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Abstract

In this thesis, we summarize what is known about the local behavior of

the four basic functions χ, φ, ψ and ξ on the Sierpinski Gasket and present

some new results concerning their differentiability. We prove that the basic

functions are differentiable at all rational nondyadic points and that their

derivatives at these points are jointly 0 or jointly ∞. We then identify the ra-

tional nondyadic points at which all basic functions necessarily have the same

derivative and group the operators W which fix these points into conjugacy

classes according to their traces. We end with a discussion of several open

problems that come out of the said analysis.

Key words and phrases: Sierpinski Gasket, harmonic, Laplacian, basic

function, χ, φ, ψ, ξ, derivative, fixed point, operator, word, dyadic, rational

nondyadic.

1 Introduction

In very simple terms, a fractal is a geometric object or set that displays self-

similarity in a non-trivial manner and on all scales. The modern theory of fractals

was pioneered in the 1970s by Benoit Mandelbrot, who coined the term from the

Latin fractus, meaning broken or irregular. Mandelbrot defined a fractal as a “rough

or fragmented geometric shape that can be subdivided in parts, each of which is,

at least approximately, a reduced copy of the whole”. Fractals are generated by

recursion and can be grouped into three broad categories:

1. Iterated Function Systems : fractals defined according to a fixed geometric re-

placement rule (e.g., the Cantor set, the Sierpinski Gasket, the Koch snowflake)
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2. Escape-time Fractals : fractals defined by a recurrence relation at each point

in a space such as the complex plane (e.g., the Mandelbrot set, the Lyapunov

fractal)

3. Random Fractals : fractals generated by stochastic rather than deterministic

processes (e.g., fractal landscapes, objects in nature)

While it can be argued that all Euclidean objects, e.g., the real line, are exactly

self-similar and therefore fractals, this argument is a distinct minority position. Un-

like traditional geometric forms, fractals are not comprised of elements having integer

dimensions, such as lines, planes, arcs, spheres and so on1. After sufficient magnifi-

cation, it would be impossible to tell the difference between an ordinary Euclidean

circle and a straight line. Yet no fractal exhibits this property because fractals pos-

sess infinite detail and self-similarity on all scales, even at infinite magnification.

In this sense, fractals are fundamentally different from ordinary Euclidean objects

and are therefore not definable by traditional geometry. Figure2 1 illustrates the

self-similarity and infinite detail of the Mandelbrot set.

While fractals have been observed in various branches of science for hundreds

of years, the rigorous mathematical study of this phenomenon began only recently.

One of the key features of fractal analysis has been the invention of the Laplacian on

fractals, which originated in the physics literature. The theory of differential equa-

tions on fractals was created by J. Kigami. The Laplacian on the Sierpinski Gasket

1A unique property of fractals is that they have fractional Hausdorff dimension and this dimen-
sion strictly exceeds their topological dimension. If Θ is a bounded subset of Rn and NΘ(ε) is the
minimum number of balls of radius ε needed to cover Θ the Hausdorff dimension of Θ is defined

by dH(Θ) := − limε→0
log NΘ(ε)

log ε
. The Sierpinski Gasket has dimension log(3)

log(2) . See Section 2.1 and

[2] for more on Hausdorff measure and dimension.
2The majority of the figures in this thesis were generated using iterative programs written in

Maple 10. Maple 10 was also used to compute the eigenvalues and eigenfunctions and to test our
claims about the derivatives of the basic functions numerically.
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Figure 1: Mandelbrot Set

was first constructed as the generator of a diffusion process by S. Kusuoka and S.

Goldstein. Much of the current research in the domain involves spectral analysis of

the Laplacian and the theory of Dirchlet forms3. The spectrum of the eigenvalues

and eigenfunctions for the Laplacian was studied in detail by M. Fukushima and T.

Shima. More recent advancements can be attributed to R. Strichartz, L. Malozemov

and A. Teplyaev4, who examined the spectral properties of the Laplacian on infinite

Sierpinski Gaskets.

The main objective of this thesis is to classify the derivatives of the four so-called

basic functions χ, φ, ψ and ξ on the Sierpinski Gasket S. The first third of the

thesis provides the necessary foundation for our analysis. We begin with a rigorous

definition of self-similarity, the Sierpinski Gasket and the Laplacian (Sections 2 and

3) and then use the properties of the basic functions to prove a number of important

theorems about their local behavior. In particular, we prove that any two of the basic

functions, together with the identity, serve as a basis for the 3-dimensional vector

space of all harmonic functions on S, denoted H(S); that the basic functions have a

unique continuous extension to S; that they are rational at all rational points; and

3These topics go beyond the scope of this thesis.
4See [6].
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that they are strictly increasing on [0, 1]. We also show that the derivative of any

basic function at any dyadic point exists and is either 0 or ∞. These facts motivate

our discussion of the basic functions’ derivatives at rational nondyadic points, which

begins in Section 4.

Instead of determining the derivative of each basic function individually, the

procedure5 outlined in Section 4.2.1 involves computing the derivative of a linear

combination of the basis functions χ, ψ, and 1. Using the fact that every nondyadic

rational has a periodic binary expansion and is the fixed point of some linear transfor-

mation w(t), we construct a difference equation which makes it possible to determine

the rate of change of the eigenfunctions f±
W (t). The derivatives of the basic functions

depend on the stability of the said difference equation and hence the eigenvalues of

the operator W which fixes t. In order to understand which rational nondyadic

points have operators with equal eigenvalues, we group the operators which fix such

points into conjugacy classes of matrices having the same trace (Section 4.2.3). Us-

ing the cyclic property of the trace and the symmetries of the basic functions, we

relate the derivatives of φ and ξ to those of χ and ψ, concluding that each of the

basic functions is an example of a continuous, monotone function with vanishing

derivative on one dense set and infinite derivative on another.

It is worth noting that the results of this thesis lead to other considerations

and conjectures, which are summarized in Section 5. In particular, we discuss the

combinatorics of operator classification, in particular the possibility of using 2-ary

necklaces to identify a pattern in the derivatives of the basic functions, if such a

pattern exists. We also conjecture about the derivatives of the basic functions at

irrational points, a current open problem of unknown difficulty.

5A similar procedure is described by Rupinski in [4].
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2 Harmonic Functions on the Sierpinski Gasket

2.1 Self-Similar Fractals and the Sierpinski Gasket

As mentioned in the introduction, one of the defining properties of fractals is that

they are self-similar, meaning when any part of a fractal is magnified, the resulting

picture bears an exact resemblance to the whole and this likeness continues to repeat

through further magnifications, to infinity. We will use the Fixed Point Theorem for

Contracting Mappings6 to give a rigorous definition of this idea.

Suppose (M, d) is a metric space and let K(M) denote the collection of all non-

empty compact subsets of M . Recall that a subset of a metric space is compact

if every sequence {xn} in the subset has a convergent subsequence. We would like

to define a distance dH between two compact sets such that (K(M), dH) is itself a

metric space. We first define the distance between a point x and a compact set Y :

dH(x, Y ) = min
y∈Y

d(x, y) (2.1)

Now, if X is also a compact set, the Hausdorff distance between X and Y is

dH(X, Y ) = max
x∈X

dH(x, Y ) + min
y∈Y

dH(y, X) (2.2)

= max
x∈X

min
y∈Y

d(x, y) + max
y∈Y

min
x∈X

d(x, y). (2.3)

In other words, two sets are within Hausdorff distance d from each other if and

only if any point of one set is within distance d from some point of the other set.

One can check that dH : K(M) × K(M) → R defined in (2.2) satisfies the metric

6See footnote 8.
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axioms.

Theorem 2.1. If the metric space M is complete, then the space K(M) is also

complete7.

Proof. Let {Xn} be a Cauchy sequence in K(M) Let X denote the set of all points

x ∈M such that, for any neighborhood U of x one has that U∩Xn 6= ∅ for infinitely

many n. One can check that X ∈ K(M). We show that Xn → X.

Fix ε > 0 and let N be such that dH(X, Xn) < ε for all m,n ≥ N . It suffices to

show that dH(X, Xn) < 2ε for any n ≥ N .

Let Dε(x) denote the ε-ball around x ∈ X for any x. There exists an m ≥ N

such that Dε(x) ∩ Xm 6= ∅. In other words, there is a point y ∈ Xm such that

d(x, y) < ε. Since Xn is Cauchy, dH(Xn, Xm) < ε, so dH(y,Xn) < ε and therefore

dH(x,Xn) < 2ε by the triangle inequality.

We claim that dH(x, X) < 2ε for any x ∈ Xn: let n1 = n and for every integer

k > 1 choose an index nk such that nk > nk+1 and dH(Xa, Xb) < ε/2k for all

a, b ≥ nk.

Now define a sequence of points {xk}, where xk ∈ Xnk
by letting x1 = x and xk+1

be the point of Xnk+1
such that d(xk, xk+1) < ε/2k for all k. We know such a point

can be found is because dH(Xnk
, Xnk+1

) < ε/2k. Since
∑∞

k=1 d(xk, xk+1) < 2ε <∞,

the sequence {xk} is a Cauchy sequence and hence converges to a point y ∈ M .

Then d(x, y) = limn→∞ d(x, xn) ≤ ∑∞
k=1 d(xk, xk+1) < 2ε. Because y ∈ X by

construction, it follows that dH(x, X) < 2ε and therefore dH(X, Xn) < 2ε.

Recall that map f from a metric space (M, d) to itself is called contracting if

there is a real number λ ∈ (0, 1) such that d(f(x), f(y)) ≤ λ·d(x, y) for all x, y ∈M.

Let {f1, f2, . . . , fk} in M be a finite sequence of functions where each fi : M →M

7It is also true that if M is compact, K(M) is compact.
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is a contracting mapping. Define the transformation F : K(M) → K(M) by

F (X) = f1(X) ∪ f2(X) ∪ · · · ∪ fk(X). (2.4)

Theorem 2.2. If (M, d) is a nonempty complete metric space, the map F given by

(2.4) is contracting, meaning there exists a unique non-empty compact subset X ⊂M

satisfying F (X) = X. In particular, if X0 ∈ M and we define X1 = F (X0), X2 =

F (X1), . . . , Xn+1 = F (Xn), . . . , then

lim
n→∞

Xn = X.

We call X the invariant set for the functions {f1(X) ∪ f2(X) ∪ · · · ∪ fk(X)}.

Proof. Since M is complete, by Theorem 2.1, the space (K(M), dH) is also complete.

The desired conclusion will follow from the Contraction Mapping Principle8 if we

can show that F : K(M) → K(M) defined by F (X) = f1(X) ∪ f2(X) ∪ · · · ∪ fk(X)

for every nonempty compact set X is contracting.

Let A and B be any two nonempty compact subsets of M and consider any

δ ≥ dH(A, B). Since the fi : M → M are contracting mappings, there is some

0 < λi < 1 such that d(fi(a), fi(b)) ≤ λi · d(a, b) for all a, b ∈ M . Let λ =

max{λ1, . . . , λn}. We claim that dH(F (A), F (B)) ≤ λ · dH(A, B). First, for any

x ∈ F (A) = f1(A) ∪ f2(A) ∪ · · · ∪ fk(A), there is some ai ∈ A such that x = fi(ai).

Since δ ≥ dH(A, B), there is some bi ∈ B such that d(ai, bi) ≤ δ. Hence,

d(x, fi(bi)) = d(fi(ai), fi(bi)) ≤ λi · d(ai, bi) ≤ λδ

8The Contraction Mapping Principle states that if M is a complete metric space and f is a
contracting map from M to M , then there is a unique fixed point for f in M satisfying f(x) = x.
The proof of this theorem can be found in any real analysis, in particular [3], p. 301.
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This shows that F (A) ⊆ Dλδ(F (B)) (the “ball” of radius λδ around F (B)). One

can similarly show that F (B) ⊆ Dλδ(F (A)). Since this holds for all δ ≥ dH(A, B),

we have that dH(F (A), F (B)) ≤ λ · dH(A, B) where λ = max{λ1, . . . , λn}. Since

0 < λi < 1 for all i, we have 0 < λ < 1, so F is indeed a contracting mapping with

invariant set X.

We call the invariant set X a homogeneous self-similar fractal set and the system

of functions {f1, . . . , fk}, the Iterated Function System (or IFS for short) defining

X.

