameter fields is intractable.

POD/LSPG* Approach to Model Reduction

Full Order Model (FOM) = Ordinary Differential Equation (ODE): $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$

3

3. Reduction

*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al., 2011; K. Carlberg et al., 2017]

POD/LSPG Approach to Model Reduction

Advantages of POD/LSPG projection:

- Computes a solution that **minimizes the** l_2 -norm of the time-discrete residual arising in each Δt
 - Ensures that adding basis vectors yields a monotonic decrease in the least-squares objective function defining the underlying minimization problem [Carlberg et al., 2011]
- Possesses **better stability** and **accuracy** than POD/Galerkin for certain classes of problems (e.g., compressible flow) [Carlberg *et al.*, 2013; Carlberg *et al.*, 2017; Tezaur *et al.*, 2018].

Room for improvement for realistic predictive applications:

- Accuracy for **predictive problems** can be inadequate
- Method may fail to converge for some realistic problems run in the predictive regime
- Method may struggle when applied to **problems** with **disparate scales** [Washabaugh, 2016]

Solution: introduction of preconditioning into LSPG ROM formulation.

⁵ Preconditioned LSPG ROMs

LSPG Formulation:

Optimization problem

$$\begin{split} \delta \widehat{\boldsymbol{x}}_{\mathrm{PG}}^{(k)} &= \operatorname*{argmin}_{\boldsymbol{y} \in \mathbb{R}^{M}} || \boldsymbol{J}^{(k)} \boldsymbol{\Phi} \boldsymbol{y} + \boldsymbol{r}^{(k)} ||_{2}^{2} \\ \widehat{\boldsymbol{x}}_{\mathrm{PG}}^{(k)} &= \widehat{\boldsymbol{x}}_{\mathrm{PG}}^{(k-1)} + \alpha_{k} \delta \widehat{\boldsymbol{x}}_{\mathrm{PG}}^{(k)} \\ \widetilde{\boldsymbol{x}}_{\mathrm{PG}}^{(k)} &= \boldsymbol{\Phi} \widehat{\boldsymbol{x}}_{\mathrm{PG}}^{(k)} & \text{Gauss-Newton iteration} \end{split}$$

Normal equations

$$J_{PG}^{(k)} \delta \hat{\boldsymbol{x}}_{PG}^{(k)} = -\boldsymbol{r}_{PG}^{(k)}$$
$$J_{PG}^{(k)} = \boldsymbol{\Phi}^T \boldsymbol{J}^{(k)T} \boldsymbol{J}^{(k)} \boldsymbol{\Phi}$$
$$\boldsymbol{r}_{PG}^{(k)} = \boldsymbol{\Phi}^T \boldsymbol{J}^{(k)T} \boldsymbol{r}^{(k)}$$

Preconditioned LSPG Formulation:

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{y} \in \mathbb{R}^{M}}{\operatorname{argmin}} ||\boldsymbol{M}\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{y})||_{2}^{2} \\ \sum_{\boldsymbol{y} \in \mathbb{R}^{M}} ||\boldsymbol{M}\boldsymbol{r}(\boldsymbol{\Phi}\boldsymbol{y})||_{2}^{2} \\ \widehat{\boldsymbol{x}}_{PPG}^{(k)} = \widehat{\boldsymbol{x}}_{PPG}^{(k-1)} + \alpha_{k} \delta \widehat{\boldsymbol{x}}_{PPG}^{(k)} \\ \widehat{\boldsymbol{x}}_{PPG}^{(k)} = \widehat{\boldsymbol{x}}_{PPG}^{(k-1)} + \alpha_{k} \delta \widehat{\boldsymbol{x}}_{PPG}^{(k)} \\ \widehat{\boldsymbol{x}}_{PPG}^{(k)} = \widehat{\boldsymbol{x}}_{PPG}^{(k-1)} + \alpha_{k} \delta \widehat{\boldsymbol{x}}_{PPG}^{(k)} \\ \widehat{\boldsymbol{x}}_{PPG}^{(k)} = \widehat{\boldsymbol{\Phi}} \widehat{\boldsymbol{x}}_{PPG}^{(k)} \\ \widehat{\boldsymbol{x}}_{PPG}^{(k)} = \widehat{\boldsymbol{\Phi}} \widehat{\boldsymbol{x}}_{PPG}^{(k)} \\ \operatorname{Gauss-Newton iteration} \\ | \mathbf{A}_{PPG}^{(k)} = \mathbf{A}_{P}^{T} \mathbf{J}_{P}^{(k)T} \mathbf{M}_{P}^{(k)T} \mathbf{M}$$

