
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Charon: Basic Introduction Training

Sand ia Nat iona l Labora tor i e s

L a w r e n c e C M u s s o n , M i h a i N e g o i t a , G a r y H e n n i g a n ,
X u j i a o G a o , a n d A n d y H u a n g

SAND2022-8987 PE

What does Charon do?
• Drift-Diffusion PDE solver for modeling charge carrier flow

Conservation

Electric
Potential

Carrier Transport
Equations

Lattice
Heating

TCAD code for modeling semiconductor performance
including ionizing radiation and displacement damage as a
result of radiation

Direct solution of many-body
Schrodinger equation

Quantum Transport

Boltzmann Transport

Drift-Diffusion-Heating PDEs

Hydrodynamic PDEs

Hierarchy of transport models

Se
m

i-c
la

ss
ic

al

PD
Es

 (C
ha

ro
n)

Diagram of a Simulation

3

Charon

Paraview

OriginLab,
etc

Cubit

Charon
Interpreter

Charon
input
file

Cubit
journal

file

XML parameter list

Exodus state file

Tabulated I-V text files

Exodus state file

Plots/Figures

visualization

Pre-processing Processing Post-processing

Domain
Decomposition

Charon Files

• Input files
• Contain state file names and a full parametric description of the simulation

• State files
• Input

• Meshing and initial guesses for a simulation
• Output

• Results of a simulation

• Various text files
• Input

• Assorted radiation data: pulse information, etc
• Output

• Tabulated I-V or I-<parameter> data from a transient or parameter sweep simulation

4

Charon Environment & Tutorials

• The environment needs to be set up for Charon to execute
• Environment variables: PATH, etc
• Modules: various TPLs

• On CEE systems
• bash: source /projects/charon/install/BOD/setup-cee.cde.intel.env.sh

• On HPC systems (skybridge, chama, attaway, eclipse)
• bash: source /projects/charon/install/attaway.jenkins/setup.cde.intel.env.sh

• Copy the tutorial problems to your personal account
• cp -R /projects/charon/Training/BasicIntro .
• Three tutorial directories
• Charon user manual (pdf)
• Training slides (pdf)

5

Charon Interpreter (chirp)

• Charon Interpreter
• Python driven front end to Charon
• Simple, readable syntax
• Straightforward formatting
• Available syntax reference, searchable through “less”
• Maps input syntax to Teuchos parameter list (xml) that fully configures a

simulation
• Can execute Charon in parallel or serial
• (in the future) Will perform domain decomposition for parallel simulations

6

CharonInterpreter Help (exercise)

7

lcmusso@ascic0186 [~] % chirp --help
usage: chirp [-h] [-i INPUT] [-r] [--silent] [--no_current] [--np NP] [-s]

[-S] [-d] [-R RESIZE_FROM_NPROCS] [-v VERBOSITY]
[-p PATH_TO_CHARON] [--cleanTextData] [--mpitile] [-l LABEL]
[--nolog] [--mpipath MPIPATH] [--mpiexec MPIEXEC]

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

Specify the interpreter input file
-r, --run Execute Charon
--silent Supresses screen output. Screen output will be stored

in log.
--no_current Disable text output of current
--np NP Specify the number of processors to use in the Charon

run.
-s, --syntax Get help for syntax of interpreter. Append "| less -i"

to scrolling and search.
-S, --longsyntax Get expanded help for syntax of interpreter. Append "|

less -i" to scrolling and search.
-d, --decomp Decompose the state file for parallel execution. Will

abort if decomposition of same size already exists.
-R RESIZE_FROM_NPROCS, --resize_from_nprocs RESIZE_FROM_NPROCS

Resizes the decomposition from nprocs domains to np
domains. Will abort if decomposition of same size is
detected.

-v VERBOSITY, --verbosity VERBOSITY
Specify verbose output of the interpreter ranging from
0 to 25

-p PATH_TO_CHARON, --path_to_charon PATH_TO_CHARON
Specify path to Charon exectutable

--cleanTextData This option will remove sweep and transient text data
files prior to execution.

--mpitile uses Dakota's mpitile on large computing systems with
high concurrency.

-l LABEL, --label LABEL
Specify an optional label for the run.

