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• Scientific models (e.g. climate models) need more computational 
power to achieve higher resolutions. 

 

• High performance computing (HPC) architectures are becoming 
increasingly more heterogeneous in a move towards exascale. 
 

• Climate models need to adapt to execute correctly & efficiently on 
new HPC architectures with drastically different memory models. 

Motivation 



MPI+X Programming Model 
• HPC architectures are rapidly changing, but trends remain the same. 
 

• Computations are cheap, memory transfer is expensive. 

• Single core cycle time has improved but stagnated. 

• Increased computational power achieved through manycore 
architectures. 

→ MPI-only is not enough to exploit emerging massively parallel 
architectures. 

Approach: MPI+X 
Programming Model 

• MPI: inter-node parallelism. 
 

• X: intra-node parallelism. 

→  Examples: X = OpenMP, CUDA, Pthreads, etc. 

 

Year Memory 
Access Time 

Single Core 
Cycle Time 

1980s ~100 ns ~100 ns 

Today ~50-100 ns ~1 ns 



Earth System Models: CESM, DOE-ESM 

• An ESM has six modular components: 
 

1. Atmosphere model 
2. Ocean model 
3. Sea ice model 
4. Land ice model 
5. Land model 
6. Flux coupler 

 

Flux Coupler 

Sea Ice 

Ocean Atmosphere 

Land Surface  
(ice sheet surface 

mass balance) 

Ice Sheet 
(dynamics) 

Goal of ESM: to provide actionable scientific predictions of 
21st century sea-level rise (including uncertainty). 

• Focus here is on two climate components developed at Sandia: 
 

• Aeras global atmosphere model. 
 

• FELIX land-ice model. 
 

Implemented within the code  



Multiphysics Code 

• Component-based design for rapid 
development of new physics & capabilities. 
 

• Extensive use of libraries from the open-
source Trilinos project: 

• Automatic differentiation. 

• Discretizations/meshes, mesh adaptivity. 

• Solvers, time-integration schemes. 

• Performance-portable kernels. 
 

• Advanced analysis capabilities: 

• Parameter estimation. 

• Uncertainty quantification (DAKOTA). 

• Optimization. 

• Sensitivity analysis. 

Sandia open-source* parallel, C++, multi-physics finite element code. 

40+ packages; 120+ libraries 

* https://github.com/gahansen/Albany. 
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Performance-portability via Kokkos 
We need to be able to run climate models on new architecture machines (hybrid 

systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) . 

• In Albany, we achieve performance-portability via Kokkos. 
 

• Kokkos: C++ library and programming model that provides 
performance portability across multiple computing architectures.  

→ Examples: Multicore CPU, NVIDIA GPU, Intel Xeon Phi, and more. 
 

• Provides automatic access to OpenMP, CUDA, Pthreads, etc. 
 

• Designed to work with the MPI+X programming model. 
 

• Abstracts data layouts for optimal performance (“array of strucs” vs. 
struct of arrays”, locality). 

 
With Kokkos, you write an algorithm once, and just change a template 

parameter to get the optimal data layout for your hardware. 

→ Allows researcher to focus on algorithm development for large 
heterogeneous architectures. 



Albany Finite Element Assembly (FEA) 
• Gather operation extracts solution values 

out of global solution vector. 
 

• Physics evaluator functions operate on 
workset of elements, store evaluated 
quantities in local field arrays. 

 

• FEA relies on template based generic 
programming + automatic differentiation 
for Jacobians, tangents, etc. 

 

• Scatter operation adds local residual, 
Jacobian to global residual, Jacobian. 

 

Albany performance-portability: focus on FEA. 

Problem Type % CPU time for FEA  

Implicit 50% 

Explicit 99% 
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• MPI-only FEA: 

• Each MPI process has workset of cells &                                                                       
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• MPI+X FEA: 

• Each MPI process has workset of cells. 

• Multi-dimensional parallelism with +X (X=OpenMP, CUDA) for nested parallel for loops. 
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MPI+X FEA via Kokkos  

• MPI-only nested for loop: 

for (int cell=0; cell<numCells; ++cell) 

    for (int node=0; node<numNodes; ++node) 

        for (int qp=0; qp<numQPs; ++qp) 

            compute A;  

   

MPI process n 
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MPI+X FEA via Kokkos  
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*  Unified Virtual Memory. 

