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What does Charon do?
• Drift-Diffusion PDE solver for modeling charge carrier flow
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Diagram of a Simulation
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Charon Files

• Input files
• Contain state file names and a full parametric description of the simulation

• State files
• Input

• Meshing and initial guesses for a simulation
• Output

• Results of a simulation

• Various text files
• Input

• Assorted radiation data: pulse information, etc
• Output

• Tabulated I-V or I-<parameter> data from a transient or parameter sweep simulation
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Charon Environment & Tutorials

• The environment needs to be set up for Charon to execute
• Environment variables: PATH, etc
• Modules: various TPLs

• On CEE systems
• bash: source /projects/charon/install/BOD/setup-cee.cde.intel.env.sh

• On HPC systems (skybridge, chama, attaway, eclipse)
• bash: source /projects/charon/install/attaway.jenkins/setup.cde.intel.env.sh

• Copy the tutorial problems to your personal account
• cp -R /projects/charon/Training/BasicIntro .
• Three tutorial directories
• Charon user manual (pdf)
• Training slides (pdf)
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Charon Interpreter (chirp)

• Charon Interpreter
• Python driven front end to Charon
• Simple, readable syntax
• Straightforward formatting
• Available syntax reference, searchable through “less”
• Maps input syntax to Teuchos parameter list (xml) that fully configures a 

simulation
• Can execute Charon in parallel or serial
• (in the future) Will perform domain decomposition for parallel simulations 
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CharonInterpreter Help (exercise)
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lcmusso@ascic0186 [~] % chirp --help
usage: chirp [-h] [-i INPUT] [-r] [--silent] [--no_current] [--np NP] [-s]

[-S] [-d] [-R RESIZE_FROM_NPROCS] [-v VERBOSITY]
[-p PATH_TO_CHARON] [--cleanTextData] [--mpitile] [-l LABEL]
[--nolog] [--mpipath MPIPATH] [--mpiexec MPIEXEC]

optional arguments:
-h, --help            show this help message and exit
-i INPUT, --input INPUT

Specify the interpreter input file
-r, --run             Execute Charon
--silent              Supresses screen output. Screen output will be stored

in log.
--no_current Disable text output of current
--np NP Specify the number of processors to use in the Charon

run.
-s, --syntax          Get help for syntax of interpreter. Append "| less -i"

to scrolling and search.
-S, --longsyntax Get expanded help for syntax of interpreter. Append "|

less -i" to scrolling and search.
-d, --decomp          Decompose the state file for parallel execution. Will

abort if decomposition of same size already exists.
-R RESIZE_FROM_NPROCS, --resize_from_nprocs RESIZE_FROM_NPROCS

Resizes the decomposition from nprocs domains to np
domains. Will abort if decomposition of same size is
detected.

-v VERBOSITY, --verbosity VERBOSITY
Specify verbose output of the interpreter ranging from
0 to 25

-p PATH_TO_CHARON, --path_to_charon PATH_TO_CHARON
Specify path to Charon exectutable

--cleanTextData This option will remove sweep and transient text data
files prior to execution.

--mpitile uses Dakota's mpitile on large computing systems with
high concurrency.

-l LABEL, --label LABEL
Specify an optional label for the run.

--nolog Opts out of logging the run.
--mpipath MPIPATH     Specify path to an mpi run command. This path may also

be set through the MPIRUN_COMMAND_PATH environment
variable.

--mpiexec MPIEXEC     Specify an mpi executable name. This name may also be
set through the MPIRUN_COMMAND environment variable.



Exercise – Run a diode simulation

• In the tutorial #1 directory
• chirp -i pndiode.iv.inp --run
• Open paraview

• Load pndiode.iv.exo
• View potential, electron density, hole density

• Plot the IV curve
• Open the currents-loca.dat file in an editor and place a # on the first line in front of headers
• gnuplot

• gnuplot> set logscale y
• gnuplot> plot ‘currents-loca.dat’ 8
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Diode exercise—What are the numbers?