Figure 2: Sierpinski Gasket

Let us now use Theorem 2.2 to provide a rigorous definition of the Sierpinski

Gasket. Begin by fixing three contractions F1, F2, F3 : R2 → R2 given by

F1(x) =
x

2
, F2(x) =

x

2
+ (

1

2
, 0), F3(x) =

x

2
+ (

1

4
,

√
3

4
) ∀x ∈ R2 (2.5)
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The Sierpinski Gasket is the unique compact set S such that Sn = F1(Sn−1) ∪

F2(Sn−1) ∪ F3(Sn−1), where S0 = {(0, 0), (1, 0), ( 1
2
,
√

3
2

)},

S∞ = ∪∞
n=1Sn and S = S∞ (2.6)

Iterating accordingly generates Figure 2 above. In our notation, Sn is the nth ap-

proximation of the (in this case) 0-dimensional Sierpinski Gasket.

One should note that a similar iterative scheme can be used to define a higher

dimensional gasket. For example, let M = C and the initial set be the solid triangle

with vertices S0 = {1, ω = e
2Πi
3 , ω = e−

2Πi
3 }. Then, if

F1(z) =
z + 1

2
, F2(z) =

z + ω

2
, F3(z) =

z + ω

2

the sequence Sn = F n(X0) is decreasing and S∞ = ∪∞
n=1Sn. Since the initial set

was a solid triangle rather than a set of points, S∞ is the 2-dimensional Sierpinski

Gasket. Figure 3 shows the first two iterations.

Figure 3: 2-dimensional Sierpinski Gasket
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2.2 Harmonic Functions and the Laplace Operator

In physics, the Laplacian, or Laplace Operator, denoted by ∆, represents the net

flux into an infinitesimal volume at each point in space. Mathematically, ∆ on Rn

is given by

∆ f =
n∑

k=1

(
∂

∂ xk

)2

f.

It turns out that this operator can be defined on any Riemannian manifold M .

A function is said to be harmonic if it satisfies Laplace’s Equation, ∆f = 0. Two

important properties of harmonic functions can be deduced from Laplace’s equation.

Theorem 2.3 (Mean Value Property). If D(x, r) is a ball with center x and radius

r which is completely contained in U , then the value f(x) of the harmonic function

f at the center of the ball is given by the average value of f on the surface (and

interior) of the ball. In other words

u(x) =
1

ωnrn−1

∮

∂D(x,r)

u dS =
n

ωnrn

∫

D(x,r)

u dV

where ωn is the surface area of the n-dimensional sphere.

Theorem 2.4 (Maximum Principle). If M is a connected manifold with a boundary,

then any non-constant real harmonic function on M attains its maximal value only

on the boundary ∂ M .

The proofs of Theorems 2.3 and 2.4 can be found in any elementary real analysis

text and are left out here. The following corollary is relevant to our study of harmonic

fractal functions on S.

Corollary 2.5. The boundary values of a harmonic function on a manifold M

determine its values at all interior points of M .
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Corollary 2.5 is proven for M = Sn, the n-dimensional Sierpinski Gasket, in the

following section.

2.3 Harmonic Functions on S

A powerful mathematical method for studying complicated fractal sets is to in-

stead study the space of functions on these sets. We begin by giving a precise

definition of a harmonic function on S. Let fCAB(t) denote a function that takes

on the values A, B and C at each boundary point on the triangle defined by the

set S0 = {(0, 0), (1, 0), ( 1
2
,
√

3
2

)} (see Figure 4 on the next page). Let x ∈ Sn be

a boundary value on the nth approximation of the Sierpinski Gasket, where n 6= 0.

We call the four points yi such that |x − yi| = 1
2n the neighbors of x. For example,

in Figure 4, the neighbors of b on S3, the 3rd approximation of the gasket, are a3,

c3, a1 and c1.

We are now ready to define the Laplacian on S. Suppose we assign values to all

the points on Sn, the nth approximation of S, and call this function f . Let x ∈ Sn

and let y1, y2, y3, y4 ∈ Sn be the four neighbors of x. Then the Laplacian on Sn is

given by

∆nf(x) =
1

4

4∑

i=1

yi − f(x) (2.7)

Theorem 2.6. There exists a harmonic function on Sn given by (2.7) that is

uniquely determined by its boundary values.

Proof. Let f be the desired harmonic function on Sn, assuming it exists. By (2.7),

the harmonicity of f is equivalent to a system of 3n−3
2

linear non-homogeneous equa-

tions whose right hand side depends on the boundary values of f . Let A be the

coefficient matrix of the system, x the vector of unknowns and b the vector corre-

sponding to the right hand side. Recall that if Ax = 0 has a solution other than
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x = 0, A is not invertible and the system has infinitely many solutions. By the Max-

imum Principle, if b = 0, meaning f has zero boundary values, f is identically zero.

So x = 0 is the only solution to Ax = 0. The non-homogeneous system describing

the harmonicity of f has a unique solution.

We now give a precise definition of a

Figure 4: fCAB on S3

harmonic function on S∞, where S∞ =

∪∞
n=1Sn, as defined in (2.6). A function on

S∞ is called harmonic if its restriction to

every Sn is harmonic. In other words, S∞

is harmonic if and only if

∆nf(x) = 0, ∀n. (2.8)

Let us consider the set of all harmonic

functions on S∞. It turns out that this set is closed under addition and scalar

multiplication and hence forms a vector space, namely the space of all harmonic

functions on S∞. Let us denote this vector space by H(S∞). Since a harmonic

function is uniquely determined by its boundary values (Theorem 2.6), H(S∞) has

dimension 3. Indeed, the natural coordinates for a function fCAB ∈ H(S∞) are its

boundary values A, B and C. Note that we can restrict f to Sk ∈ Sn (i.e., to any

k-dimensional approximation of S, where k < n). For example, in Figure 4 on the

previous page,
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∆3f =

4b1 = A+ c+ a1+ c1

4c = b1+ a1+ b2+ a2

...
...

...
...

...

4a3 = C+ b+ c3+ b3

4c3 = a3+ b3+ b+ a

(2.9)

∆3f |S2
=

4c = A+ b+ a+ B

4b = A+ c+ a+ C

4a = C+ b+ c+ B

(2.10)

The system in (2.9) has 12 equations and 12 unknowns whereas the system in

(2.10) has 3 equations and 3 unknowns. One can see that (2.10) is a restricted

system. We use this notation for the restriction of f to some Sk, k < n, in the proof

of the following theorem.

Theorem 2.7. The restriction of any harmonic function on Sn to Sn−1 is also

harmonic.

Proof. Let f be a harmonic function on Sn. By (2.7), ∆nf = 0. Suppose f has a

nonzero boundary. We can view f as an eigenfunction of the Laplace operator

∆nf = λf (2.11)

Here, λ is the eigenvalue of the unrestricted system on Sn. Since, by the Maximum

Principle, f 6= 0, (2.7) implies λ = 0. Now, let µ be the eigenvalue of the Laplacian

determining the restriction of f to Sn−1.

∆nf |Sn−1
= µf (2.12)
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Our goal is to show that ∆nf |Sn−1
= 0, meaning f restricted to Sn−1 is also harmonic.

Refer to Figure 4. By (2.8), ∆nf = λf gives the following system of equations9

4(λ+ 1)c = b1 + a1 + b2 + a2,

4(λ+ 1)a1 = b+ c1 + b1 + c, 4(λ+ 1)b1 = A+ c+ c1 + a1,

4(λ+ 1)c1 = A+ b1 + a1 + b, 4(λ+ 1)a2 = c+B + c2 + b2,

4(λ+ 1)b2 = c+ a2 + c2 + a, 4(λ+ 1)c2 = a+B + a2 + b2

Adding the last four equations, we have that 4(λ+ 1)(b1 + a1 + b2 + a2) = (b1 + a1 +

b2 + a2) + (A + B + b + a) + 2(c1 + c2) + 4c. Adding the first two equations gives

4(λ+1)(c1 +c2) = (b1 +a1 +b2 +a2)+(A+B+b+a). Combining these expressions,

we can write (c1 + c2) in terms of (A + B + b + a) and c. The the first equation of

the original system becomes

(2λ+ 3)(A+B + b+ a) = 4(λ+ 1)(2λ+ 3)(4λ+ 1)c (2.13)

But (2.12) implies

A+B + b+ a = 4(µ+ 1)c (2.14)

Since λ 6= −2
3

(because λ = 0),

4(µ+ 1) = 4(λ+ 1)(4λ+ 1) or µ = λ(4λ+ 5) (2.15)

Therefore, µ = 0, meaning (2.12) reduces to ∆nf |Sn−1
= 0. The restriction of f to

Sn−1 is also harmonic.

9The remaining 5 equations of the system are not relevant to this proof.
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Theorem 2.7 has an important corollary. Recall from real analysis that a con-

tinuous function on a compact set is uniformly continuous on that set10. Another

well-known theorem states that if M and N are metric spaces and f : U ∈M → N

is a uniform map, where N is complete, f can be extended to a unique continuous

function on U . We use these theorems to prove the following corollary.

Corollary 2.8. Any harmonic function on S∞ is uniformly continuous and hence

has a unique continuous extension to S.

Proof. First, let f be a harmonic function on Sn and define the variation of f by

varfCAB = sup
x,y∈S∞

|f(x) − f(y)| = max {|A−B|, |B − C|, |C − A|}.

Assuming A ≤ B ≤ C, we have by Theorem 2.4 that A ≤ f(x) ≤ C and A ≤

f(y) ≤ C for x, y ∈ S∞, which implies the second equality. Let x, y ∈ Sn be any

two neighbors. By (2.16) (below),

|fCAB(x)−fCAB(y)| ≤ var f ·
(

3

5

)n

= var f ·2−nβ ≤ const·d(x, y)β, β = log2

5

3
≈ 0.73697 . . .

The above inequality shows that f is continuous. Since Sn is a compact set, it

follows from the Uniform Continuity Theorem that f is uniformly continuous on Sn.

Therefore f has a unique continuous extension to S = S∞, as desired.

We now derive explicit formulas for the values of a harmonic function f given

the boundary values A, B and C. Let x1, x2, x3 ∈ R2 be neighbor points of Sn

which form an equilateral triangle (see Figure 4). Let y1 = x2+x3

2
, y2 = x1+x3

2
, and

y3 = x1+x2

2
∈ R2. Then, y1, y2, y3 are neighbor points in Sn+1 and for any harmonic

10Also known as the Uniform Continuity Theorem. See [3], p. 215.
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function f on Sn+1 we have

f(y1) =
f(x1) + 2f(x2) + 2f(x3)

5
=
A+ 2B + 2C

5
(2.16)

f(y2) =
2f(x1) + f(x2) + 2f(x3)

5
=

2A+B + 2C

5
(2.17)

f(y3) =
2f(x1) + 2f(x2) + f(x3)

5
=

2A+ 2B + C

5
. (2.18)

These relations follow directly from the system of equations in (2.10).

Having provided an overview of harmonic functions on the Sierpinski Gasket, we

are now ready to define the four basic functions.

3 The Four Basic Functions χ, φ, ψ, ξ

3.1 Definition and Identities

We mentioned in the previous section that H(S∞), the vector space of all har-

monic functions on S has dimension 3. Let us now choose a basis for this space.

Since H(S∞) must contain the constant function f ≡ 1, the basis must contain two

non-trivial harmonic functions. The functions {f 1
11, f

0
01, f

1
01} form one such basis.

Although these functions span H(S∞), it is convenient to introduce two additional

functions f−1
01 and f 2

01 and study all four functions simultaneously.

As an aside, note that S3, the group of all permutations of three symbols (also the

group of symmetries of a regular triangle, or D3, the dihedral group) has a natural

action on S. This action corresponds to a permutation of the boundary values of a

basic function fCAB ∈ S: for any function fCAB ∈ S and any permutation s ∈ S3 we

associate the linear operator Ts such that

Tsf
C
AB = fC

′

A′B′ (3.1)
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Using this action, one can show that

fCAB(t) = fCBA(1 − t) and fCAB + fABC + fBCA ≡ a+ b+ c (3.2)

Due to the geometry of S, coming up with a systematic approach to the study of

harmonic functions on the set can be complicated. To make things simpler, rather

Figure 5: Geometric Interpretation of χ, φ, ψ, ξ on S|[0, 1]

than viewing a function fCAB on all of S, we consider its restriction to the bottom

side of the gasket, and identify with it the unit interval I = [0, 1] (see Figures 5 and

6). We call the restrictions of the four functions f−1
01 , f 0

01, f
1
01, f

2
01 to I χ, ψ, φ, ξ

respectively. Figure 6 gives a plot of these functions. Note that, since the boundary

values of f−1
01 , f 0

01, f
1
01, f

2
01 form an arithmetic progression so do the restrictions

χ, ψ, φ, ξ.

