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Abstract

We propose primal-dual mesh optimization algorithms that overcome shortcomings of the standard algorithm while
retaining some of its desirable features. “Hodge-Optimized Triangulations” defines the “HOT energy” as a bound
on the discretization error of the diagonalized Delaunay Hodge star operator. HOT energy is a natural choice for an
objective function, but unstable for both mathematical and algorithmic reasons: it has minima for collapsed edges,
and its extrapolation to non-regular triangulations is inaccurate and has unbounded minima. We propose a different
extrapolation with a stronger theoretical foundation, and avoid extrapolation by recalculating the objective just beyond
the flip threshold. We propose new objectives, based on normalizations of the HOT energy, with barriers to edge
collapses and other undesirable configurations. We propose mesh improvement algorithms coupling these. When
HOT optimization nearly collapses an edge, we actually collapse the edge. Otherwise, we use the barrier objective
to update positions and weights and remove vertices. By combining discrete connectivity changes with continuous
optimization, we more fully explore the space of possible meshes and obtain higher quality solutions.
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1. Introduction

“Primal-dual meshes” are distinguished by the sig-
nificance of the geometric relationship between pri-
mal elements and their dual Voronoi cells, and by the
quality of both types of elements being important at
the same time. A well-centered mesh has all trian-
gles containing their circumcenters [1]. Well-centered
Delaunay-Voronoi pairs are an attractive ideal. There
are some algorithms to construct them [2], but robust-
ness is elusive, especially for bounded domains. Allow-
ing points to be weighted extends (Delaunay mesh)—
(Voronoi diagram) duality to (regular triangulation)—
(power diagram) duality. Weights drastically affect
power cell shape, and can change primal mesh connec-
tivity. Weights represent additional degrees of freedom
beyond positions, dramatically extending the types of
constructions that are possible. [3]

The HOT (Hodge-Optimized Triangulations) energy
is a particular measure of weighted primal-dual quality.
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Mullen et al. [4] introduced the HOT energy as an up-
per bound on the discretization error of the diagonalized
Delaunay Hodge star operator from Discrete Exterior
Calculus (DEC) [5]. This operator enables simulations
involving primal and dual quantities, such as divergence
and curl, e.g. electromagnetism. For fluid flow, flux di-
vergence is stored on the primal edge, and vorticity curl
is stored on the dual perpendicular edge. The simula-
tion couples these quantities, and transfers energy be-
tween them. The quantities are typically stored at the
midpoint of each edge. If these midpoints are far apart,
the transfer introduces error.

A completely well-centered mesh requires all dimen-
sions of cells to be well-centered: e.g. edges contain
their (weighted) midpoints; and, in 3D, tetrahedra con-
tain their circumcenters. Since the beginning of DEC
it was known that a completely well-centered mesh
is sufficient, but perhaps not necessary, for a diago-
nal discretization of the Hodge star operator [5]. For
some meshes, it is not possible to adjust the node po-
sitions to achieve a well-centered mesh while main-
taining the original connectivity [1]. Introducing ver-
tex weights can sometimes produce a completely well-
centered mesh. However, even in 2D, for some fixed
positions and connectivities, no such weights exist. Op-
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timizing for well-centeredness is not the same as opti-
mizing for the diagonalized Hodge star or other opera-
tors. Lowering HOT energy also improves many geo-
metric processing algorithms in computer graphics [3],
some of which crossover to engineering, such as build-
ing self-supporting structures [6].

Mullen et al. [4] demonstrated using the HOT energy
as the objective function in mesh position and weight
optimization steps. Although the Hodge star operator
is undefined for non-regular meshes, the HOT energy
formula is continuously extrapolated whenever the opti-
mization algorithm destroys regularity. Edge flips peri-
odically restore regularity throughout the optimization.
They state the necessity of preconditioning the mesh,
optimizing the position before the weight, and treating
the boundary exceptionally. While these improve ro-
bustness, they may limit the range of final configura-
tions. They did not fully describe why these are needed.

1.1. Contribution

We study both the mathematics and algorithms for
primal-dual mesh quality. We focus on 2D planar
meshes and demonstrate

• why optimizing HOT is not robust;

• using the HOT energy to select discrete changes to
the mesh;

• new metrics that are simple, well-behaved under
optimization, and require no preconditioning;

• algorithms that combine these concepts.

HOT energy is a poorly behaved optimization objec-
tive for both mathematical and algorithmic reasons. We
describe the functional form and numerical features of
the HOT energy in detail. This illuminates why precon-
ditioning (as in Mullen et al. [4]) or extra length con-
straints (as in de Goes et al. [3]) were needed, and why
weight optimization is especially ill behaved and was
deferred to later iterations. In particular, HOT position
optimization can nearly collapse edges, moving nodes
very close to one another, and can even invert triangles,
depending on the extrapolation used. HOT weight opti-
mization of a node can have unbounded solutions, with
energy approaching negative infinity for large weights.
For a single vertex patch, HOT can be nonconvex with
multiple minima. These facts will help researchers de-
sign new metrics and algorithms, and we present several
of our own.

When HOT would nearly-collapse an edge, we ex-
plicitly collapse it. If removing a vertex would improve

our new metrics, we remove it. This works very well,
leading to higher quality meshes with smooth size tran-
sitions. We propose a different extrapolation to non-
regular meshes, which eliminates the unbounded solu-
tions for weight optimization. We may avoid extrap-
olation altogether, by bounding the position or weight
optimization step to just barely cause a flip, then restor-
ing regularity before continuing the optimization. We
show that this further improves stability. In some cases,
the flip threshold is a local optimum, and extrapolation
causes oscillations around it. Our new barrier metric
prevents collapsed edges and inverted triangles, keeps
orthocenters and edge midpoints centered, is invex and
scale invariant. It is simple, with only two terms, yet
captures the primal-dual geometry. Our pseudo-barrier
relaxation can handle an orthocenter that is outside its
triangle. We demonstrate an optimization framework
that combines vertex removal with position optimiza-
tion and weight optimization, and wraps these in an
outer loop that performs edge flips to restore regularity.

1.2. Prior Work
We identified some HOT shortcomings previously in

a technical report [7]. The HOT mathematical formu-
las had undesirable features, such as troughs that led
to inverted meshes and collapsed elements. Some of
these issues are fundamental, and some stemmed from
how HOT was extrapolated from regular meshes to
non-regular meshes. We proposed a new extrapolation
grounded in optimal transport theory. We considered in-
troducing barriers by normalizing HOT by the square of
the triangle area. While these helped, they did not pro-
vide barriers to all types of primal-dual degeneracies we
wish to avoid.

Two ad hoc smoothing operators are popular for
primal-dual meshes. Optimal Delaunay Triangulations
(ODT) [8] repositions primal vertices to the weighted
mean of adjacent triangle circumcenters. This can be
extended to weighted triangulations [9]. Centroidal
Voronoi Tessellations (CVT) [10] reposition vertices at
Voronoi cell centroids [11]; this can be sped up by di-
rectly minimizing a particular energy [12]. Räbinä [13]
uses mixed elements matched to the boundary via tet-
mesh HOT-based optimization.

Besides DEC, primal-dual meshes are impor-
tant for mimetic formulations [14] including finite-
differences/volumes [15, 9] and staggered discontinu-
ous Galerkin. In mimetic discretizations of fluid flow,
velocity is naturally associated with primal edges, while
vorticity and conserved scalar quantities are associated
with the dual grid. These discretely mimic continuum
conservation laws.



The community has moved away from directly opti-
mizing HOT and using the diagonal Hodge star, and has
developed alternative metrics and methods for particular
applications [9, 3, 16, 17, 18].

Engwirda [9] developed a system for primal-dual
meshing of ocean coasts for a mimetic climate simu-
lation. It achieves many of the same objectives we seek
in the Hodge context. He designs metrics based on dis-
tances between primal and dual points. He alternates be-
tween optimizing primal and dual metrics. His metrics
are unitless and scale invariant, an important improve-
ment over raw HOT. While the metrics themselves have
no barriers to triangle inversion, nor to a weighted edge-
center appearing outside its edge, his optimization pro-
cedure improves the worst quality at every step so such
defects are not introduced provided the original mesh
has none. Regularity is restored when nodes or weights
move too far. His system includes edge collapses and
splitting.

For mimetics, the discretization becomes non-
interpolatory when adjacent primal and dual edges fail
to intersect. DEC formulations desire primal and dual
edges to intersect at their midpoints, and often a con-
straint is added to require the affine hull of the dual edge
to cross the interior of the primal edge [3].

In 2D regular triangulations, primal and dual edges
are always orthogonal. Using non-orthogonal primal
and dual edges with the diagonal Hodge star introduces
error. However, one could include orthogonality as an
optimization objective instead of a constraint.

An active research topic is finding alternative Hodge
operators with good numerical properties. The compet-
ing goals include efficient computation, accurate com-
putation, and indifference to mesh quality. That is, in
principle, numerical issues can be addressed by chang-
ing the operator, changing the mesh, or some combina-
tion of the two. Many recent proposals do not depend on
orthogonality, with dual vertices at element centroids,
incenters, or other locations.

El Ouafdi et al. [16] proposes an operator that relaxes
the orthogonality condition and instead adapts the op-
erator to the angle between the primal and dual edge.
It replaces the simplex circumcenter by a point that is
guaranteed to lie inside the simplex, computed by solv-
ing an optimization problem. No mesh modification is
needed.

Ayoub et al. [17] proposes a non-diagonal, non-
symmetric discrete Hodge operator that allows dual ver-
tices to be anywhere, typically at barycenters or incen-
ters, as long as dual elements are not degenerate. The
primal mesh is not modified. They conclude that the di-
agonal Hodge does not always give the most accurate
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Figure 1: Distances in a triangle and its dual.

results even when the mesh is well-centered.
Mohamed et al. [18] compare different Hodge star

operators, such as the Galerkin Hodge, using different
types of dual point positions such as barycenters.