--nolog Opts out of logging the run.
--mpipath MPIPATH Specify path to an mpi run command. This path may also

be set through the MPIRUN_COMMAND_PATH environment
variable.

--mpiexec MPIEXEC Specify an mpi executable name. This name may also be
set through the MPIRUN_COMMAND environment variable.

Exercise – Run a diode simulation

• In the tutorial #1 directory
• chirp -i pndiode.iv.inp --run
• Open paraview

• Load pndiode.iv.exo
• View potential, electron density, hole density

• Plot the IV curve
• Open the currents-loca.dat file in an editor and place a # on the first line in front of headers
• gnuplot

• gnuplot> set logscale y
• gnuplot> plot ‘currents-loca.dat’ 8

p-Doped n-dopedH

D

Diode exercise—What are the numbers?

• Currents-loca.dat has I-V data
• What are the currents?
• Charon is 2D & 3D only

• 2D: The current values will have units of Amps/cm
width

• 3D: The current values will have units of Amps
• This simulation is set up as a quasi-1D problem

• It is technically 2D, but all the action is in a single
direction—H is an arbitrary length

• Current is contactArea*current/H

9

p-Doped n-dopedH

D

Path to a Full Drift-Diffusion Simulation

• Two steps are required to produce a drift-diffusion (DD) simulation
• Usually, it isn’t possible to go from a null state to a DD state in a single

pass
• A nonlinear Poisson (NLP) solution is computed first for the

electrostatic potential
• This is used as the initial guess for a DD solution

10

Preprocessing NLP DD Further analyses

Cubit—Solid Model & Meshing

• Cubit is the Sandia tool for creating solid models and meshes
• Not much covered in Charon quick start training

• Introductory training taught by Cubit team should be sufficient
• Most TCAD solid models are rectangular
• Implicit surfaces (junctions) make meshing difficult, sometimes impossible

with Cubit
• Charon’s pyMesh tool is available, but still in an early state

• Automatically refines meshes around junctions.
• Can easily be configured to mesh around lines, planes, points…

11

Create a three-dimensional volume. The two-dimensional diode will be
created on a surface of this three-dimensional volume. By default
Charon assumes the dimensions are in microns
create brick x 1.0 y 0.5 z 0.1

This makes the coordinates of the resulting mesh all positive. This
isn't required but can be useful for post-processing
move vertex 4 location 0 0 0

These will be the contacts, anode and cathode. The names are used in
the input file to distinquish them
sideset 1 curve 3
sideset 1 name "anode"

sideset 2 curve 1
sideset 2 name "cathode"

"blocks" are typically regions of different materials or distinct
regions of the device. For this simple problem we only have one
region
block 1 surface 1
block 1 name "si"

Quads (bricks) or triangles (tetrahedra) are the
preferred element type for Charon simulations.
block 1 element type quad4

The interval specifications set how dense or coarse the
discretization is

Long side
curve 2 4 interval 100

Short side (contacts)
curve 3 1 interval 1

Generate, or "mesh", the problem geometry
mesh surface 1

Create the output "exodus" file, or overwrite it if it already
exists.
export mesh "pndiode.exo" dimension 2 overwrite

Meshing the diode

12

Solid
model
(use microns)

Naming Contacts

Meshing

Naming geometric regions

Exporting mesh

anode cathodesi

Always use lower case for names

Charon Input File
• The highlights indicate where information

supplied in the geometry/meshing phase of
preprocessing ties into the Charon input

• The imported state file contains the mesh
and a state—if there is one.

• The remainders are names tied to regions or
boundaries of the device as named during
the meshing phase.

13

import state file pndiode.exo

start output parameters
output state file pndiode.dd.iv.exo

end output parameters

start physics block Semiconductor
geometry block is si
standard discretization type is drift diffusion gfem
material model is siliconParameter

end physics block

start material block siliconParameter
material name is Silicon
relative permittivity = 11.9
start step junction doping

acceptor concentration =1.0e16
donor concentration =1.0e16
junction location = 0.5
dopant order is PN
direction is x
end step junction doping

end material block siliconParameter

initial conditions for ELECTRIC_POTENTIAL in si is exodus file
initial conditions for ELECTRON_DENSITY in si is equilibrium density
initial conditions for HOLE_DENSITY in si is equilibrium density

bc is ohmic for cathode on si fixed at 0.0
bc is ohmic for anode on si swept from 0.0 to 1.0

start sweep options
initial step size = 0.02
minimum step size = 0.02
maximum step size = 0.02

end sweep options

Tpetra is on
start solver block

start tpetra block
problem type is steady state
verbosity level is high

end
end solver block

charonInterpreter (chirp) Syntax Reference

• The interpreter can supply a syntax reference on command
• charonInterpreter.py --syntax, or charonInterpreter -s