Adding preconditioning to the POD/LSPG formulation can **improve** not only **ROM efficiency** but also **ROM accuracy**.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

• Upper limit on ROM accuracy is obtained by taking solution increment computed by FOM, $\delta x^{(k)}$, at each time step k and projecting it onto the POD basis:

 $\delta \widetilde{\boldsymbol{x}}^{(k)} = \boldsymbol{\Phi} (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \delta \boldsymbol{x}^{(k)}$ (1)

- Ideal preconditioned ROM ($M^{(k)} = (J^{(k)})^{-1}$) gives rise to "projected solution increment" solution (1)
- As quality of preconditioner is improved $(M^{(k)} \rightarrow (J^{(k)})^{-1})$, the ROM solution **approaches** the most accurate ROM solution possible for a given basis Φ .

Preconditioning ensures all residual components are on approximately the same scale.

- Minimizing the raw (unweighted) residual *r* can be problematic for systems of PDEs where different variables have **drastically different magnitudes** (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].
- Adding a preconditioner amounts to **scaling** the ROM residual to get all the equations to be roughly the same order.

Numerical Examples: Albany and SPARC codes

multi-physics finite element code

- Open-source¹, parallel, C++ code
- Component-based design for rapid development
- Contains a wide variety of constitutive models for mechanical/thermo-mechanical problems.
- Makes extensive use of libraries from the opensource Trilinos project², including preconditioners from the Ifpack library

Problems tested: quasi-static mechanical and thermo-mechanical with prediction across material parameter space.

SPARC³ Flow Solver

- Next-generation transonic and hypersonic C++ CFD code developed at Sandia
- Simulates compressible flow
- Used for analyses involving captive carry and reentry vehicles
- Primary discretization is cell-centered finite volume method
- Leverages libraries from the Trilinos project²

Problems tested: transient compressible laminar flow over an open cavity with prediction in time

³Sandia Parallel Aerodynamics and Reentry Code

8 Thermo-Mechanical Pressure Vessel (Albany)

 $\rho_b(\times 10^{-3}) \, [\rm kg/m^3]$ $E_b(\times 10^9)$ [Pa] Regime Case ν_b $T_{b,\mathrm{ref}} [\mathrm{K}]$ 1.64424 0.395248.33058 311.094 $\mathbf{2}$ 1.77118 267.3960.3000659.67843 training 3 1.98930.321617.17625 223.746 1.455510.266385 6.67746 331.116 4 2.06416 0.391368 7.79804 252.102 1 testing 21.7030.327.92 293

- Coupled thermo-mechanical problem involving Neohookean material
 - Multi-physics problem: temperature and displacement solutions differ by 9 orders of magnitude
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material params
 - \succ Material parameters in block \mathcal{B}_a (magenta, cyan) are fixed
 - > Material parameters in block \mathcal{B}_b (green, yellow, blue) are varied
- Pressure vessel is **heated** and **pressurized** from the inside
- Problem is run **quasi-statically** to pseudo-time t = 720s with 370K dofs
- **Training** is performed for 4 sets of parameters; **testing/prediction** is performed for 2 sets of parameters (see Table 1)

[Lindsay *et al.*, in prep.]

Table 1. Parameters in block \mathcal{B}_b for thermomechanical pressure vessel problem.

Thermo-Mechanical Pressure Vessel (Albany)

• Global relative error:

9

 $\epsilon \coloneqq \frac{\sum_{i=0}^{P} ||\boldsymbol{x}_{i} - \widetilde{\boldsymbol{x}}_{i}||_{2}}{\sum_{i=0}^{P} ||\boldsymbol{x}_{i}||_{2}}$

• Seven basis sizes evaluated: 2,4,8,16, 32,79,790

- Preconditioned LSPG ROMs are up to 5 orders of magnitude more accurate than LSPG ROMs.
- LSPG ROMs do not converge for larger basis sizes.
- Accuracy is improved by improving the preconditioner.

