
Photos placed in horizontal position

with even amount of white space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A Performance-Portable Implementation of the Finite Element
Assembly in an Atmosphere & Land-Ice Code using the Kokkos Library

Irina Tezaur1, Jerry Watkins1,2, Irina Demeshko3

1 Sandia National Laboratories, 2 Stanford University, 3 Los Alamos National Laboratory

 FEF 2017 Rome, Italy April 5-7, 2017

SAND2017-2917C

• Motivation & Background

• The Albany Multi-Physics Code

• Performance-portability via Kokkos

• Aeras Next-Generation Global Atmosphere Model & Project

• Results

• FELIX Land-Ice Model & PISCEES Project

• Results

• Summary/Conclusions

• Ongoing/Future Work

Outline

• Scientific models (e.g. climate models) need more computational
power to achieve higher resolutions.

• High performance computing (HPC) architectures are becoming
increasingly more heterogeneous in a move towards exascale.

• Climate models need to adapt to execute correctly & efficiently on
new HPC architectures with drastically different memory models.

Motivation

MPI+X Programming Model
• HPC architectures are rapidly changing, but trends remain the same.

• Computations are cheap, memory transfer is expensive.

• Single core cycle time has improved but stagnated.

• Increased computational power achieved through manycore
architectures.

→ MPI-only is not enough to exploit emerging massively parallel
architectures.

Approach: MPI+X
Programming Model

• MPI: inter-node parallelism.

• X: intra-node parallelism.

→ Examples: X = OpenMP, CUDA, Pthreads, etc.

Year Memory
Access Time

Single Core
Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns

Earth System Models: CESM, DOE-ESM

• An ESM has six modular components:

1. Atmosphere model
2. Ocean model
3. Sea ice model
4. Land ice model
5. Land model
6. Flux coupler

Flux Coupler

Sea Ice

Ocean Atmosphere

Land Surface
(ice sheet surface

mass balance)

Ice Sheet
(dynamics)

Goal of ESM: to provide actionable scientific predictions of
21st century sea-level rise (including uncertainty).

• Focus here is on two climate components developed at Sandia:

• Aeras global atmosphere model.

• FELIX land-ice model.

Implemented within the code

Multiphysics Code

• Component-based design for rapid
development of new physics & capabilities.

• Extensive use of libraries from the open-
source Trilinos project:

• Automatic differentiation.

• Discretizations/meshes, mesh adaptivity.

• Solvers, time-integration schemes.

• Performance-portable kernels.

• Advanced analysis capabilities:

• Parameter estimation.

• Uncertainty quantification (DAKOTA).

• Optimization.

• Sensitivity analysis.

Sandia open-source* parallel, C++, multi-physics finite element code.

40+ packages; 120+ libraries

* https://github.com/gahansen/Albany.

Multiphysics Code

• Component-based design for rapid
development of new physics & capabilities.

• Extensive use of libraries from the open-
source Trilinos project:

• Automatic differentiation.

• Discretizations/meshes, mesh adaptivity.

• Solvers, time-integration schemes.

• Performance-portable kernels.

• Advanced analysis capabilities:

• Parameter estimation.

• Uncertainty quantification (DAKOTA).

• Optimization.

• Sensitivity analysis.

Sandia open-source* parallel, C++, multi-physics finite element code.

40+ packages; 120+ libraries

* https://github.com/gahansen/Albany.

This
talk

Performance-portability via Kokkos
We need to be able to run climate models on new architecture machines (hybrid

systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

• In Albany, we achieve performance-portability via Kokkos.

• Kokkos: C++ library and programming model that provides
performance portability across multiple computing architectures.

→ Examples: Multicore CPU, NVIDIA GPU, Intel Xeon Phi, and more.

• Provides automatic access to OpenMP, CUDA, Pthreads, etc.

• Designed to work with the MPI+X programming model.

• Abstracts data layouts for optimal performance (“array of strucs” vs.
struct of arrays”, locality).

With Kokkos, you write an algorithm once, and just change a template

parameter to get the optimal data layout for your hardware.

→ Allows researcher to focus on algorithm development for large
heterogeneous architectures.

Albany Finite Element Assembly (FEA)
• Gather operation extracts solution values

out of global solution vector.