2. Notation and Definitions

2.1. Triangle Geometry

We consider the regular triangulation (a.k.a.
weighted Delaunay triangulation) T of a set of
weighted points P = {pi}. Here σ denotes a sim-
plex: σi = pi is a vertex, σi j = pi p j an edge, and
σi jk = △(pi, p j, pk) a triangle. Recall the weighted
distance D(p, x) from weighted point p to unweighted
point x is defined by

D2(pi, x) = |pi − x|2 − wi,

where |pi − x| is Euclidean distance and wi is the weight
of pi. A weight could be positive or negative, and has
units of distance-squared. Unless we explicitly state
that a distance is a weighted distance, we mean the Eu-
clidean distance. Triangleσi jk has an orthocenter (a.k.a.
weighted circumcenter) o, whose weighted distance to
each of the p are identical. The weighted midpoint of
edge σi j is mi j, and is the closest point to o on the affine
hull of edge i j, aff(σi j). See fig. 1.

Closed formulas for o and other quantities are easily
computed. The Euclidean distance from o to aff(σi j)
is |hk |, where hk > 0 if o and pk are on the same side
of edge σi j. Here mi j is at signed distance di j from pi

towards p j, with wi j = wi − w j and

di j =
ℓi j

2
+

wi j

2ℓi j

with ℓi j = |σi j|. Since di j + d ji = |σi j|, at most one of
di j and d ji can be negative. Thus, points with positive
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Figure 2: An unweighted obtuse triangle has one h < 0, because the
circumcenter lies outside it. An unweighted triangle has all d > 0. In
a weighted triangle, we can have some d < 0 even if all h > 0. We
can have both a d < 0 and an h < 0. For three non-colinear points,
one can place the orthocenter anywhere in the plane and find weights
which realize it.

weight have larger power cells and “push” the midpoint
and orthocenter farther away. See fig. 2.

The power diagram (a.k.a weighted Voronoi diagram)
is the dual of the triangulation. For triangles σi jk and
σ jiℓ, edge σi j has dual edge ∗σi j = oi jko jiℓ with length
hk+hℓ. If the dual length is negative, i.e. the circumcen-
ters are out-of-order, then the triangulation is not regular
and the primal edge needs to be flipped to restore regu-
larity. (A triangulation may have all positive dual-length
edges and still be non-regular, e.g. it may have inside-
out triangles with reversed orientation, and overlapping
triangles.)

2.2. HOT Energy

Mullen et al. [4] defines the HOT energy function of
a regular meshM. For s = 0, 1, 2, . . .D,

⋆sHOTp,p(M) =
∑
σ∈Σs

| ∗ σ||σ|Wp(µσ, µ∗σ)p (1)

where D is the dimension of the mesh and Σs are the
s-dimensional simplices {σ}, and {∗σ} their (D − s)-
dimensional duals. Herein we exclusively consider D =
2. Here | · | is measure: area for 2-cells, length for 1-
cells, and constant 1 for points. Also µ is the probability
measure (uniform distribution) over σ. Note Wp is the
p-Wasserstein distance between a cell and its dual, the
optimal cost of transporting σ to ∗σ. Thus the energy is
less when a cell is near its dual, such as primal and dual
edges crossing near their midpoints, or an orthocenter
lying at the centroid of its triangle, or a node lying at
the centroid of its power cell. We exclusively consider
p = 2, so drop its explicit mention.

The energy ⋆sHOT(M) gives an upper bound on
the error of the discrete diagonal approximation of the
Hodge star operator ⋆s. The operator ⋆s intakes a dif-
ferential s-form and outputs a (D − s) form. More pre-
cisely, given an s-form ω, for each s-cell inM, Discrete

Exterior Calculus (DEC) uses the approximation∫
∗σ

⋆s(ω) ≈
| ∗ σ|

|σ|

∫
σ

ω.

The energy ⋆sHOT(M) gives an upper bound on
the total approximation error, which is defined as a
weighted p-norm of the integral approximation errors,
with weights determined by the volumes of the cell and
its dual [4]. (Not to be confused with point weights.)
Equation (1) reduces to

⋆s/2HOT(i jk) = αsd3
i jhk + βsdi jh3

k , (2)

where the energy of each triangle σi jk is the sum of
⋆s/2HOT over all six permutations of i jk, and the en-
ergy of a triangulation is the sum of triangle energies.

All the ⋆s/2HOT have the same algebraic form, just
different coefficients for each s. For ⋆0 we have α0 =

1/4 and β0 = 1/12; next ⋆1 has α1 = β1 = 1/3; and
⋆2 has α2 = 1/12 and β2 = 1/4. Despite this seemingly
mild difference, these coefficients produce qualitatively
different energy curve shapes, with different numbers of
minima and different asymptotes.

Although one can compute the energy of a triangula-
tion by summing the terms in any order, the terms have a
different geometric interpretation depending on ⋆s. We
call ⋆1/2HOT(i jk) the half-edge energy.

⋆1HOT(i jk) = ⋆1/2HOT(i jk) + ⋆1/2HOT( jik)

is the edge energy of σi j with respect to triangle σi jk.
For an edge σi j in triangles σi jk and σ jil, the sum of the
two edge energies, ⋆1HOT(i jk) + ⋆1HOT( jiℓ), is the
metric for transporting the edge to its dual, which we
call the full edge energy. For ⋆2 for a triangle, sum-
ming all permutations of ⋆2/2HOT(i jk) is the metric for
transporting it to its orthocenter. For ⋆0 for a point i,
summing ⋆0/2HOT(i jk) over its incident triangles is the
metric for transporting its power cell to it. We focus
on ⋆1, the edge energy, because it is the least well be-
haved and thus our paper contributes the most towards
it. But all are important because there exist simulations
that use each type of ⋆s to store primal and dual simu-
lation quantities.

2.3. Quality Metrics

The literature [4] used E s
F = ⋆

sHOT directly as a
mesh optimization metric, where eq. (2) is applied even
when the mesh is not regular and dual edges have nega-
tive length. We call this functional extrapolation.



Mousley et al. [7] proposed an optimal-transport in-
spired theory extrapolation ET. Here ET = EF = ⋆HOT
when the mesh is regular, but modified to treat negative
dual lengths as positive:

E s
T = sgn(hk + hℓ) ⋆s HOT (3)

This ensures the full edge energy is always positive. In
this paper we test this approach. In our numerical exper-
iments the extrapolation is closer to the true energy after
flips restore regularity. These avoid spurious unbounded
solutions during the optimization.

For a bounded domain, there is a choice of how to
define the extent of the dual of a boundary edge σi j. We
define hℓ = 0 for the non-existent triangle σi jℓ outside
the boundary for all our energies. For ET, sgn(hk + hℓ)
reduces to sgn(hk) in eq. (3), and hk is replaced by |hk |

in eq. (2).

We propose E∂T which uses EF for interior edges,
and ET for domain boundary edges. We explore E∂T
as a compromise, a minimal change to EF that removes
an undesirable boundary effect, but still allows negative
edge energies for internal edges.

We propose the following three metrics with barriers
to triangle inversion and edge collapses; see section 4
for details.

The hard barrier half energy EBH is inspired by nor-
malizing eq. (2) by the squared area of the correspond-
ing sub-triangle in fig. 5, specifically by d2

i jh
2
k . Addi-

tionally, to actually provide a barrier, one normalizing
di j term is replaced by

√
di jd ji. It requires hk > 0 and

di jd ji > 0.

E s/2
BH =

αd2
i j + βh

2
k

χi jhk
(4)

χi j =

√
di jd ji (5)

The shifted hard barrier half energy EBHs modifies
one normalizing h term to allow unweighted non-acute
triangles, where hk ≤ 0. We choose constant ho

k ≤ 0 so
hk > ho

k and still require di jd ji > 0.

E s/2
BHs =

αd2
i j + βh

2
k

χi j(hk − ho
k)

(6)

Note E s/2
BHs → ∞ as hk → ho. In contrast, we design

the pseudo barrier half energy EBP to become large, but
not infinite, as hk decreases. We choose a constant γ,

require di jd ji > 0, but hk can be arbitrary.

E s/2
BP =

αd2
i j + βh

2
k

χi jϕk
(7)

ϕk =
1
2

(
hk +

√
h2

k + γ
2
)

(8)

2.4. Calculating Flip Threshold
We seek to calculate the limit of how much we can

change the position or weight of a vertex before the con-
nectivity of the regular triangulation changes. Triangle
σi jk exists if its power product with respect to any other
vertex pℓ is positive. The power product is the determi-
nant of the following matrix; see for example the Regu-
lar triangulation 2 section of the CGAL manual [19].

pwr(σi jk, pℓ) =

∣∣∣∣∣∣∣∣∣∣∣∣
1 xi yi vi

1 x j y j v j

1 xk yk vk

1 xℓ yℓ vℓ

∣∣∣∣∣∣∣∣∣∣∣∣ (9)

where vi = x2
i + y2

i − wi. Let pℓ be the patch vertex we
are optimizing. Expanding the determinant along the
bottom row, the power test is

−A + xℓB − yℓC + vℓD > 0, (10)

A =

∣∣∣∣∣∣∣∣
xi yi vi

x j y j v j

xk yk vk

∣∣∣∣∣∣∣∣ , B =

∣∣∣∣∣∣∣∣
1 yi vi

1 y j v j

1 yk vk

∣∣∣∣∣∣∣∣ ,
C =

∣∣∣∣∣∣∣∣
1 xi vi

1 x j v j

1 xk vk

∣∣∣∣∣∣∣∣ , D =

∣∣∣∣∣∣∣∣
1 xi yi

1 x j y j

1 xk yk

∣∣∣∣∣∣∣∣ .
A flip occurs when the determinant is zero. WLOG

let pℓ’s initial position be the origin and weight be zero.
When optimizing the weight, a flip occurs at

w = −A/D.

