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Scalar advection-diffusion equation

- k = diffusivity = 1

LU = 4400+ ausNp = f a = flow velocity

diffusion advection f = source term

e Describes many transport phenomena in fluid mechanics

e Usual model for the more challenging Navier-Stokes
equations

e Important dimensionless parameter: Péclet number

__ rate of advection _ I]a | _ _ §Pr(thermal diffusion)
Pe — - - = = Re i . .
rate of diffusion Kk } Sc (mass diffusion)
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g9 Advection-dominated regime

Figure 1: Galerkin FE solution
(Pé = 10 @ 150, n = 10)

Classical Galerkin FEM fraught
with difficulties, namely spurious
oscillations, when Pé is high

Approaches to handle difficulty:

e Stabilized FEMs (SUPG, GLS,
USFEM): add a weighted residual
(numerical diffusion) to variational
equation to damp out oscillations

e RFB, VMS, PUM: construct
conforming spaces that incorporate
knowledge of local behavior of
solution
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Discontinuous Enrichment Method
(DEM)

Standard finite element polynomial field is “enriched” by the free-space
solutions to the governing constant-coefficient homogeneous PDE not in VP:

u" =u” +uf c HY(Q)

e Unlike PUM, VMS & RFB: enrichment field in DEM is not required to vanish
at element boundaries

e Continuity across element boundaries is enforced weakly using Lagrange
multipliers: PURVAL:

Babuska-Brezzi inf-sup condition:

# Lagrange multiplier nE’
constraint equations ——> n*<— { n* =# LMs per edge
< 2 where

. . . n® =# enrichment functions
# enrichment equations (asymptotically)

1 Note that this is a necessary but not a sufficient condition for generating a non-singular global 4
interface problem.
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Implementation

Global matrix equation (if polynomial field uP is included):

KPP KPE KPC uP FP KPP (_>a(VP1uP)
KP® < a(v”,uf)

KEP KEE KEC uE — FE

KPP KCE 1 EC <:| { KP® < (v, A"
K& < a(v-,u®)
KEC (—)(VE,ﬂh)

where a(v,u)=(Vv,Vu), +(v,a-vu)
(asymmetric bilinear operator)

Static condensation: due to discontinuous nature of :\/E, enrichment dofs
can be eliminated at element level; e.q., if polynomial field is not included,

EE,\E _fE |EC
—kCE(kEE)_lkECﬂ,:fC—fE |]|:||::> k u —f k l

(post-processing within each element)
*static condensation makes the DEM more computationally efficient than the
PUM, for which # dofs = # of enrichment equations




E a a ;
w ol (;unancoseﬁj(x—xr) (72+||a||sm0i]<y—yr)
Hi+1 — U = Z Uie €
i=1
(S+taloosy -, (% ling Jy-,)
#, ,,' -._.H_r)llh I|r —p 2 ’ ﬂitb —p 2
)".'!r ﬂe ”
- (X y ) — arbitrary reference point added
7 rr to alleviate ill-conditioning
i Y o
’ \tb {6,} = set of angles related to flow direction
T Tiq1 that specify the enrichment basis

6, = flow direction
a' = (a a&)

Remark: the nature of the enrichment functions
makes it possible to evaluate all integrals analytically
bypass accuracy and cost issues associated with
numerical quadrature
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Plots of enrichment basis functions?
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2 The given plots are for Pé = 25, a, =0.
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Computational complexity

Static cost of solving matrix problem is independent of nE
condensation (dimension of enrichment field)
Notation: Table 1:
DGM: R—X —N Element | Asymptotic # of dofs
Q, n2
DEM: R—X—N*z[R—X—N]uQ1 Q, 4n2
R-X-1 2n2
(R ="rectangular" k
where E Rx-17 3n°
< X=n R-X-2 4n?
N =n* R-X-2+ 5n?2

.
Qq : 4-noded bilinear quadrilateral Galerkin element

Q, : 8-noded biquadratic quadrilateral Galerkin element
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Test problem 1: smooth unforced
“boundary layer problem3

e Constant advection coefficients, no distributed source (f = 0).

e Inhomogeneous Dirichlet data are specified such that the exact solution on
Q=(0,1) x (0,1) is (for a chosen advection angle ¢ and global Péclet number Pé):

gPécosf (x- D+Pesinf(y-1) _ ¢

ueX(X’y) - e Pécosf - Pésinf _ 1

1 0

Figure 2(a): ue, for ¢ =0 (P€=25) Figure 2(b): u,, for ¢ = /4 (Pé=25)

3 Borrowed from §5.1 of [4]: I. Harari, L.P. Franca, S.P. Oliveira. “Streamline design of stability 9
parameters for advection-diffusion problems”. J. Comput. Phys. 171 (2001) 115-131.
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' Test problem 1: numerical results