• Provides an abbreviated help
• charonInterpreter.py --longsyntax, or charonInterpreter -S

• Provides a longer help

• Syntax help can be piped through less to make it scrollable and
searchable

• charonInterpreter.py -S | less -i
• To search: /<search term>

• Exercise: Search the syntax help for “state file”

14

charonInterpreter Syntax Reference

15

Import State File {filename} [at Index {index}]

{} indicates user-supplied entries—these are ALWAYS case sensitive

[] indicates optional entries to the command

charonInterpreter Syntax Reference

16

BC is ohmic for {sidesetID} on {geometryBlock} [fixed at {potential} [swept from {potential1} to {potential2}]]

• Sometimes multiple options are available
• Nested in the reference by [option1 [option2]]
• Voltage on a contact can be fixed at a value
• Voltage can be swept from one value to another

• Such as an IV sweep
• In this instance, at least one of the options must be selected

Input File Structure—Essential Elements
• Import/Export

• Specifies state files to import for geometry, states
• Specifies state files and other variables for export in the state file

• Physics Blocks
• Sets the equations to be solved
• Toggles various physics on & off
• Ties physics to geometry and Material parameters in the Material Block

• Material Blocks
• Defines material properties

• Initial Conditions
• Specify what to use for initial values for variables (electrons, holes, potential, temperature)

• Boundary Conditions
• Contact potentials, boundary temperatures

• Solver Specifications
• Tolerances, preconditioner and solver methods

17

Input File Structure—State file import & Output
• Charon state files contain geometric information and solution

• Exodus formatted
• Geometric information includes the mesh
• State can be null

• File contains only a mesh
• There can be multiple states

• Output from transient or parameter sweep

• File names are specified in the input file for input and output state
files

18

Input File Structure—State file import & Output

• Imports the state file
• Will contain at least the mesh and geometry
• Might contain a state to use as an initial guess

19

• Specifies the output state file name
• Will contain the mesh, geometry and the state just calculated
• Can contain other directives for output of specific variables or tabulated data

from sweeps (Exercise on this later)

import state file pndiode.exo

start output parameters
output state file pndiode.nlp.exo

end output parameters

Input File Structure—Physics Block

• Physics block contains information about a region
• The block must have its own unique name (semiconductor)
• The corresponding region name from geometry
• The equations to be solved
• The name of the associated material block

20

start physics block Semiconductor
geometry block is si
standard discretization type is drift diffusion gfem
material model is siliconParameter

end physics block

Input File Structure—Material Block

• Material block contains material property information
• Must have its own unique name
• Specifies a material name for parameters
• Specifies the doping
• Potentially numerous other material properties (mobility) if not defined

internally or a different value from default is desired
21

start material block siliconParameter
material name is Silicon
relative permittivity = 11.9

 start step junction doping
 acceptor concentration =1.0e16
 donor concentration =1.0e16
 junction location = 0.5
 dopant order is PN
 direction is x
 end step junction doping
end material block siliconParameter

Input File Structure—Boundary Conditions

• Boundary conditions
• Specifies the voltage on the contacts or heat flux/temperature at a boundary

22

bc is ohmic for anode on si fixed at 0
bc is ohmic for cathode on si fixed at 0

Input File Structure—Initial Conditions

• Specifies initial conditions to the solve
• Could be uninitialized
• Could be a model—an estimation of the solution at equilibrium
• Could be “exodus file” if read from a previous solution

23

Initial conditions for ELECTRIC_POTENTIAL in si equilibrium potential

Input File Structure—Solver Block

• Solver block specifies solver parameters
• Specifies which solvers and preconditioners to use
• Specifies tolerances for nonlinear solves

24

Tpetra is on
start solver block
start tpetra block
problem type is steady state
verbosity level is high

end
end solver block

Exercise—Run a Diode Start to Finish

• From the Tutorial #2 directory, run the full sequence of tools to
produce the same diode data as the first exercise

