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2 Motivation

Despite improved algorithms and powerful supercomputers, “high-fidelity” 

models are often too expensive for use in a design or analysis setting.

Sandia application areas in which this situation arises:

• Captive-carry and re-entry environments: Large Eddy 

Simulations (LES) runs require very fine meshes and can take 

on the order of weeks.

• Fastener failure modeling: modeling fastener 

behavior in a full system presents meshing and 

computational challenges, which limits the 

number of configurations that can be studied.

• Climate modeling (e.g., land-ice, atmosphere): high-fidelity 

simulations too costly for uncertainty quantification (UQ); 

Bayesian inference of high-dimensional parameter fields is 

intractable.



POD/LSPG* Approach to Model Reduction
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Full Order Model (FOM) = Ordinary Differential Equation (ODE):

Proper Orthogonal Decomposition (POD):

Solve ODE at different 

design points
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*Least-Squares Petrov-Galerkin Projection [K. Carlberg et al., 2011; K. Carlberg et al., 2017]
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POD/LSPG Approach to Model Reduction
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Advantages of POD/LSPG projection:

• Computes a solution that minimizes the l2-norm of the time-discrete residual arising in each ∆𝑡

➢ Ensures that adding basis vectors yields a monotonic decrease in the least-squares objective 

function defining the underlying minimization problem [Carlberg et al., 2011]

• Possesses better stability and accuracy than POD/Galerkin for certain classes of problems (e.g., 

compressible flow) [Carlberg et al., 2013; Carlberg et al., 2017; Tezaur et al., 2018].

• Accuracy for predictive problems can be inadequate 

• Method may fail to converge for some realistic problems run      

in the predictive regime

• Method may struggle when applied to problems with disparate

scales [Washabaugh, 2016]  

Solution: introduction of preconditioning into LSPG ROM formulation.
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Room for improvement for realistic predictive applications:



Preconditioned LSPG ROMs5

LSPG Formulation:
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Preconditioned LSPG Formulation:

Gauss-Newton iteration

Normal equations

Optimization problem
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Preconditioned LSPG ROMs
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Adding preconditioning to the POD/LSPG formulation can improve

not only ROM efficiency but also ROM accuracy.

Ideal preconditioned ROM emulates projection of FOM solution increment onto POD basis.

• Minimizing the raw (unweighted) residual 𝒓 can be problematic for systems of PDEs where different variables 

have drastically different magnitudes (e.g., dimensional PDEs, multi-physics) [Washabaugh, 2016].

• Adding a preconditioner amounts to scaling the ROM residual to get all the equations to be roughly the same 

order.

𝛿𝒙(𝑘) = 𝜱(𝜱𝑇𝜱)−1𝜱𝑇𝛿𝒙(𝑘)

• Ideal preconditioned ROM (𝑴(𝑘) = (𝑱 𝑘 )−1) gives rise to “projected solution increment” solution (1)

• As quality of preconditioner is improved (𝑴(𝑘) → (𝑱 𝑘 )−1), the ROM solution approaches the most 

accurate ROM solution possible for a given basis 𝜱.

Preconditioning ensures all residual components are on approximately the same scale.

• Upper limit on ROM accuracy is obtained by taking solution increment computed by FOM, 𝛿𝒙(𝑘), at 

each time step 𝑘 and projecting it onto the POD basis:

(1)



Numerical Examples:  Albany and SPARC codes7

multi-physics finite 

element code

• Open-source1, parallel, C++ code

• Component-based design for rapid development

• Contains a wide variety of constitutive models for 

mechanical/thermo-mechanical problems.

• Makes extensive use of libraries from the open-

source Trilinos project2, including preconditioners 

from the Ifpack library

1https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end
2https://github.com/trilinos/trilinos

Problems tested: quasi-static mechanical and 

thermo-mechanical with prediction across 

material parameter space.

SPARC3 Flow Solver

• Next-generation transonic and hypersonic C++ 

CFD code developed at Sandia

• Simulates compressible flow

• Used for analyses involving captive carry and 

reentry vehicles

• Primary discretization is cell-centered finite 

volume method

• Leverages libraries from the Trilinos project2

Problems tested: transient compressible laminar 

flow over an open cavity with prediction in time

3Sandia Parallel Aerodynamics and Reentry Code

https://github.com/SNLComputation/Albany/releases/tag/MOR_support_end
https://github.com/trilinos/trilinos


