
Reconciling SCXML Statechart Representations and

Event-B Lower Level Semantics

Karla Morris1 and Colin Snook2

1 Sandia National Laboratories, Livermore, California, U.S.A.
knmorri@sandia.gov

2 University of Southampton, Southampton, United Kingdom
cfs@ecs.soton.ac.uk

Abstract

High consequence systems benefit from verification by formal proof. However, to facil-
itate efficient automatic proof, notations are often restricted to simplify the verification of
state changes. Engineers that are used to richer semantics may find these restrictions diffi-
cult to accept. Here we investigate the reconciliation of a Harel style statechart semantics
with a declarative, substitution-based notation designed to facilitate proof. We provide
a translation of State Chart eXtensible Markup Language (SCXML) statecharts into the
Event-B formalism via the iUML-B state-machine notation.

1 Introduction

Formal verification of high consequence systems requires the analysis of formal models that
capture the properties and functionality of the system of interest. Proof obligations for systems’
properties or requirements can be made more tractable using refinement, where properties are
expressed in terms of variables that are introduced at different abstraction levels.

A hierarchical development of a system model uses refinement concepts to link the different
levels of abstraction. Each subsequent level increases model complexity by adding details in the
form of functionality and implementation method. As the model complexity increases in each
refinement level, tractability of the detailed model can be improved by the use of a graphical
representation, with rich semantics that can support an infrastructure for formal verification.

The Event-B language [1] provides the logic and refinement theory required to formally
analyze a system model. The open-source Rodin tool [2] provides support for Event-B including
automatic theorem provers. iUML-B [4] augments the Event-B language with a graphical
interface including state-machines.

The goal of this work is to create a unified model representation capable of leveraging the
structure and hierarchy that is inherently part of a statechart diagram, which will serve to
enable the formal verification of requirements in two stages. First, the translation of the unified
representation to Event-B. Second, the analysis of requirements related to the structure of the
statechart itself, which is a higher level representation of the model than the Event-B provides.

We base this unified statechart model representation on the State Chart eXtensible Markup
Language (SCXML) [6]. This is a general-purpose event-based state machine language that
combines concepts from Call Control eXtensible Markup Language (CCXML) and Harel State
Tables. Harel State Tables are included in UML. The concrete syntax for SCXML is based
on XML. Hence, SCXML is an XML notation for UML style state-machines extended with an
action language that is intended for call control features in voice applications.

In § 2 we describe the semantics differences between SCXML and iUML-B and discuss their
reconciliation. § 3 presents the extensions made to SCXML for required Event-B features, and
§ 5 provides some details regarding the development of the translation tool, finally § 5 list some
of our future work.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration (NNSA) under contract DE-AC04-94AL85000.



2 Semantic Differences and their Reconciliation

SCXML and iUML-B have syntactic similarities in their use of a hierarchical state-transition
notation with conditional transitions applying actions upon ancillary variables. However, their
semantics have significant differences. SCXML, based on Harel statecharts, has so-called ‘run-
to-completion’ semantics, whereas iUML-B follows the ‘guarded action’ semantics of Event-B.
In this section we discuss the implications of this semantic difference with respect to translation
between the two notations.

Transition firing: There are three methods of initiating transitions in SCXML:

• ‘When’ transitions are considered for execution if their source state is active and their cond
attribute evaluates to true. This is similar to iUML-B transitions, which fire spontaneously
when their guard (including source state) is true. In iUML-B if several transitions are
simultaneously enabled one of the enabled transitions is non-deterministically chosen for
firing whereas SCXML has ordering rules to determine which transition to fire next.

• A transition may be ‘triggered’ by the occurrence of an external interface event. This
could be simulated in iUML-B by generating a flag to represent the trigger and adding a
transition guard on the state of the flag. The flag should then be reset by the transition
that is triggered in order to ‘consume’ that trigger event. A special interface event that
sets the flag would be generated to represent the external interface receiving a trigger.