The following corollary gives the basic function identities and some key relations.

Corollary 3.1. The basic functions satisfy the following identities and relations:
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Figure 6: Graphs of χ, φ, ψ, ξ on [0, 1]

(i) (ii) (iii)

χ( t
2
) = 1

5
· χ(t) χ(t) = 1 − ξ(1 − t) φ(t) = 2χ(t)−χ(1−t)+1

3

φ(1+t
2

) = 2
5

+ 3
5
· φ(t) ψ(t) = 1 − φ(1 − t) ψ(t) = χ(t)−2χ(1−t)+2

3

ψ( t
2
) = 3

5
· ψ(t)

ξ(1+t
2

) = 4
5

+ 1
5
· ξ(t)

Proof. By writing in the missing values in Figure 5, one sees that the boundary

values of the restriction of f−1
01 to the boundary of the small triangle is proportional

to the boundary values of the initial function on the big triangle with coefficient 1
5
.

This proves the first identity. The same argument can be used to prove the identity

for ψ, except now the coefficient of proportionality is 3
5
. The remaining relations
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come from writing the basic functions as linear combinations of χ and ψ.

Now that we have introduced the basic functions and proven some theorems

about the space they span, several questions come to mind. First, it is clear that

one can use the identities in Corollary 3.1 to evaluate the basic functions at any

dyadic point. Since doing this directly can be somewhat tedious, one wonders if

there is any shortcut. Moreover, we currently have no method for evaluating the

basic functions at nondyadic points. Since any harmonic function on S∞ has a

unique continuous extension to S, one should be able to compute the exact value of

a basic function at any point in [0, 1]. We address these questions in the coming

pages.

3.2 Symmetries

It is clear from Corollary 3.1 that the basic functions exhibit a number of sym-

metries which are so to speak encoded in the relations of the previous section. These

symmetries greatly facilitate computations involving the said functions. There are

two kinds of symmetries that arise: multiplicative symmetry and reflexive symme-

try. A function f is called multiplicatively symmetric if f(t) = cf(k · t), ∀ t, where

c, k ∈ R; f is reflexively symmetric about a point s ∈ R if f(s− t) = f(s+ t), ∀ t.

Theorem 3.2. The basic functions exhibit the following symmetries:

(i) The graph in Figure 7 is central symmetric about the point ( 1
2
, 1

2
) ∈ R2.

(ii) All four basic functions are multiplicatively reflexive: χ and ξ and consist of the

self-similar I0 and its 180 rotation I180; φ and ψ and consist of the self-similar

II0 and its 180o rotation, II180.
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Figure 7: Symmetries of χ, φ, ψ, ξ

(iii) The functions φ and ψ exhibit reflexive symmetry. Each segment II0 ∈ [ 1
2n+1 ,

1
2n ]

is reflexively symmetric about the point 3
2n+2 .

Proof. Parts (i) and (ii) follow directly from Corollary 3.1. Since φ and ψ are mirror

images of each other, it is enough to prove (iii) for ψ. Because ψ is multiplicatively

symmetric, we can consider any interval [ 1
2n+1 ,

1
2n ] ∈ [0, 1]. Let n = 0, so our interval

is [1
2
, 1]. Let

∆ψ(t) = ψ(t) − ψ(t− 1

2n
), t ∈ [

1

2
, 1]

be the first difference of ψ. To prove that ψ(t) is reflexive, we show that ∆ψ(t) is

symmetric about t = 3
4
. Computing ∆ψ(t) numerically11 gives Figure 8 below. The

11The values of ∆ψ(t) needed to generate Figure 8 were computed using the following extension
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Figure 8: ∆ψ(t) = ψ(t) − ψ(t− 1
2n )

symmetry and reversed orientation of ∆ψ(t) indicates the segment II0 is reflexively

symmetric about the point t = 3
4
.

3.3 Linear Operators on H

Since the set of harmonic functions on S is a vector space, it is natural to define

some linear transformations on H(S). Let H denote the space of real-values functions

on [0, 1] spanned by the restrictions of harmonic functions on S. H is spanned by any

two of the basic functions and the constant function, so we can choose from a number

of bases. Since we are interested in all four basic functions, let us introduce the

following vector-valued functions representing two possible bases, namely {1, χ, ψ}

of ψ to the positive real line: ψ(k) = χ(k)+2·5n−2χ(2n−k)
3n+1 . Extensions of the basic functions go

beyond the scope of this thesis.
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and {1, 1 − ξ, 1 − φ}.

~h(t) =









χ(t)

ψ(t)

1









and ~g(t) =









1 − ξ(t)

1 − φ(t)

1









(3.3)

Note that ~h(1− t) = ~g(t). Let us also introduce the following three transformations

α : t→ t

2
, β : t→ 1 + t

2
, γ : t→ 1 − t (3.4)

α and β are contractions to the left hand side and the right hand side of I,

respectively, and γ is the reflection of t to the other side of the interval. Each of these

transformations induces a linear operator with corresponding matrix A, B or C12.

In other words, if ~h ∈ H, A~h(t) = ~h(α(t)), B~h(t) = ~h(β(t)) and C~h(t) = ~h(γ(t)).

All three operators preserve the 3-dimensional subspace H and are found to be

A =









1
5

0 0

0 3
5

0

0 0 1









, B =









1
2

3
10

1
5

1
10

3
10

3
5

0 0 1









, C =









1
2

−3
2

1

−1
2

−1
2

1

0 0 1









(3.5)

The eigenvalues of both A and B are 1
5
, 3

5
and 1, a fact we will make use of in the

next section.

One can easily compile a table of values of χ, φ, ψ and ξ at any dyadic point using

these operators. To see how, consider the point 3
4
. Beginning at t = 0, one must

contract to the right twice in order to arrive at the specified point. We must therefore

apply first β twice and use this composition of functions to computing ~h(β(β(0))).

12From this point forward, the letters A, B and C refer to these operators and NOT the boundary
values of a function fC

AB ∈ H(S). Despite the potential confusion, we keep this notation to be
consistent with the literature, in particular [2].
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This translates to left multiplication by B2. So ~h(3
4
) = B2~h(0). Remark that there

is a connection between the binary representation of a point t ∈ [0, 1] and W .

Suppose t = (0.t1t2 . . . )2, ti ∈ {0, 1} in binary and observe that α(t) = (0.0t1t2 . . . )2

and β(t) = (0.1t1t2 . . . )2. This suggests that a 0 in the binary representation of t

corresponds to multiplication by A and a 1 to multiplication by B. Indeed, 3
4

=

(0.11)2.

The values in Table 3.3 were computed using these transformations and opera-

tors.

Table 3.3. Some Values of the Basic Functions at Dyadic Points

f\t 0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

χ(t) 0 1
125

1
25

12
125

1
5

41
125

12
25

85
125

1

φ(t) 0 14
125

5
25

36
125

2
5

65
125

16
25

98
125

1

ψ(t) 0 27
125

9
25

60
125

3
5

89
125

20
25

111
125

1

ξ(t) 0 40
125

13
25

84
125

4
5

113
125

24
25

124
125

1

The linear operators on H enable us to prove the following two theorems.

Theorem 3.4. All basic functions are strictly increasing on [0, 1].

Proof. By Corollary 3.1, it is enough to show that any one of the basic functions

is strictly increasing. We show that χ(t) ≤ χ(s), ∀ t ≤ s. Consider the following

binary representations of t and s: t = (0.t1t2 . . . tk . . . )2, s = (0.s1s2 . . . sk . . . )2,

where ti, si ∈ {0, 1}. Assume ti = si for i < m and tm = 1, sm = 0. Any binary

representation has an associated operator W which is a product of the matrices

A and B. As noted on the previous page, since A is a contraction to the left

and B a contraction to the right, a 0 in the binary expansion of some number
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corresponds to multiplication by A and a 1 in the binary expansion of some number

corresponds to multiplication by B (e.g., if 3
8

= .375 = (.011)2, W = ABB, meaning

~h(3
8
) = ABB~h(0)).

Let Wm−1 be the operator corresponding to (0.t1t2 . . . tm−1)2 = (0.s1s2 . . . sm−1)2.

Then

~h(t) = Wm−1B~h(x), ~h(s) = Wm−1A~h(y)

where x = (0.tm+1tm+2 . . . )2 ∈ [0, 1] and y = (0.sm+1sm+2 . . . )2 ∈ [0, 1]. Since the

Wi have nonnegative entries, it is enough to show that B~h(x) > A~h(y) Computing

these directly, we find that

B~h(x) =









1
2

3
10

1
5

1
10

3
10

3
5

0 0 1

















χ(x)

ψ(x)

1









≥









1
5

3
5

1









, since









χ(x)

ψ(x)

1









≥









0

0

1









while

A~h(y) =









1
5

0 0

0 3
5

0

0 0 1

















χ(y)

ψ(y)

1









≤









1
5

3
5

1









, since









χ(y)

ψ(y)

1









≤









1

1

1









Equality holds if and only if x = 0 and y = 1. But then t = s.

We now turn our attention to the rational nondyadic points.

Example 3.5. Suppose t = 1
3

and we desire to evaluate the basic functions at

this point. In binary, t = 1
3

= (0.01)2. As expected, the associated operator is
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W = (AB)∞, where

AB =









1
10

3
50

1
25

3
50

9
50

9
25

0 0 1









=






Aw ~v

~0T 1






.

We are therefore interested in the following limit13

~h(
1

3
) = lim

n→∞
(AB)n~h(1) (3.6)

Applying the formula for the sum of a geometric series gives

lim
n→∞






Aw ~v

~0T 1






n




1

~1




 = lim

n→∞






Anw
∑n−1

k=0 A
k
w~v

~0T 1











1

~1




 (3.7)

= lim
n→∞






Anw (1 − Anw)(1 − Aw)−1~v

~0T 1











1

~1




(3.8)

=






0 (1 − Aw)−1~v

~0T 1











1

~1




 (3.9)

Since (1 − Aw) is invertible, the desired limit is14

(1 − Aw)−1~v =






1025
918

25
306

25
306

125
102











1
25

9
25




 =






2
27

4
9




 =






χ(1
3
)

ψ(1
3
)






13See Example 4.3 for a corresponding figure.
14The values of χ( 1

3 ) and ψ( 1
3 ) can be found in Appendix A.



26

Example 3.5 motivates the following theorem.

Theorem 3.6. The values of all basic functions at rational points are rational.

Proof. If t ∈ Z〈2〉, the theorem follows directly from Corollary 3.1. Suppose t ∈

[0, 1] ∩ (Q − Z〈2〉). Then t has a periodic binary expansion, say t = 0.t1t2 . . . tk,

ti ∈ {0, 1}. As in the proof of Theorem 3.4, any binary representation has an

associated operator W which is some product of the matrices A and B15. So

~h(t) = lim
n→∞

W n~h(1)

where W has the form W =






Aw ~v

~0T 1




, as in Example 3.5, where Aw is a 2 × 2

matrix and ~v is a vector in R2. Applying the formula for the sum of a geometric

series,

W n =






Aw ~v

~0T 1






n

=






Anw
∑n−1

k=0 A
k
w~v

~0T 1




 =






Anw (1 − Anw)(1 − Aw)−1~v

~0T 1






For any word W , the entries of Aw are too small for the matrix to have an eigenvalue

of 1. Therefore 1−Aw is invertible and the right-most expression makes sense. Since

Aw has entries < 1, An
w → 0. Thus,

~h(t) =






0 (1 − Aw)−1~v

~0T 1











1

~1






Both Aw and ~v had rational entries. Therefore ~h(t) must also be rational.

Theorems 3.4 and 3.6 rely on the fact that each point t ∈ [0, 1] has associated to

15See Lemma 4.5 for a detailed proof of this fact.



