
Photos placed in horizontal position

with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Verification and Testing Infrastructure and Demonstrations

Irina Tezaur1, Hui Wan2, Andreas Wilke3, Dick Easter2, Jian Sun2, Jason Sarich3,
Kai Zhang2, Luke van Roekel4, LeAnn Conlon4, Jamil Gafur4, Rachel Scanza2,

Lance Rayborn2, Richard Easter2, Vince Larson5

1 SNL, 2 PNNL, 3 ANL, 4 LANL, 5 U Wisconsin

E3SM All-Hands Meeting November 19-21, 2019

SAND2019-13937C

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Motivation
This talk is on the tools/workflow created under the CMDV-SM verification

subtask, which aims to create/enable a culture of testing/verification in the E3SM.

• Purpose of verification: instill confidence in numerical simulations

➢ Demonstrate that simulations represent the intended mathematical
model rather than numerical artifacts or coding bugs

➢ Test against analytic or trusted solutions

➢ Confirm convergence of algorithms at theoretical rates

➢ Detect changes over time (regression)

• Status quo in (much of) E3SM

➢ Verification & validation not sufficiently distinguished

➢ Mostly focus on validation (matching observations)

➢ Most developers do some verification

➢ Usually limited coverage and not formalized

➢ Usually not isolated or localized – always case-based

➢ Not preserved to re-confirm correctness after modifications

Our efforts under CMDV-SM

• Work with model developers to define/formulate appropriate
verification (unit and unit-like) tests for their models

• Create workflow and corresponding infrastructure for
performing verification and presenting verification results

➢ cmdv-test-runner: python-based tool for running
verification tests.

➢ cron/Jenkins: tools for automating running of tests
nightly, weekly, etc.

➢ CDash: web-based software server for displaying/storing
testing results.

➢ Jupyter (notebooks): tool for writing documentation for
verification tests and post-processing results.

• Create concrete demonstrations of the above testing/
documentation infrastructure on MAM and CLUBB, Ocean
Mixing, etc.

Verification test formulation
• Formulating a verification test can present a number of challenges:

➢ Requires interest/involvement from component developers.

➢ Requires knowledge of what is in the code.

➢ Requires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

• Ideally tests would be written as code is being developed (e.g., SCREAM)

• Formulating a verification test can present a number of challenges:

➢ Requires interest/involvement from component developers.

➢ Requires knowledge of what is in the code.

➢ Requires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

• Ideally tests would be written as code is being developed (e.g., SCREAM)

• Tests should be small (subroutine, kernel, small set of kernels).

• Formulating a verification test can present a number of challenges:

➢ Requires interest/involvement from component developers.

➢ Requires knowledge of what is in the code.

➢ Requires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

• Ideally tests would be written as code is being developed (e.g., SCREAM)

• Tests should be small (subroutine, kernel, small set of kernels).

• Examples of what IS a verification test:

➢ Check mathematical properties (convergence rate, divergence free,
conservation of mass, etc.), compare to theory.

• Formulating a verification test can present a number of challenges:

➢ Requires interest/involvement from component developers.

➢ Requires knowledge of what is in the code.

➢ Requires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

• Ideally tests would be written as code is being developed (e.g., SCREAM)

• Tests should be small (subroutine, kernel, small set of kernels).

• Examples of what IS a verification test:

➢ Check mathematical properties (convergence rate, divergence free,
conservation of mass, etc.), compare to theory.

• Examples of what IS NOT a verification test:

➢ Perform a run and compare to observational data (this is validation!).

➢ Arbitrary parameter tunings to match expected data/solution.

• Formulating a verification test can present a number of challenges:

➢ Requires interest/involvement from component developers.

➢ Requires knowledge of what is in the code.

➢ Requires understanding of mathematical concepts, e.g. convergence.

Verification test formulation

• Ideally tests would be written as code is being developed (e.g., SCREAM)

• Tests should be small (subroutine, kernel, small set of kernels).

• Examples of what IS a verification test:

➢ Check mathematical properties (convergence rate, divergence free,
conservation of mass, etc.), compare to theory.

• Examples of what IS NOT a verification test:

➢ Perform a run and compare to observational data (this is validation!).

➢ Arbitrary parameter tunings to match expected data/solution.

