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Summary of CY2019 progress

• Revisit algorithms and assumptions to improve XFEM robustness:

➢Mass conservation equation/density update (T. Voth)

➢Void insertion (T. Voth)

➢ Ensure solvability of contact linear system (I. Tezaur)

• Assess state of 2D XFEM code with ARL problems of interest            
(J. Neiderhaus)

A focus on XFEM robustness!
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Mass conservation equation

• XFEM mass conservation used UFEM constant volume fraction 
assumption:
➢ Volume fraction is assumed to be unchanged during Lagrangian Step

➢ Final (end of Lagrangian step) material volume is simply the product of 
element volume and material volume fraction.

➢ Density update is then identical to that for UFEM:

• Issues include:
➢ Required scaling remap intersection volumes (and masses, 

momentum, etc). 

➢ Can (often?) results in artificial compression or expansion of 
materials and bad states. 

• But, there’s a better, more consistent way…

𝜌𝑛+1 = 𝜌𝑛𝑉𝑒
𝑛/𝑉𝑒

𝑛+1



Mass conservation equation (cont’d)
• Discard constant volume fraction assumption all together. 

• Final material volume is given the interface description at the end 
of the Lagrangian step and easily computed.

• Density update then becomes:

• Result is elimination of artificial compression / expansion and more 
robust material state updates.

• Uncovered an algorithmic issue with void insertion for XFEM

𝜌𝑛+1 = 𝜌𝑛𝑉𝑒,𝑚𝑎𝑡
𝑛 /𝑉𝑒,𝑚𝑎𝑡

𝑛+1
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Void insertion impacts robustness

UFEMXFEM

without void insert with void insert

UFEM



Void insertion

• UFEM void Insertion algorithm was unchanged for XFEM:
➢ UFEM algorithm adapted for XFEM.

➢ Happens during Lagrangian step, reducing material volume and 
inserting void to take up remaining element volume.

• … but XFEM computes interfaces at the start (end) of the 
Lagrangian (Remap) step:
➢ Used to prevent material interpenetration (contact enforcement).

➢ Used for material by material remap.

• … and XFEM algorithms (remap and contact) assume the 
interface description does not change during the Lagrangian
step (deformations allowed but material/master-element 
description is unchanged)
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Void insertion (cont’d)
• However, void insertion violates XFEM’s unchanged interface 

assumption:
➢ Void is added that is not “known” to XFEM. Innocuous by itself.

➢ “Fractured” material in cell does not know its volume has changed 
(interface location has not been changed).

➢ As “fractured” material state has changed but XFEM is unaware of its 
volume change, we have a mass source/sink.

• Why did this (appear) to work (e.g. we’re conserving mass)?
➢ As noted, XFEM has been enforcing constant volume fraction through 

the Lagrangian step (CONSTANT VOLUME FRACTION algorithm).

➢ Void insertion scales volume fraction to insert void.

➢ Remap volumes (swept or intersected) scaled to ensure remapped 
volumes same as those computed with volume fraction (constant plus 
void insertion mods) at the end of the Lagrangian step. Results in 
conservation and hides Void Insertion “bug”.



Void insertion (cont’d)

• Requirements for fix?
➢ Void insertion cannot be part of the Lagrangian step.

➢ Void insertion must occur while enrichments are in flux / being 
created and before interfaces are finalized.

• Fixed by moving XFEM’s occurrence of void insertion to 
during remap step and before next Lagrangian step.
➢ Approach suggested by M. Wong (original author of void insertion 

code).

➢ Essentially hijack UFEM’s void insertion clean-up that occurs after 
remap.

➢ Void insertion for XFEM now only happens in remap where interface 
description is allowed to change.



Void insertion (cont’d)

… without void Insertion. … with void Insertion.

XFEM results for DTE problem …
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XFEM contact problem
• Contact constraint enforces gap rate to 

be zero when inter-penetration between 
two surfaces is detected (right figure):

𝒈rate = 𝑮𝒗𝑛+1/2 = 𝟎

• Contact constraint is enforced via Lagrange multipliers 𝝀, which gives 
rise to a KKT system for momentum balance + contact constraint:

𝑴𝒂𝑛 + 𝒇𝑖𝑛𝑡 + 𝒇𝑒𝑥𝑡 + 𝑮𝑇𝝀 = 𝟎
𝑮𝒗𝑛+1/2 = 𝟎

• To be solvable, the discretization must satisfy the inf-sup (LBB) condition.

The XFEM contact implementation in ALEGRA does not 
ensure a priori satisfaction of the inf-sup condition!

➢ This is one source of robustness issues with XFEM!



Discrete inf-sup (LBB) condition*

• Three conditions for discrete inf-sup stability:

 The mass matrix 𝑴 must be non-singular.