• Transitions may also trigger each other within their actions. This could be simulated in
iUML-B by a similar mechanism to the trigger events except that the interface event is
not needed since the flag is set directly by another transition.

Run-to-completion semantics: SCXML has a run-to-completion (aka big-step/little-step)
semantics. This means that an external trigger is only consumed when no transition can be
taken without doing so. This is quite cumbersome to implement in iUML-B since it requires
constructing the conjunction of the negated guards of all the transitions that are internally
triggered (including ‘when’ transitions) and adding this to all externally triggered transitions.

Composition of execution actions: When a particular SCXML transition fires it carries
out a sequence of actions in a well-defined predictable order. For example, a hierarchy of nested
source states are exited (performing their exit actions sequentially) starting from the innermost
one and working outwards. The order of execution is significant when some of these actions
write to, or use the value of, a previously written variable. In Event-B, all actions of a transition
are executed simultaneously in parallel by the elaborated event. It is not possible (i.e. not well-
formed) for two of these actions to write to the same variable. If any actions read the value of
a variable, the value is the value before the transition started being executed.

Events: The meaning of event is different between iUML-B and SCXML. In iUML-B, tran-
sitions are sub-parts of events. In order for an event to be enabled for firing, all of its sub-parts
(transitions) must be simultaneously enabled. This means that two different transitions with
the same event can only fire at the same time and hence will never fire if they are sourced from
different states of the same parent state-machine. In SCXML, events are triggers that enable
transitions to fire. If two different transitions from different source states are both triggered by
the same event, one may fire without the other if one source state is not active.



Final States: The concept of a final state differs between iUML-B and SCXML. In SCXML a
state machine (or parent state) may reside in a final state indicating that it is done and waiting
for another transition to exit the parent state. In iUML-B a final state is not a proper state
of the parent state-machine. It is merely a notation for indicating that the state-machine is
becoming non-active, i.e. the parent state is exiting.

Initial States: Initial states are similar in both notations. The transition from the initial
state forms part of the actions to enter the parent state. However, the correspondence between
incoming transitions to the parent state and initial transitions is more explicit in iUML-B.
SCXML has another way to specify an initial state using an attribute of the state. In this
case there is no way to add extra transition actions. iUML-B allows different initial states
for different incoming transitions. In SCXML this would be done by extending the transition
into the substate which, in iUML-B is also an optional alternative to the multiple initial states
method.

Entry/Exit Actions: SCXML and iUML-B both include the concept of entry and exit ac-
tions which are executed whenever a transition enters or exits the containing state. However,
their use in iUML-B is restricted by the lack of sequential composition in Event-B. For example,
if an exit action of a state, S, assigns to a variable, V, then no transitions from S are allowed
to assign to V either directly or via entry actions of their target state. We restrict the SCXML
models that can be translated so that executing the actions in parallel is equivalent to executing
them in sequence. Effectively this means that the same variable cannot be assigned more than
once in any set of actions that will be taken when a transition fires. The Event-B static checker
will raise an error if this restriction is violated.

Refinement: Refinement is a central concept of Event-B where detail is built up in stages
facilitating validation of abstract concepts before introducing complexity. In iUML-B state-
machines, refinement is achieved by adding nested state-machines to existing states. There is
no refinement in SCXML. The entire system is introduced in one hierarchical statechart. We
provide an extension to SCXML (section 3) so that the target refinement level of a translated
SCXML element can be specified.