Only weight thresholds in the downhill direction are rel-
evant. E.g., if increasing w improves quality, then we
are searching for the optimal positive weight, and we do
not care about any negative weight thresholds.

When optimizing the position, we move in the direc-
tion of the gradient [x, y] parameterized by t. Therefore,
a flip occurs for t at the roots of

−A + t(xB − yC) + t2(x2 + y2)D,

which can be determined by the quadratic formula. One
root occurs when the gradient line is tangent to the or-
thocircle of σi jk, two when the line intersects the circle



twice, and zero when the line misses the circle. As with
weights, some of these roots may occur in the uphill di-
rection and be irrelevant.

When optimizing a patch center, we consider the
thresholds that cause each patch triangle to cease to ex-
ist. For each patch-triangle edge, we compute the power
with respect to the far vertex of the other triangle shar-
ing that edge. (Two of the other triangles are also patch
triangles; the third is immediately outside the patch, or
does not exist if the edge is on the domain boundary.)
The limit is the minimum-magnitude threshold over all
patch triangles.

3. HOT Shortcomings

HOT energy may be a stellar way of bounding the
discretization error, but using it as the objective in an
optimization algorithm has shortcomings, especially if
positions or weights change enough that the triangula-
tion is no longer regular.

• HOT optimization can collapse triangle edges.

• Extrapolating HOT to non-regular meshes is inac-
curate, and optima can be bad.

• Extrapolating to bounded domains takes care.

• HOT energy depends on scale.

HOT has no barrier to an edge collapse. Indeed, the
energy of a triangle approaches zero as its edge is col-
lapsed, a local minimum for ⋆1HOT. Collapsing is a
problem even if the optimization algorithm maintains
the initial regular triangulation. HOT for a non-regular
triangulation is an extrapolation because the Delaunay
Hodge star is only defined for regular triangulations.
After restoring regularity the energy may be quite dif-
ferent: increase or decrease. Worse, the extrapolation
may lead to nonsensical optimal configurations. HOT
depends on length to the fourth power, so the energy can
go down if a change makes the biggest element smaller,
even if all elements’ shapes gets worse.

We demonstrate these facts in the next subsections,
and show their effects on optimization in section 6.

3.1. No Barriers, Non-convex

3.1.1. Zero Energy for Collapsed Edges
Figure 3 plots the EF HOT energy for a triangle as

one of the vertices is moved. None of the points are
weighted. None of the HOT energies are convex. For
the ⋆1 energy E1

F the optimal triangle is not equilateral:
there is a saddle point for an obtuse isosceles triangle,

which is a local minima if we just vary y, but a local
max if we vary x. Moving the free vertex to either of
the other two vertices is a local minimum, with E1

F =

0. Otherwise, moving the free vertex towards the edge
increases the energy to infinity. The contour plot for ⋆2

is qualitatively similar to ⋆1’s. [7].
The⋆0 energy E0

F is also 0 for a collapsed edge. How-
ever, there is no saddle, and the energy increases with
increasing y coordinate. Worse, the energy is negative
for points close to y = 0, and collapsing the node into
the middle of the opposite edge is a local minimum.

What does it even mean to have negative energy? The
energy is defined in eq. (1) in terms of positive proba-
bility distributions and the positive cost of transporting
points positive distances. This presents a theoretical co-
nundrum, resolved by realizing this is an artifact of how
we have chosen to separate the energy into sub-terms
and how we deal with bounded domains. Recall the ⋆0

energy is the transport cost from Voronoi cells to nodes.
For EF we have not said how we are defining the ex-
tent of the Voronoi cells for the bounded domain of a
single triangle. In an unbounded mesh the sum of con-
tributions for the entire Voronoi cell around each node
would be positive. This resolves the immediate chal-
lenge, but sets up the numerical pitfalls of extrapolating
the HOT function to non-regular meshes and defining
the dual for the domain boundary.

E0
F E1

F

Figure 3: EF HOT contour plots for a triangle with a single free vertex,
and fixed vertices (-1,0) and (1,0), courtesy of Mousley et al. [7].

3.1.2. Unbounded Energy by Weight
Figure 4 shows EF as the weight of a vertex of a single

triangle is varied. For E1
F there is a desirable local min-

ima, but globally the energy is unbounded: E1
F → −∞ as

w → −∞. Triangles with other angles and side lengths
are qualitatively similar. The local minima is shallower
the larger the angle. (While we depict an isolated tri-
angle in fig. 4 center, it could be embedded in a regular
mesh with large nearby triangles, and that weight could
be a local minimum.)

E2
F is convex and not unbounded. At the local min-

imum, often the orthocenter is inside the triangle, but



the problem is we can have di j < 0 if the triangle has a
large angle; see fig. 4 top right, where the leftmost blue
perpendicular does not intersect the leftmost edge. (It
merely intersects the affine hull of the leftmost edge.)
If we simply constrain di j > 0, then the energy keeps
decreasing as di j → 0, which can have algorithmic con-
sequences.
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Figure 4: Bottom: EF energies for varying the weight of one vertex
in a triangle with side lengths 0.5 and 1. Top: △ at local min and
approaching global min.

3.2. Extrapolation to Non-Regular

If the triangulation is non-regular we have the theo-
retical challenge that the Delaunay Hodge star is not de-
fined, so any definition of HOT is an extrapolation. The
original HOT paper [4] uses EF extrapolation [via per-
sonal communication with the authors]. This presents
the numerical challenge that the energy could indeed be
negative; we cannot rely on positive terms cancelling
out negative terms.

For a single edge that should be flipped, the two ad-
jacent triangles’ orthocenters are in reverse order and
the dual edge has negative (hk + hℓ) length. Clearly, af-
ter flipping the edge, both the primal and dual replace-
ments will have non-negative length. The length of the
replacement is monotonic in the magnitude of the neg-
ative length, so we propose using Mousley et al.’s [7]
extrapolation ET that increases with increasing magni-
tude, which is eq. (3). This also makes sense for opti-
mal transport theory if we consider the negative-length
dual a proxy for its replacement after flipping. How-
ever, the extrapolation could be an over-estimate or an
under-estimate, depending on the shape of the triangles
and the weights of points, and we have no bounds on
its accuracy. This also does not resolve the issue that

the other edges of each triangle are using a “wrong” or-
thocenter and hence an extrapolated hk, nor the fact that
sometimes multiple non-local edge flips are needed to
restore regularity. It appears difficult to come up with
an accurate extrapolation short of actually restoring reg-
ularity and computing the true new energy.

One must also decide how to compute the energy
of inverted triangles, with reversed vertex orientation.
If they are treated the same as non-inverted triangles,
then the sum of triangle areas is greater than the do-
main, and HOT’s length-to-the-fourth-power scale de-
pendency tends to produce large energies, which dis-
courages inverted triangles during optimization. This is
what we have chosen to do in our implementation, but
have demonstrated cases where HOT optimization pro-
duces inverted triangles nonetheless; see section 6.5.2.
For weighted points, one must also decide how to ex-
trapolate energies for a “hidden vertex” that will have
no power cell and will not appear in the triangulation
after regularity is restored. We explore this issue in sec-
tion 6.6.2.

3.2.1. Energy on the Boundary
A domain-boundary edge has only one triangle,

which defines only one of its dual-edge vertices. We
recommend defining the other dual vertex to be the
edge’s weighted midpoint and using our theory-based
extrapolation. This is theoretically reasonable, and em-
inently practical. We simply use |hk | in the boundary-
edge terms. It improves quality over functional extrapo-
lation by discouraging large obtuse angles on the do-
main boundary; see section 6.5. One could also use
some other fixed fictitious orthocenter. Mullen et al.
mirrors the triangle [4].

3.2.2. Flips can Increase Energy
Many mesh quality metrics are globally non-convex

without serious consequences. However, we note that
because of the imperfect extrapolation, the energy can
go up when we do flips to restore regularity. This hap-
pens when we optimize the “dense horseshoe” (Figure
11). If we re-optimize after flipping we get oscillatory
behavior, cycling between two optimal meshes; see sec-
tion 6.6.1.

3.3. HOT is not Scale Invariant
HOT strongly favors small elements, due its depen-

dence on length-to-the-fourth-power. In an optimization
of a fixed domain and fixed mesh connectivity, the only
thing keeping an element from collapsing to a point is
the increase in size of neighboring elements, and keep-
ing domain-boundary nodes fixed.
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Figure 5: Barrier metric triangle distances.

HOT energy depends not only on the shape of the el-
ements, but indirectly on the number of elements. This
causes problems in some optimization loops. This is
counter-productive when deciding if a vertex should be
removed or inserted to improve quality, and whether the
solution is converged. In 2D, or 3D with fixed connec-
tivity, one can get away with it because the number of
each type of element (and hence, energy terms) remains
constant. However, in 3D with flips to restore regular-
ity, or in 2D with our vertex removal, the number of
elements changes. Optimizing the average-per-element
HOT energy is an insufficient fix.

4. Barrier and Pseudo-barrier Energies

We propose energies with barriers to triangle inver-
sion and bad primal-dual edge configurations. This sec-
tion does not consider flips or collapses but only metrics
for node movement and weight optimization.

Barrier metrics (energies) have been used with suc-
cess in primal mesh optimization for some time to en-
force the condition that the Jacobian determinant re-
mains positive during optimization (provided the initial
determinant is positive). This is an essential require-
ment for performing computations on primal meshes.
In the Target Matrix Optimization Paradigm such barri-
ers are widely used, with the Condition Number metric
being a prominent example [20].

As a casual definition, a barrier metric is a non-
negative metric defined on some domain D such that
(1) the value of the metric approaches infinity as one
approaches the boundary of D from inside D and (2)
there exists at least one global minimum on D. A bar-
rier metric is undefined for points outsideD.