 The constraint matrix 𝑮 cannot have more rows than the 
mass matrix 𝑴.

 The constraint matrix 𝑮 must have full row rank (contact 
constraints must be linearly independent).

𝑴𝒂𝑛 + 𝒇𝑖𝑛𝑡 + 𝒇𝑒𝑥𝑡 + 𝑮𝑇𝝀 = 𝟎
𝑮𝒗𝑛+1/2 = 𝟎

* Necessary (but not always sufficient) condition for inf-sup stability at the 
continuous level.



• Three conditions for discrete inf-sup stability:

 The mass matrix 𝑴 must be non-singular.

 The constraint matrix 𝑮 cannot have more rows than the 
mass matrix 𝑴.

 The constraint matrix 𝑮 must have full row rank (contact 
constraints must be linearly independent).

𝑴𝒂𝑛 + 𝒇𝑖𝑛𝑡 + 𝒇𝑒𝑥𝑡 + 𝑮𝑇𝝀 = 𝟎
𝑮𝒗𝑛+1/2 = 𝟎

* Necessary (but not always sufficient) condition for inf-sup stability at the 
continuous level.

Discrete inf-sup (LBB) condition*



Lin. dept. constraints are a real problem!
Sandwich Problem

There are 140 singular/near-singular matrices out of 2659 total matrices.
--> Matrix matrix31.mm is singular with rank deficiency 2 and condition number Inf.
----> Matrix matrix31.mm has duplicate rows!
------> Identical Rows:

19 30 
--> Matrix matrix32.mm is near-singular with rank deficiency 1 and condition number 1e16.
--> Matrix matrix37.mm is near-singular with rank deficiency 1 and condition number 5e16.
....

𝑮𝑴−1𝑮𝑇𝒚 = 𝑮𝒗∗



Lin. dept. constraints are a real problem!
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Lin. dept. constraints are a real problem!

 Develop algorithm to detect and remove on-the-fly linearly dependent          
and nearly-linearly dependent constraints (→ QR algorithms!)

 Understand cause of linearly dependent constraints (→ bug in skinning alg.) 
and eliminate them at the source (→ TODO)

Two remedies explored simultaneously:

𝑮𝑴−1𝑮𝑇𝒚 = 𝑮𝒗∗

➢ On-the-fly detection algorithm expected to be needed to deal with 
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Full QR algorithm for contact solve

Basic Idea: (1) perform QR decomposition on 𝑴−1/2𝑮𝑇;
(2) remove linearly dept./nearly-linearly dept. constraints from 𝑹;

(3) solve upper triangular full-rank system given by ෩𝑹.  



Aztec tol
= 1e-5

Aztec tol
= 1e-6

Aztec tol
= 1e-7

Aztec tol
= 1e-8

Aztec tol
= 1e-9

Aztec tol
= 1e-10

Aztec tol
= 1e-11

No QR died died died died died died finished

Full QR,      
qr tol = 1e-6

finished finished finished finished not run not run not run

Sandwich problem

QR algorithm makes XFEM solver much more robust!
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# cycles # linear iters # of “numerical 
loss of precision”s

No QR, Aztec tol = 1e-11 3571 185,435 751

Full QR, qr tol = 1e-6, Aztec tol = 1e-5 3511 37,723 11

Sandwich problem

Moreover, there are 5× fewer linear iterations* w/ QR!

QR algorithm makes XFEM solver much more robust!

* Note that the current implementation of QR in ALEGRA uses a direct solver.  Results with iterative 
solver are shown here for illustrative purposes.



Full QR algorithm for contact solve

Basic Idea: (1) perform QR decomposition on 𝑴−1/2𝑮𝑇;
(2) remove linearly dept./nearly-linearly dept. constraints from 𝑹;

(3) solve upper triangular full-rank system given by ෩𝑹.  

☺ Pro: contact system will be nonsingular, with smaller condition number*.

* 𝜅(෩𝑹) ≤ 𝜅(𝑮𝑴−1𝑮𝑇).



Full QR algorithm for contact solve

Basic Idea: (1) perform QR decomposition on 𝑴−1/2𝑮𝑇;
(2) remove linearly dept./nearly-linearly dept. constraints from 𝑹;

(3) solve upper triangular full-rank system given by ෩𝑹.  

☺ Pro: contact system will be nonsingular, with smaller condition number*.

 Con: computing QR decomp. is expensive – total CPU time may go up.

* 𝜅(෩𝑹) ≤ 𝜅(𝑮𝑴−1𝑮𝑇).



Hybrid QR algorithm to reduce CPU time

1: Form original contact system given by 𝑮𝑴−1𝑮𝑇.

2: Try to solve this system using Amesos (Trilinos direct solver).

