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ABSTRACT

A discontinuous enrichment method (DEM) for the efficient finite element solution of the two-dimensional
advection-diffusion equation is presented. Following the general DEM, the standard Galerkin polynomial
field is locally enriched with free-space solutions of the homogeneous and constant-coefficient version
of the governing partial differential equation. For the advection-diffusion equation, the free-space solu-
tions are exponential functions that exhibit a steep gradient in the advection direction. The continuity
of the solution across the element boundaries is weakly enforced by a carefully discretized Lagrange
multiplier field. Preliminary results for previously published benchmark problems reveal that the DEM
elements proposed in this paper are significantly more competitive than their Galerkin and stabilized
Galerkin counterparts, especially in advection-dominated (high Péclet number) flows. Whereas spurious
oscillations are known to pollute the standard Galerkin solution unless a very fine mesh is used, the DEM
solution is shown to deliver an impressive accuracy at low mesh resolution.

Lagrange multipliers

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The standard Galerkin finite element method (FEM) approximates
the solution to a partial differential equation (PDE) by continuous,
piecewise polynomial basis functions. FEM is quasi-optimal for el-
liptic boundary value problems (BVPs) in that the accuracy of the
numerical solution it provides differs from that of the best approxi-
mation in the underlying finite element space by a mere constant C.
Although this property assures good performance at any mesh res-
olution for the Laplace operator, the standard Galerkin FEM can be
prohibitively expensive for many other BVPs, particularly those gov-
erned by operators that are prone to losing ellipticity. The solutions
of these problems often exhibit sharp gradients or rapid oscillations,
features that standard piecewise polynomial basis functions simply
cannot capture unless the mesh is substantially refined or a very
high order polynomial interpolant is used.

The advection-diffusion equation is among the set of equations
for which the standard FEM can be inadequate. This equation de-
scribes many transport phenomena and arises in its vector form in
the linearization of the Navier-Stokes equations. The asymmetric
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advection-diffusion operator is

Pu= —kAu+ a-vu (1)
—— N——

diffusion ~ advection

In the context of fluid mechanics, a denotes the flow velocity vector;
it is also often referred to as the vector of advection coefficients. In
two dimensions (2D), aT = (a; ay), where the superscript T desig-
nates the transpose operation. In general, a is a function of x and y so
that aq(x), ax(x) : R? — R. However, for simplicity, the scope of this
paper is limited to the constant-coefficient case. The velocities a;
and a; define the advection direction whose angle with the x-axis is
denoted in this paper by ¢. The quantities a;, aand ¢ are related by

a; =lajcos ¢, a=la|sin ¢ (2)

In Eq. (1), k denotes the diffusivity. For simplicity and without any
loss of generality, this parameter is set to

k=1 (3)

throughout the remainder of this paper. This effectively amounts to
absorbing the diffusivity into the velocity vector: a < a/k.
Associated with the advection-diffusion equation is the Péclet
number, a dimensionless parameter which relates the rate of ad-
vection of a flow to its rate of diffusion. For x = 1, the global Péclet
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Fig. 1. Spurious oscillations in the standard Galerkin solution at high Pe number.

number on some open, bounded domain Q ¢ R? is defined as

Pe— rate of advection _ Ig|al —lofal
= Tate of diffusion k¢
Pr (thermal diffusion)
=Re- {Sc (mass diffusion) )
where I is a length scale characteristic of the entire domain £,
and Re, Pr and Sc are the Reynolds, Prandtl and Schmidt numbers,
respectively. For example, if 2 is an L x L square obstacle, one can
naturally choose [ = L.

In typical applications, the magnitude of the diffusion is very
small compared to the magnitude of the advection and therefore
the Péclet number is high. It is well known that the solution of an
advection-diffusion BVP displays sharp boundary layers when the
Péclet number is high—that is, when |a| is large. The velocity profile
rises sharply within the thin, viscous boundary layer to the more
or less constant free-stream velocity away from the wall or surface
boundary (black curve in Fig. 1). Therefore, the exact solution of such
a BVP problem exhibits two scales: a rapidly varying fine scale in
the diffusion-dominated boundary layer region, and a slowly varying
coarse scale in the advection-dominated free-stream region. This
multi-scale behavior challenges the effective and accurate numerical
solution of the underlying BVPs. Spurious oscillations pollute the
Galerkin FEM solution unless a very fine mesh is used within the
boundary layer (red curve in Fig. 1). A number of different finite
element approaches have been proposed for addressing this and
similar challenges for other PDEs. These alternatives to the standard
FEM fall roughly into two categories: those based on a modified
variational formulation, and those based on a modified finite element
basis.

Stabilized FEMs fall into the first category of methods identified
above. Motivated by the observation that the standard Galerkin FEM
produces dispersive, central-difference type approximations, the
basic idea was to add to the variational formulation some numerical
diffusion terms in order to stabilize the computed solution. Such
methods include the streamline upwind Petrov-Galerkin (SUPG
or streamline diffusion) method [1,2], Galerkin least-squares (GLS)
[3,4] and the unusual stabilized finite element method (USFEM)
[5,6]. More recent variants of these approaches analyze the spurious
anisotropy that is inherent to the Galerkin method. Many of these
variants also attempt to improve the stabilization by incorporating

into it error estimators [7] or deriving stability parameters that take
into account the direction of the flow [8]. In all cases, stabilized
FEM have relied on the same polynomial basis functions as those
employed by the standard FEM.

In contrast with the first category of alternatives to the standard
FEM, the second category is essentially based on non-standard fi-
nite element bases. In some cases, this has also called for modified
variational formulations. Examples of such alternative methods in-
clude the method of residual-free bubbles (RFB) [9,10], the partition
of unity method (PUM) [11,12] and the discontinuous enrichment
method (DEM) [13-17]. Whereas RFB and PUM are continuous meth-
ods, DEM is a discontinuous one. DEM distinguishes itself from pre-
viously [18,19] as well as recently proposed [20,21] discontinuous
Galerkin methods (DGMs) either by its special shape functions that
are typically non-polynomial, or by the Lagrange multiplier degrees
of freedom (dofs) it introduces at the element interfaces to enforce
there a weak continuity of the numerical solution, or by both of these
discretization ingredients.