• Generate the mesh
• Decompose the mesh for a parallel run
• Run the nonlinear Poisson solve
• Run the drift-diffusion solve with anode sweep

25

Exercise—Generate and Decompose the Mesh

• cubit pndiode.jou
• Generates the mesh
• Use cubit to examine (it’s not exciting)

• decomp --processors 4 pndiode.exo
• Decompose the mesh with the decomp tool

26

Exercise—Run the nonlinear Poisson Solve

• chirp -i pndiode.nlp.inp --np 4 --run
• Use paraview to examine the potential field
• Can add --decomp to this if the decomp step was skipped in the previous setp

27

Exercise—Run the Drift-Diffusion Solve

• chirp -i pndiode.iv.inp --np 4 --run
• Note the initial conditions in the input file
• Examine the potential and carrier densities over the sweep in paraview
• Compare the iv data to the first diode exercise
• Use paraview to examine the potential / depletion region

28

Exercise—Extra Credit Problem
• Use the interpreter reference to:

• Name the file for iv output srh-currents.dat
• Add to the output parameters block

• Add srh recombination
• Toggle on srh recombination in the physics block
• Add srh lifetimes to the material block (fixed 1e-9 for both electrons and holes)

• Need only run the iv sweep
• All else including nonlinear Poisson solve remains unchanged

• Compare the iv sweep with and without recombination
• Open the currents-loca.dat file in an editor and place a # on the first line in front of headers
• gnuplot

• gnuplot> set logscale y
• gnuplot> plot ‘currents-loca.dat’,’srh-currents.dat’

29

Exercise—
Extra Credit Problem

30

import state file pndiode.exo

start output parameters
output state file pndiode.dd.iv.exo
output tabulated parameter currents to srh-currents.dat

end output parameters

start physics block Semiconductor
geometry block is si
standard discretization type is drift diffusion gfem
material model is siliconParameter
srh recombination is on

end physics block

start material block siliconParameter
material name is Silicon
relative permittivity = 11.9
start step junction doping

acceptor concentration =1.0e16
donor concentration =1.0e16
junction location = 0.5
dopant order is PN
direction is x

end step junction doping

 start Carrier Lifetime Block
 electron lifetime is constant = 1e-9
 hole lifetime is constant = 1e-9
 end Carrier Lifetime Block

end material block siliconParameter

initial conditions for ELECTRIC_POTENTIAL in si is exodus file
initial conditions for ELECTRON_DENSITY in si is equilibrium density
initial conditions for HOLE_DENSITY in si is equilibrium density

bc is ohmic for cathode on si fixed at 0.0
bc is ohmic for anode on si swept from 0.0 to 1.0

start sweep options
initial step size = 0.02
minimum step size = 0.02
maximum step size = 0.02

end sweep options

Tpetra is on
start solver block
start tpetra block
problem type is steady state
verbosity level is high

end
end solver block

Dakota usage with Charon

• Scripts that ease the use of Dakota with Charon have been created
and are presently in a beta stage of release.

• The basic flow structure is:

31

Dakota usage with Charon

• A Dakota input file must be supplied. The driver in that input file
must always be set to charonDriver.py and a template directory
specified. Individual executions are optionally stored in the
work_directory.

32

interface
id_interface = 'I1'

analysis_drivers = 'charonDriver.py'
fork
asynchronous
evaluation_concurrency 2
work_directory named 'workingDir'
directory_save
link_files = 'template_dir/*'

Root

template_dir workingDir.1 workingDir.2

Dakota usage with Charon

• The charonDriver.py script can be invoked directly to get limited help:

33

charonDriver help:
for a list of available responses (QOIs), charonDriver.py --listresponses
For a description of how to use a particular response: charonDriver.py --help <response>

Dakota usage with Charon

• charonDriver.py --listresponses

34

Response 0 is thresholdVoltage
Response 1 is currentAtVoltage
Response 2 is betaGain
Response 3 is IVCurve
Response 4 is compositeFunction

Dakota usage with Charon
• charonDriver.py --help currentAtVoltage

35

reponse currentAtVoltage argument1=value1 argument2=value2...