Thermo-Mechanical Pressure Vessel (Albany)

10

¹¹ Thermo-Mechanical Pressure Vessel (Albany)

¹² Compressible Cavity Flow (SPARC)

- 2D viscous laminar flow around an open cavity geometry
 - Simple model for the captive carry scenario
- Mach number = 0.6, Reynolds number \approx 3000
- Problem is run non-dimensionally
- Domain is discretized using 104,500 hexahedral cells (right)
- Of primary interest are long-time predictive simulations
 - ROM is run at same parameters as FOM but much longer in time
 - Relevant QOIs: statistics of the flow (e.g., pressure power spectral densities or PSDs)

x-axis [Tezaur *et al*. 2017; Fike *et al*. 2018]

Compressible Cavity Flow (SPARC)

13

- Figure top left: pressure time history for a point halfway up the downstream wall of the cavity for an LSPG ROM having 327 modes with a Jacobi preconditioner
- **Figure bottom left:** pressure PSD for the signal in the top left figure (solid line is mean PSD, shaded regions indicate range of values used to construct the mean)
- **Preconditioned LSPG ROM** captures well the **pressure PSD**, including its peaks (Rossiter modes) and the **RMS OASPL**¹
- Vanilla LSPG ROM did not run successfully

Method	RMS OASPL ¹ in dB	% Difference from FOM
FOM	66.176	-
Ideal	67.552	2.08%
LSPG	N/A	N/A
LSPG + Jacobi PC	68.033	2.80%

¹Overall sound pressure level

¹⁴ Summary & Future Work

Summary:

- Adding **preconditioning** to the LSPG formulation gives rise to ROMs with **improved accuracy** and **robustness**, especially in the predictive regime
 - Preconditioning attempts to emulate projection of FOM solution increment onto POD basis (the ROM "best-case scenario" for a given basis)
 - > Preconditioning ensures all components of residual being minimized are of the same magnitude
 - Results on predictive (across parameter space) thermo-mechanical and predictive (in time) compressible flow problems are compelling

Ongoing/future work:

- Two manuscripts on this work are in preparation
 - > P. Lindsay, J. Fike, K. Carlberg, I. Tezaur. "Preconditioned LSPG Reduced Order Models", *in prep*.
 - J. Fike, P. Lindsay, K. Carlberg, I. Tezaur. "Preconditioned Least-Squares Petrov-Galerkin Reduced Order Models for Compressible Flows", in prep.
- Application of preconditioned LSPG approach to more sophisticated problems relevant to Sandia's mission spaces
 - Preconditioning LSPG ROMs has been helpful for hypersonic aero, thermal/ablation and reacting hypersonic flow problems

Start of Backup Slides

¹⁶ Mechanical Beam (Albany)

- Mechanical problem involving Neohookean material
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material params
 - > Material parameters in block \mathcal{B}_a are fixed
 - > Material parameters in block \mathcal{B}_b are varied (see Table 2)
- Linearly varying time-dependent pressure BC is prescribed on Γ_1 ; other boundaries are fixed
- Problem is run quasi-statically to pseudo-time t = 7200s with 1340 dofs
- Training is performed for 6 sets of parameters; testing/prediction is performed for 4 sets of parameters (see Table 2)
 - Nontrivial variations in displacement (up to 20%) are observed with the parameter variations considered (right figure)
 [Lindsay et al., in prep.]

Regime	Case	$E_b(\times 10^{11})$ [Pa]	$ u_b$	$\rho_b [\mathrm{kg/m^3}]$
training	1	1.38002	0.28028	9194.74
	2	2.11826	0.332646	7683.22
	3	1.82559	0.395908	6150.4
	4	1.56036	0.350415	9067.35
	5	1.68463	0.256473	7466.27
testing	1	1.50293	0.244704	6466.96
	2	1.54545	0.304329	6774.12
	3	1.47145	0.367092	8362.44
	4	1.703	0.32	7920

¹⁷ Mechanical Beam (Albany)

• Figure plots **global relative error** in approximate ROM solutions:

$$\epsilon \coloneqq \frac{\sum_{i=0}^{P} ||\boldsymbol{x}_{i} - \widetilde{\boldsymbol{x}}_{i}||_{2}}{\sum_{i=0}^{P} ||\boldsymbol{x}_{i}||_{2}}$$

- Preconditioners evaluated: Jacobi, Gauss-Seidel, ILU and $(J^{(k)})^{-1}$ (denoted by "Ideal")
- Nonlinear solver for unpreconditioned LSPG ROM did not converge for any of the basis sizes considered.
- More sophisticated preconditioners deliver smaller errors.

