A Discontinuous Enrichment Method for the Solution of the Advection-Diffusion Equation

Irina Kalashnikova Ph.D. Candidate, Stanford University Institute for Computational & Mathematical Engineering (iCME)

Robert J. Melosh Symposium Friday, April 25, 2008

Scalar advection-diffusion equation

$$\mathcal{L}\mathcal{U} = \mathbf{1}\mathcal{H}\mathbf{D}\mathbf{U}\mathbf{B} + \mathbf{4}\mathcal{D}\mathbf{U}\mathbf{B} = f$$

diffusion advection

- k = diffusivity = 1
- a = flow velocity
- f = source term
- Describes many transport phenomena in fluid mechanics
- Usual model for the more challenging Navier-Stokes equations
- Important dimensionless parameter: Péclet number

$$P\acute{e} = \frac{\text{rate of advection}}{\text{rate of diffusion}} = \frac{l \mid a \mid}{k} = \text{Re} \times \frac{1}{k} \text{Pr (thermal diffusion)}}{\text{Sc (mass diffusion)}}$$

Advection-dominated regime

Classical Galerkin FEM fraught with difficulties, namely spurious oscillations, when Pé is high

Approaches to handle difficulty:

• Stabilized FEMs (SUPG, GLS, USFEM): add a weighted residual (numerical diffusion) to variational equation to damp out oscillations

• RFB, VMS, PUM: construct conforming spaces that incorporate knowledge of local behavior of solution

Discontinuous Enrichment Method (DEM)

Standard finite element polynomial field is "enriched" by the free-space solutions to the governing constant-coefficient homogeneous PDE not in V^P:

$$u^h = u^P + u^E \subset H^1(\Omega)$$

 Unlike PUM, VMS & RFB: enrichment field in DEM is not required to vanish at element boundaries

• Continuity across element boundaries is enforced weakly using Lagrange multipliers: $\lambda^h = \nabla u^E \cdot \boldsymbol{n}$

Babuška-Brezzi inf-sup condition:

Lagrange multiplier
constraint equations
$$\longrightarrow n^{\lambda} \le \frac{n^{E^{1}}}{2}$$

enrichment equations (asymptotically) where $\begin{cases} n^{\lambda} = \# \text{ LMs per edge} \\ n^{E} = \# \text{ enrichment functions} \end{cases}$

¹ Note that this is a necessary but not a sufficient condition for generating a non-singular global 4 interface problem.

Implementation

<u>Global matrix equation</u> (if polynomial field u^p is included):

<u>Static condensation</u>: due to discontinuous nature of V^E , enrichment dofs can be eliminated at element level; e.g., if polynomial field is not included,

*static condensation makes the DEM more computationally efficient than the PUM, for which # dofs = # of enrichment equations

Enrichment basis for 2D advectiondiffusion

$$u^{E} = \sum_{i=1}^{n^{E}} u_{i} e^{\left(\frac{a_{1}}{2} + ||\boldsymbol{a}||\cos\theta_{i}\right)(x-x_{r})} e^{\left(\frac{a_{2}}{2} + ||\boldsymbol{a}||\sin\theta_{i}\right)(y-y_{r})}$$
$$\lambda_{i}^{lr} = e^{\left(\frac{a_{1}}{2} + ||\boldsymbol{a}||\cos\theta_{i}\right)(x-x_{r})}, \quad \lambda_{i}^{tb} = e^{\left(\frac{a_{2}}{2} + ||\boldsymbol{a}||\sin\theta_{i}\right)(y-y_{r})}$$

 $(x_r, y_r) = arbitrary reference point added to alleviate ill-conditioning$

 $\{\theta_i\}$ = set of angles related to flow direction that specify the enrichment basis

<u>Remark</u>: the nature of the enrichment functions makes it possible to evaluate all integrals analytically ¹ bypass accuracy and cost issues associated with numerical quadrature

Plots of enrichment basis functions²

² The given plots are for Pé = 25, $a_2 = 0$.

Computational complexity

Static	[?]	cost of solving matrix problem is independent of n^{E}
condensation		(dimension of enrichment field)

Notation:

DGM: R - X - NDEM: $R - X - N^{+} = [R - X - N] \cup Q_{1}$ where $\begin{cases} R = \text{"rectangular"} \\ X = n^{E} \\ N = n^{\lambda} \end{cases}$

Table 1:

Element	Asymptotic # of dofs	
Q ₁	n²	
Q ₂	4n ²	
R-X-1	2n ²	
R-X-1+	3n ²	
R-X-2	4n ²	
R-X-2+	5n ²	

- Q_1 : 4-noded bilinear quadrilateral Galerkin element
- Q_2 : 8-noded biquadratic quadrilateral Galerkin element

- Constant advection coefficients, no distributed source (f = 0).
- Inhomogeneous Dirichlet data are specified such that the exact solution on $\Omega = (0,1) \times (0,1)$ is (for a chosen advection angle ϕ and global Péclet number Pé):

³ Borrowed from §5.1 of [4]: I. Harari, L.P. Franca, S.P. Oliveira. "Streamline design of stability 9 parameters for advection-diffusion problems". J. Comput. Phys. 171 (2001) 115-131.