DEM was first proposed by Farhat and co-workers in [13]. This
method enriches in each element the polynomial field of the stan-
dard FEM by free-space solutions of the homogeneous, constant-
coefficient version of the governing PDE. This type of enrichment
has a natural potential for effectively resolving sharp gradients and
rapid oscillations when these are present in the computational do-
main. Unlike in PUM, the enrichment in DEM is performed in an
additive rather than multiplicative manner. Unlike in RFB, it is not
constrained to vanish at the element boundaries and therefore can
propagate its beneficial effect to the neighboring elements. Unlike
in both PUM and RFB, the enrichment in DEM leads to a discontinu-
ous rather than continuous approximation in which the enrichment
dofs can be eliminated at the element level by static condensation.
This reduces computational complexity and alleviates some of the
ill-conditioning that is inherent to most enrichments. Finally, unlike
in standard DGMs, a weak continuity of the solution across the ele-
ment interfaces is enforced in DEM using Lagrange multipliers.

DEM has demonstrated a strong performance for acoustic scat-
tering, wave propagation in elastic media and fluid-structure in-
teraction problems governed by the Helmholtz equation, Navier’s
equations and the coupling of these equations, respectively [15-17].
The Helmholtz operator #u = —Au — ku describing, among others,
acoustic vibrations in a fluid medium, tends to lose ellipticity with
an increasing wave number k. Consequently, the Galerkin solution of
Helmholtz problems is tainted by spurious dispersion in the upper
end of the low frequency regime, and is intractable in the medium
and high frequency regimes. In [15], a family of three-dimensional
(3D) hexahedral DEM elements of increasing order of convergence
were proposed for the solution of acoustic scattering problems in
the medium frequency regime. When compared with standard high-
order polynomial Galerkin elements of comparable convergence or-
der, the DEM elements achieved the same solution accuracy using
however four to eight times fewer dofs, and most importantly, up to
60 times less CPU time [15]. Similar impressive results were achieved
by DEM for problems involving multi-scale fluid/solid interfaces [16]
and elastic wave propagation [17].

The excellent performance demonstrated by DEM for acous-
tic scattering and wave propagation problems is the main mo-
tivation behind this work which essentially extends DEM to
advection-diffusion problems. This extension is a first step towards
the far more challenging step of solving the Navier-Stokes equa-
tions by DEM. To begin, the scope of the extension is limited to 2D,
rectangular domains, and relatively low order DEM elements. This
allows focusing on the general idea and its potential.

The remainder of this paper is organized as follows. Section 2
presents the hybrid variational formulation associated with the so-
lution by DEM of the typical 2D advection-diffusion BVP. Section 3
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focuses on the derivation and approximation of the enrichment field.
Section 4 shifts the attention to the corresponding Lagrange multi-
plier field. Section 5 presents a discussion of DEM element design
for the advection-diffusion problem and specifies a low order family
of such elements. The performance of this family of DEM elements
is assessed in Section 6 on several previously published benchmark
problems, and conclusions are offered in Section 7.

2. Theoretical framework of DEM

Let Q ¢ R? be an open bounded domain with a sufficiently
smooth boundary I = 0Q. As a canonical example, consider the fol-
lowing all-Dirichlet BVP for the 2D advection-diffusion equation in
its strong form (S).

Find u : @ — R such that u e H'(Q) and
(S):{ LPu=-Au+a-vu=f inQ (5)
u=g onl
Here, f: Q2 — Rand g : I' — R are given functions.
Partition Q into n, non-overlapping element domains Q°, each

having a boundary I'¢, for e=1,2, ...,n,, as shown in Fig. 2. This can
be written mathematically as

Ng| Ngy
a=Jo with 2=y (6)
e=1 e=1
The union of element interiors and element boundaries are denoted
by Q and I, respectively,

Nel MNel

o=\, r=yre (7)
e=1 e=1

The set of element interfaces (or interior element boundaries) is
denoted by

rint:f\F (8)

and the intersection between two adjacent element boundaries I
and I'® is denoted by

re¢ =renre (9)
2.1. Hybrid variational formulation

The formulation of DEM is obtained by rewriting the strong form
(S) of BVP (5) in its weak variational form. To this effect, two func-
tional spaces are introduced

V= elX(Q): v]g e H(Q%) (10)
W = eI H V2% ) x H-Y2(I') (11)

7" is a space of element approximations of the solution and # is
a space of Lagrange multipliers. The space ¥ is needed to enforce
the continuity of the solution as the element approximations in ¥~
are allowed to be discontinuous across the element boundaries. The
weak form of BVP (5) is obtained first by multiplying the first equa-
tion by a test function v € ¥~ and integrating the diffusion term by
parts. This can be written as

/(—Au+a~Vu)de: _/(Vu.n)udr
Q r v
=Zpu

+/(Vu.vv+a-Vuv)dQ (12)
Q

Fig. 2. Partition of domain Q into elements Q°.

Here, %} is the boundary operator corresponding to .#. Constraining
the solution to remain continuous across the element interfaces leads
to the following weak hybrid variational formulation:

Find (u,A) € ¥~ x # such that
a(v,u) +b(Lv)=r(v) Yve?” (13)
b(uu)=—rq(p) Yue#”

where a(-,-) and b(-,-) are bilinear forms on ¥~ x ¥~ and #" x ¥,
respectively, and are given by

(W):

a(v,u)E(Vv+va,Vu)Q=/_(Vv~Vu+va~Vu)dQ (14)
Q
b= XX [, Hve —veydr+ [ ivar (15)
o oee ree r
and r(v) and ry(u) (d for “Dirichlet”) are the following linear forms:
) = (f,v):/fde (16)
Q
() = [ ngar (17)

n (14) and (16), (-,-) denotes the usual L% inner product over €;
in (15), ve = v|ge. Note that the bilinear form a(.,-) in (14) is not
symmetric (a(v, u)#a(u, v)) for the advection-diffusion operator due
to the presence of the first order advection term.

Denoting the jump at an element boundary by [-], the
Euler-Lagrange equations corresponding to (W) are

Pu=-Au+a-vu=f inQ

[u]=0 on 'y

u=g onl

i=%pu=vu-n onl (18)

The last of Eqs. (18) provides an interpretation of the Lagrange mul-
tiplier field: since for this problem the boundary operator ¥}, cor-
responding to ¢ is the normal derivative of the solution (see (12)),
the Lagrange multiplier field is the normal derivative of the solution
at the element boundaries.