This response returns the current at a specified voltage from a voltage sweep simulation.

filename -- Name of the file where the currents and voltages are expect to be found.

voltage -- Set a numerical value of the voltage at which the current is calculated.

target -- The target is used for calibration. It is the expected value of the current at the specified voltage. When the target is
specified, a residual of the expected and calculated values is returned.

weighted -- When the residual is calculated with a target value, setting this to yes or no will opt into weighting the residual by the
expected value. The default is NOT to weight the residual.

responsename -- The default name of the response is currentAtVoltage. However, if different currents are to be calculated such as
weighted and unweighted or at multiple voltages values, a unique name must be given to each reponse.

voltColumn -- Specify a custom column index for the volts in the I-V data file. Note that the index starts from 0. I SAY AGAIN!! THE
FIRST COLUMN OF THE DATA IS INDEX 0. THE SECOND COLUMN IS 1. And so on.

currentColumn -- Specify a custom column index for the current in the I-V data file. Note that the index starts from 0. I SAY AGAIN!!
THE FIRST COLUMN OF THE DATA IS INDEX 0. THE SECOND COLUMN IS 1. And so on.

Dakota usage with Charon
• An example of diode doping calibration is supplied in the Tutorial4

directory
• The template directory must contain a file named driver.config

36

executeMethods app=charon template=pndiode.nlp.template
executeMethods app=charon template=pndiode.iv.template

executeProcs 4

response IVCurve filename=currents-loca.dat voltColumn=0 \
currentColumn=2 coordinates=IVCurveA.cords \
targetFile=IVCurveA.dat responseName=IVCurveA

executeMethods—can be any in number, but the apps are limited to charon, cubit, pyMesh

executeProcs—number of processors used in a single evaluation

response—can be any in number, but the responses are limited to those available in the scripts: IVCurve,
compositeFunction, currentAtVoltage, thresholdVoltage.
If multiple responses are used of identical type, they must each be given a unique name, e.g. IVCurveA,
IVCurveB…

Dakota usage with Charon

• The template files MUST contain parameters that Dakota will modify:

37

start step junction doping
acceptor concentration = {dopingCoefficient*1e16}
donor concentration = {dopingCoefficient*1e16}
junction location = 0.5
dopant order is PN
direction is x

end step junction doping

variables
id_variables = 'V1'

continuous_design 1
upper_bounds = 10
lower_bounds = 0.01
initial_point = 0.1
descriptors 'dopingCoefficient'

From the template file

From the Dakota input file

The parameter names must match!!

Dakota usage with Charon
• Responses in the Dakota input file MUST match those in the

driver.config!!

38

responses,
id_responses = 'R2'

calibration_terms = 1
response_descriptors = 'IVCurveA'

numerical_gradients
method_source dakota
interval_type forward
fd_step_size = 0.0001

response IVCurve filename=currents-loca.dat voltColumn=0 currentColumn=2 \
coordinates=IVCurveA.coords targetFile=IVCurveA.dat \
responseName=IVCurveA

From the driver.config file

From the Dakota input file

The response names must match!!

Dakota usage with Charon
• A target IV curve was generated with #{dopingCoefficient=1.0}
• The test is to see if this coefficient can be recovered in calibration
• Try it now! dakota -i dakota-hybrid.in

39

**
OPT++ TERMINATION CRITERION
Return Code 3

SUCCESS - optpp_q_newton converged to a solution
Algorithm converged - Norm of gradient is less than gradient tolerance
**
<<<<< Function evaluation summary (I1): 8 total (5 new, 3 duplicate)
<<<<< Best parameters =

9.9999515175e-01 dopingCoefficient
<<<<< Best residual terms =

1.5520000000e-14
8.7800000002e-14
5.8000000000e-13
3.7769999999e-12
2.4620000000e-11
1.5910000000e-10
1.0040000000e-09
5.7399999998e-09
2.2020000000e-08
2.6200000003e-08

-5.7200000000e-08
-2.7400000002e-07
-6.3700000000e-07
-1.1430000000e-06
-1.7890000000e-06
-2.5619999999e-06

<<<<< Best residual norm = 3.3994317380e-06; 0.5 * norm^2 = 5.7780680707e-12
<<<<< Best data captured at function evaluation 27

<<<<< Iterator optpp_q_newton completed.