MPI process n 



Computer Architectures 

• Shannon used for testing, performance tests 

• 10 nodes (dual-SandyBridge (16) + K80 dual-GPU) 
 

• Ride used for testing, performance tests 

• 12 nodes (dual-Power8 (16) + P100 quad-GPU) 
 

• Titan used for full length simulations, performance tests 

• 18,688 nodes (AMD Opteron (16) + K20 GPU) 

 

 

Ride 

Performance-portability of FEA in Albany has been tested 
across multiple architectures: Intel Sandy Bridge, IBM 

Power8, Keplar/Pascal GPUs, KNL Xeon Phi 



         Atmosphere Model & Project 

Aeras* 
Sandia National Laboratories 

Lab-Directed Research and 
Development (LDRD) 

2014-2016 

Albany 
SNL 

Finite Element 
Application Code Base 

Shallow water model 
(2D) 

Hydrostatic model 
2D (x-z) & 

3D 
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creased
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Goal: demonstrate next-
generation capabilities in 

an atmosphere model 
suitable for climate 

• Sandia LDRD project involving computational scientists, mathematicians, and 
climate scientists. 

• Led to follow-up BER project: Climate Model Development & Validation (CMDV) → 
key task is Spectral Element Method (SEM) dycore refactore using C++ and Kokkos. 

*Greek for “air” 

Energy & 
Climate 

L

D

R

D 

Next-generation features: 
• Performance portability via Kokkos. 
• Embedded Uncertainty Quantification. 



3D Hydrostatic Atmosphere Model 
• 3D hydrostatic equations for atmosphere: Navier-Stokes-like model derived under 

hydrostatic fluid assumptions. 

• Surface of sphere discretized via quadrilateral shell spectral elements 
(“cubed sphere” mesh, Gauss-Lobatto quadrature). 
 

• Finite difference discretization in hybrid vertical coordinate system. 
 

• Explicit time-stepping via RK methods (diagonal mass). 
 

• Stabilization via hyper-viscosity (𝜏𝛻4(∙)) 
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+ X parallelization over 
cells, nodes and levels. 

Runs performed on 
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Baroclinic Instability Test Case 
• Meshes/parameters considered: 

 

 

 

 

Mesh Resolution # Elements Fixed dt Hyperviscosity Tau 

uniform_30 1° 5,400 30 5.0e15 

uniform_60 0.5° 21,600 10 1.09e14 

uniform_120 0.25° 86,400 5 1.18e13 

• 100 explicit RK4 iterations, 3rd order elements, 10 levels 



• 3 mesh resolutions: uniform_30, uniform_60, uniform_90 

• Good weak scaling MPI, MPI+OpenMP 

• Worse GPU weak scaling: communication bottlenecks between sockets 
(GPU→ CPU → CPU → GPU data movement many times using CUDA UVM). 

Ride 

Weak Scalability (FEA) 

Ride: 
• 12 nodes (2 sockets/node) 
• 8 Power8 cores/socket 
• 2 P100 GPUs/socket 
• 16GB/GPU 



• ~75% efficiency for MPI+OpenMP  

• Poor GPU strong scaling for > 4 GPUs: memory transfers dominate. 

→ May be improved by replacing CUDA UVM w/ manual memory transfer. 

Strong Scalability (FEA) 

GPU memory limit: 
5400 elements/GPU 



FELIX Land-Ice Solver & PISCEES Project 

25 

3 land-ice 
dycores 

developed 
under 

PISCEES 

PISCEES* 
SciDaC Application 

Partnership 
(DOE’s BER + ASCR divisions) 

2012-2017 

Albany/FELIX** 
SNL 

Finite Element 
“First Order” Stokes Model 

BISICLES 
LBNL 

Finite Volume 
L1L2 Model 

FSU FELIX 
FSU 

Finite Element 
Full Stokes Model 

In
creased

 
fid

elity 

Goal: support DOE climate 
missions (sea-level rise 

predictions)  

• Multi-lab/multi-university project involving mathematicians, climate 
scientists, and computer scientists. 

• Leverages software/expertise from SciDAC Institutes (FASTMath, QUEST, 
SUPER) and hardware from DOE Leadership Class Facilities. 

*Predicting Ice Sheet Climate & 
Evolution at Extreme Scales. 
**Finite Elements for Land Ice 
eXperiments 



First-Order Stokes Land-Ice Model 
• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity: 

 

• 3D unstructured grid FEM discretization. 
 

• Newton method nonlinear solver with 
automatic differentiaton Jacobians. 

 

• Algebraic-multigrid* preconditioned Krylov 
linear solvers. 

 

• Advanced analysis capabilities: deterministic 
inversion, calibration, UQ. 

 

• As part of ACME DOE ESM, FELIX will be used 
to provide actionable predictions of 21st 
century sea-level rise. 

* Previous talk by Ray Tuminaro. 