Test problem 1: numerical results

Table 2: L² relative errors (%) at 400 dofs⁴

Pé	φ/π	Q ₁	STR	EST	FFH	R-8-2
	0	8.97	7.62	7.62	8.59	5.61e-13
	1/6	1.31	1.14	1.15	1.25	2.51e-2
1e2	1/5	1.31	?	?	?	1.13e-2
	1/4	1.31	1.14	1.15	1.26	1.98e-13
	1/3	1.31	?	?	?	2.31e-2
	0	57.7	12.8	12.8	12.9	3.17e-12
	1/6	2.53	1.67	1.67	1.75	1.82e-2
1e3	1/5	2.57	?	?	?	8.72e-2
	1/4	2.62	1.67	1.67	1.77	2.80e-12
	1/3	2.53	?	?	?	1.31e-2

 $\mathbf{Q_1}$: 4-node bilinear quadrilateral Galerkin element

STR: stabilized FE with streamline parameter

EST: stabilized FE with (another) estimated streamline parameter

FFH: stabilized FE with the FFH parameter

R-8-2: DGM element specified by $q_i \hat{1} \{0, \frac{p}{2}, \frac{23p}{24}, \frac{25p}{24}, \frac{3p}{2}, \frac{p}{4}, \frac{15p}{8}, f - p \}$ with 2 LMs/edge

⁴ In [3], results are given for a 20 x 20 mesh. From Table 1, if n=20 for a Q_1 element, one must 10 limit n to n=10 for the R-8-2 element to stay at 400 dofs.

Test problem 1: solution plots

 Q_1 solution ($\phi=\pi/6$, Pé=1e2)

R-8-2 solution ($\phi=\pi/6$, Pé=1e2)

Test problem 1: convergence rates

Table 3: convergence rates (Pé = 1e2, $\phi = \pi/6$)

Element	Convergence rate ⁵		
Q ₁	1.72		
Q ₂	2.68		
R-8-2	2.76		

• R-8-2 element comparable to Q_2 in terms of convergence rate

 \bullet Error is at least 1 order of magnitude smaller than Galerkin Q_2

 $^{^5}$ These numbers are below the theoretical rates because the convergence rates decline slightly from $_{12}$ the theoretical rates as Pé $_1$.

Test problem 2: inhomogeneous BVP

<u>To highlight the role of the polynomial field</u>: consider the previous BVP but with a source term $f = 2\{(P \acute{e} \cos f)x + (P \acute{e} \sin f)y - 2\}$

Test problem 2: numerical results

Table 3: L² relative errors (%) at 400 dofs⁶

Pé	φ/π	Q ₁	R-9-2+
	0	11.5	2.54e-1
1e2	1/6	1.66	5.02e-1
	1/5	1.67	3.03e-1
	1/4	1.67	1.98e-1
	0	73.3	1.69
1e3	1/6	3.21	9.24e-1
	1/5	3.26	9.20e-1
	1/4	3.33	3.02e-1

R-9-2⁺: defined by the set of angles $q_i \hat{1} \{0, p_2, 23p_{24}, 25p_{24}, 3p_2, p_4, 5p_4, p_8, 15p_8\}$

+ the polynomial field of the Q_1 element with 2 LMs/edge

Exact

DEM

⁶ If a 20 x 20 mesh is used with the Q_1 element, from Table 1, one must limit n to n = 9 for the cost of the R-9-2⁺ element to stay at 400 dofs. 14

Technical advances/contributions

Technical advances:

- The DEM alleviates the difficulties in applying FEs to high Pé flows:
 - No more oscillations!
 - Errors reduced by several orders of magnitude compared to stabilized methods.
 - Efficient & easy to implement.
- Impressive results for advectiondiffusion suggest that the DEM has a significant potential for improving FE computations in the field of fluid mechanics.
- Potential depends on success for non-linear problems (next task).

Personal contributions:

- Extended the DEM to the 2D advection-diffusion equation:
 - Derived the enrichment basis and Lagrange multiplier approximations.
 - Implemented/tested the method.
 - Formulated a convenient way to systematically design DEM elements of arbitrary orders based on flow directions (the $\{\theta\}$ -form of the DEM basis).

• Improved conditioning of matrices through use of reference point.

• Future work will involve extending the DEM to 3D advection-diffusion and to the Navier-Stokes equations.

[1] C. Farhat, I. Harari, L.P. Franca. "The discontinuous enrichment method". Comput. Methods Appl. Mech. Engrg. 190 (2001) 6455-6479.

[2] C. Farhat, I. Harari, U. Hetmaniuk. "A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime". Comput. Methods Appl. Mech. Engrg. 192 (2003) 1389-1419.

[3] C. Farhat, R. Tezaur. "Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problem". Int. J. Numer. Meth. Engng 66 (2006) 796-815.

[4] I. Harari, L.P. Franca, S.P. Oliveira. "Streamline design of stability parameters for advection-diffusion problems". J. Comput. Phys. 171 (2001) 115-131.