2.2. Approximation spaces

Let 7" c ¥~ and #™" c ¥ be the finite dimensional versions of
the solution approximation and Lagrange multiplier spaces defined
in (10) and (11). In the classical Galerkin FEM, the trial functions are
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Table 1
Approximation spaces for DGM and true DEM elements

1/-!1 uh
DGM yE uE
DEM P e (v E\YP) uP 4 uf

continuous piecewise polynomials within each element Q°—that is,
u" = uP with

P e P c Pa(x,y) c H(Q) (19)

where

n
Pa(x,y) = {p € H'(Q°) : p(x,y) =) aixly’,(x,y) € &, q; R] (20)
i=0
is the usual polynomial interpolation space. In DEM, this standard
polynomial field is “enriched” with the free-space solutions of the
homogeneous form of the governing PDE that are not already repre-
sented in 7. This enrichment field is denoted by uf and the space
it belongs to is denoted by 7%, with

PE i e 2(R?): Puf = AU +a-vif=0) (21)

Since the enrichment functions are employed on an element level,
the free-space solutions of the homogeneous constant-coefficient
version of the governing PDE can be obtained with little difficulty
using standard PDE techniques—for example, the method of separa-
tion of variables (Section 3).

The basic idea of DEM is to seek an approximate solution
(uh, 2"y ¢ ¥ x W to the hybrid variational problem (13) where
the primal unknown u" has one of the two forms given in Table 1.
Hence, two varieties of DEM can be defined: a true or “full” DEM,
and an enrichment-only DEM referred to in the remainder of this
paper as “DGM”".

In the case of true DEM elements, the solution space 7" T is con-
structed as a direct sum of #"” and #E. This splitting of the approxi-
mation into polynomials and enrichment functions can be viewed as
a decomposition of the numerical solution into coarse (polynomial)
scales and fine (enrichment) scales. Since the enrichment field con-
tains free-space solutions of the underlying equation to be solved, it
may entirely capture the homogeneous solutions rather than merely
enhance the polynomial field. In fact, as will be shown in Section 6,
for homogeneous BVPs u” contributes little, if at all, to the computed
solution. This premise motivates the construction of enrichment-
only DGM elements in which the contribution of the standard
polynomial field is dropped from the approximation entirely, re-
sulting in improved computational efficiency without any loss of
accuracy [14].

2.3. Galerkin formulation and implementation

Assuming the more general case of the full DEM and substituting
the approximation u” (second row of Table 1) into the weak form
(13) results in the following discrete Galerkin problem:

Find (uh, /") e 7" x ™" such that
a(wP?, uP) + a(v®, uf) + b(A", vP) = r(vP)
(G): 1 a(vE, uP) + a(vE, uE) + b(A", vE) = r(vE) (22)
b, vP) + b(ph, vE) = —ry(ul)
holds V(v uhy e 71 x "

The above system of Galerkin equations (G) gives rise to the element
matrix equation

kP KkPE K€ u? r’

KEP  KEE KEC ut | = f (23)
kP KkE o0 by ¢
—_—
=ke =r¢

where uP, uf and ) are vectors containing the local dofs uP, uf and /",
respectively!; the superscript e designates the element domain and
the superscript C designates the continuity constraints enforced by
the Lagrange multipliers. The correspondence between the matrices
and the Galerkin equations is obtained by comparing (22) and (23).
Note that kEP#KPE' as a result of the asymmetry of the bilinear
form a(-, -) for the advection-diffusion operator. In the case of a DGM
implementation, kPP, kPE, kPC KEP kP, rP ={@} (that is, they are empty
and can be omitted) and therefore the three-by-three block system
(23) reduces to a two-by-two block system.

Due to the discontinuous nature of ¥, uf can be eliminated at
the element level by a static condensation. For a full DEM element,
taking the Schur complement of the second equation in (23) and
substituting this expression into the first and third equations leads
to the following (local) statically condensed system:

KPP KPCN /uP P
(e i) (5)= (&) @

where

KPP = KPP — PE(IEE ) 1P (25)
IPC = 1P — KPE(IEE )1 KEC (26)
P = 1P — KCE(IEE )~ kEP 27)
K€ = _KCE(IEE Y1 EC (28)
and

P =1 — KPE(KEE)'rf (29)
€ = 1€ — KCE(KEE)~1 ¢ (30)

In the case of a DGM element, there is no polynomial field and there-
fore kPP, kPC, k<P, ¥ = {#1}. Since K€ reduces to kK€ = —KCE(KEE) ™1 kEC,
the statically condensed system for a DGM element simply is

—KE(KEE)TKEC o = € — KE(KEE)'rf (31)

—ke=k<C =re=iC

Algorithm 1 Element-level static condensation algorithm.
Compute the entries of the element matrices in (23) using (22).
Compute the local Schur complements in (25)-(30).
Assemble the global interface problem (24).
Solve for the vector / (and the vector u”, if applicable, i.e., in
the case of the full DEM).
for each element Q°, e=1,...,n, do

Compute uf as a post-processing step within Q° as follows:

kEEuE — rE _ kEPuP _ kEC)\, (32)

(with KEP = (¢} in the case of a DGM element.)
end for

! The discussion of the Lagrange multiplier approximations " is deferred until
Section 4 (Eq. (50)).
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Egs. (24) and (31) give rise either to a u? — /4 formulation for the
full DEM approximation, or simply to a A-formulation for its DGM
variant. The global condensed system is obtained from an assembly of
the statically condensed element arrays k€ and #¢. From this system,
the Lagrange multiplier dofs, and, when applicable, the polynomial
dofs, are solved for, after which the enrichment dofs are computed
by means of a post-processing step local to each element. The key
steps of this implementation are summarized in Algorithm 1.

2.4. Important remark on computational complexity

The cost of solving the global interface problem (24) is not di-
rectly determined by the dimension of v Instead, it depends on the
total number of Lagrange multiplier dofs2— that is, on dim w™". This
property is a result of the element-level static condensation which
is enabled by the discontinuous nature of the approximation of the
solution. As discussed in Section 4 of this paper, the BabuSka-Brezzi
inf-sup condition which must be satisfied to ensure that the global
interface problem is non-singular limits the total number of Lagrange

multiplier dofs as follows:
# of enrichment #Lagrange multiplier
< (33)

equations constraint equations

The computational complexity of specific DGM and DEM elements
is discussed in Section 5 of this paper.