<<<<< Iterator hybrid completed.
<<<<< Environment execution completed.
DAKOTA execution time in seconds:

Total CPU = 0.2 [parent = 0.203672, child = -0.003672]
Total wall clock = 113.539

%eval_id interface dopingCoefficient IVCurveA_1
1 I1 5.005 3.237884086
2 I1 8.335 7.360924143
3 I1 1.675 0.1775380634
4 I1 2.785 0.9413572675
5 I1 0.565 0.1139817785
6 I1 6.115 4.563392539
7 I1 3.895 2.007893428
8 I1 0.935 0.002133588337
9 I1 0.195 0.4966495347
10 I1 9.445 8.79297729
11 I1 7.225 5.945763053
12 I1 2.045 0.3839108667
13 I1 1.305 0.040805769
14 I1 1.058333333 0.001634491354
15 I1 0.8116666667 0.01890317923
16 I1 3.155 1.272426658
17 I1 2.415 0.6424202468
18 I1 1.428333333 0.07720425106
19 I1 1.181666667 0.01512785733
20 I1 1.099444444 0.004675086903
21 I1 1.017222222 0.000144811942
%eval_id interface dopingCoefficient IVCurveA_1
22 I1 1.017222222 0.000144811942
23 I1 1.000463732 1.057037657e-07
24 I1 0.9999951517 1.155613614e-11

40

GaN PIN diode structure and models

𝑁஽ = 2.0 × 10ଵ଼ 𝑐𝑚ିଷ

Anode

Cathode

𝑁஽ = 5 × 10ଵହ 𝑐𝑚ିଷ

𝑑𝑟𝑖𝑓𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

• See Tutorial5

• Gopt = 1.0x1020 cm-3 s-1

• SRH with τp = τn = 5 x10-10 s
• radiative recombination with B = 2.0 x 10-11 cm3s-1

• Auger Recombination with C = 1.5 x 10-30 cm6s-1

• Farahmand mobility with high field saturation for electrons
and constant mobility for holes μp = 11.0 cm2/Vs

• Fermi Dirac Statistics enabled
• Incomplete ionization (acceptor ionization energy 0.18 eV,

donor ionization energy 0.012 eV)
• avalanche generation with effective field as driving force for

reverse bias (E0_e = E0_h = 3.5 x 107 V/cm, a0_e = a0_h = 3.1
x 107 cm-1)

• Numerical scheme: SGCVFEM

41

GaN PIN diode reverse characteristics

coarse mesh
no of mesh nodes: 4257
no of edges: 8032
no of cells: 3776
no of cores uses: 4

42

gan_pin_diode.jou

gan_pin_diode_msh.exo

gan_pin_diode_msh.exo.4.0
gan_pin_diode_msh.exo.4.1
gan_pin_diode_msh.exo.4.2
gan_pin_diode_msh.exo.4.2

mesh generation - cubit

mesh decomposition - decomp

Mesh generation and
decomposition

gan_pin_diode.nlp.inp

gan_pin_diode_msh.exo.4.0
gan_pin_diode_msh.exo.4.1
gan_pin_diode_msh.exo.4.2
gan_pin_diode_msh.exo.4.2

gan_pin_diode.dd.equ.inp

gan_pin_diode.dd.equ.1.inp

gan_pin_diode.dd.equ.2.inp

Build equilibrium solution
by gradually adding models

Poisson equation

Charon

Drift Diffusion + Poisson

Charon

Breakdown simulation

Drift Diffusion
+ Poisson
Sweep Loca

Charon

sweep solution

gan_pin_diode.dd.equ.2.exo.4.0
gan_pin_diode.dd.equ.2.exo.4.1
gan_pin_diode.dd.equ.2.exo.4.2
gan_pin_diode.dd.equ.2.exo.4.3

gan_pin_diode.dd.reverse_sweep.inp

gan_pin_diode.dd.reverse_sweep.exo.4.0
gan_pin_diode.dd.reverse_sweep.exo.4.1
gan_pin_diode.dd.reverse_sweep.exo.4.2
gan_pin_diode.dd.reverse_sweep.exo.4.3

currents-loca.dat

Equilibrium
solution

output

Breakdown
Characteristics
(contact currents)

GaN PIN diode breakdown Simulation Flow