Thermo-Mechanical Pressure Vessel (Albany)8

• Coupled thermo-mechanical problem involving Neohookean material

➢ Multi-physics problem: temperature and displacement solutions 

differ by 9 orders of magnitude

• 2 sets of material blocks, ℬ𝑎 and ℬ𝑏, each having set of material params

➢ Material parameters in block ℬ𝑎 (magenta, cyan) are fixed

➢ Material parameters in block ℬ𝑏 (green, yellow, blue) are varied 

• Pressure vessel is heated and pressurized from the inside

• Problem is run quasi-statically to pseudo-time 𝑡 =720s with 370K dofs

• Training is performed for 4 sets of parameters; testing/prediction is                                                     

performed for 2 sets of parameters (see Table 1)

Table 1.  Parameters in block ℬ𝑏 for thermo-

mechanical pressure vessel problem. 

[Lindsay et al., in prep.]

Testing 1 Testing 2



Thermo-Mechanical Pressure Vessel (Albany)
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FOM LSPG ROM PC-LSPG ROM

𝜖 ≔
σ𝑖=0
𝑃 𝒙𝑖 − 𝒙𝑖 2

σ𝑖=0
𝑃 𝒙𝑖 2

• Global relative error:

• Preconditioned 

LSPG ROMs are up 

to 5 orders of 

magnitude more 

accurate than 

LSPG ROMs.

• LSPG ROMs do not 

converge for larger 

basis sizes.

• Accuracy is 

improved by 

improving the 

preconditioner.

• Seven basis sizes evaluated: 2,4,8,16, 

32,79,790



Thermo-Mechanical Pressure Vessel (Albany)10

Top figures: 

CPU times

Bottom figures: 

# nonlinear 

iterations

• Preconditioned LSPG 

ROMs are up to 12x 

faster than vanilla LSPG 

ROMs

• More sophisticated 

preconditioners lead to 

greater CPU times

• Speed-ups are largely 

due to reduction in # 

nonlinear iterations 

(by factor of >12x)



11 Thermo-Mechanical Pressure Vessel (Albany)

Pareto plot confirms competitiveness 

of preconditioned LSPG ROMs.



Compressible Cavity Flow (SPARC)12

• 2D viscous laminar flow around an open cavity geometry

➢ Simple model for the captive carry scenario

• Mach number = 0.6, Reynolds number ≈ 3000

• Problem is run non-dimensionally

• Domain is discretized using 104,500 hexahedral cells (right)

• Of primary interest are long-time predictive simulations

➢ ROM is run at same parameters as FOM but much 

longer in time

➢ Relevant QOIs: statistics of the flow (e.g., pressure 

power spectral densities or PSDs)
𝑥-axis

𝑦
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x
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[Tezaur et al. 2017; Fike et al. 2018]



Compressible Cavity Flow (SPARC)13

Method RMS OASPL1 in dB % Difference from 

FOM

FOM 66.176 −

Ideal 67.552 2.08%

LSPG N/A N/A

LSPG + Jacobi PC 68.033 2.80%

1Overall sound pressure level

• Figure top left: pressure time history for a point halfway up 

the downstream wall of the cavity for an LSPG ROM having 

327 modes with a Jacobi preconditioner

• Figure bottom left: pressure PSD for the signal in the top 

left figure (solid line is mean PSD, shaded regions indicate 

range of values used to construct the mean)

• Preconditioned LSPG ROM captures well the pressure PSD, 

including its peaks (Rossiter modes) and the RMS OASPL1

• Vanilla LSPG ROM did not run successfully



Summary & Future Work14

Summary:

• Adding preconditioning to the LSPG formulation gives rise to ROMs with improved accuracy and robustness, 

especially in the predictive regime

➢ Preconditioning attempts to emulate projection of FOM solution increment onto POD basis (the ROM 

“best-case scenario” for a given basis)

➢ Preconditioning ensures all components of residual being minimized are of the same magnitude

➢ Results on predictive (across parameter space) thermo-mechanical and predictive (in time) 

compressible flow problems are compelling

Ongoing/future work:

• Two manuscripts on this work are in preparation

➢ P. Lindsay, J. Fike, K. Carlberg, I. Tezaur.  “Preconditioned LSPG Reduced Order Models”, in prep.

➢ J. Fike, P. Lindsay, K. Carlberg, I. Tezaur.  “Preconditioned Least-Squares Petrov-Galerkin Reduced Order 

Models for Compressible Flows”, in prep.