3. Enrichment basis for the 2D advection-diffusion equation

To obtain the enrichment basis uf for the 2D advection-diffusion
equation, the equation Zuf = —Auf +a. vuf =0 is solved assuming
constant advection coefficients aT =(a;a;) € R?. One way to achieve
this objective is to use the technique of separation of variables as-
sume a solution of the form

uf(x,y) = F(x)G(y) (34)

for some C? functions F,G : R — R, and determine F and G such that
ZLuf =0 is satisfied. Doing so gives

2 2 2
ed1%/2 [A exp (\/;_x) +Bexp (J;_xﬂ if k< Z—l
F(x)= (35)

/2 /=2 2

eh1¥2 | A cos % x) +B sin )| ifk-L
2 2 4
2

y>j| if k> 7

2
e®2y/2 |:Cexp (@y) +Dexp ( 5
[ p2 [ 2 2
e®2y/2 {C cos ( _2/; y) +D sin ( _2/; y)] if l<<_%

B

with
o =al -4k (37)
B = a3 + 4k (38)

Here, A, B, C, D and k are real constants. The form of the solution
depends on the value of the separation of variables constant k relative
to the given advection velocities a; and a,. Results (35) and (36)
imply that the solution can take on one of three forms that are
summarized in Table 2.

In the first case, the enrichment function uf is a rapidly rising
or falling exponentially in both x and y directions. In the second

2 It also depends on the sparsity pattern of the system matrices (see Section
5.1, Table 3).

Table 2
Forms of the free-space solution uf to Zuf =0
k Fi(x) Gi(y)
02 02 . .
€ [—72, Tl] Exponential Exponential
2
€ (—oo, - %) Exponential Trigonometric
2
€ (%‘,oo) Trigonometric Exponential

and third cases, the enrichment is oscillatory in one direction. Note
however that unless there is a trigonometric source in Eq. (5), the
solutions of these BVPs do not exhibit an oscillatory behavior; they
exhibit however sharp exponential boundary layers in which the ve-
locity profile rises or falls sharply, much like the functions in the
first case of Table 2. Because of this observation, only the enrich-
ment functions that are exponential in both x and y are considered
in this work so that

uE(x,y) = ela/2e/2)x glaa/2/2)y (39)

Enrichment basis functions can now be generated by varying the
signs in (39) and the constant k in (37) and (38).

Remark 1. An upshot of the exponential solutions of Zuf =0 in the
DEM basis is that, assuming a simple enough element geometry, all
the components of the element matrices (23) can be computed ana-
lytically, as exponentials are easy to integrate and differentiate. One
can therefore avoid the quadrature error that would be introduced
into the approximation if these integrals were to be computed nu-
merically.

While expression (39) is correct mathematically and solves Zuf=
0 for any choice of k € R, there is a practical issue that is worth
addressing: it is unclear how the parameter k should be selected
to generate a particular enrichment basis, since this parameter can
take on any real value from —oo to oco. To this effect, it is recalled
here that when DEM was tailored to the 2D Helmholtz equation
—Au — k2u = 0 in [14], the enrichment space ¥ E consisted of a
superposition of 2D plane waves uf|ge = elk* ©0s fpeiky sin 0 where
i=+/—1, propagating in directions 0, € [0, 2x). The fact that the basis
functions for the Helmholtz equation were specified by an angle
proved to be very convenient as it made possible the systematic
design of DEM elements of arbitrary orders. Indeed, to design an
element of order nf, one simply selected nf plane waves propagating
in nE different directions.

Guided by DEM for the Helmholtz equation, an expression for uf
is sought after here in which the constant k is replaced by some angle
parameter. To rewrite (39) in terms of a similar angle parameter,
observe that

=i +a (40)

where o2 and [fz were defined in Eqs. (37) and (38) respectively.
Relation (40) suggests the following parameterizations:

o =lajcos 0;, f=lalsin 0; (41)
for some angle 6; € [0,27), where

la| = /a2 + a3 (42)

With this notation in place, Eq. (39) becomes

uE(X; 01’) — el(ar+lajcos Hi)/Z)xe((azﬂa\ sin 0;)/2)y (43)
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Fig. 3. Plots of enrichment functions uf(x; 0;) for several values of 0; (a; =25, a; =0). (a) 0; =0. (b) 0; = /2. (c) 0; =237/24. (d) 0; = 257/24. (e) 0; = 37/2.

The enrichment space 7 £ can now be written as the following su-
perposition of the 2D exponential enrichment functions (43):

v = [uE e I2(Q): ul.(x,y)

nE
= 3 wyellar+ialcos 62)x-)el(ax+alsin 0,2)-9),

i=1

0<0;<2m, uieR’ (44)

where nf is the number of enrichment functions (the dimension of
the space 7~ E ) and is selected a priori in this preliminary work.

Remark 2. In (44), x¢ = (x¢ yﬁ)T is an arbitrary reference point as-
signed to element Q°. This reference point has the practical purpose
of scaling the enrichment functions to prevent them from evaluating
to a very large number on a finite precision arithmetic machine.

The natural interpretation of the angles 0; is that they are flow
directions. Not only does this interpretation fit in nicely with the
problem at hand, it also facilitates the design and implementation of

DGM/DEM elements of arbitrary orders. Indeed, to design an element
of order nf, one simply selects nf angles 0; € [0,2n). Each of these
angles specifies a basis function of the form (43) (see Section 5). The
set of angles {0;} specifying an enrichment basis is denoted as
O = {set of angles {0;} defining 4 °Ey (45)
A strategy for constructing a space #°E of dimension nf is to select
the angles {0;} € © such that the enrichment functions they specify
“slope”—that is, exhibit a sharp gradient—in nf different directions.
Fig. 3 shows plots of the enrichment basis functions for several angles
0;.

Of particular interest is the relationship between 0; and the ad-
vection direction ¢ (2) implied by the advection coefficients a; and
ay (Fig. 4). Setting 0; = ¢ in (43), one finds that uf(x¢) simplifies to

uE(x; ) = et (xX0)ea2-y7) (46)
Function (46) has the property that
vuE(x; ¢) = auf(x; ¢) (47)

The gradient of a function points in the direction in which that func-
tion changes most rapidly; therefore (47) implies that the enrich-
ment function specified by 6; = ¢ rises most rapidly precisely in the
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Fig. 4. Flow at an angle ¢ over Q° = (;,X;:1) x (Vj, Yj+1)-

direction of the advection ¢. There is therefore the motivation to al-
ways include 6; = ¢ in the set © specifying the enrichment basis of
a DGM or DEM element designed to solve a problem with advection
velocities a; and a,. This idea is explored further in Sections 5 and 6.

Remark 3. Since a constant is a free-space solution of the
advection-diffusion equation, it should be included in the set of
enrichment functions for a DGM element. A convenient property of
the basis (43) is that one can generate the constant function simply
by choosing one of the angles 6; € @ as 0;= ¢ — & shown as follows:

uf(x; ¢ — m) = const (48)
4. Approximation of the Lagrange multipliers

As stated earlier, the scope of this paper is limited for simplicity
to rectangular domains. For the upcoming analysis, assume

Q=(0,L)x (0,L) c R?, L>0 (49)

and consider a partition of Q into a uniform n x n mesh of n, = n?
square elements {Q°}.