3 Extending SCXML

To facilitate Event-B formal verification, extensions to the SCXML modelling notation are
necessary so that additional modelling features required by Event-B can be integrated with
the SCXML model. An example statechart model is shown in figure 1, and a section of the
corresponding SCXML syntax is shown in figure 3. The iUML-B representation of the model is
shown in figure 2. We use this example to illustrate different points throughout the manuscript.
The SCXML schema allows extension elements and attributes belonging to a different names-
pace to be added. The SCXML tooling provides fallback mechanisms so that these extensions
are supported without the need for syntactic definition. We define a new namespace, iumlb and
add two new elements, iumlb:invariant and iumlb:guard as well as a number of new attributes
which are shown in Table 1. Invariants are not supported in SCXML but are needed to describe
verifiable properties of a model. SCXML transitions only have a single cond attribute whereas
we need to introduce conjuncts of a transition condition at various refinement steps. We also
need to be able to designate some invariants or guards as theorems that can be derived from
the preceding conjuncts. New attributes are introduced to support the predicate (string) and



BLOCKED
entry/Main_In.Block=true
entry/On_In.Reset=false
exit/Main_In.Block=false

UNBLOCKED

entry/On_In.CardAccept=false

READY
GetReady

CLEAR COMPLETE_SET_UP
READING

ACCEPT

[On_In.CardAccept==true]

[On_In.Reset==true]

after 
10ms

after 
10ms

CardIn

CardError

CardOk

entry/On_In.CardAccept=true
exit/On_In.Reset=true

OFF OnOff

ON

Gate

CardReader

Ready

Figure 1: SCXML Statechart diagram

Figure 2: State-machine diagram in iUML-B at
refinement level 3 (partially annotated with guards
and actions)

1 <iumlb:invariant iumlb:refinement="1" predicate="TRUE = TRUE" name="inv_top_level"/>

2 <datamodel iumlb:refinement="2">

3 <data expr="false" id="Gate_In.Block" iumlb:type="BOOL"/>

4 </datamodel>

5 <!-- Other model details -->

6 <state id="BLOCKED">

7 <transition cond="[On_In.CardAccept==true]" target="UNBLOCKED">

8 <iumlb:guard name="gd1" predicate="On_In.CardAccept==true" refinement="2"/>

9 <assign expr="true" location="Gate_In.Block" iumlb:refinement="3"/>

10 </transition>

11 <onentry>

12 <assign expr="true" location="Gate_In.Block"/>

13 <assign expr="false" location="On_In.Reset"/>

14 </onentry>

15 <onexit>

16 <assign expr="false" location="Gate_In.Block"/>

17 </onexit>

18 <iumlb:invariant predicate="Gate_In.Block == TRUE" name="GateCondition"/>

19 </state>

Figure 3: Part of SCXML model corresponding to figure 1 (including iumlb extension elements
explained in section 3)

the derived (boolean) theorem property of invariants and guards. The concept of refinement
is not supported in SCXML. We introduce a new integer valued attribute, iumlb:refinement,
which may be attached to any element of either namespace in order to specify the refinement
level of that element.

Figure 3 shows a state, BLOCKED, containing a transition that owns an iumlb:guard. The
guard reflects the cond attribute of the transition and is introduced at refinement level 2. The
state also owns an iumlb:invariant with the predicate Gate In.Block == TRUE.

4 Translation Tool

The iUML-B tooling is based on the Eclipse Modelling Framework (EMF) [5]. It is therefore
beneficial to load the SCXML model into EMF so that our existing model transformation



Table 1: SCXML Extension Attributes
Attribute name: Meaning Allowed Parents

label
string used as the name of an
Event-B event elaborated by

the generated i-UML-B
scxml:transition

refinement

non-negative integer representing
the refinement level at which

the parent element should
be introduced

scxml:scxml, scxml:datamodel,
scxml:data, scxml:state,

scxml:parallel, scxml:transition,
scxml:onEntry, scxml:onExit,
scxml:assign, iumlb:invariant,

iumlb:guard

type

string used as the membership
set for the Event-B variable
generated from the parent

data element

scxml:data

name
string used for the name
or label of a generated

iUML-B element
iumlb:invariant, iumlb:guard

predicate
string used for the predicate

of a guard or invariant
iumlb:invariant, iumlb:guard

derived
boolean indicating that
the guard is a theorem

(default to false)
iumlb:invariant, iumlb:guard

technology can be used to implement the SCXML to iUML-B translation. An EMF meta-
model for SCXML is available from the Sirius [3] project. It supports SCXML functionality,
and provides generic model loading capabilities for new namespace extensions such as those we
describe in section 3.