First-Order Stokes Land-Ice Model 

• 3D unstructured grid FEM discretization. 
 

• Newton method nonlinear solver with 
automatic differentiaton Jacobians. 

 

• Algebraic-multigrid* preconditioned Krylov 
linear solvers. 

 

• Advanced analysis capabilities: deterministic 
inversion, calibration, UQ. 

 

• As part of ACME DOE ESM, FELIX will be used 
to provide actionable predictions of 21st 
century sea-level rise. 

Implicit: FEA is 
50% CPU-time 

+ X parallelization 
over cells only. 

Runs performed on 
Shannon cluster at 
Sandia and Titan 
supercomputer 

* Previous talk by Ray Tuminaro. 

• Ice velocities given by the “First-Order” Stokes PDEs with nonlinear viscosity: 

 



4km Greenland & 8km Antarctica on 
Shannon 

1 

Shannon: 32 nodes 
• 2 8-core Sandy Bridge 

Xeon E5-2670 @ 2.6GHz 
(HT deactivated)/node. 

• 128GB DDR3 
memory/node 

• 2x NVIDIA K20x/node. 

“# of elements/workset” = threading 
index (allows for on-node parallelism) 

4km Greenland 

8km Antarctica 

Total FEA Time 

Total FEA Time     FEA Time – Gather/Scatter 

Max speedup over Serial  for 
 workset size > 1000 

OpenMP CUDA 

Total FEA Time 5.6x 1.7x 

FEA Time – 
Gather/Scatter 

7.2x 6.7x 

    FEA Time – Gather/Scatter 



Greenland Weak Scalability on Titan 

Wall-clock Time: FEA Wall-clock Time:  
Total Time – Setup Time 

Weak scalability on Titan (16km, 8km, 4km, 2km, 1km Greenland) 

Titan: 18,688 AMD 
Opteron nodes 

 

• 16 cores per node 
• 1 K20X Kepler GPUs/ 
node 
• 32GB + 6GB 
memory/ node 



Summary/Conclusions 

• A performance portable implementation of the Aeras next-generation 
global atmosphere model and FELIX land-ice model was created using 
Kokkos within the Albany code base. 
 

• With this implementation, the same code can run on devices with 
drastically different memory models (many-core CPU, NVIDIA GPU, Intel 
Xeon Phi, etc.). 
 

• Heterogeneous HPC architectures can now be utilized for climate 
research in Aeras and FELIX. 
 

• Performance studies show that further optimization is needed to fully 
utilize all resources. 

 
More on performance-portability of Albany using Kokkos can be 
found here: https://github.com/gahansen/Albany/wiki/Albany-

performance-on-next-generation-platforms  
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Ongoing/Future Work 
• Profiling using TAU and nvprof. 

 

• Methods for improving performance: 

• Reduce excess memory usage. 

• Utilize shared memory. 

• Replace CUDA UVM with manual memory transfer. 

• Improve performance of other sections of code besides FEA. 

• Parallelize over nodes and quadrature points in addition to cells for FELIX. 
 

• Performance-portability of preconditioned iterative linear solve using 
Kokkos for implicit problems in Albany (e.g., FELIX). 

 

• Journal article on this work in preparation: 

 

 
I. Demeshko, W. Spotz, J. Watkins, I. Tezaur, O. Guba, A. Salinger, R. Pawlowski, M. 

Heroux. "Towards performance-portability of the Albany finite element analysis 
code using the Kokkos library", J. HPC Appl. (in preparation). 



Appendix: Parallelism on Modern Hardware 

Year 
Memory Access 

Time 
Single Core Cycle Time 

1980s ~100 ns ~100 ns 

Today ~50-100 ns ~1 ns 

• Memory access time has remained the same. 

 

• Single core performance has improved but stagnated. 

 

• Computations are cheap, memory transfer is expensive. 

 

• More performance from multicore/manycore processors. 



Appendix: Kokkos-ification of Finite 
Element Assembly (Example) 

ExecutionSpace parameter 
tailors code for device (e.g., 

OpenMP, CUDA, etc.) 



Appendix: PISCEES Land-Ice Project 
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 Requirements for Albany/FELIX:  
 

• Unstructured grid finite elements. 
• Verified, scalable, fast, robust 

• Portable to new/emerging 
architecture machines (multi-core, 
many-core, GPU) 

• Advanced analysis capabilities: 
deterministic inversion, calibration, 
uncertainty quantification. 

*Finite Elements for Land Ice eXperiments 

As part of ACME DOE earth system 
model, solver will provide actionable 
predictions of 21st century sea-level 

rise (including uncertainty). 