Attention is now turned to how to approximate the Lagrange
multiplier field on I'®¢ for e,e’ € {1,2, ..., Mg).

An extensive survey of techniques for discretizing a Lagrange
multiplier field of a form similar to that considered in this work
can be found in [22, Section 3.3]. Most, if not all, of the techniques
and theoretical results established so far are for standard polynomial
approximations of the solution u”. Extending these ideas to the case
of exponential approximations uf is not a straightforward task.

The last of Egs. (18) suggests choosing

MM~ viE ne = —viuE n® on I (50)

as an approximation of the Lagrange multiplier along the edge I" ee
between two adjacent elements Q° and Q°. Here, n¢ and n® are
outward unit normals to Q¢ and Q°, respectively, and the ~ symbol
emphasizes that A is to be approximated within the space of the
normal derivatives of the functions contained in ¥ £ (44) and not as
the straightforward normal derivative of uf.

Before computing the Lagrange multiplier approximation using
(50) and the enrichment basis derived in Section 3, there is a key
issue that needs to be addressed, namely, the stability of the mixed
hybrid formulation (13). Recall from Section 2.4 that the well-known
Babuska-Brezzi inf-sup condition must be verified for the discrete,
finite dimensional problem (23). The outcome of this condition can
be expected to relate the dimension of the space of Lagrange mul-
tipliers %~ " to the dimension of the space of enrichment functions

+E. The literature [22] suggests that a necessary condition for gen-
erating a non-singular global interface problem resulting from the
assembly of matrices (24) is to limit the total number of constraint
equations enforced by the Lagrange multipliers to the total num-
ber of enrichment equations—that is, to follow guideline (33). Given
a uniform mesh of square elements, this condition translates to a
bound on the number of Lagrange multipliers per edge, which is de-
rived below. Introducing

n* = # Lagrange multipliers per edge of an element (51)

and assuming an n x n mesh, there are 2n(n+ 1) element boundaries
(including the exterior boundary I'). It follows that in this case, there
is a total of 2n(n + 1)n* Lagrange multiplier dofs. Since

Neq = total # of enrichment equations

= dim of the global matrix KEE

=n?nf (52)
ensuring that condition (33) holds amounts to requiring
2(n + 1)nn* <neg = n’nf (53)
or, asymptotically,

. nE
n“< 35 (54)

almost everywhere in a regular mesh.

Remark 4. Bound (54) is a necessary, but in general not a sufficient,
condition for ensuring that a non-singular global interface problem
arises in the application of the DEM on a uniform mesh of square
elements. In practice, fewer than n* = nf/2 Lagrange multipliers per
edge will be used. Numerical tests show that the general rule of
thumb is to limit

n* = L”{J (55)

where |x] = max{n € Z|n<x} for any x € R.

Next, the Lagrange multiplier approximation is derived using (50)
and the enrichment functions (43). Let

6" = {set of angles {07} defining ¥} (56)

and consider a square element Qe:(xj, Xj+1)x (¥}, Yj31) (Fig. 4). Denote
by AP the Lagrange multiplier on the top or bottom edge of the
element (y = yj;q and y =y;, respectively) and by A the Lagrange
multiplier on the left or right edges of the element (x=x; and x=x;, 1,
respectively). From (43) and (50), it follows that

nE

A = 37 jibellar+ialcos 0y2)x-x) (57)
i=1
I‘lE

pL- Z igre((azﬂa\ sin 0;)/2)(y—yr) (58)

i=1

where },gb and /lll-r are the unknown Lagrange multiplier dofs and the
angles 0; are those specified upon the selection of the enrichment
basis.

In Egs. (57) and (58), there is the possibility, depending on the
set {0;}, that n* = nf, in which case condition (54) is not satisfied.
Therefore, to ensure a non-singular global interface problem, the
Lagrange multiplier discretizations (57) and (58) are next truncated
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so that the recommended constraint (55) is satisfied. For a first
order element having four or five enrichment functions like those
considered in this work (Section 5), guideline (55) implies a single
Lagrange multiplier per element edge. For such elements, O is set
to @ = {¢} for a DGM element and o = {¢ — =} for a true DEM
element. The latter choice of ¢ corresponds to a constant Lagrange
multiplier per edge (see Remark 3).

Remark 5. For higher order elements, a systematic procedure or
guideline is needed for selecting the set @”. Such a procedure is
currently being developed and will be reported elsewhere.

5. Design of DGM and DEM rectangular elements for 2D
advection-diffusion problems

The formulation of the enrichment functions uf and Lagrange
multipliers " in terms of angle parameters 0; is convenient. It en-
ables the systematic design and implementation of DGM and DEM
elements of arbitrary dimensions nf, and their tailoring to the BVP
of interest by rationally incorporating the direction ¢ implied by the
advection coefficients a; and a,. As suggested earlier, one strategy
for selecting the angles defining the set @ is to choose them so that
the nf enrichment functions they specify slope in nf different direc-
tions. For instance for nf =5, this reasoning leads to the selection of
the five basis functions graphically depicted in Fig. 3.

Next, a nomenclature is specified, some computational complex-
ity issues are addressed, and several low order DGM and DEM ele-
ments are designed.

5.1. Notation and computational complexity

The rectangular DGM and DEM elements presented in this section
are labeled as follows:

DGM: R—X—N
DEM: R—X-N*=[R-X-N]U[Q] (59)

Here, R stands for rectangular, X is the number of enrichment func-
tions nf and N is the number of Lagrange multipliers per edge n*.
The “+” superscript distinguishes a DEM element from a DGM el-
ement: in the former, the polynomial field of the Galerkin bilinear
quadrilateral element Q; is included in the finite element basis so
that u" = uf + uP, whereas in the latter the polynomial field is omit-
ted so that u" = uf. The computational complexity of several DGM
and DEM elements is given in Table 3, assuming static condensation
(Section 2.3) is implemented. In this table, n denotes the number of
elements per direction, a square domain 2 as assumed in (49), and
therefore the total number of elements is n, =n2. For reference, the
computational complexity of each of the Galerkin Q (bilinear) and
Q> (biquadratic) polynomial elements is also given. Since the effi-
ciency of an FEM depends not only on the total number of dofs but
also the sparsity pattern of the resulting system matrix, Table 3 also
reports the stencil width for an n x n uniform mesh. The reader can
observe that the stencil of a DGM discretization is smaller than that
of the Galerkin element that leads to a comparable total number of
dofs for the given problem.