• Physics evaluator functions operate on
workset of elements, store evaluated
quantities in local field arrays.

• FEA relies on template based generic
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual,
Jacobian to global residual, Jacobian.

Albany performance-portability: focus on FEA.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

Albany Finite Element Assembly (FEA)
• Gather operation extracts solution values

out of global solution vector.

• Physics evaluator functions operate on
workset of elements, store evaluated
quantities in local field arrays.

• FEA relies on template based generic
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual,
Jacobian to global residual, Jacobian.

Albany performance-portability: focus on FEA.

• MPI-only FEA:

• Each MPI process has workset of cells &
computes nested parallel for loops.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

Albany Finite Element Assembly (FEA)
• Gather operation extracts solution values

out of global solution vector.

• Physics evaluator functions operate on
workset of elements, store evaluated
quantities in local field arrays.

• FEA relies on template based generic
programming + automatic differentiation
for Jacobians, tangents, etc.

• Scatter operation adds local residual,
Jacobian to global residual, Jacobian.

Albany performance-portability: focus on FEA.

• MPI-only FEA:

• Each MPI process has workset of cells &
computes nested parallel for loops.

• MPI+X FEA:

• Each MPI process has workset of cells.

• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops.

Problem Type % CPU time for FEA

Implicit 50%

Explicit 99%

MPI+X FEA via Kokkos

• MPI-only nested for loop:

for (int cell=0; cell<numCells; ++cell)

 for (int node=0; node<numNodes; ++node)

 for (int qp=0; qp<numQPs; ++qp)

 compute A;

MPI process n

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

 for (int node=0; node<numNodes; ++node)

 for (int qp=0; qp<numQPs; ++qp)

 compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs) MPI process n

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

 for (int node=0; node<numNodes; ++node)

 for (int qp=0; qp<numQPs; ++qp)

 compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}, computeA_TileSize);

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

* Unified Virtual Memory.

MPI process n

* Unified Virtual Memory.

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

 for (int node=0; node<numNodes; ++node)

 for (int qp=0; qp<numQPs; ++qp)

 compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}, computeA_TileSize);

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

MPI process n

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

 for (int node=0; node<numNodes; ++node)

 for (int qp=0; qp<numQPs; ++qp)

 compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}, computeA_TileSize);

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

MPI process n

MPI+X FEA via Kokkos

• Multi-dimensional parallelism for nested
for loops via Kokkos:

for (int cell=0; cell<numCells; ++cell)

 for (int node=0; node<numNodes; ++node)

 for (int qp=0; qp<numQPs; ++qp)

 compute A;

Thread 1 computes A for

(cell,node,qp)=(0,0,0)

Thread 2 computes A for

(cell,node,qp)=(0,0,1)

Thread N computes A for

(cell,node,qp)=(numCells,numNodes,numQPs)

computeA_Policy range({0,0,0},{(int)numCells,(int)numNodes,(int)numQPs}, computeA_TileSize);

Kokkos::Experimental::md_parallel_for<ExecutionSpace>(range,*this);

• ExecutionSpace defined at compile time, e.g.

typedef Kokkos::OpenMP ExecutionSpace; //MPI+OpenMP

typedef Kokkos::CUDA ExecutionSpace; //MPI+CUDA

typedef Kokkos::Serial ExecutionSpace; //MPI-only

• Atomics used to scatter local data to global data structures

Kokkos::atomic_fetch_add

• For MPI+CUDA, data transfer from host to device handled by CUDA UVM*.

* Unified Virtual Memory.

MPI process n

Computer Architectures

• Shannon used for testing, performance tests

• 10 nodes (dual-SandyBridge (16) + K80 dual-GPU)

• Ride used for testing, performance tests

• 12 nodes (dual-Power8 (16) + P100 quad-GPU)

• Titan used for full length simulations, performance tests

• 18,688 nodes (AMD Opteron (16) + K20 GPU)

Ride

Performance-portability of FEA in Albany has been tested
across multiple architectures: Intel Sandy Bridge, IBM

Power8, Keplar/Pascal GPUs, KNL Xeon Phi

 Atmosphere Model & Project

Aeras*
Sandia National Laboratories

Lab-Directed Research and
Development (LDRD)

2014-2016

Albany
SNL

Finite Element
Application Code Base

Shallow water model
(2D)

Hydrostatic model
2D (x-z) &

3D

In
creased

co

m
p

lexity

Goal: demonstrate next-
generation capabilities in

an atmosphere model
suitable for climate

• Sandia LDRD project involving computational scientists, mathematicians, and
climate scientists.