3: If Amesos solve fails (which will happen if 𝑮𝑴−1𝑮𝑇 is exactly singular),
‘’’’perform QR to identify/remove linearly dependent constraints and 

llllsolve resulting system given by ෩𝑹1.

➢ If we solve this using Amesos as well, we remove the linear solver 
tolerance parameter.



Hybrid QR algorithm to reduce CPU time

1: Form original contact system given by 𝑮𝑴−1𝑮𝑇.

2: Try to solve this system using Amesos (Trilinos direct solver).

3: If Amesos solve fails (which will happen if 𝑮𝑴−1𝑮𝑇 is exactly singular),
‘’’’perform QR to identify/remove linearly dependent constraints and 

llllsolve resulting system given by ෩𝑹1.

➢ If we solve this using Amesos as well, we remove the linear solver 
tolerance parameter.

Discussion: 

 Exact linear dependencies are removed.

➢ Algorithm can be extended to remove near linear dependencies.

☺ CPU time comparable to or lower than CPU time with no QR.

☺ By using direct solve, Aztec linear solver tolerance parameter is no   
llllllonger required.



Usage of QR algorithms in ALEGRA
• Two new run-time options have been added to allow the user to specify which QR 

algorithm to use, and the QR tolerance parameter (see discussion beginning on p. 331 
of the ALEGRA User Manual). 

• Please see Cup and Sandwich Training problems (Benchmarks/Training/AlegraXFEM) for 
example of full and hybrid QR usage, respectively.

Note: AztecOO (Trilinos direct solver) is 
currently not a valid option with full or 
hybrid QR; if Aztec sublist is present in 

an input file using full or hybrid QR, the 
following error will be thrown:

ERROR: 

UnsDynamics::Check_Errors_And_Set_Values

AZTECOO is not a valid option when 

using full or hybrid qr for contact 

solve! The solver that is used is Amesos.

By using Amesos (Trilinos direct solver), we take 
the linear solver tolerance out of the equation!
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Test cases, November 2019

• For testing of XFEM after (a) change to density update and 

(b) addition of QR factorization algorithms.

➢ Oblique plate slap (2 materials, metal)

➢ Oblique cylinder impact on layered target (3 materials, metal and 

polymer)

➢ APM2 onto layered aluminum (4/5? Materials, all metal)

➢ PTI with cover plate (3 materials, including ceramic)

• These are all still at relatively coarse resolution, but could 

be refined for further testing.



Oblique plate slap problem

• Test originally created by Bob Doney

• Plates inclined in opposite directions at 2.5°

each

• Both plates are aluminum

• EOS, strength, void insertion with force fracture

• Simulation should allow recoil and separation 

(and sliding, if plates are not inclined 

symmetrically).

• 225K elements

→ Last attempt to run this problem was in 2014!  Persistently failed with Aztec 

iterations > maximum.

v = 1 km/s



Oblique plate slap problem results

• All XFEM runs fail with element 

inversion at intial contact time unless 

discard is added for all material 

volfrc < 1e-4.

• Force fracture and phase control 

provide 3% speedup (used on all 

runs shown here).

• Hybrid QR provides near 2× speedup 

over regular XFEM.

• Did not run full QR.

• Ran on 16 cores.



Oblique plate slap problem results: 
movies

UFEM XFEM XFEM, hybrid QR



Oblique plate slap problem results: 
final frame

UFEM XFEM XFEM, hybrid QR



Oblique cylinder impact on layered 
target

• Adjacent plates inclined 25°

• EOS and strength

• Simulation should allow recoil and 

separation due to difference in shock 

impedance of two target plate materials

• 148K elements

→ Last studied extensively in ALEGRA in November of 2009!!!  Abandoned 

because of interface ordering issues, and never revived after automatic 

priorities were added.

v = 2.4 km/s

Copper

Lexan

Tungsten



Oblique cylinder impact results

• All XFEM runs are successful 

after modern syntax is added 

(auto priorities, Aztec contact 

solver, no enforcement 

tolerances, etc.).

• Force fracture and phase control 

are necessary to allow UFEM 

simulation to run to completion.  

Not needed for XFEM!

• Hybrid QR provides no speedup 

for this problem.

• Ran on 8 cores.



Oblique cylinder impact results: 
movies

UFEM XFEM, hybrid QR



Oblique cylinder impact results: 
density at 24 𝜇s

UFEM XFEM, hybrid QRXFEM



APM2 impact on layered aluminum

• Normal impact of APM2 

round.

• Two 20-mm-thick Al plates, 

no adhesion.

• Axisymmetric r-z coordinates

• 4 materials, 5 material ID’s.

• Jacket should separate from 

core and remain in the 

plates.

• 83K elements

→ Last studied extensively in ALEGRA in 2014.  