Remark 6. In Sections 2.4 and 4, it was shown that the cost of
solving the matrix problem arising from the variational formulation
(22) is not directly dependent on nf but rather on the number of
Lagrange multiplier dofs. Here, it is reminded however that there is
a relationship between nf and n*. The more enrichment functions
are used, the more Lagrange multipliers are needed to enforce the
inter-element continuity of the enriched solution. In practice, the
relationship between X and N is given in Eq. (55).

Table 3
Computational complexity of some DGM, DEM and standard FEM elements

Element Asymptotic Stencil width for
# of dofs uniform n x n mesh
Q n? 9
0 4n2 21
R—X-1 2n? 7
R—X-1" 3n? 21

52. TheR—4—1and R—-5— 1% elements

The DGM element R—4 —1 and the true DEM element R—5— 1%
are defined here by the sets ® and " specified below.

Element e o
R—-4-1 bd+5.0-5,d—m ¢
R-5-1* bo+3.¢-2.¢+3F ¢ 21 $-m

Both elements have a single Lagrange multiplier per edge. The set of
angles 0; associated with each of these two elements are clustered
“symmetrically” around the advection direction angle ¢: for each
chosen angle ¢ + y;, the angle ¢ — 7, is also chosen. Although such
symmetry is not required, it avoids biasing the approximation to a
specific orientation of the advection direction.

5.3. Element design for Pe >103

An implementational difficulty arises when DEM is applied to
a 2D advection-diffusion problem with a very high Péclet number
(Pe>10%). A Péclet number of this magnitude or even higher can be
encountered in high Reynolds number flows. In this case, it is found
that even with the use of a reference point X{ inside each element
Q° as in (44), for some choices of 0;, the evaluation of some elements
of the matrices KEE and KEC causes an overflow in finite precision
arithmetic. The reason is that for certain values of 0;, the coefficients
inside the exponents of the exponentials can in this case become
negative

a; +|ajcos 0;<0 and/or ay+ |a|sin ;<0 (60)

Without loss of generality, suppose that a; + |a] cos 0; <0 and x¢ > 0.
In this case,

e(a1+\a| cos 0;/2)(x—x;) _ e(a1+\a\cos (),-/2)xe—(a1+\a| cos 0i/2)x¢

>e(a1+\a\cos 0i/2)x (61)
because assumption (60) implies that

_<a1+|a2\cos 9i>x$>0 (62)
Thus, rather than decreasing the value of the enrichment function
and preventing its evaluation from causing an overflow, the refer-
ence point drastically increases the already large value of the expo-
nential enrichment function when scenario (60) occurs. In practice,
this issue does not become a problem until Pe>103. Unfortunately,
the seemingly natural solution of using multiple reference points for
dealing with this issue appears to cause the element matrices to be-
come singular and therefore is not a viable remedy to the problem.
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To remedy the above issue, the following approach is instead
adopted in this work. For problems with Pe>10?, the advection co-
efficients used in the arguments of the exponential functions of the
enrichment basis are limited to the value of 10°. This upper limit
value was experimentally determined to be safe. Designating by a bar
the “advection-limited” coefficients, this leads to the approximation

U (X; )l
nE
_ Z e@i+1alcos 0:/2)(x—x2)o(@+al sin 0;/2)(y-y5) (63)
i=1
where
@ =min{10%,¢;}, j=1,2 (64)

Elements constructed using this approach are denoted by R — X — N
and R — X — N*. In this case, it is noted that the basis functions (63)
do not solve the homogeneous advection-diffusion equation for the
specified Péclet number. Instead, they are free-space solutions of the
homogeneous advection-diffusion equation for a different and lower
Péclet number. Nevertheless, they are more related to the problem
of interest than mere polynomials, and will be shown to outperform
their standard Galerkin counterparts on most test problems consid-
ered in Section 6.

6. Numerical results

Here, the performance of the DGM and DEM elements proposed
in this paper is assessed for three advection-diffusion (5) benchmark
problems:

(i) Ahomogeneous problem whose solution happens to be spanned
by the DGM basis (43).
(ii) A homogeneous problem whose solution is not spanned by the
DGM basis (43).
(iii) A non-homogeneous BVP.

In each case, the performance of the DGM or DEM element is con-
trasted with that of a standard Galerkin element and several sta-
bilized finite elements developed elsewhere. All comparisons are
performed between elements of similar computational complexity
a priori, either for a specified level of accuracy or for a fixed total
number of dofs. It turns out that all comparisons are also performed
between elements of similar convergence rate a posteriori.

For all three aforementioned test problems, the computational
domain is the unit square Q = (0,1) x (0,1) uniformly discretized
by an n x n mesh with n, = n? elements. All reported errors are
relative errors measured in the L2 norm. For a DGM element with nf
enrichment functions, the L2 error & is computed as follows:

2

nE
Z diuE(x; 0;)) ge — Uex(X)] e
i=1

=3

e

12(Q°)
nf 2
-y /Q e (Zdiuf(x; Gi)—uex) dQ (65)
e i=1

where uey is the exact solution, uf(x; 6;) are the enrichment func-
tions given by (43), and d; are the enrichment dofs. All integrals and
therefore all matrices and right hand sides in (23) are computed ex-
actly.

Table 4
Homogeneous boundary layer problem of Section 6.1 with Pe<10°: relative L2
errors (in %) for discretizations with approximately 400 dofs

Pe ¢/n (o} STR EST FFH R-4-1

10? 0 8.97 7.62 7.62 8.59 3.06 x 107"
1/6 1.31 1.14 1.15 1.25 1.18 x 107
1/5 1.31 - - - 344 x 107"
1/4 1.31 1.14 1.15 1.26 266 x 107"
13 1.31 = = = 3.12x 1078

10° 0 57.7 128 12.8 12.9 343 x 10712
1/6 2.53 1.67 1.67 1.75 124 x 107"
1/5 2.57 = = = 1.07 x 107"
1/4 2.62 1.67 1.67 1.77 3.19x 107"
13 2.53 - - - 218 x 107"

6.1. Homogeneous boundary layer problem with a flow aligned with
the advection direction

This first test problem is a restatement of the so-called “smooth
boundary layer problem” discussed in [8, Section 5.1]. It is a homo-
geneous problem where Dirichlet boundary conditions are specified
on the sides of Q =(0,1) x (0,1) so that the exact solution of the
advection-diffusion problem is

eti(x-1+ax(y-1) _ 1

e a1

Uex = (66)
Given that Iop =1 in (4) and x = 1, the global Péclet number in the
domain Q is

Pe = |a| (67)
Also since

a; =Pe cos ¢, ap="Pesin ¢ (68)
this test problem is conducted by specifying two parameters, Pe and
the advection direction ¢.