• Led to follow-up BER project: Climate Model Development & Validation (CMDV) →
key task is Spectral Element Method (SEM) dycore refactore using C++ and Kokkos.

*Greek for “air”

Energy &
Climate

L

D

R

D

Next-generation features:
• Performance portability via Kokkos.
• Embedded Uncertainty Quantification.

3D Hydrostatic Atmosphere Model
• 3D hydrostatic equations for atmosphere: Navier-Stokes-like model derived under

hydrostatic fluid assumptions.

• Surface of sphere discretized via quadrilateral shell spectral elements
(“cubed sphere” mesh, Gauss-Lobatto quadrature).

• Finite difference discretization in hybrid vertical coordinate system.

• Explicit time-stepping via RK methods (diagonal mass).

• Stabilization via hyper-viscosity (𝜏𝛻4(∙))

3D Hydrostatic Atmosphere Model
• 3D hydrostatic equations for atmosphere: Navier-Stokes-like model derived under

hydrostatic fluid assumptions.

• Surface of sphere discretized via quadrilateral shell spectral elements
(“cubed sphere” mesh, Gauss-Lobatto quadrature).

• Finite difference discretization in hybrid vertical coordinate system.

• Explicit time-stepping via RK methods (diagonal mass).

• Stabilization via hyper-viscosity (𝜏𝛻4(∙))

Explicit: FEA is
99% CPU-time

+ X parallelization over
cells, nodes and levels.

Runs performed on
Ride cluster at Sandia.

Baroclinic Instability Test Case
• Meshes/parameters considered:

Mesh Resolution # Elements Fixed dt Hyperviscosity Tau

uniform_30 1° 5,400 30 5.0e15

uniform_60 0.5° 21,600 10 1.09e14

uniform_120 0.25° 86,400 5 1.18e13

• 100 explicit RK4 iterations, 3rd order elements, 10 levels

• 3 mesh resolutions: uniform_30, uniform_60, uniform_90

• Good weak scaling MPI, MPI+OpenMP

• Worse GPU weak scaling: communication bottlenecks between sockets
(GPU→ CPU → CPU → GPU data movement many times using CUDA UVM).

Ride

Weak Scalability (FEA)

Ride:
• 12 nodes (2 sockets/node)
• 8 Power8 cores/socket
• 2 P100 GPUs/socket
• 16GB/GPU

• ~75% efficiency for MPI+OpenMP

• Poor GPU strong scaling for > 4 GPUs: memory transfers dominate.

→ May be improved by replacing CUDA UVM w/ manual memory transfer.

Strong Scalability (FEA)

GPU memory limit:
5400 elements/GPU

FELIX Land-Ice Solver & PISCEES Project

25

3 land-ice
dycores

developed
under

PISCEES

PISCEES*
SciDaC Application

Partnership
(DOE’s BER + ASCR divisions)

2012-2017

Albany/FELIX**
SNL

Finite Element
“First Order” Stokes Model

BISICLES
LBNL

Finite Volume
L1L2 Model

FSU FELIX
FSU

Finite Element
Full Stokes Model

In
creased

fid

elity

Goal: support DOE climate
missions (sea-level rise

predictions)

• Multi-lab/multi-university project involving mathematicians, climate
scientists, and computer scientists.

• Leverages software/expertise from SciDAC Institutes (FASTMath, QUEST,
SUPER) and hardware from DOE Leadership Class Facilities.

*Predicting Ice Sheet Climate &
Evolution at Extreme Scales.
**Finite Elements for Land Ice
eXperiments

First-Order Stokes Land-Ice Model
• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with
automatic differentiaton Jacobians.

• Algebraic-multigrid* preconditioned Krylov
linear solvers.

• Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

• As part of ACME DOE ESM, FELIX will be used
to provide actionable predictions of 21st
century sea-level rise.

* Previous talk by Ray Tuminaro.