27

it a corresponding operator W which is some “word” in A and B. If t is dyadic W is

finite; if t is rational but nondyadic, W is infinite and periodic; if t is irrational, W

is infinite and aperiodic. Moreover, we saw in Example 3.5 that one can determine

W for any point t by finding its binary expansion and converting each 0 to an A and

each 1 to a B. We restate these facts here because they are what make possible the

classification of the derivatives of the basic functions, the subject of the next section

and the primary objective of this thesis.

4 Derivatives

First and foremost, when we talk about the derivative of a basic function, we

mean its rate of change with respect to t16. In Theorem 3.4, we showed that all basic

functions are strictly increasing. According to a well-known theorem in real analysis,

if f : (a, b) → R is a monotone function and (a, b) is a bounded interval, then f has

a finite derivative almost everywhere. Unfortunately, this theorem tells us nothing

about the points at which the derivative fails to exist or if there are indeed any such

points. In order to address this issue, let us first give a precise definition of the

derivative of a function on H(S). Without loss of generality, consider the function

χ and some point t0 ∈ [0, 1]. If χ′(t) exists at t0, then

χ′(t0) = lim
ε→0

χ(t0 + ε) − χ(t0)

ε
= lim

ε→0

χ(t0 − ε) − χ(t0)

ε
(4.1)

In other words, for χ′(t0) to exist, the left and right derivatives exist and agree at t0.

Given the fractal nature of our functions, ε can be viewed as the rate of contraction

toward the point t0. This interpretation is discussed at length in Section 4.2.

16One can also consider the derivatives of the basic functions with respect to one another. This
idea is briefly discussed in Example 4.11.
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To classify the derivatives of the basic functions, recall the transformations α(t) =

t
2

and β(t) = 1+t
2

and the corresponding linear operators, A and B. As discussed

in the previous section, each point t ∈ [0, 1] can be reached through a series of

contractions and we call w(t), the corresponding composition of functions α and β,

the word which fixes t. The matrix W is referred to as the corresponding operator

of the associated word. There are three types of words to consider:

1. Finite Words ↔ Dyadic Points

2. Infinite Periodic Words ↔ Rational Points

3. Infinite Aperiodic Words ↔ Irrational Points

Each type has a different procedure for derivative classification at the correspond-

ing point. It turns out the derivatives of the basic functions exist and are either 0

or ∞ at all rational points. Keep in mind that both the left and right derivatives

of a given function need to be computed to determine if the derivative exists at

that point. The procedures discussed in this thesis can be used to find either of the

necessary limits. Although we have no examples of a point at which the limits do

not agree, this possibility cannot be ruled out, say for some irrational point.

We begin with the simplest case, namely points in Z〈2〉.

4.1 Derivatives at Dyadic Points

As noted in Section 3, one arrives at a dyadic point through a finite number of

contractions toward that point. We begin by considering χ and ψ only and then use

the symmetry of the basic functions to extend our analysis to φ and ξ. The following

lemma shows that the former two functions roughly resemble y = x2 and y =
√
x

respectively.
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Lemma 4.1. For 1
2n+1 ≤ t ≤ 1

2n , the following inequalities hold

(i) 1
5
tβ ≤ χ(t) ≤ 5tβ, where β = log2(5) ≈ 2.322...

(ii) 3
5
tα ≤ ψ(t) ≤ 5

3
tα, where α = log2(

5
3
) ≈ 0.737...

Proof. To prove (i), suppose 1
2n+1 ≤ t ≤ 1

2n and let β = log2(5). Then ( 1
2n )β = 1

5n

and ( 1
2n+1 )

β = 1
5n+1 So 5n+1 ≥ 1

tβ
≥ 5n. Also, since χ is strictly increasing and by

Corollary 3.1, 1
5n+1 ≤ χ(t) ≤ 1

5n . Combining these results gives

5n · 1

5n+1
≤ χ(t)

tβ
≤ 1

5n
· 5n+1 (4.2)

1

5
tβ ≤ χ(t) ≤ 5tβ (4.3)

The proof of the (ii) is analogous.

We are now ready to classify the derivatives of the basic functions at all dyadic

points.

Theorem 4.2 (Classification of Derivatives at Dyadic Points).

(i) χ′(0) = ξ′(1) = 0.

(ii) Except for the two cases in (i), every basic function has infinite derivative at

all dyadic points.

Proof. We begin by proving (i). Let ε > 0. By Lemma 4.1,

εβ

5ε
≤ χ(ε)

ε
≤ 5εβ

ε

Now, since β = log2(5) ≈ 2.322...,

lim
ε→0

εβ−1

5
= 0 and lim

ε→0
5εβ−1 = 0
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By the sandwich lemma,

χ′(0) = lim
ε→0

χ(ε) − χ(0)

ε
= lim

ε→0

χ(ε)

ε
= 0

Since χ(t) = 1 − ξ(1 − t), ∀ t, it follows that ξ ′(1) = 0.

To prove (ii), we first show that ψ′(0) = ∞. By Lemma 4.1, ψ(t) ≥ 3
5
tα, where

α = log2(
5
3
) < 1. This means

ψ′(0) = lim
ε→0

ψ(ε) − ψ(0)

ε
= lim

ε→0

ψ(ε)

ε
≥ lim

ε→0

3εα

5ε
= lim

ε→0

3

5ε1−α
= ∞.

Recall the vector-valued functions

~h(t) =









χ(t)

ψ(t)

1









and ~g(t) =









1 − ξ(t)

1 − φ(t)

1









Applying the contraction γ in (3.4),

~g(t) =









1
2

−3
2

1

−1
2

−1
2

1

0 0 1









~h(t) (4.4)

In other words, the φ and ξ can each be expressed as a linear combination of χ, ψ

and 1 (which of course makes sense since these are the basis vectors). Differentiating
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both sides17 gives






−ξ′(t)

−φ′(t)




 =






1
2

−3
2

−1
2

−1
2











χ′(t)

ψ′(t)






Taking t = 0, it follows that ξ ′(0) = φ′(0) = ∞. By Corollary 3.1, χ′(1) = ψ′(1) =

∞.

Due to the symmetry of the basic functions, one need only consider one particular

dyadic point and show that the derivatives of all the basic functions are infinite at

that point. Let t = 1
2

and recall the contraction α(t) = t
2
, with corresponding matrix

A defined in (3.5). Since 1
2
~h′(1

2
) = A~h′(1), χ′(1

2
) = ψ′(1

2
) = ∞. Applying (4.4) once

more gives that φ′(1
2
) = ξ′(1

2
) = ∞. The same argument can be extended inductively

to all dyadic points.

It should be noted that Lemma 4.1 implies that χ(t) also has a vanishing second

derivative at 0, since 2 < β < 3. It turns out that we can compute χ′′(t) at dyadic

points t even though χ′(t) = ∞. This makes it possible to determine the concavity

change at these points18.

We now arrive at the main objective of this work: to classify the derivatives of

the basic functions at the rational nondyadic points.

17One should keep in mind that when we write χ′(t) and ψ′(t), we mean really mean the difference
quotient. The shorthand notation only makes sense if the functions are differentiable at the points
in question. Since we have shown that limits in (4.1) exist using Lemma 4.1, differentiability is not
a problem at any dyadic point.

18For more on the second derivatives of the basic functions, see [2] and [4].
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4.2 Derivatives at Rational Nondyadic Points

4.2.1 Motivation

To motivate our procedure for computing the derivatives of the basic functions

at rational nondyadic points, let us begin with the following example.

Example 4.3. Suppose we desire to compute χ′(1
3
). Since 1

3
is nondyadic, no triangle

of the gasket will ever have a vertex at this point. It was shown in Example 3.5 that

the word W = AB fixes 1
3
. If one considers the geometry of the gasket, what this

is saying is that, to compute χ( 1
3
), we must “build” smaller and smaller triangles

around 1
3
, first on the right, then on the left, then on the right, and so on according to

the pattern αβαβ . . . . Assuming it exists, we can apply the Mean Value Theorem to

numerically approximate the derivative of χ at 1
3

by “zooming in” on a neighborhood

around the point and comparing the rate of change of χ in this neighborhood to

the rate at which the triangles converge to 1
3
, marked in red in the following two

figures.

Approximation 1:

χ′(
1

3
) ≈ χ(1

2
) − χ(1

4
)

1
4

=
χ( 1

3
+( 1

2
− 1

3
))−χ( 1

3
−( 1

3
− 1

4
)

1

4
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Approximation 2:

χ′(
1

3
) ≈ χ(3

8
) − χ( 5

16
)

1
16

=
χ( 1

3
+( 3

8
− 1

3
))−χ( 1

3
−( 1

3
− 5

16
)

1

16

Constructing smaller and smaller triangles within the gasket leads to the follow-

ing difference quotient

χ′(
1

3
) = lim

εn, ε′n→0
n→∞

χ(1
3

+ εn) − χ(1
3
− ε′k)

(1
2
)2n

(4.5)

where εn and ε′n both depend on n. Computing the limit in (4.5) numerically gives

χ′(1
3
) = 0. We verify this result in Section 4.2.2.

The setup in Example 4.3 involved finding the derivative of χ by approaching 1
3

from both sides. As noted earlier, we really need to consider the left and right hand

limits separately and make sure they agree. Since computing χ′(t0) at any rational

nondyadic point t0 involves beginning at some dyadic point t either to the left or to

the right of t0 and approaching t0, Example 4.3 motivates the following difference

quotient
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χ′(t0) = lim
t→t0
n→∞

χ(t0 + t−t0
2k ) − χ(t)

(1
2
)nk

(4.6)

where t0 is rational nondyadic and t ∈ Z〈2〉. Letting ε = t− t0, we have

χ′(t0) = lim
ε→0
n→∞

χ(t0 + ε
2k ) − χ(t0 + ε)

(1
2
)nk

(4.7)

Figure 9: Construction of the Right Derivative

Figure 9 illustrates this construction in terms of the geometry of the gasket. No-

tice that if t > t0, (4.7) is the right derivative; if t < t0, (4.7) is the left derivative. It

is our claim that the derivatives of all basic functions at all rational nondyadic points

are either 0 or ∞. The next few pages are devoted to developing the machinery19

needed to arrive at this conclusion.

19A similar procedure is described by Rupinski in [4].
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4.2.2 Procedure for Derivative Computation

Begin by recalling the transformations α : t → t
2

and β : t → 1+t
2

, which have

the corresponding matrices

A =









1
5

0 0

0 3
5

0

0 0 1









B =









1
2

3
10

1
5

1
10

3
10

3
5

0 0 1









As previously noted, α and β are contraction maps with fixed points 0 and 1 respec-

tively. It turns out that

w(t) =
t+ l

2k
, l, k ∈ Z (4.8)

fixes some rational nondyadic point t and is some word in α and β. It is a known fact

that all rational nondyadic fractions are fixed points of some linear transformation

f(t0) = t0. We claim that w(t) is the desired transformation. We first prove the

following lemma.

Lemma 4.4. α and β generate a semigroup G which is free on finite words.

Proof. To show that G is free, we must show that no product of α and β can ever

be expressed more simply in terms of other elements. Consider the action of words

in G on the point t = 1
2
. We proceed by induction on k, the length of the word.

Since α(1
2
) = 1

4
6= 3

4
= β(1

2
), words of length 1 have distinct images. Suppose words

of length k − 1 give 2k−1 distinct images m
2k where gcd(m, 2k) = 1 and 0 < m < 2k.

Now α(m1

2k ) = α(m2

2k ) implies that m1

2k = m2

2k , meaning m1 = m2. The same is true

if β(m1

2k ) = β(m2

2k ). Suppose α(m1

2k ) = β(m2

2k ). Then m1

2k+1 = 2k+m2

2k+1 , so m1 = 2k +m2.

But this is impossible since 0 < m1,m2 < 2k. Hence, words of length k give distinct

images of 1
2
, meaning G is free on finite words in α and β.
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Lemma 4.5. Let t be any rational of the form p
q

such that t ∈ [0, 1] ∩ (Q − Z〈2〉),

q is odd20, and gcd(p, q) = 1. Then

(i) t can be written as l
2k−1

, some k, l ∈ Z.

(ii) t is the fixed point of some finite word in G of length k and this word is given

by w(t) = t+l
2k .

Proof.

(i) If q = 2k − 1, the rational is already in the desired form. Suppose q 6= 2k − 1.