Primal barriers restrict the position of a vertex dur-
ing optimization. A similar approach can be used in

the primal-dual setting to create barrier metrics with ad-
ditional restrictions that control the orthocenter so that
hk > 0 and di j > 0. First, let us focus on di j > 0 and
consider edge σi j of triangle σi jk. The HOT energy
does not naturally enforce the condition that the line
passing through the dual edge must intersect the pri-
mal edge in its interior i.e. we must explicitly require
aff(∗σi j) ∩ int(σij) , ∅ [3]. This condition is important
in several discretization schemes. This is equivalent to
requiring 0 < di j < ℓi j where ℓi j = |σi j|. Further, if
0 < di j < ℓi j, then 0 < d ji < ℓi j, and 0 < χi j <

ℓi j

2 from
eq. (5). If all the weights are zero, then di j =

ℓi j

2 and
these conditions are satisfied.

Second, let us consider how to avoid triangle inver-
sion, which is related to hk > 0. Let us define the sign
of hi in terms of the right-handed orientation of σi j to o.
If all h are positive then the triangle cannot be inverted.
This is sufficient, but not necessary. (If we define hi to
be positive if o and σk lie on the same side of aff(σi j)
then positive h is not sufficient.)

To create a barrier, we can thus use the product hkχi j

in the denominator of the energy of the i jth edge. For
this edge metric, the abstract domain is

D =
{
(di j, hk) | 0 < di j < ℓi j , hk > 0

}
,

which is open, semi-infinite, and convex. To keep the
coefficients simple, only the ⋆1 case α = β is consid-
ered. The edge energy is the sum of the two half edge
energies given in eq. (4). Thus the hard barrier edge
energy for σi j in triangle σi jk is

E1
BH =

d2
i j + (ℓi j − di j)2 + 2h2

k

hkχi j
, (11)

where recall χi j =
√

di jd ji from eq. (5).
This energy is invariant to scaling, i.e., it has di-

mensions of length-to-the-zero power, in contrast to the
HOT energy. This metric most likely cannot be derived
from optimal transport theory.

As the point (di j, hk) ∈ D approaches the boundary
given by hk = 0, the barrier energy goes to infinity.
The same is true for points approaching the boundaries
di j = 0 and di j = ℓi j. Finally, as hk

ℓi j
goes to infinity

within D, as would happen if edge σi j was collapsing,
the barrier edge energy also approaches infinity. Thus
the edge energy satisfies condition (1) for being a bar-
rier metric. (In contrast, if we attempt to normalize HOT
by the square of the triangle area, as we proposed in our
technical report [7], in the final case the energy goes to
zero and there is no barrier.)



Considering condition (2), observe that E1
BH ≥ 4 for

any point in D. This can be demonstrated using the
following inequality:[

di j − (ℓi j − di j)
]2
+ 2

[
hk −

√
di j(ℓi j − di j)

]2
≥ 0

By inspection, the barrier edge energy is a continuous
and differentiable function on D. Thus, any critical
points must occur at the stationary points, i.e., at the set
of points for which ∂E

1
BH
∂di j
= 0 and ∂E

1
BH
∂hk
= 0. There are

several solutions to this pair of equations but only one of
them lies inside D. That solution is (di j, hk) = ( ℓi j

2 ,
ℓi j

2 ).
At this stationary point, the energy is equal to 4, there-
fore it is a global minimizer and, further, the global min-
imizer is unique. This satisfies condition (2). So, the
barrier edge energy satisfies the definition of a barrier
metric.

Figure 6 shows a contour plot of the edge barrier en-
ergy on a subset of D. The contours suggest that the
energy is a convex function of (di j, hk), but we have
counter-examples to show it is not. This leaves open the
possibility that the energy is a function that obeys some
sort of generalized convexity such as quasi-convexity.
At the very least, it has been shown above that the en-
ergy is an invex function, i.e., a function for which every
stationary point is a global minimizer.

Figure 6: Contour Plot of E1
BH edge energy as a function of (di j, hk).

Proposition.
The hard barrier edge energy eq. (11) is a quasi-convex
function of (di j, hk).
Proof.
For clarity, (di j, hk) are replaced with (d, h) in this proof.
Consider two points inD : (d0, h0) and (d1, h1). Let λ ∈
(0, 1) and define dλ = (1−λ)d0+λd1, hλ = (1−λ)h0+λh1.
Define

T (d, h) = d2 + (ℓ − d)2 + 2h2

χ(d) =
√

d(ℓ − d)
B(d, h) = h χ(d)

so that the hard barrier edge energy is e = T
B . The func-

tion T (d, h) is strictly convex onD because it is the sum

of three strictly convex functions. Thus

T (dλ, hλ) < (1 − λ)T (do, ho) + λT (d1, h1) (12)

The Hessian of B(d, h) is
∂2B
∂d2

∂2B
∂d∂h

∂2B
∂d∂h

∂2B
∂h2

 =
 −

hℓ2
4χ3

ℓ−2d
2χ2

ℓ−2d
2χ2 0


Since the diagonal elements of the Hessian are non-
positive and the determinant of the Hessian is negative,
the Hessian is negative semi-definite. Therefore

(1 − λ)B(do, ho) + λB(d1, h1) ≤ B(dλ, hλ) (13)

From eqs. (12) and (13),

e(d, h) <
(1 − λ)T (do, ho) + λT (d1, h1)
(1 − λ)B(do, ho) + λB(d1, h1)

(14)

The right-hand-side of eq. (14), as a function f (λ), has
no stationary points. Therefore,

max
0<λ<1

f (λ) = max
[
f (0), f (1)

]
= max

[
T (do, ho)
B(do, ho)

,
T (d1, h1)
B(d1, h1)

]
= max [e(do, ho), e(d1, h1)]

§

Quasi-convexity for Weights. In terms of the weight op-
timization algorithm, the energy is not minimized as a
function of di j and hk, but rather as a function of the
weights wi,w j,wk (with fixed vertex coordinates). De-
fine the weight-difference wi j = wi − w j so that

di j =
ℓi j

2
+

wi j

2ℓi j

hk =
ℓi j cotΘk

2
+

cotΘi

2ℓi j
w jk +

cotΘ j

2ℓi j
wik (15)

Because wi j+w jk+wki = 0, the three weight differences
are not independent. Choose wik and w jk to be indepen-
dent and wi j = wik − w jk. Then

di j =
ℓi j

2
+

wik

2ℓi j
−

w jk

2ℓi j
(16)

Define Dw to be the set of points (wik,w jk) such that
the corresponding points (di j, hk) ∈ D. Then there is an
affine transformation from Dw to D given by eqs. (15)



and (16) whose Jacobian is the matrix

Ji j =

(
1 −1

cotΘ j cotΘi

)
The determinant of Ji j is non-zero provided cotΘi +

cotΘ j , 0. In that case, the map is invertible and there
is a one-to-one and onto correspondence between the
points in Dw and D. Thus, there is a unique point in
Dw at which the barrier edge energy is minimized. That
point is easily found by setting di j = hk =

ℓi j

2 . One
obtains

wik = w jk =
1 − cotΘk

cotΘi + cotΘ j
ℓ2i j

At this minimizing point, wi j = 0. Because affine maps
transform straight lines to straight lines, Dw is open,
semi-infinite, and convex when the determinant is non-
zero. Moreover, the affine map guarantees that if the
level sets of the barrier edge energy on D are convex,
then the level sets onDw are also convex.

Starting Inside the Barrier. An important prerequisite
to using the barrier energy is that in the initial mesh all
abstract points (di j, hk) must belong to D. If one uses
zero for the initial weights, then 0 < di j < ℓi j is guar-
anteed, so the di j are good. However, in the unweighted
case, hk =

ℓi j cotΘk

2 and the condition hk > 0 is equivalent
to the initial mesh being acute, which is rarely satis-
fied. This is a problem for the hard edge barrier eq. (11)
because the metric is undefined when hk ≤ 0. This
kind of difficulty occurs also when using barrier met-
rics to optimize primal meshes, and two work-arounds
are commonly used. The first is the shifted barrier
technique which moves the domain so that the initial
mesh lies inside D [21]. For example, in the present
case, replace hk in the denominator with hk − ho

k , where
ho

k = min(hmin − ϵ, 0), with hmin being the minimum of
hk over the initial mesh and ϵ a small positive number.
The shifted domain of the metric is

Ds =
{
(di j, hk) | 0 < di j < ℓi j , hk > ho

k

}
and the shifted hard barrier edge metric is

EBHs =
d2

i j + (ℓi j − di j)2 + 2h2
k

(hk − ho
k)χi j

(17)

Although ho
k is computed on the initial mesh, it can

be recomputed at later iterations, moving the barrier
closer to zero. We have analyzed the shifted barrier
energy and established that it is both invex and quasi-
convex. The minimum occurs at di j =

ℓi j

2 and hk =

ho
k +

√
(ho

k)2 +
(
ℓi j

2

)2
. The minimum lies in D for all

ho
k ≤ 0.

The second work-around, explored more thoroughly
in the present work, is the pseudo-barrier technique
[22]. The quantity hk is replaced with ϕ(hk), where
ϕ was defined in eq. (8) in section 2.3: ϕk =(
hk +

√
h2

k + γ
2
)
/2. It is important to note that ϕ(hk) >

0 for any hk regardless of γ > 0. In introducing ϕ into
the metric, there is no longer a hard barrier on hk in the
pseudo-barrier edge energy.

E1
BP =

d2
i j + (ℓi j − di j)2 + 2h2

k

ϕ(hk)χi j
(18)

The pseudo-barrier metric has domain

DBP =
{
(di j, hk) | 0 < di j < ℓi j

}
and can thus be used even for hk < 0. We call it
a pseudo-barrier because it does not go to infinity as
hk → 0, but only becomes a very large but finite num-
ber. How large is controlled by the parameter γ. Us-
ing γ = ho

k may be suitable. As hk becomes more and
more negative, the energy continues to increase. So, the
pseudo-barrier does not prevent hk from being negative,
but encourages hk to be positive during the numerical
optimization.