• Currents-loca.dat has I-V data
• What are the currents?
• Charon is 2D & 3D only

• 2D: The current values will have units of Amps/cm 
width

• 3D: The current values will have units of Amps
• This simulation is set up as a quasi-1D problem

• It is technically 2D, but all the action is in a single 
direction—H is an arbitrary length

• Current is contactArea*current/H
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Path to a Full Drift-Diffusion Simulation

• Two steps are required to produce a drift-diffusion (DD) simulation
• Usually, it isn’t possible to go from a null state to a DD state in a single 

pass
• A nonlinear Poisson (NLP) solution is computed first for the 

electrostatic potential
• This is used as the initial guess for a DD solution

10

Preprocessing NLP DD Further analyses



Cubit—Solid Model & Meshing

• Cubit is the Sandia tool for creating solid models and meshes
• Not much covered in Charon quick start training

• Introductory training taught by Cubit team should be sufficient
• Most TCAD solid models are rectangular
• Implicit surfaces (junctions) make meshing difficult, sometimes impossible 

with Cubit
• Charon’s pyMesh tool is available, but still in an early state

• Automatically refines meshes around junctions.
• Can easily be configured to mesh around lines, planes, points…
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# Create a three-dimensional volume. The two-dimensional diode will be
# created on a surface of this three-dimensional volume. By default
# Charon assumes the dimensions are in microns
create brick x 1.0 y 0.5 z 0.1

# This makes the coordinates of the resulting mesh all positive. This
# isn't required but can be useful for post-processing
move vertex 4 location 0 0 0

# These will be the contacts, anode and cathode. The names are used in
# the input file to distinquish them
sideset 1 curve 3
sideset 1 name "anode"

sideset 2 curve 1
sideset 2 name "cathode"

# "blocks" are typically regions of different materials or distinct
# regions of the device. For this simple problem we only have one
# region
block 1 surface 1
block 1 name "si"

# Quads (bricks) or triangles (tetrahedra) are the
# preferred element type for Charon simulations.
block 1 element type quad4

# The interval specifications set how dense or coarse the
# discretization is

## Long side
curve 2 4 interval 100

## Short side (contacts)
curve 3 1 interval 1

# Generate, or "mesh", the problem geometry
mesh surface 1

# Create the output "exodus" file, or overwrite it if it already
# exists.
export mesh "pndiode.exo" dimension 2 overwrite

Meshing the diode
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Charon Input File
• The highlights indicate where information 

supplied in the geometry/meshing phase of 
preprocessing ties into the Charon input

• The imported state file contains the mesh 
and a state—if there is one.

• The remainders are names tied to regions or 
boundaries of the device as named during 
the meshing phase.
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import state file pndiode.exo

start output parameters
output state file pndiode.dd.iv.exo

end output parameters

start physics block Semiconductor
geometry block is si
standard discretization type is drift diffusion gfem
material model is siliconParameter

end physics block

start material block siliconParameter
material name is Silicon
relative permittivity = 11.9
start step junction doping

acceptor concentration =1.0e16
donor concentration =1.0e16
junction location = 0.5
dopant order is PN
direction is x
end step junction doping

end material block siliconParameter

initial conditions for ELECTRIC_POTENTIAL in si is exodus file
initial conditions for ELECTRON_DENSITY in si is equilibrium density
initial conditions for HOLE_DENSITY in si is equilibrium density

bc is ohmic for cathode on si fixed at 0.0
bc is ohmic for anode on si swept from 0.0 to 1.0

start sweep options
initial step size = 0.02
minimum step size = 0.02
maximum step size = 0.02

end sweep options

Tpetra is on
start solver block

start tpetra block
problem type is steady state
verbosity level is high

end
end solver block



charonInterpreter (chirp) Syntax Reference

• The interpreter can supply a syntax reference on command
• charonInterpreter.py --syntax, or charonInterpreter -s

• Provides an abbreviated help
• charonInterpreter.py --longsyntax, or  charonInterpreter -S

• Provides a longer help

• Syntax help can be piped through less to make it scrollable and 
searchable

• charonInterpreter.py -S | less -i
• To search:  /<search term>

• Exercise:  Search the syntax help for “state file”

14



charonInterpreter Syntax Reference
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Import State File {filename} [at Index {index}] 

{} indicates user-supplied entries—these are ALWAYS case sensitive

[] indicates optional entries to the command



charonInterpreter Syntax Reference
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BC is ohmic for {sidesetID} on {geometryBlock} [ fixed at {potential} [ swept from {potential1} to {potential2} ]] 

• Sometimes multiple options are available
• Nested in the reference by [option1  [option2 ]]
• Voltage on a contact can be fixed at a value
• Voltage can be swept from one value to another

• Such as an IV sweep
• In this instance, at least one of the options must be selected



Input File Structure—Essential Elements
• Import/Export

• Specifies state files to import for geometry, states
• Specifies state files and other variables for export in the state file

• Physics Blocks
• Sets the equations to be solved
• Toggles various physics on & off
• Ties physics to geometry and Material parameters in the Material Block

• Material Blocks
• Defines material properties

• Initial Conditions
• Specify what to use for initial values for variables (electrons, holes, potential, temperature)