¹⁸ Mechanical Beam (Albany)

- Figure plots condition numbers of reduced Jacobian (J^(k)_{PPG} or J^(k)_{PG}) for each ROM.
- A moderate reduction in condition number is obtained through preconditioning strategies.
- Most sophisticated ILU preconditioner gives rise to a reduced Jacobian with the smallest condition number.

¹⁹ Mechanical Beam (Albany)

- Figures shows CPU-times for all ROMs considered
- As expected, the **projected solution increment** is the **most expensive** to compute

²⁰ Mechanical Beam (Albany)

The **best preconditioner** given error/CPU-time requirements can be inferred from **Pareto plot** shown here.

²¹ Thermo-Mechanical Beam (Albany)

Table 3. Parameters in block \mathcal{B}_b for thermo-mechanical beam problem.

Regime	Case	$E_b(\times 10^9)$ [Pa]	$ u_b$	$\rho_b(\times 10^{-5}) \; [\rm kg/m^3]$	$T_{b,\mathrm{ref}} [\mathrm{K}]$
training	1	2.01313	0.285907	7.94827	273.657
	2	1.71637	0.332083	6.93965	318.406
	3	1.96881	0.3478	9.37181	301.406
	4	1.28954	0.29427	9.14636	365.378
	5	1.61326	0.262464	6.32164	223.434
	6	1.54724	0.374118	7.31561	245.778
testing	1	1.52473	0.27925	8.80694	266.674
	2	1.31153	0.345538	7.58234	333.462
	3	1.37015	0.246513	7.73303	345.942
	4	1.703	0.32	7.92	293

- Coupled thermo-mechanical problem involving Neohookean material
- 2 sets of material blocks, \mathcal{B}_a and \mathcal{B}_b , each having set of material params
 - \succ Material parameters in block \mathcal{B}_a are fixed
 - > Material parameters in block \mathcal{B}_b are varied (see Table 3)
- Linearly varying time-dependent pressure and temperature BC is prescribed on Γ_1 and Γ_2 , respectively; other boundaries are fixed
- Problem is run quasi-statically to pseudo-time t = 7200s with 2100 dofs
- **Training** is performed for 6 sets of parameters; **testing/prediction** is performed for 4 sets of parameters (see Table 3)
 - Significant variations in displacement (up to 60%) are observed with the parameter variations considered (right figure)
 [Lindsay et al., in prep.]

²² Thermo-Mechanical Beam (Albany)

ħ

Thermo-Mechanical Beam (Albany)

ħ

Thermo-Mechanical Beam (Albany)

Thermo-Mechanical Beam (Albany)

²⁶ Thermo-Mechanical Beam (Albany)

- Figure plots condition numbers of reduced Jacobian $(J_{PPG}^{(k)} \text{ or } J_{PG}^{(k)})$ for each ROM.
- Reduced Jacobians for regular LSPG ROM are very ill-conditioned (> 0(10¹⁴))
 - Ill-conditioning is due to extreme differences in scale b/w displacement and temperature solutions (9 orders of magnitude)
- Results demonstrate that simple preconditioning strategy can reduce condition numbers by as many as 10 orders of magnitude
- As expected, projected solution increment reduced Jacobian has perfect condition number

²⁷ Thermo-Mechanical Beam (Albany)

- Figures shows **CPU-times** for all ROMs considered
- In general, preconditioned LSPG ROMs achieve CPU-times smaller than unpreconditioned LSPG ROM
- As expected, the **projected solution increment** is the **most expensive** to compute in general

²⁸ Thermo-Mechanical Beam (Albany)

ħ