We implemented both work-arounds in our primal-
dual optimization code. In limited experiments they
performed about the same. For simplicity we focus on
the pseudo-barrier when presenting numerical results in
section 6. Figure 7 shows a contour plot of the pseudo-
barrier edge energy on a subset of DBP as a function of
(di j, hk); the contours again suggest a unique minimum
for the pseudo-barrier energy. One can show that the
Hessian of ϕ(h)χ is negative definite for γ2 < h2. With
that, the Proposition above can be modified to show that
the pseudo-barrier edge energy is also a quasi-convex
function.

Figure 7: Contour plot of EBP edge energy as a function of (di j, hk).

One problem with both the shifted and pseudo-barrier
metrics, in terms of ease of use, is that parameters ho

k
and γ must be chosen. To maintain scale invariance,



they should be chosen to scale with the mesh.

5. Algorithm

The pseudocode appears in algorithms 1–5.

Algorithm 1 Optimize Triangulation T
1: Parameters:
2: Eo energy to optimize, e.g., EBP
3: Ec energy for collapses ∈ {EF, ET, E∂T}
4: ic first iteration to consider collapses
5: iw first iteration to optimize weights
6: function Optimize(T with ∂)
7: repeat ▷ outer iterations
8: repeat ▷ inner iterations
9: for point p ∈ T do

10: Gather patch P(p) with
11: ordered perimeter {q j}

12: if not Collapse(Ec, P(p)) then
13: p = Optimize position(Eo, P(p))
14: p = Optimize weight(Eo, P(p))
15: if Eo(P \ p) < Eo(P) then
16: remove p from T
17: shift weights so panchor has weight = 0
18: increment iteration i
19: until E(T ) converged and no collapses
20: Flip T to restore regularity
21: until no flips were needed

Algorithm 2 Collapse Point p
1: function Collapse(Ec, P(p), i, ic)
2: if (p ∈ ∂T ) or (i < ic) then return False

3: p′ = Optimize position(Ec, P(p))
4: qi = closest point(p′, {q j})
5: if |p′qi| < 0.1 min(|qi−1qi|, |qiqi+1|) then
6: T .remove(p)
7: return True

8: return False

5.1. HOT Collapses

We called HOT-optimization collapsing an edge a
shortcoming, but we can use this as a strength. Our the-
sis is that this means the mesh would be improved by
making a discrete mesh change and actually collapsing
the edge. We implemented this option. We show that it
obviates the need for preconditioning. We show it can
dramatically improve the optimized mesh. It is pow-
erful enough on its own to give us a good mesh even

Algorithm 3 Optimize Position p
1: function Optimize Position(E, P(p))
2: if p ∈ ∂T then return p
3: return Optimize(E, P(p), pos)

Algorithm 4 Optimize Weight p
1: function OptimizeWeight(E, P(p), i, iw)
2: if i < iw then return p
3: return Optimize(E, P(p),weight)

when we only optimize positions and not weights; see
section 6.6.1.

We implemented the following simple rule; see algo-
rithm 2. We first optimize point p using HOT without a
barrier: EF, ET, or E∂T. If this makes the shortest edge
connecting p to the perimeter short compared to the ad-
jacent perimeter edges, we remove p. Otherwise, we
continue with p’s original position.

After optimizing the position or weight of p, we can
check if the energy of its patch improves by removing
it. This often removes vertices in the same cases as the
short-edge test, and many other cases. See section 6.6.4
for details.

5.2. Algorithm Details

We discuss the effect of the essential parameters and
choices in algorithm 1, and provide some implementa-
tion information for reproducibility.

The patch P(p) consists of the triangles containing
p. When using ET, we also need the orthocenters of
the triangles sharing an edge with the patch perimeter to
determine if any dual edges have negative length.

We use the most-recent position and weight for each
point in a patch. A variation is to use the state at
the beginning of the iteration, which removes order-
dependence, but was unstable in practice and made the
triangulation non-regular very quickly. A variation op-
timizes the positions for all points, then the weights for
all points; this made little difference. Domain-boundary

Algorithm 5 Optimize
Require: E has no broken barriers

1: function Optimize(E, P(p), position or weight)
2: u = ∇E(P(p)) ▷ finite differences, pos or w
3: line search for p∗ ▷ golden section
4: in direction u
5: limit distance to k∗flip-threshold (optional)
6: return p∗



nodes have fixed position but we optimize their weight.
At the end of each inner iteration, we shift all weights
so that an arbitrary “anchor point” always has weight 0.

We may skip collapses and weight optimization in
early inner iterations. In our experiments we typically
collapse starting immediately at iteration 0, or never.
We typically start weight optimization at iteration 0, 2,
4, after positions are converged, or never. We perform
flips only at the end of an inner iteration. Flipping after
each point is optimized is costly but improves stability.
It has an unpredictable effect on the final mesh.

We consider the inner loop converged if the latest it-
eration did no collapses, and the average energy per el-
ement decreased by less than 1.0e-6.

For positions, since the gradient is non-scalar, we op-
timize thrice. For both positions and weights, we op-
timize using finite differences for the gradient, and a
golden section line search for the optimum. The max-
imum search distance is the patch radius. (Scaling the
problem so the patch radius is 1 can improve the nu-
merics.) For weights with shallow local minima, the
line search can leave the local-minimum neighborhood
and continue in the unbounded direction up to the max-
imum search distance. This can create triangles whose
subsequent optimal positions invert the triangle.

We implemented our algorithm in C++ using CGAL
2D Triangulation [19] for the regular triangulation con-
struction, collecting the patch, and performing flips to
restore regularity. We use exact predicates and inexact
constructions. We use a std::map to represent changed
vertex coordinates and weights within an inner iteration.
CGAL does not have constrained regular triangulations,
which is expected considering that theory is underde-
veloped. Instead, we represent non-convex boundaries
by introducing vertices outside the domain that protect
the boundary, marking certain triangles as outside the
domain, as needed on an example-by-example basis.

6. Numerical Results

6.1. Single Triangle

6.1.1. Optimal Position
Figure 8 shows the ⋆1 energies for a triangle with a

free vertex and a fixed edge. Note EF and ET have min-
ima when the free vertex is coincident with one of the
fixed vertices. For EBH the minimum is achieved by an
equilateral triangle. For EBP, if γ = 0 then EBP = EBH.
Otherwise, the optimum is isosceles, and increasing γ
increases the optimal angle at the free vertex, up to
about 80◦. Also EBHs with ho

k = 0 is EBH, but increasing
ho

k changes the optimum in a similar way. EBHs and EBH

have no values in the white regions, whereas EBP is just
very large.

EF ET

EBP with γ = 1/2 EBP with γ = 1/8

EBHs with ho
k = 0.3 EBH = EBP(0) = EBHs(0)

Figure 8: ⋆1 energies for a triangle with two fixed vertices (-1,0) and
(1,0) as a function of the free vertex coordinates (x,y).

6.1.2. Optimal Weight
We consider a fixed-position triangle with the free-

dom to vary the weight of one vertex, and find the op-
timal weight for that vertex; see also section 3.1.2. Tri-
angles have varying angle θ between sides of length 0.5
and 1. Figure 9 shows the optimal triangles for each
of our ⋆1 energies. For EBH and EBHs for some large-
angles there is no solution with only one weight: to
get all hk > ho

k at least one di j < 0. (With the free-
dom to change two weights, there is always a solution,
since one can place the orthocenter anywhere, say at the
incenter, and there are weights that achieve it.) Note
ET = EF whenever all hk > 0. For EBP we used γ = 1,
the length of the horizontal edge. For EBHs we used
ho

k = 0.15. EBP and EBHs can be encouraged towards
well-centered orthocenters by setting smaller constants.
For very obtuse triangles, ET produces the best hk, but
sometimes with di j < 0.

Figure 10 shows how the optimal weights vary by
angle for each energy. Note EBP, EBHs, and EBH op-
timal energies increase for small triangles with sharp
angles, whereas EF and ET optimal energies decrease.
Figure 10 shows how the optimal weight, and min(di j)
and min(hk) at optimality, compare for the different en-
ergies. Note EF, ET, and EBP nearly agree for trian-
gles without large or small angles. For extreme trian-
gles, the order of preferring large hk over large di j is
{EBH, ET, EBHs, EF, EBP}.
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Figure 9: Optimal weight for one vertex of a triangle by angle θ and⋆1

energy function. Circle radii are
√

w, with green circles for positive
weight and red for negative. For EF we show the best local minima:
its energy is unbounded for a large-magnitude weight.

6.2. Weight and Valence Correlation

Engwirda [9] observes a correlation between valence
and weights when minimizing orthocenter to centroid
distances. This is explained by observing the correlation
between valence and angles.

“Low-valence nodes tend to have large negative
weights.” [9] Low valence correlates to large angles
which means far away orthocenters. Negative weights
simply move those orthocenters closer to the primal ver-
tex and triangle centroid.

“High valence nodes tend to have large positive
weights.” [9] High valence is correlated with small an-
gles. If the opposite edge is short, the centroid is far
from the sharp angle. Positive weights move the ortho-
center away from the vertex and towards the centroid.