Since q is odd by hypothesis, q divides 2k − 1 for some k ∈ Z.

(ii) Suppose gcd(p, q) = 1. Since q|(2k − 1) for some k ∈ Z, ( p
q
)2 repeats af-

ter k digits. Hence, ( p
q
)2 = (0.t1t1 . . . tk)2, where ti ∈ {0, 1}. Now α( p

q
) =

(0.0t1t2 . . . tk)2 and β(p
q
) = (0.1t1t2 . . . tk)2. Let w be a word in G such that

w = w(t1)w(t2) . . . w(tk) where w(0) = α and w(1) = β. Then

w(t1)w(t2) . . . w(tk)(0.t1t2 . . . tk)2 = w(t1)w(t2) . . . w(tk−1)(0.tkt1t2 . . . tk)2(4.9)

=
... (4.10)

= w(t1)(0.t2 . . . tkt1t2 . . . tk)2 (4.11)

= (0.t1t2 . . . tk)2 (4.12)

=
p

q
(4.13)

So there exists a word w ∈ G of length k which fixes t. To show w(t) = t+l
2k is

the desired word, substitute t = l
2k−1

:

w(t) =
l

2k−1
+ l

2k
=
l + (2k − 1)l

2k(2k − 1)
=

l

2k − 1
= t

20We consider nondyadic rational points with odd denominator only because any basic function
evaluated at a point with an even denominator can be simplified using Corollary 3.1.
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Let t = l
2k−1

be given. By Lemma 4.5, t is the fixed point of the word w(t) = t+l
2k .

Since the contractions α and β are in one-to-one correspondence with the matrices

A and B, we have that

~h(
t+ l

2k
) = W~h(t) where ~h(t) =









χ(t)

ψ(t)

1









(4.14)

W is the product of the matrices A and B; therefore W has the form

W =






Aw ~v

~0T 1




 where Aw =






a1 a2

a3 a4




 , ~v =






v1

v2




 (4.15)

as we saw in Example 3.5. We are interested in the difference quotient

lim
ε→0
n→∞

f(t+ ε
2k ) − f(t+ ε)

(1
2
)nk

(4.16)

for f ∈ H(S). Since χ and ψ are our chosen basis functions, we know that any har-

monic function can be expressed as a linear combination of them, plus the identity.

In particular, given t ∈ R,

χ(t+
ε

2k
) = a1 + a2χ(ε) + a3ψ(ε) (4.17)

ψ(t+
ε

2k
) = b1 + b2χ(ε) + b3ψ(ε) (4.18)

for some ai, bi ∈ R. Since determining the coefficients ai and bi individually is
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a rather arduous task, it makes sense to consider a function f which is a linear

combination of χ and ψ and try to compute its derivative. The logical choices for

f are the eigenfunctions of W , where W is the word which fixes a given rational

nondyadic point t. Ignoring the eigenvalue 1 which has the trivial eigenfunction

1(t), let λ+
W and λ−W be the other two eigenvalues of W and f±

W (t) the corresponding

eigenfunctions. From (4.15), these are computed to be

λ±W =
(a1 + a4) ±

√

(a1 − a4)2 + 4a2a3

2
(4.19)

f±
W (t) = χ(t) +

λ±W − a1

a3

ψ(t) +
a3v1 + v2(λ

±
W − a1)

a3(λ
±
W − 1)

1(t) (4.20)

Note that λ±
W are also the eigenvalues of the matrix Aw in (4.15).

Remark 4.6. Any operator W has real eigenvalues and hence real eigenfunctions,

meaning f±
W (t) ∈ H(S,R) for any operator W .

Proof. Let Wij denote the entry in the ith row and jth column of W . Since the

components of A and B are greater than or equal to zero, Wij ≥ 0 for all W . Hence,

(W11 −W22)
2 ≥ 0 and 4W12W21 ≥ 0. Since W11 = a1, W12 = a2, W21 = a3 and

W22 = a4, we have that (a1 − a4)
2 + 4a2a3 ≥ 0 so W has real eigenvalues. It follows

that the eigenfunctions f±
W (t) ∈ H(S,R).

Let t ∈ [0, 1] ∩ (Q − Z〈2〉) be given and notice that

w(t± ε) =
(t± ε) + l

2k
=
t+ l

2k
± ε

2k
= w(t) ± ε

2k
(4.21)

so w(t± ε) − w(t) = ± ε
2k and the rate of contraction toward t is 1

2k , as expected. If

t is the fixed point of w(t), then (4.21) becomes w(t + ε) = t + ε
2k and we arrive at
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the following difference equation






χ(t+ ε
2k )

ψ(t+ ε
2k )




 = Aw






χ(t+ ε)

ψ(t+ ε)




 (4.22)

Iterating (4.22) gives






χ(t+ ε
2nk )

ψ(t+ ε
2nk )




 = Anw






χ(t+ ε)

ψ(t+ ε)




 (4.23)

As n→ ∞, the left hand side approaches

(

χ(t) ψ(t)

)T

. We are moving 1
2k closer

to t at each step of the iteration so 2−k is the rate of contraction toward t, as shown

in (4.21). This result is consistent with the earlier analysis involving the geometry

of S.

We now write the expression for the difference quotient of the eigenfunctions

f±
W (t).

f
′±
W (t) = lim

ε→0
n→∞

f±
W (t+ ε

2k ) − f±
W (t+ ε)

(1
2
)nk

(4.24)

= lim
ε→0
n→∞

χ(t+ ε
2k ) − χ(t+ ε)

(1
2
)nk

+
λ±W − a1

a3

· ψ(t+ ε
2k ) − ψ(t+ ε)

(1
2
)nk

(4.25)

= χ′(t) +
λ±W − a1

a3

ψ′(t). (4.26)

Our goal is to determine the rate of contraction of f±
W (t + ε) towards f±

W (t) and

compare it to 2−k. Note that we could let ε approach 0 from either the left or the

right, depending on which derivative we want to compute. We use the following

theorem to perform the necessary analysis.
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Theorem 4.7 (Stability of Difference Equations21).

The difference equation uk+1 = Auk is

(i) stable if all eigenvalues satisfy |λi| < 1

(ii) neutrally stable if some |λi| = 1 and all other |λi| < 1

(iii) unstable if at least one eigenvalue has |λi| > 1.

In the stable case, the powers Ak approach zero and so does uk = Aku0. In the

unstable case, at least one of the components of uk grows without bound.

Note that, given a rational nondyadic point t0 with corresponding word W , W n

also fixes t0, so λ±Wn = (λ±W )n. We would like to identify the word W for which the

eigenvectors f±
W (t) satisfy f±

W (t0 + t−t0
2k ) = λ±Wf

±
W (t). But by Lemma 4.5, w(t0) = t0

is fixed by the eigenfunctions f±
W (t). These eigenfunctions are therefore contractions

toward t0 as long as t0 is fixed by w ∈ G. It follows that

f
′±
W (t0) = lim

ε→0
n→∞

f±
W (t0 + ε

2k ) − f±
W (t0 + ε)

(1
2
)nk

(4.27)

= lim
n→∞

λ±Wn

(2−k)n
(4.28)

= lim
n→∞

(λ±W
2−k
)n

(4.29)

= lim
n→∞

(
2kλ±W

)n
(4.30)

where W is the operator which fixes t0 ∈ [0, 1]∩ (Q−Z〈2〉). The task of classifying

the derivatives of the basic functions at the rational points therefore amounts to

computing the eigenvalues corresponding to each eigenfunction and comparing them

to 2−k.
21Quoted from [5], pp. 254-262.
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Lemma 4.8. λ±W 6= 2−k for any operator W .

Proof. First, we prove that for any word W of length k, tr(Aw) = c
2·5k for some

c ∈ Z. Let Wk−1 be a word of length k− 1 and suppose Awk−1
=






a1 a2

a3 a4




. Since

the denominators of all the entries of A and B are divisible by 5, 5 divides each of the

denominators of a1, a2, a3 and a4 for any Aw. So we can write a1 = c1
5k−1 , a2 = c2

5k−1 ,

a3 = c3
5k−1 and a4 = c4

5k−1 for some ci ∈ Z. Let Awk
denote the matrix corresponding

to a word of length k. Now, Awk
=






a1 a2

a3 a4











1
5

0

0 3
5




 =






1
5
a1

3
5
a2

1
5
a3

3
5
a4




 or

Awk
=






a1 a2

a3 a4











1
2

3
10

1
10

3
10




 = 1

2






a1 + 1
5
a2

3
5
a1 + 3

5
a2

a3 + 1
5
a4

3
5
a3 + 3

5
a4




. If Awk

is of the

first form, tr(Awk
) = c1

5k + 3c4
5k = 2(c1+3c4)

2·5k , which satisfies the claim. If Awk
has

the second form, tr(Awk
) =

(
1
2

) (
c1

5k−1 + c2
5k + 3c3

5k + 3c4
5k

)
= 5c1+c2+3c3+3c4

2·5k , which again

satisfies the claim. Hence, tr(Aw) = c
2·5k , some c ∈ Z, for any operator W .

Now, suppose λ+
W = 2−k. Then λ+

W · λ−W = det(Aw) = det(W ) = ( 3
25

)k, so

λ−W = ( 6
25

)k, which means λ+
W +λ−W = tr(Aw) = 25k+12k

2k·25k . By the claim proven above,

tr(Aw) = c
2·5k for some c ∈ Z. Setting these two equal to each other, we find that

c = 2(25k+12k)
10k . We want to see if 2(25k + 12k) is divisible by 10k for any nonnegative

integer k. Remark that since 25 is odd, 25k is odd for all k; since 12 is even, 12k

is even for all k. Therefore (25k + 12k) is odd for all k, as it is it is the sum of an

even and an odd integer. But 10k

2
is even for all k > 1, so 10k

2
- (25k + 12k) for any

k. Therefore λ+
W 6= 2−k. Assuming λ−W = 2−k would imply that λ+

W = ( 6
25

)k < 2−k,

which is also a contradiction.

Lemma 4.8 has the following corollary.

Corollary 4.9. λ−
W < 2−k for any W .
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Proof. Suppose λ−
W > 2−k for some operator W . Since λ+

W · λ−W = det(Aw) =

det(W ) = ( 3
25

)k, λ+
W < ( 6

25
)k < (1

2
)k = λ−W , which is clearly a contradiction.

Corollary 4.9 implies that either λ±
W < 2−k or λ−W < 2−k and λ+

W > 2−k. In other

words, it is impossible for both eigenvalues to be > 2−k. This fact has some very

important consequences for the classification of the derivatives of the basic functions.

Before presenting our main classification theorem, we summarize some of the above

results in the following criterion and consider two examples.

Criterion for Classifying Derivatives at Rational Nondyadic Points: Let

µ±
W = 2kλ±W . Then

(i) if µ±
W < 1, f

′±
W (t) = 0.

(ii) if µ±
W > 1, f

′±
W (t) = ∞.

By Lemma 4.8, there are no rational points at which f±
W (t) has nonzero finite deriva-

tive.

Example 4.10. Suppose once more that t = 1
3

which we know by now is fixed by

w = αβ ∈ G. Recalling the matrix AB from Example 3.5 and applying (4.19) and

(4.20), we have that

λ±AB =
7 ±

√
13

50

f±
AB(t) = χ(t) +

2 ±
√

13

3
ψ(t) − 10 ± 4

√
13

27
1(t)

The values of χ and ψ at t can be found in Appendix A: χ( 1
3
) = 2

27
and ψ(1

3
) = 4

9
.

Plugging these into f±
AB(t) gives f±

AB(1
3
) = 0. As expected, the eigenfunctions f±

AB(1
3
)

vanish at 1
3
.
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Let us now compute the derivative f
′±
AB(1

3
). Since µ+

AB = 22λ+
AB < 1, f

′±
W (1

3
) =

0 by the above criterion. In other words, χ′(1
3
) + 2+

√
13

3
ψ′(1

3
) = 0 and χ′(1

3
) +

2−
√

13
3

ψ′(1
3
) = 0. We apply some logic to deduce what χ′ and ψ′ must be. Since χ

and ψ are strictly increasing, χ′(1
3
) = ψ′(1

3
) = 0. As noted in Example 4.3, a precise

enough numeric approximation gives the same result.

