An Update on the Albany/FELIX FirstOrder Stokes Finite Element Solver \& Its Coupling to Land Ice Dycores

Irina Kalashnikova, Andy Salinger, Mauro Perego, Ray Tuminaro, Steve Price

In collaboration with Matt Hoffman, Doug Ranken, Kate Evans, Pat Worley, Matt Norman, Mike Eldred, John Jakeman and Irina Demeshko.

Sandia National Laboratories*

CESM Annual Workshop
Wednesday, June 18, 2014
The Village at Breckenridge
Breckenridge, Colorado
*Sandia is a multiprogram laboratory operated by Sandia corporation, a Lockheed Martin
Sandia

PISCEES Project \& the Albany/FELIX First-Order Stokes Dycore

To develop and support a robust and scalable unstructured grid finite element land ice dycore based on the "first-order" (FO) Stokes physics \rightarrow Albany/FELIX dycore

- Finite element method.
- Parallel, unstructured grid with partitioning.
- Automatic differentiation for (exact) Jacobians.
- Globalized Newton's method nonlinear solver.
- Preconditioned (ILU or algebraic multigrid) iterative Krylov linear solvers.
- Performance-portable kernels to run on new architecture machines / GPUs (in progress).
- Analysis tools: UQ, sensitivity analysis, optimization.
- Software tools: git / cmake / ctest / jenkins.

Code Verification and Performance

- Implementation of PDEs + BCs (no-slip, stress-free, basal sliding, open-ocean) has been verified through MMS tests (right) and code-to-code comparisons (confined-shelf, below).

Dycore Interfaces and Meshes

We support several full mesh/data (geometry, topography, surface height, basal traction, temperature, etc.) import methods: *.exo, ASCII (stand-alone Albany), *.nc (Dycore-Albany);

Steady Runs Using Dycore Interfaces

Regional Refinement (work-inprogress using MPAS LI)

Unstructured Delaunay triangle mesh

|reference surface velocity| [m/yr]

- Step 1: determine geometry boundaries and possible holes (MATLAB).
- Step 2: generate uniform triangular mesh and refine based on gradient of measured surface velocity (Triangle -a 2D meshing software).

Courtesy of:
M. Perego (SNL)

- Step 3: obtain 3D mesh by extruding the 2D mesh in the vertical direction as prism, then splitting each prism into 3 tetrahedra (Albany).

Dynamic Runs Using Dycore Interfaces (work-in-progress)

Courtesy of: P. Worley (ORNL)

Strong Scalability: 100 year 4 km GIS run

MPAS LI-
Albany
Surface velocity [km/yr]

$t=0$
$t=13$

- Preliminary (proof-of-concept, 5 km GIS) result up to $t=13$ years (CFL violated with $\Delta t=0.1$ years) .
- MPAS temperature solve is work-in-progress.

Greenland Mesh Convergence Study

Full 3D Mesh-Convergence Study

Are the GIS problems resolved? Is theoretical convergence rate achieved?

- Full 3D mesh convergence study (uniform refinement, fixed data w.r.t. reference solution) for GIS gives theoretical convergence rate of 2 in L^{2} norm.

z Mesh-Convergence Study

How many vertical layers are needed?

\# z layers/ \# cores	\# dofs	Total Time - Mesh Import	Solution Average	Error
$5 / 128$	21.0 M	519.4 sec	2.827	$3.17 \mathrm{e}-2$
$10 / 256$	38.5 M	525.4 sec	2.896	$8.04 \mathrm{e}-3$
$20 / 512$	73.5 M	499.8 sec	2.924	$2.01 \mathrm{e}-3$
$40 / 1024$	143 M	1282 sec	2.937	$4.96 \mathrm{e}-4$
$80 / 2048$	283 M	1294 sec	2.943	$1.20 \mathrm{e}-4$
$160 / 4096$	563 M	1727 sec	2.945	$2.76 \mathrm{e}-5$

- z mesh-convergence study for 1 km GIS.
- Important to do partition of 2D mesh for parallel refined mesh (center).
- QOI (solution average) does change with z-refinement.

Greenland Controlled Weak Scalability Study
 R. Tuminaro (SNL)

Weak Scalability: $8 \mathrm{~km}, 4 \mathrm{~km}, 2 \mathrm{~km}, 1 \mathrm{~km}, 500 \mathrm{~m}$ GIS

- Weak scaling study with fixed dataset, 4 mesh bisections.
- ~70-80K dofs/core.
- Conjugate Gradient (CG) iterative method for linear solves (faster convergence than GMRES).
- New algebraic multigrid preconditioner (ML) developed by R. Tuminaro based on semicoarsening (coarsening in z direction only).
- Significant improvement in scalability with new ML preconditioner over ILU preconditioner!