EF ET

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

theta/PI

optimal 0.5-1 triangles, min quality vs. angle

energy
weight
min	dij
min	hkE

d

w

h

-0.5

-0.4

-0.3

-0.2

-0.1

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

theta/PI

optimal 0.5-1 triangles, min quality vs. angle

energy
weight
min	dij
min	hk

E

d

w

h

EBHs EBP

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	0.2 	0.4 	0.6 	0.8 	1

theta/PI

optimal 0.5-1 triangles, min quality vs. angle

energy
weight
min	dij
min	hk

<latexit sha1_base64="NLqBHipYJJ4vW90b2AKdRlcY5tc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOpCD1WsLbQhrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uHRo45TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ2A7GtzO//YRK81g+mEmCfkSHkoecUWOl9l0/qzf0tF+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/d0rOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtkQvOWXV8njRdW7qrr3l5VaPY+jCCdwCufgwTXUoAFNaAGDMTzDK7w5ifPivDsfi9aCk88cwx84nz8G0o9e</latexit>

EBHs

E

dw

h
-1

-0.5

	0

	0.5

	1

	0 	0.2 	0.4 	0.6 	0.8 	1

theta/PI

optimal 0.5-1 triangles, min quality vs. angle

energy
weight
min	dij
min	hk

E
d

w

h

EBH opt w

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	0.2 	0.4 	0.6 	0.8 	1

theta/PI

optimal 0.5-1 triangles, min quality vs. angle

energy
weight
min	dij
min	hk

E

dw

h

-0.4

-0.2

	0

	0.2

	0.4

	0 	0.2 	0.4 	0.6 	0.8 	1

theta/PI

optimal weights for energies

F
T
P
H
S

F
P

H

T

S

min di j min hk

-0.2

-0.1

	0

	0.1

	0.2

	0 	0.2 	0.4 	0.6 	0.8 	1

theta/PI

optimal min dij for energies

F
T
P
H
S

F

P
H

T

S

-0.5

-0.4

-0.3

-0.2

-0.1

	0

	0.1

	0 	0.2 	0.4 	0.6 	0.8 	1

theta/PI

optimal min hk for energies

F
T
P
H
S

F
P

H
T

S

Figure 10: Optimal weight for a single triangle vertex, and min(di j)
and min(hk) at optimality. Triangle has side lengths 0.5 and 1, and the
x-axis is the angle between those sides divided by pi. EF is unbounded
but we plot the local minimum only. EBH and EBHs have no solutions
outside the shown ranges. Energies are scaled for illustration, and
figures have different y-scales. H=EBH, S=EBHs, P=EBP, T=ET, and
F=EF.

6.3. Input Parameters

Recall Algorithm 1 takes parameters energy function
E, first iteration to start weight optimization iw, and first



iteration to consider collapses ic, and whether we con-
tinue optimizing after flips to restore regularity. We can
turn off weights and collapses altogether. The first it-
eration is 0. In our examples we present a range of iw,
but ic = 0 or collapses are turned off. For E, we restrict
our presentation to a single star for brevity, and select
⋆1 because it is the most challenging to obtain stable
results.

6.4. Sparse Horseshoe
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Figure 11: Sparse and dense horseshoe inputs.

We optimize the sparse horseshoe in fig. 11 left,
with vertices {(−2, 0), (0, 2), (2, 0), (0, 4), (0, 3)}. This is
a challenge problem where Laplacian smoothing often
inverts triangles. There is only one vertex, p4, that is
free to move, but all points can change weights. We
consider both position and position+weight optimiza-
tion. We consider discrete collapses or no collapses.

The hard barrier metric is unusable because there are
no weights that satisfies all di j > 0 and all hk > 0 for the
input positions. (This is easy to observe: if di j > 0 for
all edges, then h401 > 0 and d10 > 0 implies aff(∗σ04)
intersects σ03 with y-coordinate below the y-coordinate
of vertex p4, so h03 < 0.)

See fig. 12 for position optimization. Energies
{EF, E∂T, ET} all nearly-collapse edge σ41, which is un-
desirable. (Depending on how the extrapolation for
inverted triangles is done, optimization can send p4’s
y → −∞.) Position optimization of EBP and EBHs
produce superior meshes with no nearly-collapsed ele-
ments. If we enable discrete collapses, then any energy
collapses σ41, which is desirable because σ123 is better
shaped than either of σ124 or σ423.

{EF, E∂T, ET} {EBP, EBHs} E∗ + collapses
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Figure 12: Position-only optimization. Right, with discrete collapses.
Left and center, without. {EF, E∂T, ET} differences are minor. Note
p4’s y-coordinate depends on {EBP, EBHs}’s parameters.

See fig. 13 for weight optimization. If we optimize
weights starting in iteration 2 (iw = 2), then EF has the
same problem we observed for a single triangle in sec-
tion 3.1.2, that the energy is unbounded for a large mag-
nitude weight, for triangles σ014 and σ124. However, ET
and E∂T do not have this problem. EF, ET and E∂T all
still nearly collapse edges if iw = 2, but do not if iw = 0
(depending on the order in which the optimization visits
vertices); see fig. 14. I.e. if we optimize weights from
the beginning, sometimes the weights will reshaped the
duals enough that the energy no longer goes down when
collapsing vertices. The barriers do not collapse vertices
in either case.
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Figure 13: Deferred iw = 2 weight optimization, no collapses. With-
out barriers, vertices 4 and 1 become coincident. ET has nearly coin-
cident orthocenters.
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Figure 14: Immediate iw = 0 weight optimization can deter near-
collapses for {EF, E∂T, ET}, but {EBP, EBHs} do not create near-
collapses regardless of iw because of their barriers. ET is similar to
E∂T.

Combining both weight optimization and explicit col-
lapses, fig. 15 shows that collapses still take place
if weight optimization is deferred to iteration 2. If
we perform weight optimization from iteration 0, for
{EF, E∂T, ET} we get results as in fig. 14: no undesirable
near-collapses, but no desirable explicit collapses either.
For EBP using iw = 0 the desirable explicit collapse still
takes place as in fig. 15 right, just delayed.

6.5. Dense Horseshoe, No collapses

We optimize the dense horseshoe from fig. 11 right.
The “parameterized horseshoe” is a classic challenge



i w
=

2

-1

	0

	1

	2

	3

	4

	5

	6

	7

-4 -3 -2 -1 	0 	1 	2 	3 	4

"weightopt-pos.dat"
"weightopt-neg.dat"

"triopt.dat"
"dualopt.dat"

-1

	0

	1

	2

	3

	4

	5

	6

	7

-4 -3 -2 -1 	0 	1 	2 	3 	4

"weightopt-pos.dat"
"weightopt-neg.dat"

"triopt.dat"
"dualopt.dat"

-1

	0

	1

	2

	3

	4

	5

	6

	7

-4 -3 -2 -1 	0 	1 	2 	3 	4

"weightopt-pos.dat"
"weightopt-neg.dat"

"triopt.dat"
"dualopt.dat"

EF {E∂T, ET} {EBP, EBHs}

Figure 15: Explicit collapses with positions and delayed weight opti-
mization (iw = 2).

problem by one of the authors [Knupp].

x(a, b) = [(1 − b)x0 + bx1] cos(π(1 − a))
y(a, b) = [(1 − b)y0 + by1] sin(π(1 − a))

The vertices are defined by discrete values of a and b
spaced uniformly from [0, 1]. The number of vertices
on each arch is the number of a values, and vertices on
the feet b; and {x0, x1} define the base of the feet, and
{y0, y1} the height of the arches. Our dense horseshoe
has xi = {1, 2}, yi = {1, 4}, 7 values of a and 9 values of
b. Larger y values make the problem more challenging,
but y0 = 1 was sufficient to demonstrate the problems
we discovered and our solutions.

6.5.1. Position Only

Figure 16 shows ⋆1 optimization with and without
a barrier. Optimizing E∂T produces nearly-coincident
nodes. Optimizing EBP does not, even though we use
γ = 1, a large value. Optimizing EBP gives a mesh
where the E1

F energy is higher than it was in the initial
mesh. Optimizing E∂T dramatically reduces the circum-
centers lying outside the domain. Optimizing EF or ET
makes about the same nearly-coincident vertices as E∂T.
Optimizing EBHs produces a mesh similar to EBP.

E∂T EBP
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Figure 16: Position-only optimization, no weights, no discrete col-
lapses. Optimal meshes before flips. Red highlights nearly-coincident
nodes. Yellow highlights nodes that may become coincident in a few
iterations.

6.5.2. Position and Weights
A HOT Mess. Optimizing E1

F using positions and
weights produces a HOT mess on the dense horseshoe;
see fig. 17. We quickly get large negative energies and
inverted elements. Optimizing E1

∂T is no better, since
the tangled elements are interior to the domain. Collaps-
ing and delaying weight optimization until positions are
converged still produces HOT messes. These plus re-
stricting weight changes can sometimes prevent a HOT
mess.

Optimizing {E1
T, E

1
BP, E

1
BHs} produces a good mesh;

see fig. 18. Using iw = 2 to delay weight optimization
makes little difference to the outputs, but they converges
in fewer iterations than for iw = 0.

6.6. Dense Horseshoe, Collapses and Flips
6.6.1. No Weights
No Barrier. Without weights, we demonstrate the ef-
fectiveness of edge collapse using the short-edge test
even without a barrier, using E1

∂T. Once the positions
and collapses (inner iterations) converge, we demon-
strate flipping to restore regularity and re-optimizing
(outer iterations). Figure 19 shows collapses within
the first set of inner iterations. After a collapse, the
next position-optimization step does not introduce large
changes. This supports our thesis that actually collaps-
ing nearly-collapsed vertices improves the mesh, be-
cause the configuration remains nearly-optimal and we
have removed a sharp triangle. Figure 20 shows flips
and outer iterations. Most collapses occur early in the
inner iterations of each outer iteration. Note some large
obtuse triangles are formed, second row left column, but
flips remove these.

Outer Oscillation. The outer loop oscillates between
two optimal meshes because each is no longer optimal
after flipping. The inner optimization converges to one
state that is non-regular. Restoring regularity, then op-
timizing again, converges to a second non-regular state.
This repeats. The root cause is an imperfect extrapola-
tion to non-regular meshes.

