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Scalar advection-diffusion equation

diffusion advect ion
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• Describes many transport phenomena in fluid mechanics

• Usual model for the more challenging Navier-Stokes 
equations

• Important dimensionless parameter: Péclet number
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Advection-dominated regime

Figure 1: Galerkin FE solution 
(Pé = 10 150, n = 10) 

Classical Galerkin FEM fraught 
with difficulties, namely spurious 

oscillations, when Pé is high

Approaches to handle difficulty:

• Stabilized FEMs (SUPG, GLS, 
USFEM): add a weighted residual 
(numerical diffusion) to variational 
equation to damp out oscillations

• RFB, VMS, PUM: construct 
conforming spaces that incorporate 
knowledge of local behavior of 
solution
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Discontinuous Enrichment Method 
(DEM)

Standard finite element polynomial field is “enriched” by the free-space 
solutions to the governing constant-coefficient homogeneous PDE not in VP:

1( )h P Eu u u H   

h Eu   n

• Unlike PUM, VMS & RFB: enrichment field in DEM is not required to vanish 
at element boundaries

• Continuity across element boundaries is enforced weakly using Lagrange 
multipliers:

# Lagrange multiplier 
constraint equations 

≤ 
# enrichment equations

 
2

(asymptotically)

En
n  # LMs per edge

#  enrichment functionsE

n

n

 


where

1 Note that this is a necessary but not a sufficient condition for generating a non-singular global 
interface problem.

Babuška-Brezzi inf-sup condition:

1
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Implementation

Global matrix equation (if polynomial field up is included):
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(asymmetric bilinear operator)

Static condensation: due to discontinuous nature of VE, enrichment dofs 

can be eliminated at element level; e.g., if polynomial field is not included,

1( )  CE EE EC C Ek k k f f
 

(post-processing within each element)

 EE E E ECk u f k 

*static condensation makes the DEM more computationally efficient than the 
PUM, for which # dofs = # of enrichment equations
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Enrichment basis for 2D advection-
diffusion

1 2

flow direction
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( , )r rx y = arbitrary reference point added 
to alleviate ill-conditioning

{θi} =  set of angles related to flow direction 
that specify the enrichment basis

Remark: the nature of the enrichment functions 
makes it possible to evaluate all integrals analytically 

bypass accuracy and cost issues associated with 

numerical quadrature
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Plots of enrichment basis functions2
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2 The given plots are for Pé = 25, a2 = 0.
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Computational complexity

cost of solving matrix problem is independent of nE 

(dimension of enrichment field)

Notation:

1[ ]

R X N

R X N R X N Q

 

     

"rectangular"

E

R

X n

N n







where

Element Asymptotic # of dofs

Q1 n2

Q2 4n2

R-X-1 2n2

R-X-1+ 3n2

R-X-2 4n2

R-X-2+ 5n2

Static 
condensation

Table 1:

DGM:

DEM:

1

2

: 4-noded bilinear quadrilateral Galerkin element

: 8-noded biquadrat ic quadrilateral Galerkin element

Q

Q
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Test problem 1: smooth unforced 
boundary layer problem3

3 Borrowed from §5.1 of [4]: I. Harari, L.P. Franca, S.P. Oliveira.  “Streamline design of stability 
parameters for advection-diffusion problems”.  J. Comput. Phys. 171 (2001) 115-131.

• Constant advection coefficients, no distributed source (f = 0).

• Inhomogeneous Dirichlet data are specified such that the exact solution on 
Ω=(0,1) x (0,1) is (for a chosen advection angle ϕ and global Péclet number Pé):

P cos ( 1) P sin ( 1)

P cos P sin

1
( , )

1

x y

ex
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f f

- + -

- -

-
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Figure 2(a): uex for ϕ = 0 (Pé=25) Figure 2(b): uex for ϕ = π/4 (Pé=25)
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Test problem 1: numerical results