Example 4.11. Let us now give an example of a point at which f
′±
W (t) = ∞. It

turns out 1
15

is such a point. Since 1
15

= (0.0001)2, w = ααααβ ∈ G fixes 1
15

. We

compute the eigenvalues and eigenfunctions to be

λ±A3B =
43 ±

√
61

1250

f±
A3B(t) = χ(t) +

38 ± 5
√

61

27
ψ(t) −

(

9254417448

47373828125
± 6225

√
61

242554

)

1(t)

The values of χ and ψ at 1
15

can be found in Appendix A. Once again, one can check

that f±
A3B( 1

15
) = 0 as desired, meaning our eigenfunctions do indeed vanish at 1

15
.

To determine f
′±
A3B( 1

15
), Remark that µ−

A3B = 24λ−A3B < 1 and µ+
A3B = 24λ+

A3B > 1.

By our criterion, f
′−
A3B( 1

15
) = 0 and f

′+
A3B( 1

15
) = ∞. Since χ′( 1

15
) + 38+5

√
61

27
ψ′( 1

15
) =

∞, at least one of χ′( 1
15

) and ψ′( 1
15

) is ∞. But we must also have that χ′( 1
15

) +

38−5
√

61
27

ψ′( 1
15

) = 0. Note that 38−5
√

61
27

< 0. The only way for f−
A3B( 1

15
) to be 0 is if

both χ′( 1
15

) and ψ′( 1
15

) are ∞.

It is worth noting that Example 4.11 motivates an alternate definition of the

derivative. Since f
′−
A3B( 1

15
) = 0, we have that χ′( 1

15
) + 38−5

√
61

27
ψ′( 1

15
) = 0. Rear-

ranging, we find that χ′( 1
15

) = −38+5
√

61
27

ψ′( 1
15

), or dχ(1/15)
dψ(1/15)

= −38+5
√

61
27

. We know

that both χ′( 1
15

) and ψ′( 1
15

) are ∞; this rate of change gives us an idea of just how
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big these ∞’s are relative to one another. Derivatives of the basic functions with

respect to each other go beyond the scope of this thesis but it should be noted that

such derivatives can be computed at points other than 1
15

using the eigenfunctions

in Table 6.6 of Appendix C.

The following theorem summarizes the results of this section.

Theorem 4.12 (Classification of Derivatives at Rational Nondyadic Points: Part

I). The derivative of any basic function at a rational nondyadic point is either 0 or

∞. Moreover if t is rational nondyadic and W fixes t,

(i) f
′±
W (t) = 0 =⇒ χ′(t) = ψ′(t) = 0.

(ii) f
′+
W (t) = ∞ and f

′−
W (t) = 0 =⇒ χ′(t) = ψ′(t) = ∞

It is impossible for both f
′±
W (t) = ∞; therefore there are no rational nondyadic points

at which χ′(t) = 0 and ψ′(t) = ∞ or vice versa.

Proof. We first prove (i) and (ii).

(i) Suppose f
′±
W (t) = 0, so χ′(t) +

λ±
W

−a1

a3
ψ′(t) = 0. Since χ and ψ are strictly

increasing, we must have that χ′(t) = ψ′(t) = 0.

(ii) Suppose f
′+
W (t) = ∞ and f

′−
W (t) = 0. Then χ′(t) +

λ+

W
−a1

a3
ψ′(t) = ∞ and

χ′(t) +
λ−

W
−a1

a3
ψ′(t) = 0. The first relation implies that either χ′(t) or ψ′(t) is

∞. In order for the second statement to hold, we must have that
λ+

W
−a1

a3
< 0

and that the remaining function also has infinite derivative.

To prove the last part of the theorem, assume without loss of generality χ′(t) = 0

and ψ′(t) = ∞. Then, if
λ−

W
−a1

a3
> 0, χ′(t)+

λ+

W
−a1

a3
ψ′(t) = ∞ and χ′(t)+

λ−
W

−a1

a3
ψ′(t) =

∞. By the criterion above, both eigenvalues µ±
W > 1. But this is impossible by
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Corollary 4.9. Note that if
λ−

W
−a1

a3
< 0, we have that χ′(t) +

λ+

W
−a1

a3
ψ′(t) = −∞

which contradicts the fact that all basic functions are strictly increasing. The same

problem arises if we assume χ′(t) = ∞ and ψ′(t) = 0

Since φ(t) and ξ(t) consist of segments which are rotations of χ(t) and ψ(t) on

smaller scales, we must have that the derivatives of these functions are also either

both 0 or both ∞.

Some values of the derivatives of the basic functions, as well as a step-by-step

procedure for derivative computation, can be found in Appendix B.

Theorem 4.12 has some important consequences. First, it shows that, after

considering all rational points in [0, 1], we still have no example of a point at which

a basic function has nonzero finite derivative. Moreover, the last part of the theorem

is potentially counterintuitive. In Theorem 4.2, it was shown that χ′(0) = 0 whereas

φ′(0) = ψ′(0) = ξ′(0) = ∞ and ξ′(1) = 0 whereas χ′(1) = φ′(1) = ψ′(1) = ∞.

One might therefore expect for there to be other points at which the derivatives of

three of the basic functions vanish and the other is ∞. Our construction shows that

this does not happen at any rational point: since both χ′(t) and ψ′(t) either vanish

or blow up at every rational, so must all four basic functions. This fact becomes

more apparent in the next subsection, where we discuss the relationship between the

derivatives of all four basic functions.

4.2.3 Conjugacy Classes of Operators W

Since the basic functions are multiplicatively and reflexively symmetric, one

might wonder if knowing the derivative of χ and ψ at a point t tells us anything

about these functions’ derivatives at other points, say those with the same denomi-
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nator. It turns out the answer to this question is yes. The goal of this subsection is

to enumerate all rational nondyadic points at which the basic functions necessarily

have the same derivative. In other words, we are interested in determining which

operators W have the same eigenvalues.

Recall the difference equation (4.23):






χ(t+ ε
2nk )

ψ(t+ ε
2nk )




 = Anw






χ(t+ ε)

ψ(t+ ε)






Since µ±
W = 2kλ±W are the eigenvalues of the matrix 2kAw, we introduce the following

notation.

Notation 4.13. Let τ ≡ trace(2kAw) and ∆ ≡ det(2kAw). We say two words W are

in the same conjugacy class if they have the same τ , ∆ and length k (and therefore

the same eigenvalues).

Definition 4.13 is motivated by the following relations

τ = µ+
W + µ−

W (4.31)

∆ = µ+
W · µ−

W (4.32)

which imply that

µ±
W =

τ ±
√
τ 2 − 4∆

2
(4.33)

By the Criterion for Classifying Derivatives at Rational Points, f
′±
W (t) = 0 if µ±

W < 1
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and f
′±
W (t) = ∞ if µ±

W > 1. Remark that

∆ ≡ µ+
W · µ−

W = det(2kAw) = 22kdet(Aw) = 22kdet(W ) (4.34)

= 22k(
3

25
)k = (

12

25
)k (4.35)

τ ≡ µ+
W + µ−

W = tr(2kAw) = 2ktr(Aw) = 2k(tr(W ) − 1) (4.36)

The reason it is natural to group the words W into conjugacy classes of operators

having equal eigenvalues because each of χ and ψ must have the same derivative at

points fixed by operators in each conjugacy class. Because it is so important, we

state this fact as a lemma.

Lemma 4.14. Suppose W fixes t1 and W ′ fixes t2. If W and W ′ are in the same

conjugacy class, then χ′(t1) = χ′(t2) and ψ′(t1) = ψ′(t2).

Proof. Suppose W fixes t1 and W ′ fixes t2. Since the operators are in the same

conjugacy class, they have the same τ , ∆ and length k. By (4.33), they have the

same eigenvalues, so f
′±
W (t1) = f

′±
W (t2). Now by Theorem 4.12, χ′(t1) = χ′(t2) and

ψ′(t1) = ψ′(t2).

We now determine which words fall into the same conjugacy class. Let

W = Ar1Bm1Ar2Bm2 ...AriBmj be a word of length k and define σ to be the cyclic

permutation

σ : Ar1Bm1Ar2Bm2 ...AriBmj → BAr1Bm1Ar2Bm2 ...AriBmj−1 (4.37)

σ shifts the matrices A and B in the product W with the elements shifted off the

end inserted back at the beginning. The mapping σn is therefore Wi → W(i+n)mod k,

where Wi ∈ {A, B}. This permutation is important because of the cyclic property

of the trace.
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Theorem 4.15 (Cyclic Property of the Trace). The trace of a product of n square

matrices is the trace of any cyclic permutation of this product

tr(W ) = tr(σ(W )) = tr(σn(W )), n ∈ Z (4.38)

We arrive at the following lemma.

Lemma 4.16. Let t0 = l
2k−1

be a given rational with period k. Then the points

ti = 2il mod (2k−1)
2k−1

correspond to words σn(W ) (that is, cyclic permutations of W ) for

all i. There are exactly k such points.

Proof. We prove Lemma 4.16 by recalling some properties of binary expansions.

Suppose t0 = l
2k−1

has the binary expansion (0.s1s2 . . . sk)2, where si ∈
{
0, 1

}
and k

is the period. Then t0 = s1
2

+ s2
22 + · · ·+ sk

2k + s1
2k+1 + s2

2k+2 + . . . Now, multiplying t0 by

2i and modding out by 2k− 1 gives 2it0 = s1
21−i + s2

22−i + · · ·+ sk

2k−i
s1

2k+1−i + s2
2k+2−i + . . . .

This corresponds to a left hand shift of the decimal point i places and does not

affect the period or the order of the letters: 2it0 = (0.sisi+1 . . . sks1 . . . si−1)2. In

other words, multiplication by ai cyclically permutes the letters of the word W as

long as ail ≡ 2il mod (2k − 1). Since there are exactly k cyclic permutations of W ,

there are exactly k such points.

Note that if t0 = l
2k−1

is a point fixed by a word of length k, then k = the number

of distinct integers in the set {2il mod (2k − 1) | i = 1, 2, . . . , k}: since multiplication

of t0 by an integer congruent to 2imod (2k−1) results in a cyclic permutation of the

letters in the word corresponding to t0 and there are exactly k such permutations, k

is the number of distinct integers that satisfy the congruence. Lemma 4.16 has the

following corollary.
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Corollary 4.17. χ′(ti) = χ′(t0) and ψ′(ti) = ψ′(t0) for all 2il mod (2k−1)
2k−1

and t0 =

l
2k−1

.

Proof. Let t0 = l
2k−1

and let W be the corresponding operator. By Lemma 4.16,

multiplying t0 by 2imod (2k − 1) cyclically permutes the “letters” of W . If we call

the new word Wi, then Wi = σi(W ). Since the length of Wi is the same as the

length of W , det(W ) = det(Wi) = (12
25

)k. Now, by the cyclic property of the trace

(Theorem 4.15), tr(W ) = tr(Wi). Since W and Wi have the same determinant and

trace, they must have the same eigenvalues and are therefore in the same conjugacy

class. The conclusion follows from Lemma 4.16.

Before proceeding further, let us identify the conjugacy classes of operators for

a particular point, say 1
31

.

Example 4.18.

Let t0 = 1
31

= 1
25−1

. Since the binary expansion of t0 is (0.00001)2, w = ααααβ ∈

G fixes 1
31

. Clearly, k = 5. Let us check that this is consistent with the claim that

k = the number of distinct integers in the set {2imod (2k − 1) | i = 1, 2, . . . , k}.

2imod 31 = {1, 2, 4, 8, 16} (4.39)

As one would expect, there are five distinct integers in this set.

Before computing the derivatives of χ and ψ all points of the form a
31

, let us iden-

tify some of the different conjugacy classes. In doing so, we are looking for operators

W which have the same determinant and trace. The preceding analysis showed that

points with numerators congruent to 2imod 31 are in the same conjugacy class as



50

W = AAAAB and that their operators are cyclic permutations of the letters in W :

1

31
= AAAAB (4.40)

2

31
= AAABA (4.41)

4

31
= AABAA (4.42)

8

31
= ABAAA (4.43)

16

31
= BAAAA (4.44)

We have not exhausted all possible numerators a such that a
31

remains in lowest

terms. Since ϕ(31) = 30, there are 30 such points22 and the length of each of the

words which fix each of these points is also 5. By (4.31), all operators of length k = 5

have the same determinant, so it is enough to group these operators by trace. Such

words could consist of 1 A and 4 Bs, 2 As and 3 Bs, 3 As and 2 Bs or 4 As and 1

B. Table23 4.19 below gives all possibilities of words of length 5 in two letters A and

B. We know a priori that words which are cyclic permutations of each other will be

in the same conjugacy class, so we do not need to enumerate them separately. The

eigenvalues and derivatives found in the table were computed using the procedure

discussed in the previous section.