Let a be the interior vertex of the purple kite in the left
arm of the horseshoe. From either regular state, when
optimizing the patch around vertex a, a single line-
search is sufficient to move vertex a to a non-regular
state. Figure 21 shows this cycle and the extrapolated
energy regime. For the left-most position for a, the reg-
ular triangulation of its patch has energy 1.14. Optimiz-
ing it to the right-most position gives an extrapolated en-
ergy of 0.986, which increases to 1.49 when regularity
is restored. Optimizing it again produces the left-most
position with extrapolated energy 1.09. The situation
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Figure 17: HOT mess. Position and weight optimization of EF, with
iw = 0, no discrete collapses, produces a HOT mess for the dense
horseshoe. For clarity we show mesh positions separate from the
weights. Rows are iterations 0, 1, 2, and 6.

is similar for vertex b on the right arm of the horse-
shoe. (The absolute value of the patch energies in the
two branches are not perfectly comparable because the
patches have different numbers of triangles, and in each
branch the other vertices are in different positions.)
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Figure 18: Positions and weights, optimal ET and EBP for iw = 0, no
discrete collapses, before flips for regularity. The EBHs mesh is very
similar to EBP. Radii shown 1/4 scale for clarity.
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Figure 19: Positions and collapses, energy E1
∂T, no weights. Inner

iterations 0, 1, 2, 3. Illustration of position optimization nearly col-
lapsing edges, followed by discrete collapses. A red vertex is removed
because its E1

F-optimal position is too close to the purple vertex. The
remaining purple vertex is colored green in the next iteration, and
dark-green in the iteration after that, to show that its position is stable.
Figure 20 is a continuation of this run.

The solution is to stop the line searches as soon as
the new position would cause a flip. More precisely,
we calculate the threshold as in section 2.4 and limit
the line search distance to some constant factor times
it. We perform the necessary flips before continuing the
optimization. This ensures that any significant move-
ment is based on the actual energy. Using this strategy,
the mesh converges to fig. 22. The global energy con-
verges to 3.29, whereas the two oscillating states have
global energies 3.41 and 4.08. Here a is located at the
threshold of a position that causes a flip, the blue circle
in fig. 21. On both sides of the flip, the two triangles of
the kite have coincident orthocenters, the light-blue dual
vertices slightly outside the lower part of the horseshoe
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Figure 18: Positions and weights, optimal ET and
EBP for iw = 0, no discrete collapses, before flips for
regularity. The EBHs mesh is very similar to EBP.
Radii shown 1/4 scale for clarity.
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Figure 19: Positions and collapses, energy E1
@T, no

weights. Inner iterations 0, 1, 2, 3. Illustration of posi-
tion optimization nearly collapsing edges, followed by
discrete collapses. A red vertex is removed because its
E1

F-optimal position is too close to the purple vertex.
The remaining purple vertex is colored green in the
next iteration, and dark-green in the iteration after
that, to show that its position is stable. Figure 20 is
a continuation of this run.

outer iterations converged without oscillations. Fewer
vertices collapsed compared to E@T: 3 instead of 5.
EBP does a better job of eliminating sharp angles near
the feet, as expected. The EBHs mesh is similar.

6.6.2 High Heat: Barrier, Collapses,
Positions, Weights, and Flips

We demonstrate that collapses can be combined with
optimizing barrier energies, even though barriers by
themselves prevent collapses. Recall we collapse if the
optimal EF position places two nodes close together,

optimal regular
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Figure 20: Outer iterations with positions and col-
lapses, energy E1

@T, no weights. The left column is the
optimal mesh after the inner iterations converged, and
the right column is that mesh after flipping to restore
regularity. The rows are the ends of outer iteration
0, 1, 2, 5, and 6. The last two rows repeat ad infini-
tum. Their connectivity di↵ers by edge flips among
the skinny triangles in the bottom of the shape. This
is a continuation of the run started in fig. 19

but that after that check we use EBP or EBHs opti-
mization to actually move the node and reweight it. In
this experiment, the first collapses occurred after sev-
eral iterations of EBP optimization, which is somewhat
surprising. Here we allow collapsing immediately, but
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Figure 20: Outer iterations with positions and collapses, energy E1
∂T,

no weights. The left column is the optimal mesh after the inner it-
erations converged, and the right column is that optimal mesh after
flipping to restore regularity. Orange shows selected areas that col-
lapse following the optimization arrow from the upper right to the
lower left. Purple shows selected cavities that flip when going from
the right to the left to restore regularity. The rows are the ends of
outer iteration 0, 1, 2, 5, and 6. The last two rows repeat ad infinitum,
flipping then optimizing vertices a and b to new positions that require
flipping back. This is a continuation of the run started in fig. 19

in fig. 22. Either diagonal of the kite contributes zero en-
ergy because its dual edge has zero length. That thresh-
old is a local minima of the true energy: see the upper
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Figure 21: The E∂T energy as vertex a is optimized and then the mesh
is re-regularized by flips, as in the bottom four meshes in fig. 20.
Blue shows starting from a’s leftmost position and moving to the right
through optimization. Each blue shade is one of three line searches;
the first search stops at its limit, and the other two find locally-optimal
positions. Red shows it returning via the same process and behavior,
although the 2D route taken does not retrace the first route. In each di-
rection the mesh becomes non-regular during the first line search, and
most of the optimization is based on inaccurate extrapolated energies.
The purple curve through the blue flip point shows the true energy if
we perform the flip; the flip point is a local-minima of the true energy.
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Figure 22: The optimal E∂T mesh when the optimization uses the true
energy and not an extrapolation. The mesh does not oscillate. As soon
as a vertex moves to a position that would cause a flip, we perform that
flip and continue optimizing from there. The starting configuration is
the right-column last-row of fig. 20.

branches of the blue and purple energy curves through
the blue flip point in fig. 21.



Position Thresholds. We experimented with various
constant factors for the threshold, stopping before, af-
ter, or at the flip point. The best strategy was akin to
simulated annealing, stopping after but with a decreas-
ing overshoot. Initially we stop 10% after the flip point,
that is, we allow movement up to 1.1× the initial point’s
distance to the flip point. In each subsequent iteration
we decrease the allowable overshoot by a factor of 10.
Stopping after with too large of an overshoot led to
worse final quality. Stopping at the flip point was un-
predictable, because, due to numerical roundoff, either
configuration might be regular. Stopping before con-
verged slowly and prevented flips, so did not explore
both sides of flip points.

6.6.2. Weight Optimization over Oscillatory Horseshoe
We investigate the stability and effect of E1

∂T weight
optimization over the mesh that has outer oscillations
under position-only optimization, bottom fig. 19. This
appears to be a challenging problem, because position-
and-weight optimization with deferred flips is a HOT
mess.

We consider variations of when weights and connec-
tivity are updated, and whether weights are limited with
respect to the mesh becoming non-regular (e.g. needing
flips) as in section 2.4. The terminology used for the
variations, e.g. in figs. 23 and 24, is the following:

• “Immediate” updates means the current weight and
regular connectivity of neighbors is used when op-
timizing each patch. That is, the inner and outer
iterations are combined.

• “Deferred” updates means we use the weights or
connectivity at the beginning of the iteration, and
only update after all patches have been optimized.
That is, we perform one inner iteration per outer
iteration.

• “Unlimited” means we optimize the weights ignor-
ing any flip boundaries, using extrapolated energy
as needed.

• “Before” means we stop the weight optimization
prior to the value where the regular connectivity
would change, due to an edge would flip or a vertex
becoming hidden.

• “After” is our annealing strategy, meaning we al-
low the weight to go just past the regularity thresh-
old, with a decreasing limit each iteration.

As is well known in mesh optimization, when sweep-
ing over a mesh, it is more stable to update a vertex

immediately and use its new position and weight when
optimizing its neighbors, as opposed using the initial
weights and positions for its neighbors, and performing
updates for all vertices simultaneously once all vertices
are optimized. Deferring weight updates exhibits oscil-
lations as expected.

Consider immediate weight & flip updates, the left
column in figs. 23 and 24. Unlimited weights leads to
37 flips: a handful are the same vertex causing edges to
flip back and forth. Many vertices become hidden, both
in the interior and three on the boundary. Nonetheless,
in this example the domain is preserved and the mesh
is usable. “After” converges quickest. It has 13 flips;
only two vertices cause more than one flip. “Before” is
the most stable, and by design has no hidden vertices or
flips.

Consider immediate weights but deferred flips, the
middle column in figs. 23 and 24. Unlimited weights
was chaotic. For “After,” deferred flips resulted in a
hidden vertex and lower energy. For “Before,” since it
prevents flips when combined with immediate weight
updates, the results are independent of whether flips are
immediate or deferred.

Consider deferring weights and flips, the right col-
umn in figs. 23 and 24. This resulted in oscillatory
weights and the slowest convergence. Despite this, “Af-
ter” and “Before” achieved lower energy than with im-
mediate weights or flips, due to hiding vertices and
eliminating skinny triangles on the base of the arms.
Although the “After” and “Before” meshes are visually
indistinguishable, the “After” mesh is minutely better.

Recommendations. In all cases the “After” weight
threshold results in the best quality (lowest energy)
mesh, and no other approach converged quicker. The
exception is that if one wants to guarantee the connec-
tivity does not change, no flips and no hidden vertices,
then use “Before” with immediate weight updates. Un-
limited weight changes based on extrapolated energies
hid many vertices, so use with caution. These results
depend on optimizing the normalized energy; since the
un-normalized HOT energy scales as the size of an ele-
ment to the fourth power, in most cases hiding vertices
and coarsening the mesh would increase the HOT en-
ergy.