• Once test is formulated, test driver must be created, which can be done
by hand or using available tools, e.g. kgen.

• Formulating a verification test can present a number of challenges:

➢ Requires interest/involvement from component developers.

➢ Requires knowledge of what is in the code.

➢ Requires understanding of mathematical concepts, e.g. convergence.

• Python-based tool to discover, build, run, post-process verification tests

➢ Discovers tests in current directory

➢ Compiles and runs tests according to workflow file

➢ Reports results

Running the tests: cmdv-test-runner

https://github.com/E3SM-
Project/CMDV-testing/wiki

One step workflow executing one command:
./cmdv-test-runner --test mam_box.verification.test.yaml

Discover

Build

Execute

Post-
process

Documentation and examples
can be found here:

Sample input yaml file:
mam_box.verification.test.yaml

➢ Can be executed within
Docker container.

https://github.com/E3SM-Project/CMDV-testing/wiki

Automation of test execution (cron/Jenkins)
and results archival (CDash)

• Execution of tests can be automated using cron or Jenkins.

• We have created cron/Jenkins jobs on NERSC, ANL, SNL machines that run
cmdv-test-runner (self-tests, MAM water uptake tests) nightly and post results
to the ACME_Climate CDash site.

➢ Future work: extend workflow to automatically run and
post-to-CDash additional test results.

https://my.cdash.org/index.php?project=ACME_Climate

Automation of test execution (cron/Jenkins)
and results archival (CDash)

https://my.cdash.org/index.php?
project=ACME_Climate

https://my.cdash.org/index.php?project=ACME_Climate

Documentation/post-processing:
Jupyter notebooks
• Common tool for writing documentation and post-processing/re-generating

verification results.

• Documentation to new/existing users of various E3SM components and
template for writing verification/unit tests.

• The following can be embedded within a Jupyter notebook:

➢ LaTex
➢ Python
➢ Matlab
➢ Julia
➢ …

10/18 /18, 10 42 AMNotebook

Page 9 of 14f ile:// /Development /CMDV-Verif icat ion/tests/mam/mam_box_coag/src/Coagulat ion.html

In [6]: # Second plotting example from verification test 2 (MAM time-split vs

RK4)

reload(mam_util)

from ResultReporter import ResultWriter

rw = ResultWriter("coag_results.log")

conv_rates = numpy.zeros((10,12))

Plot the error (comparing dt=225,450,900,1800 to dt=1):

for IC in range(1,11):

 conv_rates[IC-1,:] = mam_util.plot_errors_test2(figure_size, resul

t, IC)

 for i in range(conv_rates.shape[1]):

 test_name = "IC = %d, %s" % (IC, result["ordered errors"][i])

 if conv_rates[IC-1,i] == 0.0:

 # This happens when errors are machine zero

 test_name += ", TINY errors"

 rw.report_test_passed(test_name)

 else:

 # Convergence rate is finite, check that it is sufficientl

y large

 test_name += ", slope = %g" % conv_rates[IC-1,i]

 rw.report_test(test_name, conv_rates[IC-1,i] > 0.8)

rw.finished()

zero: qa(acc)-SOA

zero: qa(ait)-SOA

zero: qa(pca)-SOA

zero: qa(ait)-POM

Documentation/post-processing:
Jupyter notebooks
• HTML versions of Jupyter notebooks are linked from E3SM github.io page:

https://e3sm-project.github.io/CMDV-testing/

• We have Jupyter notebooks for the following components:

➢ HOMME: Shallow Water TC1

➢ Albany Land-Ice (ALI): FO Stokes MMS TC
➢ MPAS-Ocean: comparison b/w cmix and PALM LES runs

➢ Modal Aerosol Model (MAM): water uptake, condensation, coagulation

➢ Cloud Layers Unified By Binormals (CLUBB): clipping in atm. physics

➢ Misc Unit Tests: subroutines in global_verif_summary.F90

• Jupyter source code can be found in the CMDV-Verification repo
https://github.com/E3SM-Project/CMDV-verification

➢ Binder support coming soon.