In [8, Section 5.1], Harari and co-workers report results for three
different stabilized finite elements labeled as STR, EST and FFH. All
three elements are stabilized versions of the bilinear quadrilateral
Galerkin element Q;. These elements differ in the way the stabi-
lization parameter is computed. Five different advection directions,
namely, ¢ =0, 7/6 and 7/4 (considered in [8]), and ¢ = 7/5 and 7/3
(not considered in [8]) are considered here for three different el-
ement Péclet numbers, 2.5, 250 and 2.5 x 10%. The corresponding
global Péclet numbers on Q are 102, 103 and 10°, respectively.

From the expression of the exact solution (66) and the general
form of the enrichment functions (43), it follows that uex =uf(x; ¢)+
uE(x; ¢ —m).3 Since for all elements designed in Section 5.2 {¢, ¢ —
n} € ©, the DGM or DEM solution of this problem can be expected
to be exact up to machine precision.

Tables 4 and 5 report the relative errors in the solutions predicted
by the Galerkin element Q;, its three stabilized variants STR, EST and
FFH, the DGM element R — 4 — 1 for Pe < 103, and the “limited” DGM
element R—4 — 1 element for Pe = 10°. In each case, n is chosen
so that the discretization has approximately 400 dofs (n = 20 for
elements Q1, and n=14 for elements R—4—1 and R — 4 — 1). For the
two lower Péclet numbers, it is found that the solution computed
using either of the considered DGM elements is continuous and exact
to machine precision. Table 5 reports the advection-limited R — 4 — 1
element used for Pe = 108 outperforms the Galerkin element Q; by
at least two orders of magnitude. This suggests that although the
enrichment functions in the basis of that element are not free-space
solutions of the considered advection-diffusion equation, they are

3 Recall that uf(x; ¢ — m) = const (see Remark 3).
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Table 5
Homogeneous boundary layer problem of Section 6.1 with Pe=10°: relative L2 errors
(in %) for discretizations with approximately 400 dofs

Table 6
Homogeneous boundary layer problem of Section 6.2 with ¢ =0 and Pe<10%:
relative L? errors (in %) for discretizations with approximately 400 dofs

Pe P/ (o)) STR EST FFH R—4-1
10° 0 8.44 x 10* 12.9 12.9 12.9 2.24
1/6 9.75 x 10? 1.67 1.67 1.75 111 x 107"
1/5 9.97 x 10? - = = 8.91 x 1072
1/4 9.97 x 10? 1.67 1.67 1.77 1.29 x 107"
1/3 9.75 x 10? - = = 1.27 x 107"

o

04-.

1 0

Fig. 5. Approximated and exact solutions of the homogeneous boundary layer
problem of Section 6.1 with ¢ = 7/6 and Pe=10%. (a) Q;. (b) R—4 —1.

still better at capturing the exact solution than the usual polynomial
interpolants.

Fig. 5 compares the computed R—4—1 and Q; solutions with the
exact solution when the advection direction is ¢ = 7/6 and Pe =103,

Pe W/ Q R-4-1
1x 10? 0 8.97 3.06 x 107"
1/4 1.26 1.70 x 107"
1/2 1.07 1.19x 107"
3/4 1.05 8.18 x 107!
1x10° 0 57.7 343 x 107"
1/4 245 2.86 x 1072
12 245 5.79 x 107
3/4 241 1.33 x 102
Table 7

Homogeneous boundary layer problem of Section 6.2 with ¢ =0 and Pe = 10°:
relative [? errors (in %) for discretizations with approximately 400 dofs

Pe W/ Q R—4-1

1 x 10° 0 8.44 x 10* 224
1/4 2.26 x 10° 8.28 x 1072
1/2 2.26 x 10° 1.00 x 107"
3/4 2.26 x 10° 131 x 107"

The reader can observe that the DGM solution does not exhibit the
spurious oscillations that pollute the Galerkin solution.

6.2. Homogeneous boundary layer problem with a flow not aligned
with the advection direction

Next, the same problem as in Section 6.1 is considered but with
different Dirichlet boundary conditions that are designed so that the
exact solution of problem (5) is
ePe/2(cos ¢+cos Yr)(x—1)+Pe/2(sin ¢p+sin Y)(y-1) _ 1

e—Pe/2(cos ¢+sin Y+sin +cos ) _ 1

Uex = (69)
where ¢ € [0,27) is the advection-direction implied by the advec-
tion coefficients a; and a, in (5) and ¥ € [0, 27) is some flow direc-
tion. Here, it is emphasized that solutions of the form in (69) are not
in general in the span of 7 £ given by (43), except for certain values
of ¢ and Y, e.g., o=y =0.

The advection direction is fixed to ¢ =0 and  is varied between
0 and . The same elements as before are considered and in all cases
the size of the discretization is fixed to roughly 400 dofs (n = 14 for
elements R—4—1 and R — 4 — 1; n=20 for elements Q). (Note that
when ¢ = =0, the exact solutions (69) and (66) are identical and
well captured by the DGM elements).

The performance results reported in Tables 6 and 7 show that
for /#0, the relative errors associated with the DGM solutions are
several orders of magnitude lower than those associated with the
standard Galerkin solutions. This illustrates how the enrichment
functions in each of the bases of the R—4—1 and R — 4 — 1 elements
successfully combine to efficiently capture the exact solution (69)
which is not represented in either of these two bases. In particular,
the reader can observe the excellent performance of theR — 4 — 1 el-
ement at Pe=10° despite the fact that this element’s basis functions
are not free-space solutions of the advection-diffusion equation for
Pe = 10° (see Table 7 and Fig. 6).

Table 8 reports for this problem the convergence rates measured
in the L2 norm for both the standard Galerkin element Q; and the
DGM element R—4—1, when the mesh size is increasingly refined (see
Fig. 7). Both elements deliver in this metric a quadratic convergence
rate. Hence, these two elements are called here “comparable” from
this viewpoint. However, Fig. 7 clearly shows that for a fixed mesh
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Fig. 6. Approximated and exact solutions of the homogeneous boundary layer
problem of Section 6.2 with ¢ = =0 and Pe=10°. (a) Q;. (b) R—4 — 1.