• Boundary Conditions
• Contact potentials, boundary temperatures

• Solver Specifications
• Tolerances, preconditioner and solver methods

17



Input File Structure—State file import & Output
• Charon state files contain geometric information and solution 

• Exodus formatted
• Geometric information includes the mesh
• State can be null

• File contains only a mesh
• There can be multiple states

• Output from transient or parameter sweep

• File names are specified in the input file for input and output state 
files

18



Input File Structure—State file import & Output

• Imports the state file
• Will contain at least the mesh and geometry
• Might contain a state to use as an initial guess
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• Specifies the output state file name
• Will contain the mesh, geometry and the state just calculated
• Can contain other directives for output of specific variables or tabulated data 

from sweeps  (Exercise on this later)

import state file pndiode.exo

start output parameters
output state file pndiode.nlp.exo

end output parameters



Input File Structure—Physics Block

• Physics block contains information about a region
• The block must have its own unique name (semiconductor)
• The corresponding region name from geometry
• The equations to be solved
• The name of the associated material block
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start physics block Semiconductor
geometry block is si
standard discretization type is drift diffusion gfem
material model is siliconParameter

end physics block



Input File Structure—Material Block

• Material block contains material property information
• Must have its own unique name
• Specifies a material name for parameters
• Specifies the doping
• Potentially numerous other material properties (mobility) if not defined 

internally or a different value from default is desired
21

start material block siliconParameter
material name is Silicon
relative permittivity = 11.9

   start step junction doping
      acceptor concentration =1.0e16
      donor concentration =1.0e16
      junction location = 0.5
      dopant order is PN
      direction is x
   end step junction doping
end material block siliconParameter



Input File Structure—Boundary Conditions

• Boundary conditions
• Specifies the voltage on the contacts or heat flux/temperature at a boundary
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bc is ohmic for anode on si fixed at 0
bc is ohmic for cathode on si fixed at 0



Input File Structure—Initial Conditions

• Specifies initial conditions to the solve
• Could be uninitialized
• Could be a model—an estimation of the solution at equilibrium 
• Could be “exodus file” if read from a previous solution

23

Initial conditions for ELECTRIC_POTENTIAL in si equilibrium potential



Input File Structure—Solver Block

• Solver block specifies solver parameters
• Specifies which solvers and preconditioners to use
• Specifies tolerances for nonlinear solves
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Tpetra is on
start solver block
start tpetra block
problem type is steady state
verbosity level is high

end
end solver block



Exercise—Run a Diode Start to Finish

• From the Tutorial #2 directory, run the full sequence of tools to 
produce the same diode data as the first exercise

• Generate the mesh
• Decompose the mesh for a parallel run
• Run the nonlinear Poisson solve
• Run the drift-diffusion solve with anode sweep
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Exercise—Generate and Decompose the Mesh

• cubit pndiode.jou
• Generates the mesh
• Use cubit to examine (it’s not exciting)

• decomp --processors 4 pndiode.exo
• Decompose the mesh with the decomp tool

26



Exercise—Run the nonlinear Poisson Solve

• chirp -i pndiode.nlp.inp --np 4 --run 
• Use paraview to examine the potential field
• Can add --decomp to this if the decomp step was skipped in the previous setp

27



Exercise—Run the Drift-Diffusion Solve 

• chirp -i pndiode.iv.inp --np 4 --run 
• Note the initial conditions in the input file
• Examine the potential and carrier densities over the sweep in paraview
• Compare the iv data to the first diode exercise
• Use paraview to examine the potential / depletion region

28



Exercise—Extra Credit Problem
• Use the interpreter reference to:

• Name the file for iv output srh-currents.dat
• Add to the output parameters block

• Add srh recombination
• Toggle on srh recombination in the physics block
• Add srh lifetimes to the material block (fixed 1e-9 for both electrons and holes)

• Need only run the iv sweep
• All else including nonlinear Poisson solve remains unchanged

• Compare the iv sweep with and without recombination
• Open the currents-loca.dat file in an editor and place a # on the first line in front of headers
• gnuplot

• gnuplot> set logscale y
• gnuplot> plot ‘currents-loca.dat’,’srh-currents.dat’