Table 2: L2 relative errors (%) at 400 dofs*

Pé | ¢/ Q; STR | EST | FFH R-8-2
0 8.97 | 7.62 | 7.62 | 8.59 | 5.61e-13
1/6 | 1.31 1.14 | 1.15 | 1.25 | 2.51e-2
le2 1 1/5] 1.31 1.13e-2
1/41 1.31 1.14 | 1.15 | 1.26 | 1.98e-13
1/31 1.31 2.31e-2
0 57.7 12.8 | 12.8 | 12.9 | 3.17e-12
1/6 | 2.53 1.67 | 1.67 | 1.75 | 1.82e-2
1e3|1/5| 2.57 8.72e-2
1/4 1 2.62 1.67 | 1.67 | 1.77 | 2.80e-12
1/3 | 2.53 1.31e-2

Q;: 4-node bilinear quadrilateral
Galerkin element

STR: stabilized FE with streamline
parameter

EST: stabilized FE with (another)
estimated streamline parameter

FFH: stabilized FE with the FFH
parameter

R-8-2: DGM element specified by

G T {0.0/5,23004,2004.305. 04,10, f - p}
with 2 LMs/edge

41In [3], results are given for a 20 x 20 mesh. From Table 1, if n=20 for a Q, element, one must 1
limit n to n=10 for the R-8-2 element to stay at 400 dofs.
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Test problem 1: convergence rates

~ Table 3: convergence rates
——9q [} (Pé = 1e2, ¢ =n/6)

—o—Q,

otl \ e Element | Convergence rate®
Q, 1.72
| Q, 2.68
5| \ R-8-2 2.76

log(relative error)
-—
o

e R-8-2 element comparable to Q,
in terms of convergence rate

10° 10’ 10

log(n) e Error is at least 1 order of

magnitude smaller than Galerkin Q,
Figure 3: log-log plot showing convergence rates
(Pé = 1e2, ¢ =n/6)

> These numbers are below the theoretical rates because the convergence rates decline slightly from 12
the theoretical rates as Pé?1.
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' Test problem 2: inhomogeneous BVP

To highlight the role of the polynomial field: consider the previous
BVP but with a source term f = 2{(Pécosf)x + (Pésinf)y - 2}

ePécosf (x- 1)+ Pésinf (y- 1) _ e Pécosf - Pésinf

Uex (X,Y) = Aimd i +

slowly varying

04 k : 05
06 0.8 1 .D 0.4 )

02

10

Figure 4(a): uefor ¢ =0 (Pé = 1e3) Figure 4(b): u,, for ¢ = /4 (Pé = 1e3)
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' Test problem 2: numerical results

Table 3: L2 relative errors R-9-2*:defined by the set of angles

(%) at 400 dofs® G 1 {0.P4,204,,2904,,304,0/,90/, 04 1504}
Pé | oim| Q R-9-2+ + the polynomial field of the Q, element with

0 11.5 | 2.54e-1

2 LMs/edge

[ JExact
[ Icalerkin

le2 | 1/6 | 1.66 | 5.02e-1
1/51 1.67 | 3.03e-1
1/4 | 1.67 | 1.98e-1
0 73.3 1.69

1e3 |1 1/6 | 3.21 | 9.24e-1
1/5 ] 3.26 | 9.20e-1

Figure 5(a): Q; solution Figure 5(b): R-9-2* solution
1/4 | 3.33 | 3.02e-1 (0 =n/6, Pé = 1e3) (6 =n/6, Pé = 1e3)

6 If a 20 x 20 mesh is used with the Q, element, from Table 1, one must limit n to n = 9 for the 14
cost of the R-9-2* element to stay at 400 dofs.

[ JExact
[__JoEm



Technical advances:

e The DEM alleviates the difficulties
in applying FEs to high Pé flows:
e No more oscillations!
e Errors reduced by several
orders of magnitude compared
to stabilized methods.
e Efficient & easy to implement.

e Impressive results for advection-
diffusion suggest that the DEM has a
significant potential for improving FE
computations in the field of fluid
mechanics.

e Potential depends on success for
non-linear problems (next task).
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' Technical advances/contributions

Personal contributions:

e Extended the DEM to the 2D
advection-diffusion equation:

e Derived the enrichment basis and
Lagrange multiplier approximations.
e Implemented/tested the method.
e Formulated a convenient way to
systematically design DEM elements
of arbitrary orders based on flow
directions (the {8}-form of the DEM
basis).

e Improved conditioning of matrices
through use of reference point.

e Future work will involve extending the
DEM to 3D advection-diffusion and to the
Navier-Stokes equations.

15
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