Hierarchical nested statecharts are translated to similar corresponding state-machine struc-
tures in iUML-B. Figures 1 and 2 illustrate this correspondence between diagrammatic elements.

4.1 Refinement Levels

An iumlb:refinement attribute is used to indicate the first refinement level at which an element
should be introduced in the generated iUML-B/Event-B model. In general, elements with
no refinement attribute adopt that of their parent. However, for scxml:state elements, the
refinement level refers to the complete state machine(s) generated from any nested child states
irrespective of whether those children specify a different refinement level. This is because
generated iUML-B states cannot be added to an existing state-machine in later refinements.
For iumlb:invariants the corresponding Event-B invariant is only generated at the specified
refinement level, not in subsequent refinements. This is because Event-B invariants are visible
through all subsequent refinements.

Note that our approach to refinement in SCXML largely restricts us to superposition refine-
ment where entirely new details are introduced at each refinement level. It may be possible to
support ‘ranges’ in the refinement attribute, enabling a model element to be replaced by some
other element in a true data refinement. We plan to investigate this in future work, although
several coexisting alternative representations of the same concept may be problematic for the



SCXML semantics.

4.2 Constructing events elaborated by transitions

The Event-B events that are elaborated by an iUML-B transition are named as follows:
1. If the transition has iumlb:label attributes, events are generated and named according to

the label attributes.
2. If the transition’s source is an initial state at the outer state chart level the transition

elaborates the special Event-B INITIALISATION event.
3. If the transition’s source is an initial state of a nested state chart the names of all the

events that are associated with incoming transitions to the parent state are used.
4. If none of the above provide any labels, a default ‘source target’ format is used.

Trigger events are deliberately not used for transition events because we want to keep them
as a separate concept from transition firing in line with SCXML semantics.

4.3 Data elements

Data elements collated, in scxml:datamodel elements, model the ancillary variables in the usual
SCXML style. Data elements are translated to Event-B variables of type given in an iumlb:type
attribute translated into an Event-B subset invariant. An example of this SCXML representa-
tion of an Event-B invariant can be seen on line 3 in figure 3. The scxml:id attribute of the
scxml:data element is interpreted as the name of the variable and the value is used as the right
hand side of an assignment action to initialise the variable.

5 Future Work

We have imported SCXML models into Event-B to bring the strong verification methods of
Event-B to SCXML models. However, the significant semantic differences between SCXML and
Event-B meant that we were forced to restrict the kinds of SCXML models we can support.
In particular the run-to-completion semantics of SCXML are difficult to support in Event-B
without an explosion of artefacts to model the necessary sequentiality. In future work we will
investigate the impact of the restrictions we have imposed on SCXML and whether additional
support can be provided to lift or ease such restrictions. We will implement a return translation
from iUML-B to SCXML to support round trip model development.

References

[1] J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press,
2010.

[2] J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: An open toolset
for modelling and reasoning in Event-B. Software Tools for Technology Transfer, 12(6):447–466,
November 2010.

[3] Eclipse Foundation. Sirius project website. https://eclipse.org/sirius/overview.html, 2016.

[4] C. Snook. iUML-B statemachines. In Proceedings of the Rodin Workshop 2014, Toulouse, France,
2014. http://eprints.soton.ac.uk/365301/.

[5] D. Steinberg, F. Budinsky, and E. Merks. EMF: Eclipse Modeling Framework. Eclipse (Addison-
Wesley). Addison-Wesley, 2009.

[6] W3C. SCXML specification website. http://www.w3.org/TR/scxml/, 2015.

http://eprints.soton.ac.uk/365301/

	Introduction
	Semantic Differences and their Reconciliation
	Extending SCXML
	Translation Tool
	Refinement Levels
	Constructing events elaborated by transitions
	Data elements

	Future Work