29



Exercise—
Extra Credit Problem
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import state file pndiode.exo

start output parameters
output state file pndiode.dd.iv.exo
output tabulated parameter currents to srh-currents.dat

end output parameters

start physics block Semiconductor
geometry block is si
standard discretization type is drift diffusion gfem
material model is siliconParameter
srh recombination is on

end physics block

start material block siliconParameter
material name is Silicon
relative permittivity = 11.9
start step junction doping

acceptor concentration =1.0e16
donor concentration =1.0e16
junction location = 0.5
dopant order is PN
direction is x

end step junction doping

    start Carrier Lifetime Block
      electron lifetime is constant = 1e-9
      hole lifetime is constant = 1e-9
    end Carrier Lifetime Block

end material block siliconParameter

initial conditions for ELECTRIC_POTENTIAL in si is exodus file
initial conditions for ELECTRON_DENSITY in si is equilibrium density
initial conditions for HOLE_DENSITY in si is equilibrium density

bc is ohmic for cathode on si fixed at 0.0
bc is ohmic for anode on si swept from 0.0 to 1.0

start sweep options
initial step size = 0.02
minimum step size = 0.02
maximum step size = 0.02

end sweep options

Tpetra is on
start solver block
start tpetra block
problem type is steady state
verbosity level is high

end
end solver block



Dakota usage with Charon

• Scripts that ease the use of Dakota with Charon have been created 
and are presently in a beta stage of release.

• The basic flow structure is:
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Dakota usage with Charon

• A Dakota input file must be supplied.  The driver in that input file 
must always be set to charonDriver.py and a template directory 
specified.  Individual executions are optionally stored in the 
work_directory.
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interface
id_interface = 'I1'

analysis_drivers = 'charonDriver.py'
fork
asynchronous
evaluation_concurrency 2
work_directory named 'workingDir'
directory_save
link_files = 'template_dir/*'

Root

template_dir workingDir.1 workingDir.2



Dakota usage with Charon

• The charonDriver.py script can be invoked directly to get limited help:
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charonDriver help:
for a list of available responses (QOIs), charonDriver.py --listresponses
For a description of how to use a particular response: charonDriver.py --help <response>



Dakota usage with Charon

• charonDriver.py --listresponses
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Response  0  is  thresholdVoltage
Response  1  is  currentAtVoltage
Response  2  is  betaGain
Response  3  is  IVCurve
Response  4  is  compositeFunction



Dakota usage with Charon
• charonDriver.py --help currentAtVoltage
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reponse currentAtVoltage argument1=value1 argument2=value2...

This response returns the current at a specified voltage from a voltage sweep simulation.

filename -- Name of the file where the currents and voltages are expect to be found.

voltage -- Set a numerical value of the voltage at which the current is calculated.

target -- The target is used for calibration.  It is the expected value of the current at the specified voltage.  When the target is 
specified, a residual of the expected and calculated values is returned.

weighted -- When the residual is calculated with a target value, setting this to yes or no will opt into weighting the residual by the 
expected value.  The default is NOT to weight the residual.

responsename -- The default name of the response is currentAtVoltage.  However, if different currents are to be calculated such as 
weighted and unweighted or at multiple voltages values, a unique name must be given to each reponse.

voltColumn -- Specify a custom column index for the volts in the I-V data file.  Note that the index starts from 0.  I SAY AGAIN!!  THE 
FIRST COLUMN OF THE DATA IS INDEX 0. THE SECOND COLUMN IS 1.  And so on.

currentColumn -- Specify a custom column index for the current in the I-V data file.  Note that the index starts from 0.  I SAY AGAIN!!  
THE FIRST COLUMN OF THE DATA IS INDEX 0. THE SECOND COLUMN IS 1.  And so on.



Dakota usage with Charon
• An example of diode doping calibration is supplied in the Tutorial4 

directory
• The template directory must contain a file named driver.config
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executeMethods app=charon template=pndiode.nlp.template
executeMethods app=charon template=pndiode.iv.template

executeProcs 4

response IVCurve filename=currents-loca.dat voltColumn=0 \
currentColumn=2 coordinates=IVCurveA.cords \
targetFile=IVCurveA.dat  responseName=IVCurveA

executeMethods—can be any in number, but the apps are limited to charon, cubit, pyMesh

executeProcs—number of processors used in a single evaluation

response—can be any in number, but the responses are limited to those available in the scripts: IVCurve, 
compositeFunction, currentAtVoltage, thresholdVoltage.
If multiple responses are used of identical type, they must each be given a unique name, e.g. IVCurveA, 
IVCurveB…



Dakota usage with Charon

• The template files MUST contain parameters that Dakota will modify:
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start step junction doping
acceptor concentration = {dopingCoefficient*1e16}
donor concentration = {dopingCoefficient*1e16}
junction location = 0.5
dopant order is PN
direction is x

end step junction doping

variables
id_variables = 'V1'

continuous_design 1
upper_bounds =  10 
lower_bounds =  0.01 
initial_point =  0.1
descriptors       'dopingCoefficient'

From the template file

From the Dakota input file

The parameter names must match!!