22ϕ(n), also known as Euler’s Totient Function is defined as the number of positive integers rela-

tively prime to an integer n. ϕ(n) can be computed using the formula ϕ(n) = n
∏

p|n

(

1 − 1
p

)

with

the product ranging over the distinct primes pr which divide n.
23A more detailed table can be found in Appendix C.
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Table 4.19. Conjugacy Classes of Words of Length 5

Word Numerator µ+
W µ−

W χ′ and ψ′

σn(AAAAB) 2i mod 31 1.2494 0.0204 ∞

= 1, 2, 4, 8, 16

σn(AAABB) 3 · 2i mod 31 0.8719 0.0292 0

= 3, 6, 12, 24, 17

σn(AABAB) 5 · 2i mod 31 0.7440 0.0342 0

= 5, 10, 20, 9, 18

σn(AABBB) 7 · 2i mod 31 0.8719 0.0292 0

= 7, 14, 28, 25, 19

σn(BBABA) 11 · 2i mod 31 0.7440 0.0342 0

= 11, 13, 21, 22, 26

σn(BBBBA) 15 · 2i mod 31 1.2494 0.0204 ∞

= 15, 30, 29, 27, 23

Notice that the derivatives at all points having denominator 31 are not equal.

This is because all possible operators of length 5 do not have the same trace. Also

note that one can construct more precise conjugacy classes than just those consisting

of matrix products which are cyclic permutations of each other. Three of the con-

jugacy classes in Table 4.19 can be combined because their corresponding operators

have equal eigenvalues. This observation motivates the following lemma.

Lemma 4.20. The words W = Ar1Bm1Ar2Bm2 ...AriBmj and W c = Br1Am1Br2Am2 ...BriAmj

are in the same conjugacy class. Moreover, if W fixes the rational nondyadic point

t ∈ [0, 1] then W c fixes the point 1− t. We say that W c is the binary two’s comple-

ment of W .
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Proof. Since W and W c have the same length and therefore determinant, all that

must be shown is that they have the same trace. Begin by writing A =






L ~vA

~0T 1






and B =






R ~vB

~0T 1




, where L =






1
5

0

0 3
5




 and R =






1
2

3
10

1
10

3
10




. Then

An =






L ~vA

~0T 1






n

=






Ln
∑n−1

k=0 L
k~vA

~0T 1






and

Bm =






R ~vB

~0T 1






m

=






Rm
∑m−1

k=0 B
k~vB

~0T 1






Showing that tr(AnBm) = tr(BnAm) therefore amounts to showing that tr(LnRm) =

tr(RnLm). Note that L and R have the same trace of 4
5

and the same eigenvalues,

namely 1
5

and 3
5
. L is diagonal; since R has distinct eigenvalues, it is diagonaliz-

able. Let S be the matrix whose columns are the eigenvectors of R. Computing

these eigenvectors, one finds that S =






−1 3

1 1




 and S−1 = 1

4
S. Diagonalizing,
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R = SLS−1 = S−1LS. Now,

tr(W ) − 1 = tr(Lr1Rm1Lr2Rm2 . . . LriRmj) (4.45)

= tr(Lr1(SLm1S−1)Lr2(SLm2S−1) . . . Lri(SLmjS−1)) (4.46)

= tr((S−1Lr1S)Lm1(S−1Lr2S)Lm2 . . . (S−1LriS)Lmj) (4.47)

= tr((SLr1S−1)Lm1(SLr2S−1)Lm2 . . . (SLriS−1)Lmj)) (4.48)

= tr(Rr1Lm1Rr2 . . . RmiLrj) (4.49)

= tr(W c) − 1 (4.50)

The third step is justified by the cyclic property of the trace.

To prove the second part of the claim, we use the fact thatW = Ar1Bm1Ar2Bm2 ...AriBmj

implies that the binary period of t ∈ [0, 1] fixed by w ∈ G is

(0. 00 . . . 0
︸ ︷︷ ︸

r1 times

11 . . . 1
︸ ︷︷ ︸

m1 times

00 . . . 0
︸ ︷︷ ︸

r2 times

. . . 11 . . . 1
︸ ︷︷ ︸

mj times

)2. By the properties of binary numbers, the

two’s complement of t, or −t, is (0. 11 . . . 1
︸ ︷︷ ︸

r1 times

00 . . . 0
︸ ︷︷ ︸

m1 times

11 . . . 1
︸ ︷︷ ︸

r2 times

. . . 00 . . . 0
︸ ︷︷ ︸

mj times

)2. Now, trans-

lating binary subtraction to binary addition, we have that (1− t)2 = (1 + (−t))2 =

(0. 11 . . . 1
︸ ︷︷ ︸

r1 times

00 . . . 0
︸ ︷︷ ︸

m1 times

11 . . . 1
︸ ︷︷ ︸

r2 times

. . . 00 . . . 0
︸ ︷︷ ︸

mj times

)2. The corresponding word is

W c = Br1Am1Br2Am2 ...BriAmj .

By Lemma 4.20, given a word W of length k, the conjugacy class of W consists

of all cyclic permutations of W and all cyclic permutations of its two’s complement.

This is a very important conclusion because it enables us to finally link the derivatives

of all four basic functions.

Theorem 4.21. For all rational nondyadic t ∈ [0, 1], φ′(t) = ψ′(t) and ξ′(t) = χ′(t).

Proof. Recall that φ(t) = 1 − ψ(1 − t) and ξ(t) = 1 − χ(1 − t). By symmetry, the

behavior of χ at 1 − t is the same as the behavior of ξ at t. The same is true for ψ
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and φ. Thus, ξ′(t) = χ′(1− t) and φ′(t) = ψ′(1− t). Since the words which fix t and

1 − t are in the same conjugacy class, χ′(1 − t) = χ′(t) and ψ′(1 − t) = ψ′(t). The

conclusion follows immediately.

In Example 4.18, we had that the points 1
31

, 2
31

, 4
31

, 8
31

and 16
31

are in the same

conjugacy class as 15
31

= 1− 16
31

, 23
31

= 1− 8
31

, 27
31

= 1− 4
31

, 29
31

= 1− 2
31

and 30
31

= 1− 1
31

and that χ′ = ψ′ = ∞ at all these points. The symmetry in the conjugacy classes

combined with the symmetry of the basic functions enables us to conclude that ψ ′

and ξ′ are also ∞ at every single one of these points.

We summarize the results of this subsection in the following theorem.

Theorem 4.22 (Classification of Derivatives at Dyadic Points: Part II). Suppose

W and Wi are in the same conjugacy class and W fixes t = p
q
, where q is odd and

gcd(p, q) = 1. Suppose W c fixes ti ∈ [0, 1]. Then

(i) Wi = σn(W ) and ti ≡ 2imod q or Wi is the binary two’s complement of W

(i.e., if W = Ar1Bm1Ar2Bm2 ...AriBmj , then W c = Br1Am1Br2Am2 ...BriAmj)

and ti = 1 − t.

(ii) χ′(t) = χ′(ti) = ξ′(t) = ξ′(ti) and ψ′(t) = ψ′(ti) = φ′(t) = φ′(ti).

Proof. (i) follows from Lemmas 4.16 and 4.20. (ii) is a restatement of Theorem 4.21

coupled with Theorem 4.12, which states that χ′(t) = ψ′(t) for all rational nondyadic

points t.

We knew from the results of the previous section that, by symmetry, the deriva-

tives of ψ and ξ are either 0 or ∞ since these are the only possibilities for χ′ and ψ′.

We also showed that χ′ and ψ′ are jointly 0 or jointly ∞ at any rational nondyadic
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point. Since any nondyadic rational t and its binary two’s complement 1−t have op-

erators which are in the same conjugacy class, it follows that all four basic functions

have the same derivative at any rational nondyadic point.

Several tables summarizing these results for operators of length ≤ 6 can be found

in Appendix C. Computing the traces of the operators W would enable one to fully

classify the derivatives of the basic functions at all rational nondyadic points.

5 Conclusions and Conjectures

The analysis of the preceding two sections prompts some interesting open ques-

tions, which we formulate here.

The first of these is whether it is possible to identify some pattern in the deriva-

tives of the basic functions. While our procedure makes possible the complete clas-

sification of the derivatives of the basic functions at all rational points, it involves

multiplying together arbitrarily many matrices, a task we would like to avoid if at

all possible. Examining the tables in Appendix C more closely, one sees that words

containing more than twice as many As than Bs or vice versa seem to correspond to

points with ∞ derivative and those having more or less the same number of As and

Bs seem to correspond to points with 0 derivative. The greater the trace, the more

likely the derivatives are ∞, so it may be possible to identify which combinations

of A and B give a small enough trace for the derivatives at the corresponding point

to be 0 and vice versa. Since the trace of an operator W depends not only on the

number of As and Bs but also their arrangement, one can use 2-ary necklaces24 to

24In the technical combinatorial sense, an a-ary necklace of length n is a string of n charac-
ters, each of a possible types. Rotation is ignored, in the sense that b1b2 . . . bn is equivalent to
bkbk+1 . . . bnb1b2 . . . bk−1 for any k.
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associate a combinatorical picture to each conjugacy class (see Figure 10 and Ap-

pendix C). The location of black and white beads on each necklace may serve as a

guideline for determining whether an operator corresponds to a point having 0 or

∞ derivative.

Figure 10: 2-ary Necklaces of Lengths 1-4

Another possible approach is to compute the average traces and eigenvalues of

the operators in all conjugacy classes of length k and use this information to try to

guess which words have 0 and which have ∞ derivative. Notice that (A+B)k is the

sum of all words in A and B of length k, e.g., (A + B)2 = A2 + AB + BA + B2 =

2 · CC(A2) + 2 · CC(AB), (A + B)3 = A3 + ABA + BAA + B2A + A2B + AB2 +

BAB+B3 = 2 ·CC(A3)+6 ·CC(AAB) and so on. Recalling that τ = 2k(tr(W )−1),

we have the following expressions

∑

Conjugacy Classes
of length k

tr(W ) = tr((A+B)k) (5.1)

and
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∑

Conjugacy Classes
of length k

τ = 2k







∑

Conjugacy Classes
of length k

tr(W ) − 2k







(5.2)

= 2k
(
tr((A+B)k) − 2k

)
(5.3)

Since there are 2k possible arrangements of k letters, the average trace of a class

of operators having length k is τ k = tr((A + B)k) − 2k. It was shown in (4.31)

that all operators of length k have the same determinant ∆ = ( 12
25

)k, so the average

eigenvalues are given by µ±
W =

τ±
√
τ2−4( 12

25
)k

2
. One should note that an expansion of

(A+B)k contains conjugacy classes that would have been considered redundant in

our prior analysis. Obviously, if k is the period of a word, so is n · k for any positive

integer n. Although (A+B)2 = A2 +AB +BA+B2, the trace of A2 is not needed

to compute the derivatives of the basic functions at the corresponding point since A

and A2, not to mention A3, A4 and so on, fix the same points.

The average class traces enable one to compute the average eigenvalues for all

operators of length k, so they tell us whether the average value of f
′±
W (t) per conju-

gacy class is 0 or ∞. This gives us an idea of where the breakdown between words

corresponding to 0 derivatives and words corresponding to ∞ derivative occurs. For

example, take k = 4. Then (A + B)4 = 2
(
4
0

)
· CC(A4) + 2

(
4
1

)
· CC(A3B) + 4 ·

CC(A2B2) + 2 · CC((AB)2) after the operators are grouped into their respective

conjugacy classes. The coefficients 4 and 2 are the number of unique words which

are cyclic permutations of A2B2 and (AB)2 respectively and the sum of these coeffi-

cients is
(
4
2

)
. One knows the first two of these are likely to have correspond to points

having ∞ derivative because one letter “overpowers” the other (i.e., there are more

As than Bs or vice versa). Using τ 4, given in Appendix C, one finds that the aver-
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age value of f
′+
W (t) is ∞. There are 10 conjugacy classes having more of one letter

than another and only 6 having the same number of letters, so one might guess that

the breakdown occurs after this second conjugacy class, which is indeed the case.