Table 8
Convergence rates measured in the L[> norm for the homogeneous boundary layer
problem of Section 6.2 with ¢ =0, Y = 7/4 and Pe = 10°

Element Convergence rate
Q 1.8461
R-4-1 1.8901

size, the solution delivered by the DGM element R—4 —1 is an order
of magnitude more accurate than that delivered by the standard Q;
element.

6.3. Two-scale non-homogeneous problem

To highlight the role of the polynomial field u” in DEM, a
non-homogeneous variant of the boundary layer problem defined
in Section 6.1 is considered here. More specifically, the source
term

fxy)=2(a1x+ axy — 2) (70)

Convergence rates for homogeneous boundary

layer problem 2 (Pe = 100)
100 .
— R-4-1
)
101 | ~_ ]
S 102} S ]
o N
o i N
\\\\ ~
1073 | h .
1074 :
100 10" 102
log (n)

Fig. 7. Convergence histories measured in the L? norm for the homogeneous bound-

ary layer problem of Section 6.2 with ¢ =0, =

Table 9

n/4 and Pe =107,

Non-homogeneous boundary layer problem of Section 6.3 with Pe < 10°: relative 2
errors (in %) for discretizations with approximately 1600 dofs

Pe o/n (o) R-5-1*
10? 0 4.05 7.68 x 10~°
1/6 527 x 107! 272 x 107°
1/5 5.20 x 107! 2.77 x 107°
1/4 517 x 107! 2.77 x 107°
1/3 527 x 107! 272x107°
10° 0 224 394 x10°*
1/6 1.34 139 x 107*
1/5 1.35 1.20 x 107*
1/4 1.36 9.75 x 10~°
1/3 1.34 1.39 x 107
Table 10

Non-homogeneous boundary layer problem of Section 6.3 with Pe=10°: relative L2
errors (in %) for discretizations with approximately 1600 dofs

Pe ¢/ (0)] R—5-1*
10° 0 2.75 x 10* 3.60

1/6 1.55 x 10° 6.70

1/5 1.58 x 10? 6.83

1/4 5.45 x 10? 5.63

1/3 1.56 x 107 447

is added and the Dirichlet boundary conditions are designed so that
the exact solution to problem (5) is now

ay—az >

This exact solution contains two scales: a rapidly varying exponen-
tial and a slowly varying polynomial. Because of this multi-scale be-
havior, a true DEM element whose approximation basis includes the
enrichment as well as the polynomial field (u" = uf + uf) is used to
solve this problem. Tables 9 and 10 report the obtained performance
results for the DEM element R —5— 1+ for Pe < 10% and the DEM ele-
mentR — 5 — 1+ for Pe=108, respectively, and contrast them with the
performance of the Q; element when the size of the discretization

et (x-1)+ax(y-1) _ o—

etz —1

X +y> o+ (71)
——
slowly varying

Uex =

rapidly varying
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Table 11
Convergence rates measured in the L?> norm for the non-homogeneous boundary
layer problem of Section 6.3 with ¢) =0 and Pe = 10>

Element Convergence rate
Q 1.6919
R-5-1* 2.0789

is fixed around approximately 1600 dofs (n =40 for the Q; element
and n=24 forthe R—5—- 1" and R — 5 — 1+ elements).

Tables 9 and 10 report that the DEM elements outperform the
Galerkin element by several orders of magnitude. The achieved rel-
ative errors are not quite as low as those reported in Tables 4 and 5
for the homogeneous problem of Section 6.1 because the finite ele-
ment bases of the DEM elements do not contain in this case the ex-
act solution (71) given that the polynomial field uP of Q; is bilinear
and not biquadratic. Nonetheless, the magnitudes of these achieved
relative errors reveal that the R — 5 — 17 DEM element successfully
captures both the fine or rapidly varying and the coarse or slowly
varying scales of the solution for Pe<<103.

Table 10 reports that even the advection-limited DEM element
R—5 — 1+ used to solve the problem at Pe=10° performs quite well
relatively to the Galerkin element Q;. Table 11 reports that the DEM
element R—5— 1% converges quadratically with respect to the mesh
size in the L2 norm, and therefore is comparable to the standard
Galerkin element Qq in convergence rate, but has a dramatically
lower error constant.

Perhaps more illustrative than the errors reported in Tables 9
and 10 are the plots of the computed solutions displayed in Fig. 8.
Whereas the Q; solution is shown to exhibit spurious oscillations,
the DEM solution is shown to be virtually indistinguishable from the
exact solution in the entire computational domain.

7. Conclusions

In the discontinuous enrichment method (DEM) first proposed in
[13], the standard finite element polynomials are enriched within
each element by discontinuous functions that are chosen as the free-
space solutions of the homogeneous, constant-coefficient version
of the governing PDE and Lagrange multiplier degrees of freedom
(dofs) are introduced at the element boundaries to enforce a weak
continuity of the solution. The free-space solution nature of the en-
richment field enables the exact computation of the element level
matrices, and the discontinuous nature of the approximation enables
the static condensation of the enrichment dofs prior to the assembly
of these matrices. Overall, the computational complexity of DEM is
dictated by the total number of Lagrange multiplier dofs, the num-
ber of polynomial dofs and the sparsity pattern of the corresponding
system matrix.

In this paper, DEM was developed for the two-dimensional
advection-diffusion equation. The enrichment field was derived for
this equation and found to include a set of exponential functions,
each exhibiting a sharp gradient in some direction 0; € [0, 27). These
functions have been used in the finite element approximation space
either on their own (DGM element) in the case of homogeneous
BVPs, or in conjunction with the standard Galerkin polynomial field
uP in the case of non-homogeneous BVPs (true DEM elements).
The advection-diffusion basis presented in this paper is nicely pa-
rameterized in a manner that provides a systematic procedure for
designing DGM and DEM elements of arbitrary orders. For Pe <10,
two first order, rectangular elements each with one Lagrange mul-
tiplier per edge have been designed and labeled R — 4 — 1 (DGM
elements) and R — 5 — 1+ (DEM element). For Pe>10%, a special
class of advection-limited version of these elements has also been
constructed. The performance of these DGM and DEM elements

a

e =
\X/
0 o0

Fig. 8. Approximated and exact solutions of the non-homogeneous boundary layer
problem of Section 6.3 with ¢ =0 and Pe=10°. (a) Q;. (b) R—5 — 1+.

was assessed for three benchmark problems, two of which were
previously studied in the literature. In all cases, the DGM and DEM
elements demonstrated an impressive performance. In particular,
they outperformed standard Galerkin and stabilized finite elements
of comparable complexity and comparable order of convergence
by a large margin, thereby demonstrating a serious potential for
realistic transport problems at high Péclet number.
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