First-Order Stokes Land-Ice Model

• 3D unstructured grid FEM discretization.

• Newton method nonlinear solver with
automatic differentiaton Jacobians.

• Algebraic-multigrid* preconditioned Krylov
linear solvers.

• Advanced analysis capabilities: deterministic
inversion, calibration, UQ.

• As part of ACME DOE ESM, FELIX will be used
to provide actionable predictions of 21st
century sea-level rise.

Implicit: FEA is
50% CPU-time

+ X parallelization
over cells only.

Runs performed on
Shannon cluster at
Sandia and Titan
supercomputer

* Previous talk by Ray Tuminaro.

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity:

4km Greenland & 8km Antarctica on
Shannon

1

Shannon: 32 nodes
• 2 8-core Sandy Bridge

Xeon E5-2670 @ 2.6GHz
(HT deactivated)/node.

• 128GB DDR3
memory/node

• 2x NVIDIA K20x/node.

“# of elements/workset” = threading
index (allows for on-node parallelism)

4km Greenland

8km Antarctica

Total FEA Time

Total FEA Time FEA Time – Gather/Scatter

Max speedup over Serial for
 workset size > 1000

OpenMP CUDA

Total FEA Time 5.6x 1.7x

FEA Time –
Gather/Scatter

7.2x 6.7x

 FEA Time – Gather/Scatter

Greenland Weak Scalability on Titan

Wall-clock Time: FEA Wall-clock Time:
Total Time – Setup Time

Weak scalability on Titan (16km, 8km, 4km, 2km, 1km Greenland)

Titan: 18,688 AMD
Opteron nodes

• 16 cores per node
• 1 K20X Kepler GPUs/
node
• 32GB + 6GB
memory/ node

Summary/Conclusions

• A performance portable implementation of the Aeras next-generation
global atmosphere model and FELIX land-ice model was created using
Kokkos within the Albany code base.

• With this implementation, the same code can run on devices with
drastically different memory models (many-core CPU, NVIDIA GPU, Intel
Xeon Phi, etc.).

• Heterogeneous HPC architectures can now be utilized for climate
research in Aeras and FELIX.

• Performance studies show that further optimization is needed to fully
utilize all resources.

More on performance-portability of Albany using Kokkos can be
found here: https://github.com/gahansen/Albany/wiki/Albany-

performance-on-next-generation-platforms

https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms
https://github.com/gahansen/Albany/wiki/Albany-performance-on-next-generation-platforms

Ongoing/Future Work
• Profiling using TAU and nvprof.

• Methods for improving performance:

• Reduce excess memory usage.

• Utilize shared memory.

• Replace CUDA UVM with manual memory transfer.

• Improve performance of other sections of code besides FEA.

• Parallelize over nodes and quadrature points in addition to cells for FELIX.

• Performance-portability of preconditioned iterative linear solve using
Kokkos for implicit problems in Albany (e.g., FELIX).

• Journal article on this work in preparation:

I. Demeshko, W. Spotz, J. Watkins, I. Tezaur, O. Guba, A. Salinger, R. Pawlowski, M.

Heroux. "Towards performance-portability of the Albany finite element analysis
code using the Kokkos library", J. HPC Appl. (in preparation).

Appendix: Parallelism on Modern Hardware

Year
Memory Access

Time
Single Core Cycle Time

1980s ~100 ns ~100 ns

Today ~50-100 ns ~1 ns

• Memory access time has remained the same.

• Single core performance has improved but stagnated.

• Computations are cheap, memory transfer is expensive.

• More performance from multicore/manycore processors.

Appendix: Kokkos-ification of Finite
Element Assembly (Example)

ExecutionSpace parameter
tailors code for device (e.g.,

OpenMP, CUDA, etc.)

Appendix: PISCEES Land-Ice Project

34

 Requirements for Albany/FELIX:

• Unstructured grid finite elements.
• Verified, scalable, fast, robust

• Portable to new/emerging
architecture machines (multi-core,
many-core, GPU)

• Advanced analysis capabilities:
deterministic inversion, calibration,
uncertainty quantification.

*Finite Elements for Land Ice eXperiments

As part of ACME DOE earth system
model, solver will provide actionable
predictions of 21st century sea-level

rise (including uncertainty).