Of course, to test this guideline, one would need to compute the derivatives and

average class traces of many more operators as well as look at their corresponding

necklaces. The average class traces and the 2-ary necklaces for the conjugacy classes

of operators of short length (k ≤ 4) can be found in Table 6.7 of Appendix C.

While the operators W have been classified, one has yet to find a shortcut for

determining if an operator of arbitrary length k corresponds to a point having 0 or

∞ derivative without actually computing the necessary matrix.

Another open problem worth noting is the task of computing the derivatives of

the basic functions at irrational points. The procedure discussed in this thesis relied

on the fact that rational nondyadic points have periodic binary expansions, which

made possible the construction of the difference equation (4.23). But irrationals have

infinite aperiodic binary expansions so some alternate procedure needs to be devised.

At first glance, one may conjecture that these derivatives are also 0 or ∞, as that

seems to be the trend. However, we know from real analysis that all basic functions,

being monotone, have nonzero finite derivative almost everywhere, so there must be

some irrational points at which the derivatives of the basic functions exist and are

neither 0 nor ∞. Moreover, this set of points cannot be one having measure zero.

Our earlier analysis showed that χ, φ, ψ and ξ are examples of continuous monotone

functions with vanishing derivative on a dense set and infinite derivative on another

dense set. It may be that they take on finite nonzero values on some dense set in

R − Q. Since little more is known about the local behavior of the basic functions

at the irrationals, the stated question remains an unsolved problem of unknown
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difficulty.
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6 Appendix

6.1 Appendix A: Values of the Basic Functions

Table 6.1. Some Values of the Basic Functions at Rational Points

0 1
15

2
15

1
5

4
15

1
3

2
5

7
15

χ(t) 0 706
363831

3530
363831

4
179

17650
363831

2
27

20
179

57706
363831

φ(t) 0 1967
27987

2305
19149

29
179

78875
363831

7
27

55
179

130331
363831

ψ(t) 0 16812
121277

28020
121277

54
179

46700
121277

4
9

90
179

5204
9329

ξ(t) 0 75301
363831

124325
363831

79
179

201325
363831

17
27

125
179

275581
363831

6.2 Appendix B: Derivatives of the Basic Functions

Procedure for Computing the Derivatives of the Basic Functions at Ra-

tional Nondyadic Points:

Given any t = p
q
∈ [0, 1] ∩ (Q − Z〈2〉), where q is odd and gcd(p, q) = 1, we can

apply the following procedure to compute the derivatives of the four basic functions

at that point.

1. Find the binary expansion of t and determine its period k.

2. Write the word w which fixes t by converting each 0 in the binary expansion to

an α and each 1 to a β.

3. Compute the corresponding operator W and find its trace and determinant. Then

use (4.33) to solve for µ±
W .

4. Compare µ±
W to 1 as follows to determine the derivatives:

• If µ±
W < 1, then χ′(t) = φ′(t) = ψ′(t) = ξ′(t) = 0.
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• If µ−
W < 1 but µ+

W > 1, then χ′(t) = φ′(t) = ψ′(t) = ξ′(t) = ∞

Table 6.2. Derivatives at the Points t = m
63

, m ∈ Z

1
63

2
63

3
63

4
63

5
63

6
63

7
63

8
63

9
63

10
63

11
63

12
63

13
63

14
63

15
63

16
63

Derivatives ∞ ∞ ∞ ∞ 0 ∞ 0 ∞ 0 0 0 ∞ 0 0 ∞ ∞

17
63

18
63

19
63

20
63

21
63

22
63

23
63

24
63

25
63

26
63

27
63

28
63

29
63

30
63

31
63

32
63

0 0 0 0 0 0 0 ∞ 0 0 0 0 0 ∞ ∞ ∞
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6.3 Appendix C: Conjugacy Classes of Operators W

Table 6.3. Conjugacy Classes of Operators25 W , k ≤ 4

Class t k [Wq] τ ∆ µ±
W Derivatives

A 0, 1 1 2 8
5

12
25

0.4000 χ′(0) = ξ′(1) = 0

1.2000 φ′(0) = ψ′(0) = ξ′(0) = ∞

χ′(1) = φ′(1) = ψ′(1) = ∞

A2 0, 1 2 2 8
5

(12
25

)2 0.1600 0 or ∞

1.4400

AB 1
3
, 2

3
2 2 28

25
(12

25
)2 0.2716 0

0.8484

A3 0, 1 3 2 224
125

(12
25

)3 0.0640 0 or ∞

1.4400

A2B 1
7
, 2

7
, 3

7
, 3 6 128

125
(12

25
)3 0.1227 0

4
7
, 5

7
, 6

7
0.9013

A4 0, 1 4 2 1312
625

(12
25

)4 0.0256 0 or ∞

2.074

A3B 1
15
, 2

15
, 4

15
, 7

15
, 4 8 688

625
(12

25
)4 0.0505 ∞

8
15
, 11

15
, 13

15
, 14

15
1.0503

A2B2 3
15
, 6

15
, 12

15
, 9

15
4 4 544

625
(12

25
)4 0.0660 0

0.8044

(AB)2 1
3
, 2

3
4 2 496

625
(12

25
)4 0.0737 0 or ∞

2.074

25[Wq] denotes the class size of a word w ∈ G which fixes t = p
q

where q is odd and gcd(p, q) = 1.

In other words, [Wq] is the number of matrices having the same τ , ∆ and length k. “0 or ∞” is
our shorthand notation for χ′(0) = ξ′(1) = 0, φ′(0) = ψ′(0) = ξ′(0) = χ′(1) = φ′(1) = ψ′(1) = ∞.
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Table 6.4. Conjugacy Classes of Operators W , k = 5

Class t k [Wq] τ ∆ µ±
W Derivatives

A5 0, 1 5 2 7808
3125

(12
25

)5 0.0102 0 or ∞

2.4883

A4B 1
31
, 2

31
, 4

31
, 8

31
, 15

31
, 5 10 3968

3125
(12

25
)5 0.0204 ∞

16
31
, 23

31
, 27

31
, 29

31
, 30

31
1.2494

A3B2 3
31
, 6

31
, 7

31
, 12

31
, 14

31
, 5 10 2816

3125
(12

25
)5 0.0292 0

17
31
, 19

31
, 24

31
, 25

31
, 28

31
0.8719

A2BAB 5
31
, 9

31
, 10

31
, 11

31
, 13

31
, 5 10 2432

3125
(12

25
)5 0.0342 0

18
31
, 20

31
, 21

31
, 22

31
, 26

31
0.7440
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Table 6.5. Conjugacy Classes of Operators W , k = 6

Class t k [Wq] τ ∆ µ±
W Derivatives

A6 0, 1 6 2 9344
3125

(12
25

)6 0.0041 0 or ∞

2.9860

A5B 1
63
, 2

63
, 4

63
, 8

63
, 16

63
, 31

63
, 6 12 23488

15625
(12

25
)6 0.0082 ∞

32
63
, 47

63
, 55

63
, 59

63
, 61

63
, 62

63
1.4951

A4B2 3
63
, 6

63
, 12

63
, 15

63
, 24

63
, 30

63
, 6 12 128

125
(12

25
)6 0.0121 ∞

33
63
, 39

63
, 48

63
, 51

63
, 57

63
, 60

63
1.0119

A3B3 7
63
, 14

63
, 28

63
, 35

63
, 49

63
, 56

63
, 6 6 14272

15625
(12

25
)6 0.0136 0

0.8998

A3BAB 5
63
, 10

63
, 17

63
, 20

63
, 23

63
, 29

63
, 6 12 13504

15625
(12

25
)6 0.0143 0

34
63
, 40

63
, 43

63
, 46

63
, 53

63
, 58

63
0.8499

A2BAB2 11
63
, 13

63
, 19

63
, 22

63
, 25

63
, 26

63
, 6 12 448

625
(12

25
)6 0.0175 0

37
63
, 38

63
, 41

63
, 44

63
, 50

63
, 52

63
0.6993

(A2B)2 9
63
, 18

63
, 27

63
, 36

63
, 45

63
, 54

63
, 6 6 12928

15625
(12

25
)6 0.0151 0

0.8123

(AB)2 21
63
, 42

63
6 2 9856

15625
(12

25
)6 0.0200 0

0.6108
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Table 6.6. Derivatives of f±
W (t) by Conjugacy Class

Word t k µ±
W f

′±
W (t)

AB 1
3
, 2

3
2 14±2

√
13

25
χ′(t) + 2±

√
13

3
ψ′(t)

A2B 1
7
, 2

7
, 3

7
, 3 64±8

√
37

125
χ′(t) + 11±2

√
37

9
ψ′(t)

4
7
, 5

7
, 6

7

A3B 1
15
, 2

15
, 4

15
, 7

15
, 4 344±40

√
61

625
χ′(t) + 38±5

√
61

27
ψ′(t)

8
15
, 11

15
, 13

15
, 14

15

A2B2 3
15
, 6

15
, 12

15
, 9

15
4 272±64

√
13

625
χ′(t) + 5±2

√
13

9
ψ′(t)

A4B 1
31
, 2

31
, 4

31
, 8

31
, 15

31
, 5 1984±32

√
3601

3125
χ′(t) + 119±2

√
3601

81
ψ′(t)

16
31
, 23

31
, 27

31
, 29

31
, 30

31

A3B2 3
31
, 6

31
, 7

31
, 12

31
, 14

31
, 5 1408±32

√
1693

3125
χ′(t) + 37±

√
1693

54
ψ′(t)

17
31
, 19

31
, 24

31
, 25

31
, 28

31

A2BAB 5
31
, 9

31
, 10

31
, 11

31
, 13

31
, 5 1216±32

√
1201

3125
χ′(t) + 59±2

√
1201

63
ψ′(t)

18
31
, 20

31
, 21

31
, 22

31
, 26

31

A5B 1
63
, 2

63
, 4

63
, 8

63
, 16

63
, 31

63
, 6 11744±32

√
131773

15625
χ′(t) + 362±

√
131773

243
ψ′(t)

32
63
, 47

63
, 55

63
, 59

63
, 61

63
, 62

63

A4B2 3
63
, 6

63
, 12

63
, 15

63
, 24

63
, 30

63
, 6 64

125
± 1792

√
19

15625
χ′(t) + 59±14

√
19

81
ψ′(t)

33
63
, 39

63
, 48

63
, 51

63
, 57

63
, 60

63

A3B3 7
63
, 14

63
, 28

63
, 35

63
, 49

63
, 56

63
, 6 7136±416

√
277

15625
χ′(t) + 14±

√
277

27
ψ′(t)

A3BAB 5
63
, 10

63
, 17

63
, 20

63
, 23

63
, 29

63
, 6 6752±32

√
41605

15625
χ′(t) + 194±

√
41605

189
ψ′(t)

34
63
, 40

63
, 43

63
, 46

63
, 53

63
, 58

63

A2BAB2 11
63
, 13

63
, 19

63
, 22

63
, 25

63
, 26

63
, 6 224

625
± 352

√
229

15625
χ′(t) + 122±11

√
229

225
ψ′(t)

37
63
, 38

63
, 41

63
, 44

63
, 50

63
, 52

63
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Table 6.7. Average Class Traces τ k and 2-ary Necklaces

Necklace Class t τ Derivative

Class Size = 1 τ 1 = 8
5

A 0, 1 8
5

0 or ∞
Class Size = 2 τ 2 = 34

25

A2 0, 1 8
5

0 or ∞

AB 1
3
, 2

3
28
25

0

Class Size = 3 τ 3 = 152
125

A3 0, 1 224
125

0 or ∞

A2B 1
7
, 2

7
, 3

7
, 4

7
, 5

7
, 6

7
128
125

0
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Necklace Class t τ Derivative

Class Size = 4 τ 4 = 706
625

A4 0, 1 1312
625

0 or ∞

A3B 1
15
, 2

15
, 4

15
, 7

15
, 8

15
, 11

15
, 13

15
, 14

15
688
625

∞

A2B2 3
15
, 6

15
, 12

15
, 9

15
544
625

0

(AB)2 5
15
, 10

15
496
625

0
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