Greenland Controlled Weak Scalability Study
 In collaboration with:
 R. Tuminaro (SNL)

Deterministic Inversion: Estimation of Ice Sheet Initial State

First-Order Stokes PDE Constrained Optimization Problem:

$$
J(\beta, H)=\frac{1}{2} \alpha \int_{\Gamma}|\operatorname{div}(\boldsymbol{U} H)-S M B|^{2} d s+\frac{1}{2} \alpha_{v} \int_{\Gamma t o p}\left|\boldsymbol{u}-\boldsymbol{u}^{o b s}\right|^{2} d s+\frac{1}{2} \alpha_{H} \int_{\Gamma t o p}\left|H-H^{o b s}\right|^{2} d s+\mathcal{R}(\beta)+\mathcal{R}(H)
$$

- Minimize difference between:
- Computed divergence flux and measured surface mass balance (SMB).
- Computed and measured surface velocity ($\boldsymbol{u}^{\text {obs }}$).
- Computed and reference thickness ($H^{\text {obs }}$).
- Control variables:
- Basal friction (β).
- Thickness (H).
- Software tools: LifeV (assembly), Trilinos (linear/nonlinear solvers), ROL (gradient-based optimization).

Courtesy of: M. Perego (SNL); S. Price (LANL);
G. Stadler (UT)

Estimated (left) vs. reference surface velocity (right)

Bayesian Inversion/Uncertainty Quantification (work-in-progress)

Difficulty in UQ: "Curse of Dimensionality"

 The β-field inversion problem has $O(20,000)$ dimensions!- Step 1: Model reduction (from $O(20,000)$ parameters to O(5) parameters) using Karhunen-Loeve Expansion (or eigenvectors of Hessian, in future) of basal sliding field:

$$
\log (\beta(\omega))=\bar{\beta}+\sum_{k=1}^{K} \sqrt{\lambda_{k}} \boldsymbol{\phi}_{k} \xi_{k}(\omega)
$$

- Step 2: Polynomial Chaos Expansion (PCE) emulator for mismatch over surface velocity discrepancy.

Posterior Distributions of 1st 2 KLE coefficients

- Step 3: Markov Chain Monte Carlo (MCMC) calibration using PCE emulator.
 With:
J. Jakeman, M. Eldred (SNL)

Conversion to PerformancePortable Kernels (work-in-progress)

We need to be able to run Albany/FELIX on new architecture machines (hybrid systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

- Kokkos: Trilinos C++ library that provides performance portability across diverse devises with different memory models.
- With Kokkos, you write an algorithm once, and just change a template parameter to get the optimal data layout for your hardware.
- Albany/FELIX finite element assembly has been converted to Kokkos functors in Albany/FELIX MiniDriver (I. Demeshko).

Albany/FELIX MiniDriver, 20 km GIS

Summary and Future Work

Summary:

- Albany/FELIX first-order Stokes dycore can be run on Greenland/Antarctica problems discretized by several kinds of meshes and is nearly ready for science.
- The Albany/FELIX dycore has been hooked up to the CISM and MPAS codes.
- Convergence, scalability and robustness of the Albany/FELIX code has been verified.

Verification, Greenland/Antarctica runs, scalability, robustness, UQ, advanced analysis, performance-portability: all attained in ~2 FTE of effort!

Ongoing/future work:

- Mature dynamic evolution capabilities.
- Perform deterministic and stochastic initialization runs.
- Finish conversion to performance-portable kernels.
- Journal article on Albany/FELIX (I. Kalashnikova, A. Salinger, M. Perego, R. Tuminaro, S. Price, M. Hoffman).
- Delivering code to users in climate community.
- Coupling to an earth system model (ESM).

Funding/Acknowledgements

Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) projects funded by the U.S. Department of Energy, Office of Science (OSCR), Advanced Scientific Computing Research and Biological and Environmental Research (BER) \rightarrow PISCEES SciDAC Application Partnership.

Sandia National Laboratories

National Laboratory

SciDAC
Scientific Discovery
through
Advanced Computing

PISCEES team members: W. Lipscomb, S. Price, M. Hoffman, A. Salinger, M. Perego, I. Kalashnikova, R. Tuminaro, P. Jones, K. Evans, P. Worley, M. Gunzburger, C. Jackson; Trilinos/Dakota collaborators: E. Phipps, M. Eldred, J. Jakeman, L. Swiler.

Thank you! Questions?

References

[1] M.A. Heroux et al. "An overview of the Trilinos project." ACM Trans. Math. Softw. 31(3) (2005).
[2] F. Pattyn et al. "Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM)". Cryosphere 2(2) 95-108 (2008).
[3] M. Perego, M. Gunzburger, J. Burkardt. "Parallel finite-element implementation for higherorder ice-sheet models". J. Glaciology 58(207) 76-88 (2012).
[4] J. Dukowicz, S.F. Price, W.H. Lipscomb. "Incorporating arbitrary basal topography in the variational formulation of ice-sheet models". J. Glaciology 57(203) 461-466 (2011).
[5] A.G. Salinger, E. T. Phipps, R.A. Bartlett, G.A. Hansen, I. Kalashnikova, J.T. Ostien, W. Sun, Q. Chen, A. Mota, R.A. Muller, E. Nielsen, X. Gao. "Albany: A Component-Based Partial Differential Equation Code Build on Trilinos", submitted to ACM. Trans. Math. Software.
[6] M. Hoffman, I. Kalashnikova, M. Perego, S. Price, A. Salinger, R. Tuminaro. "A New Parallel, Scalable and Robust Finite Element Higher-Order Stokes Ice Sheet Dycore Built for Advanced Analysis", in preparation for submission to The Cryosphere.