Pé ϕ/π Q1 STR EST FFH R-8-2

0 8.97 7.62 7.62 8.59 5.61e-13

1/6 1.31 1.14 1.15 1.25 2.51e-2

1e2 1/5 1.31 1.13e-2

1/4 1.31 1.14 1.15 1.26 1.98e-13

1/3 1.31 2.31e-2

0 57.7 12.8 12.8 12.9 3.17e-12

1/6 2.53 1.67 1.67 1.75 1.82e-2

1e3 1/5 2.57 8.72e-2

1/4 2.62 1.67 1.67 1.77 2.80e-12

1/3 2.53 1.31e-2

Table 2: L2 relative errors (%) at 400 dofs4

Q1: 4-node bilinear quadrilateral
Galerkin element

STR: stabilized FE with streamline
parameter 

EST: stabilized FE with (another) 
estimated streamline parameter

FFH: stabilized FE with the FFH
parameter

R-8-2: DGM element specified by

{ }23 25 3 150, , , , , , ,2 24 24 2 4 8i
p p p p p pq f pÎ -

4 In [3], results are given for a 20 x 20 mesh.  From Table 1, if n=20 for a Q1 element, one must 
limit n to n=10 for the R-8-2 element to stay at 400 dofs.  

with 2 LMs/edge
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Test problem 1: solution plots

Q1 solution (ϕ=0, Pé=1e2)

R-8-2 solution (ϕ=0, Pé=1e2)

Q1 solution (ϕ=π/6, Pé=1e2)

R-8-2 solution (ϕ=π/6, Pé=1e2)
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Test problem 1: convergence rates

Figure 3: log-log plot showing convergence rates
(Pé = 1e2, ϕ = π/6)

Element Convergence rate5

Q1 1.72

Q2 2.68

R-8-2 2.76

Table 3: convergence rates
(Pé = 1e2, ϕ = π/6)

• R-8-2 element comparable to Q2

in terms of convergence rate

• Error is at least 1 order of 
magnitude smaller than Galerkin Q2

5 These numbers are below the theoretical rates because the convergence rates decline slightly from 
the theoretical rates as Pé↑.



13

Test problem 2: inhomogeneous BVP

To highlight the role of the polynomial field: consider the previous 
BVP but with a source term 2{(P cos ) (P sin ) 2}f x yf f= + -é é

P cos ( 1) P sin ( 1) P cos P sin
2 2
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rapidly varying
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Figure 4(a): uex for ϕ = 0  (Pé = 1e3) Figure 4(b): uex for ϕ = π/4 (Pé = 1e3)
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Test problem 2: numerical results

Pé ϕ/π Q1 R-9-2+

0 11.5 2.54e-1

1e2 1/6 1.66 5.02e-1

1/5 1.67 3.03e-1

1/4 1.67 1.98e-1

0 73.3 1.69

1e3 1/6 3.21 9.24e-1

1/5 3.26 9.20e-1

1/4 3.33 3.02e-1

Table 3: L2 relative errors 
(%) at 400 dofs6

6 If a 20 x 20 mesh is used with the Q1 element, from Table 1, one must limit n to n = 9 for the 
cost of the R-9-2+ element to stay at 400 dofs.

R-9-2+:defined by the set of angles

{ }23 25 3 5 150, , , , , , , ,2 24 24 2 4 4 8 8i
p p p p p p p pq Î

Figure 5(a): Q1 solution
(ϕ = π/6, Pé = 1e3)

Figure 5(b): R-9-2+ solution
(ϕ = π/6, Pé = 1e3)

+ the polynomial field of the Q1 element with

2 LMs/edge
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Technical advances/contributions

Technical advances:

• The DEM alleviates the difficulties 
in applying FEs to high Pé flows:

• No more oscillations!
• Errors reduced by several 
orders of magnitude compared 
to stabilized methods.
• Efficient & easy to implement.

• Impressive results for advection-
diffusion suggest that the DEM has a 
significant potential for improving FE 
computations in the field of fluid 
mechanics.

• Potential depends on success for 
non-linear problems (next task).

Personal contributions:

• Extended the DEM to the 2D 
advection-diffusion equation: 

• Derived the  enrichment basis and 
Lagrange multiplier approximations.
• Implemented/tested the method.
• Formulated a convenient way to 
systematically design DEM elements 
of arbitrary orders based on flow 
directions (the {θ}-form of the DEM 
basis).
• Improved conditioning of matrices 
through use of reference point.

• Future work will involve extending the 
DEM to 3D advection-diffusion and to the 
Navier-Stokes equations.
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