→ apm2-xfem test is still in the repo, TDD status currently. 

APM2 round 
(0.30 cal / 7.62mm)

Forrestall et al, 2010 
https://doi.org/10.1007/s11340-009-9262-5

v = 0.9 km/s

Layered 
aluminum

https://doi.org/10.1007/s11340-009-9262-5


APM2 impact results

• XFEM simulations fail with element 

inversion persistently.

• With force fracture, phase control, 

and discard for volfrc < 1.e-4, the 

failure is deferred late enough to see 

the desired behavior.

• Hybrid QR provides both speedup and 

apparently better stability.  

• Regular and hybrid simulations ran on 

different days on cee-compute007 –

load might have played a role.

• Ran on 16 cores.



APM2 impact results: movies

UFEM XFEM, hybrid QR



APM2 impact results: frame at 100 𝜇s

UFEM XFEM, hybrid QRXFEM



Summary

CY2019 XFEM improvements:

➢ Discovered and resolved issue with density update

➢ Discovered and resolved issue with void insertion

➢ Discovered issue with singularity of XFEM contact solve, and 
implemented several remedies.

CY2019 Results:

➢ Fixes resulted in robustness improvements and reduced CPU times for 
2D XFEM simulations.

With this year’s improvements, we are now able to 
run 2D XFEM cases that were abandoned years ago!!



Ongoing/future work involving XFEM
Work in progress (WIP):

➢ Continue evaluation of XFEM on test cases of interest to ARL

➢ Journal article on XFEM for multi-material Eulerian SM in ALEGRA

❖ QR algorithms for ensuring discrete inf-sup stability and their connection 
to various regularization algorithms in optimization is one novel 
contribution.

Possible future work:

➢ Continue XFEM performance improvements

➢ Higher-order remap for XFEM intersection remap

➢ Move 2D robustness/accuracy improvements to 3D

➢ Fix bug in skinning algorithm.

➢ Computational improvements to full/hybrid QR implementations:

❖ Switch to sparse QR library – QR will scale like 𝑂(𝑁2) vs. 𝑂(𝑁3)

❖ Modify hybrid QR logic to perform QR more often (e.g. when contact 
system is ill-conditioned but not exactly singular)



Backup Slides 



XFEM, No QR, Oct. 2019 Code UFEM, Oct. 2019 Code

• “Sticking” projectile behavior in XFEM solution (left) is due to first-order 
remap algorithm in XFEM.

➢ Would be remedied by implementing higher-order remap.

Motivation for XFEM higher-order remap 



Identifying cause of linearly dependent 
constraints: skinning algorithm

Sandwich Cup

QR with qr tol
= 1e-10

27, 29 48, 51, 56, 58

QR with qr tol
= 1e-5

26, 27, 28, 
29, 38

48, 51, 55, 56, 
57, 58, 59

Tuples of 
identical/near 

identical 
constraints         

(* = identical 
constraints)

{18, 29}*,
{17, 27, 26}

{46, 48},          
{50, 51, 57, 58},           

{49, 55, 56}



Identifying cause of linearly dependent 
constraints: skinning algorithm

Sandwich Cup

QR with qr tol
= 1e-10

27, 29 48, 51, 56, 58

QR with qr tol
= 1e-5

26, 27, 28, 
29, 38

48, 51, 55, 56, 
57, 58, 59

Tuples of 
identical/near 

identical 
constraints         

(* = identical 
constraints)

{18, 29}*,
{17, 27, 26}

{46, 48},          
{50, 51, 57, 58},           

{49, 55, 56}



Identifying cause of linearly dependent 
constraints: skinning algorithm

Sandwich Cup

QR with qr tol
= 1e-10

27, 29 48, 51, 56, 58

QR with qr tol
= 1e-5

26, 27, 28, 
29, 38

48, 51, 55, 56, 
57, 58, 59

Tuples of 
identical/near 

identical 
constraints         

(* = identical 
constraints)

{18, 29}*,
{17, 27, 26}

{46, 48},          
{50, 51, 57, 58},           

{49, 55, 56}

The culprit is the skinning 
algorithm, which adds redundant 

and nonsensical constraints.



Identifying cause of linearly dependent 
constraints: skinning algorithm

Sandwich Cup

QR with qr tol
= 1e-10

27, 29 48, 51, 56, 58

QR with qr tol
= 1e-5

26, 27, 28, 
29, 38

48, 51, 55, 56, 
57, 58, 59

Tuples of 
identical/near 

identical 
constraints         
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{18, 29}*,
{17, 27, 26}

{46, 48},          
{50, 51, 57, 58},           

{49, 55, 56}

The culprit is the skinning 
algorithm, which adds redundant 

and nonsensical constraints.

Fixing skinning algorithm is 
longer-term endeavor.