• Future work: add on-the-fly creation of (some) of the Jupyter notebooks as a
part of automated verification workflow.

https://e3sm-project.github.io/CMDV-testing/
https://github.com/E3SM-Project/CMDV-verification

10/18 /18, 10 42 AMNotebook

Page 9 of 14f ile:// /Development /CMDV-Verif icat ion/tests/mam/mam_box_coag/src/Coagulat ion.html

In [6]: # Second plotting example from verification test 2 (MAM time-split vs

RK4)

reload(mam_util)

from ResultReporter import ResultWriter

rw = ResultWriter("coag_results.log")

conv_rates = numpy.zeros((10,12))

Plot the error (comparing dt=225,450,900,1800 to dt=1):

for IC in range(1,11):

 conv_rates[IC-1,:] = mam_util.plot_errors_test2(figure_size, resul

t, IC)

 for i in range(conv_rates.shape[1]):

 test_name = "IC = %d, %s" % (IC, result["ordered errors"][i])

 if conv_rates[IC-1,i] == 0.0:

 # This happens when errors are machine zero

 test_name += ", TINY errors"

 rw.report_test_passed(test_name)

 else:

 # Convergence rate is finite, check that it is sufficientl

y large

 test_name += ", slope = %g" % conv_rates[IC-1,i]

 rw.report_test(test_name, conv_rates[IC-1,i] > 0.8)

rw.finished()

zero: qa(acc)-SOA

zero: qa(ait)-SOA

zero: qa(pca)-SOA

zero: qa(ait)-POM

#! /bin/csh

module load intel

make clean

cp coag_b1_driver.F90 driver.F90

make

echo compilation finished...

echo running code

#cd test_output ; rm dd.x ; ln -s ../dd.x .

./dd.x

echo test compiled here

#cd ../ ; cp test_output/coag_delNum_delMass.out .

echo main output is coag_delNum_delMass.out

echo now running python script to generate graphics and

R2. /share/apps/python/anaconda3/bin/python

coag_dq_da.py

echo convergence diagrams saved.

1. Formulate test
2. Identify target code
3. Create test driver

4. Automate setup
and execution

5. Reporting and
documentation

End-to-end verification workflow

The physics

• Smaller aerosol particles collide to form larger particles, reducing
the total number of particles and increasing their mean size

The code

• Describes aerosol population by a few log-normal distribution functions (modes)
• Solves ordinary differential equations (ODEs) for mass and number concentrations of

each mode

The verification

• Assess convergence of time stepping method
• 10 different initial conditions * 19 concentrations = 190 ODEs
• Integration length: 30 min
• Reference solutions using 4th order Runge-Kutta with ∆t = 1s
• Test fails when convergence rates is significantly < expected

Unit isolation: MAM box model (Fortran)

Verification example from MAM:
Aerosol Coagulation https://e3sm-project.github.io/CMDV-

testing/Coagulation.html
R. Scanza, R. Easter (PNNL)

https://e3sm-project.github.io/CMDV-testing/Coagulation.html

The physics
• Aerosol particles absorb water and grow in size

The code
• Assumes quartic relationship between air humidity and particle wet radius
• Calculates wet radius (a root of quartic function) using analytical expression
• Expects 1 real-and-physical root

The verification

• Verifies the analytical expression and its implementation
• Calculates wet radius for 576 different combinations of humidity, particle composition,

and dry radius
• Reference solutions using root-finding by bisection
• Test fails if relative difference between any pair of MAM and reference solutions exceeds

1E-15 (machine precision)

Unit isolation: MAM box model (Fortran)

Dry particle

Wet particle

Verification example from MAM:
Aerosol Water Update

https://e3sm-project.github.io/CMDV-
testing/wateruptake/verification.html

J. Sun, K. Zhang, H. Wan (PNNL)

https://e3sm-project.github.io/CMDV-testing/wateruptake/verification.html

Verification example from CLUBB:
Clipping in Stand-Alone Model

The code
• Solution “clipping” is introduced to avoid non-physical quantities (e.g., negative densities).
• Clipping is in general non-conservative, but there are conservative variants (e.g., hole filling)

The verification
• Quantify magnitude of clipping terms in CLUBB's 13 prognostic eqns. using BOMEX TC.
• Evaluate various clipping schemes in CLUBB.
• Magnitude of clipping term for each scheme is compared to max physical term in each

budget; test fails if magnitude > threshold.

Unit isolation: clipping BOMEX unit test.