• Application of preconditioned LSPG approach to more sophisticated problems relevant to Sandia’s mission 

spaces 

➢ Preconditioning LSPG ROMs has been helpful for hypersonic aero, thermal/ablation and reacting 

hypersonic flow problems
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Mechanical Beam (Albany)16

• Mechanical problem involving Neohookean material

• 2 sets of material blocks, ℬ𝑎 and ℬ𝑏, each having set of material params

➢ Material parameters in block ℬ𝑎 are fixed

➢ Material parameters in block ℬ𝑏 are varied (see Table 2)

• Linearly varying time-dependent pressure BC is prescribed on Γ1; other 

boundaries are fixed

• Problem is run quasi-statically to pseudo-time 𝑡 =7200s with 1340 dofs

ℬ𝑎

ℬ𝑏

Table 2.  Parameters in block ℬ𝑏 for 

mechanical beam problem. 

• Training is performed for 6 sets of parameters; testing/prediction is                                                     

performed for 4 sets of parameters (see Table 2)

➢ Nontrivial variations in displacement (up to 20%) are observed with the parameter variations considered 

(right figure)
[Lindsay et al., in prep.]

Γ1



Mechanical Beam (Albany)17

• Figure plots global relative error in 

approximate ROM solutions:

𝜖 ≔
σ𝑖=0
𝑃 𝒙𝑖 − 𝒙𝑖 2

σ𝑖=0
𝑃 𝒙𝑖 2

• Preconditioners evaluated: Jacobi, 

Gauss-Seidel, ILU and (𝑱 𝑘 )−1 (denoted 

by “Ideal”)

• Nonlinear solver for unpreconditioned

LSPG ROM did not converge for any of 

the basis sizes considered.

• More sophisticated preconditioners 

deliver smaller errors.



Mechanical Beam (Albany)18

• Figure plots condition numbers of 

reduced Jacobian (𝑱PPG
(𝑘)

or 𝑱PG
(𝑘)

) for 

each ROM.

• A moderate reduction in condition 

number is obtained through 

preconditioning strategies.

• Most sophisticated ILU 

preconditioner gives rise to a 

reduced Jacobian with the smallest 

condition number.



Mechanical Beam (Albany)19

• Figures shows CPU-times for all ROMs 

considered

• As expected, the projected solution 

increment is the most expensive to 

compute



Mechanical Beam (Albany)20

The best preconditioner given 

error/CPU-time requirements can be 

inferred from Pareto plot shown here.



Thermo-Mechanical Beam (Albany)21

• Coupled thermo-mechanical problem involving Neohookean material

• 2 sets of material blocks, ℬ𝑎 and ℬ𝑏, each having set of material params

➢ Material parameters in block ℬ𝑎 are fixed

➢ Material parameters in block ℬ𝑏 are varied (see Table 3)

• Linearly varying time-dependent pressure and temperature BC is                       
prescribed on Γ1 and Γ2, respectively; other boundaries are fixed

• Problem is run quasi-statically to pseudo-time 𝑡 =7200s with 2100 dofs

ℬ𝑎

ℬ𝑏

Γ2

Table 3.  Parameters in block ℬ𝑏 for 

thermo-mechanical beam problem. 

• Training is performed for 6 sets of parameters; testing/prediction is                                                     

performed for 4 sets of parameters (see Table 3)

➢ Significant variations in displacement (up to 60%) are observed with the parameter variations considered 

(right figure)
[Lindsay et al., in prep.]

Γ1



Thermo-Mechanical Beam (Albany)22



Thermo-Mechanical Beam (Albany)



Thermo-Mechanical Beam (Albany)



Thermo-Mechanical Beam (Albany)



Thermo-Mechanical Beam (Albany)26

• Figure plots condition numbers of 

reduced Jacobian (𝑱PPG
(𝑘)

or 𝑱PG
(𝑘)

) for each 

ROM.

• Reduced Jacobians for regular LSPG ROM 

are very ill-conditioned (> 𝑂 1014 )

➢ Ill-conditioning is due to extreme 

differences in scale b/w displacement 

and temperature solutions (9 orders of 

magnitude)

• Results demonstrate that simple 

preconditioning strategy can reduce 

condition numbers by as many as 10 

orders of magnitude

• As expected, projected solution increment 

reduced Jacobian has perfect condition 

number



Thermo-Mechanical Beam (Albany)27

• Figures shows CPU-times for all ROMs 

considered

• In general, preconditioned LSPG ROMs 

achieve CPU-times smaller than 

unpreconditioned LSPG ROM

• As expected, the projected solution 

increment is the most expensive to 

compute in general



Thermo-Mechanical Beam (Albany)28

Pareto plot results confirm that there 

is a significant computational 

advantage in applying preconditioning