Position & Weight Optimization. Position and weight
E1
∂T optimization with deferred flips leads to a HOT

mess. Limiting position and weight updates to the E1
∂T

flip threshold leads to a good mesh. Alternatively, using
theory based extrapolation, E1

T, also gives a good mesh,
even without limits. See fig. 25 for the meshes.
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Figure 23: Final meshes for E1
∂T weight optimization over the oscillatory horseshoe; weight circles drawn 1/4 radius for clarity. Note all dual

vertices have moved inside the domain. In many cases vertices are hidden: in the mesh interior in the top row; and in the relative-interior of the
domain boundary in the lower left arm of the horseshoe in middle-column bottom-row and right-column, and both arms in the upper left. The
top-row middle-column has hidden vertices in the arch of the horseshoe, leading to a different domain. The starting meshes are identical.

6.6.3. High Heat: Barrier, Collapses, Positions,
Weights, and Flips

We demonstrate that collapses can be combined with
optimizing barrier energies, even though barriers by
themselves prevent collapses. Recall we collapse if the
optimal EF position places two nodes close together, but

that after that check we use EBP or EBHs optimization
to actually move the node and reweight it. In this ex-
periment, the first collapses occurred after several iter-
ations of EBP optimization, which is somewhat surpris-
ing. Here we allow collapsing immediately, but only
start weight optimization after positions and collapses
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Figure 24: E1
∂T energy by iteration for weight optimization over the oscillatory horseshoe. The energy oscillations for the deferred weight updates

(right column) arise because weight changes in the vertices of a triangle tend to be reinforcing, so the changes overshoot. The large jumps in
energy tend to occur when a vertex becomes hidden. In the middle-column top-row, the hidden vertices change the domain area so the energy is
not comparable to the other figures. Note the scale of some axes are different.
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Figure 25: Position and weight E1
∂T optimization with deferred flips.

Top row (circle radii to scale) the first weight iteration produces in-
verted dual elements, and the subsequent position iterations produces
inverted primal elements as well. Bottom row (circle radii 1/4 scale)
limiting weights and positions to the flip threshold, or using theory
based extrapolation, ET, produce good meshes.

have converged, iw = 40. As in section 6.6.1, once the
inner iterations converge, we flip for regularity and re-

optimize (outer iterations).
Figure 26 shows edge collapses for EBP. Four col-

lapses occurred in the first outer iteration. No collapses
occurred in the second outer iteration, but a fifth col-
lapse occurred immediately after flipping and starting
the third outer iteration.

Figures 27 and 28 show progress through outer iter-
ations. The outer iterations significantly improve the
mesh near the bottom feet. We stopped after the seventh
outer iteration because its optimal mesh was regular and
did not need flips.

Figure 29 shows the final meshes for both EBP and
EBHs. Each could be improved by collapsing the two
4-valent nodes in the center together; this is not caught
by our simple collapse rule because the optimal EF po-
sitions actually have the nodes farther apart.

6.6.4. Remove Patch Center
Patch Quality Test. We may remove a vertex if its patch
has better quality with it removed. After optimizing the
position or weight of a vertex, we calculate the mesh
quality of its patch. We then triangulate the patch with-
out the vertex. If its quality is better, we remove the ver-
tex. Recall the triangulation will still contain the patch
perimeter edges, so this change is purely local. (This
follows from the property that a primal edge indicates
intersecting power cells, and removing vertices can only
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(a) Edge collapse when optimizing positions only.
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(b) Another collapse when optimizing both positions and
weights, similar to the position-only case.
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(c) Edge collapse immediately after flipping. Only primal
triangles shown for clarity.

Figure 26: High heat edge collapses for EBP.
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Figure 27: High heat outer iterations 0, 1, and 5 for EBP. Weight
circles 1/4 scale.

make the power cells bigger for the remaining vertices,
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Figure 28: Zoom to show flips near the left foot in high heat outer
iterations 0, 1, and 5 for EBP.
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Figure 29: High heat optimal meshes with barriers, collapses, posi-
tion, weights, and flips for EBP and EBHs. Weight circles scaled by
1/4 for clarity.



so their cells will still intersect.)
The patch quality test can be used independently, or

with the short-edge collapse. It usually collapses the
same vertices, plus many more. In experiments, vertices
are removed both after position optimization, and after
weight optimization.
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Figure 30: Vertices removed by the patch quality test, position-only
EBP optimization, by iteration count.

Figures 30 and 31 show optimizing the horseshoe
with the patch quality test and EBP, using immediate
postion updates and flips to restore regularity. Coarse
but high quality meshes result. Figure 30 optimizes only
positions. Figure 31 optimizes positions and weights.
Recall that with weight optimization, positions change
less and fewer collapses are triggered by the explicit
short-edge rule. The patch quality test triggers more
collapses than the short-edge rule, and these collapses
occur at later iterations than in the position-only case.

7. Conclusion

Recommendations. We recommend optimizing EBP be-
cause it is stable in all combinations of optimizing
weights, positions, flips, and collapses. We recommend
allowing vertex removal because it improves stability
and output quality for all combinations of other op-
tions. If you do not have the freedom to remove nodes,
then only EBP is robust. An exception to always us-
ing EBP we suggest is E∂T when collapsing edges us-
ing the short-edge rule and optimizing positions with
fixed weights, because collapses happen more easily
than with EBP. For removing vertices by the patch test,
any metric can be used. We recommend optimizing
weights only after a few position iterations. This is not
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Figure 31: Vertices removed by the patch quality test, position and
weight EBP optimization. Weight circles to scale.

required for barrier energies, but it often allows more
collapses, improves convergence speed and improves fi-
nal quality. See fig. 32.

What Works. Using a barrier EBH was sufficient to get a
good mesh in all cases. We can easily combine barriers
with vertex removal, especially by the patch test. Using
theory-based extrapolation, ET, together with collapses
was sufficient to produce a good mesh. Using EF or
E∂T with collapses was sufficient to get a good mesh
when optimizing positions only, but not when optimiz-
ing weights. Delaying weight optimization can affect
the final mesh, but whether it is better or worse is prob-
lem dependent. It might be worth trying both imme-
diate and deferred weight optimization and comparing
results.

Our short-edge rule for edge collapses works for con-
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Figure 32: Summary. Optimizing HOT can collapse nodes, or produce a “HOT mess” with large-magnitude weights and inverted elements.
Explicitly collapsing edges by removing vertices works when optimizing positions only, but can still produce a “HOT mess” when optimizing
weights. The pseudo-barrier metric always works, and can be combined with discrete collapses.

figurations such as the highly non-convex patch in the
sparse horseshoe. However, it misses some desirable
collapses such as the 4-valent vertices in fig. 29. We
have seen it fail to collapse small obtuse triangles and
3-valent vertices. The patch-quality test, comparing the
patch energy with and without the center vertex, is suc-
cessful at removing vertices in these cases. However,
use caution for energies that depend on the number of
elements.

What Does not Work. Optimizing positions with
⋆1{EF, E∂T, ET} leads to nearly coincident points. Opti-
mizing weights with {EF, E∂T} can be unstable and pro-
duce a HOT mess because of the presence of unbounded
negative energies. In the prior literature the inputs con-
sidered were restricted: positions were preconditioned
to start with well-spaced points, especially before opti-
mizing weights, and domains were mostly convex. Per-
haps these were to avoid the problems we described.

When optimizing, evaluating the quality of any posi-
tion or weight change that makes the mesh non-regular
is an extrapolation of the HOT energy. E.g. we can
move a node anywhere and still evaluate the triangle
quality metrics even if the mesh is now non-regular. But
we cannot trust any of our metrics to be the same com-
pared to actually performing the flip and evaluating the
new quality. Using extrapolation, the metrics can get
better and converge. But they can get worse, causing the
optimization to go uphill, and leading to infinite cycles.
It depends on the exact triangle shapes and weights.

In general, one might want to optimize something
other than HOT; it is not the same as having well-
centered orthocenters, because the restriction on di j > 0
is significant, as we have demonstrated. The best metric
is likely application specific.

Further Exploration. The best way to intermix col-
lapses, position optimization, weight optimization, and
flips remains an open problem. One could combine dif-
ferent energy functions, such as optimizing E∂T for po-
sitions and collapses, then switching to EBP when also
optimizing weights and flips. The shifted barrier should
be explored further. We believe parameter γ in ϕ should
be chosen to be a small scale-invariant value, perhaps
based on an edge length. It may be beneficial to adap-
tively shrink γ in EBP or ho

k in EBHs towards zero as the
mesh improves.

One could consider other criteria for discrete
changes. It may be effective to use the HOT energy to
insert nodes: e.g. the orthocenter of large-energy trian-
gles. We do not know if the dual motivates connectivity
changes. E.g. if optimizing HOT causes a di j to go neg-
ative, as sometimes happens for obtuse triangles, would
the mesh be improved by flipping an edge or inserting a
node to break up the obtuse triangle? What is the best
place for that node: e.g. the circumcenter, orthocenter,
or centroid? Vertices with large negative weights may
be hidden when regularity is restored, so perhaps they
should be removed explicitly.

The analysis showing that the barrier energy is a
quasi-convex function of the weights needs to be ex-
tended. We wish to investigate the convexity (or lack
thereof) of the energy, first with respect to the node po-
sitions, and second over a whole triangle. We have not
studied ⋆0 nor ⋆2 to the extent of ⋆1. We have not ex-
tended the barriers or collapses to 3D. We have not con-
sidered theoretical convergence rates nor practical effi-
ciency. Our code is a research code but a production
code may be of value to the community.



Open Problems. The open problem of a practical way
of finding weights such that the regular triangulation of
a given set of positions has a prescribed set of edges,
or showing that no such weights exists, was recently
solved [23]. It works because the constraints are linear
and the problem size can be kept small by only adding
violated constraints. We pose the open problem of find-
ing weights such that all triangles have positive hk and
di j, if possible. Such a triangulation could be used as
input to optimization of the hard barrier. (It is also open
if we just require positive hk. All positive di j is solved
by weights = zero.)
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