L. Rayborn (PNNL)

https://e3sm-project.github.io/CMDV-
testing/CLUBB_clipping_test.html

The physics
• CLUBB (Cloud Layers Unified By Binormals) is a

parameterization of clouds and turbulence for
the representation of cloud macrophysics,
shallow convection, and turbulence.

https://e3sm-project.github.io/CMDV-testing/CLUBB_clipping_test.html

Verification example from MPAS-O:
K-Profile Parameterization

The physics
• The K-Profile Parameterization (KPP) represents small scale

(below the grid scale) vertical turbulent fluxes of heat, salt,
and momentum in the ocean.

The code
• KPP does not contain any prognostic equations, but utilizes

diagnostic equations and scaling relationships to
parameterize turbulent fluxes.

• KPP is known to not exhibit convergence with vertical
resolution, but is robust to time step variation.

• No known analytic solutions for comparison in most cases.

L. Van Roekel, L. Conlon, J. Gafur (LANL)

https://e3sm-
project.github.io/CMDV-

testing/palm_cvmix_compare.html

The verification
• Utilize a large eddy simulation as a baseline to verify the temperature tendency and

entrainment depth (figure) returned by KPP, critical quantities for the ocean simulation.

Unit isolation: CVMix module and MPAS-Ocean vertical mixing interface.

Relative error he across test
cases and resolution

https://e3sm-project.github.io/CMDV-testing/palm_cvmix_compare.html

Success story #1

A critical issue with water conservation in E3SM was uncovered!

https://www.energy.gov/science/articles/how-fit-planet-inside-
computer-developing-energy-exascale-earth

https://www.energy.gov/science/articles/how-fit-planet-inside-computer-developing-energy-exascale-earth

Success story #2

A more flexible implementation was developed.

Journal article
accepted by JAMES

Issues in the implementation and use of
nudging* in E3SM were uncovered!

*Data assimilation technique used in sensitivity studies/validation of EAM simulations.

Ongoing & future work
Expand testing framework:
• Evaluate and integrate or support for kgen, ctest
• Explore using E3SM configuration/software environment to setup/tests on

supported machines

Outreach and documentation:
• Expand testing documentation, hold cmdv-test-runner tutorial (TBD).
• Deploy testing workflow on other projects, e.g.,

❑RRTMCP (radiative transport)
❑ Land model (FATES)
❑DEMSI

Recommendations for future success:
• Requiring common testing tools (e.g., ctest) would simplify workflow.
• Documentation & verification should be done as code is developed.
• Liaison from each targeted component/project is critical to creating

meaningful tests!

Starting CY20: monthly Verification Interest Group concall (POC: Hui Wan)

❑SCREAM
❑EAGLES
❑Other components?

Backup Slides

The physics
• CLUBB’s subgrid PDF is used to diagnose cloud

fraction within a grid box.
• CLUBB’s PDF shape is a double Gaussian (sum of

2 Gaussian components).

The code
• Parameterizes the mean and variance of each Gaussian component in terms of the mean

and variance over the entire grid box.

The verification
• Tests whether the aforementioned algebra is correct.
• More specifically, for a variety of selected inputs, the test uses CLUBB code to parameterize

the component means and variances, and then checks whether the original grid mean and
variance can be recovered.

Unit isolation: CLUBB PDF subroutine (Fortran).

Verification example from CLUBB:
Turbulence Closure
V. Larsen (U Wisconsin)

The physics
• Gas phase chemical species condense to or evaporate from

aerosol particles and change their sizes

The code
• Solves ordinary differential equations (ODEs) for mass

concentrations of related gases and aerosol species

The verification
Multiple tests for the numerical methods
• Gauss-Hermite Quadrature for Mass Transfer Coefficients
• Time integration of ODEs

Additional tests for code implementation
• E.g., Impact of rounded or non-standard values for various parameters

Unit isolation: MAM box model (Fortran)

Verification example from MAM:
Condensation and evaporation

https://e3sm-project.github.io/CMDV-
testing/condensation/gauss_hermite_accuracy/verification.html

J. Sun, R. Easter, K. Zhang, H. Wan (PNNL) Condensation

Evaporation

H2SO4 and other gases

See also poster by Sun et al.

https://e3sm-project.github.io/CMDV-testing/condensation/gauss_hermite_accuracy/verification.html