Dakota usage with Charon
• Responses in the Dakota input file MUST match those in the 

driver.config!!
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responses,
id_responses = 'R2'

calibration_terms = 1
response_descriptors = 'IVCurveA'

numerical_gradients
method_source dakota
interval_type forward
fd_step_size =        0.0001

response IVCurve filename=currents-loca.dat voltColumn=0 currentColumn=2 \
coordinates=IVCurveA.coords targetFile=IVCurveA.dat  \
responseName=IVCurveA

From the driver.config file

From the Dakota input file

The response names must match!!



Dakota usage with Charon
• A target IV curve was generated with #{dopingCoefficient=1.0}
• The test is to see if this coefficient can be recovered in calibration
• Try it now!  dakota -i dakota-hybrid.in
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********************************************************
OPT++ TERMINATION CRITERION                
Return Code                3

SUCCESS - optpp_q_newton converged to a solution
Algorithm converged - Norm of gradient is less than gradient tolerance
********************************************************
<<<<< Function evaluation summary (I1): 8 total (5 new, 3 duplicate)
<<<<< Best parameters          =

9.9999515175e-01 dopingCoefficient
<<<<< Best residual terms =

1.5520000000e-14
8.7800000002e-14
5.8000000000e-13
3.7769999999e-12
2.4620000000e-11
1.5910000000e-10
1.0040000000e-09
5.7399999998e-09
2.2020000000e-08
2.6200000003e-08

-5.7200000000e-08
-2.7400000002e-07
-6.3700000000e-07
-1.1430000000e-06
-1.7890000000e-06
-2.5619999999e-06

<<<<< Best residual norm =  3.3994317380e-06; 0.5 * norm^2 =  5.7780680707e-12
<<<<< Best data captured at function evaluation 27

<<<<< Iterator optpp_q_newton completed.

<<<<< Iterator hybrid completed.
<<<<< Environment execution completed.
DAKOTA execution time in seconds:

Total CPU        =        0.2 [parent =   0.203672, child =  -0.003672]
Total wall clock =    113.539

%eval_id interface dopingCoefficient IVCurveA_1     
1        I1        5.005          3.237884086    
2        I1        8.335          7.360924143    
3        I1        1.675          0.1775380634   
4        I1        2.785          0.9413572675   
5        I1        0.565          0.1139817785   
6        I1        6.115          4.563392539    
7        I1        3.895          2.007893428    
8        I1        0.935          0.002133588337 
9        I1        0.195          0.4966495347   
10       I1        9.445          8.79297729     
11       I1        7.225          5.945763053    
12       I1        2.045          0.3839108667   
13       I1        1.305          0.040805769    
14       I1        1.058333333    0.001634491354 
15       I1        0.8116666667   0.01890317923  
16       I1        3.155          1.272426658    
17       I1        2.415          0.6424202468   
18       I1        1.428333333    0.07720425106  
19       I1        1.181666667    0.01512785733  
20       I1        1.099444444    0.004675086903 
21       I1        1.017222222    0.000144811942 
%eval_id interface dopingCoefficient IVCurveA_1     
22       I1        1.017222222    0.000144811942 
23       I1        1.000463732    1.057037657e-07 
24       I1        0.9999951517   1.155613614e-11 
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GaN PIN diode structure and models

𝑁஽ = 2.0 × 10ଵ଼  𝑐𝑚ିଷ

Anode

Cathode

𝑁஽ = 5 × 10ଵହ  𝑐𝑚ିଷ

𝑑𝑟𝑖𝑓𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

• See Tutorial5

• Gopt = 1.0x1020 cm-3 s-1

• SRH with τp = τn = 5 x10-10 s
• radiative recombination with B = 2.0 x 10-11 cm3s-1

• Auger Recombination with C = 1.5 x 10-30 cm6s-1

• Farahmand mobility with high field saturation for electrons 
and constant mobility for holes μp = 11.0 cm2/Vs 

• Fermi Dirac Statistics enabled
• Incomplete ionization (acceptor ionization energy 0.18 eV, 

donor ionization energy 0.012 eV)
• avalanche generation with effective field as driving force for 

reverse bias (E0_e = E0_h = 3.5 x 107 V/cm,  a0_e = a0_h = 3.1 
x 107 cm-1)

• Numerical scheme: SGCVFEM
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GaN PIN diode reverse characteristics

coarse mesh
no of mesh nodes: 4257
no of edges: 8032
no of cells: 3776
no of cores uses: 4
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gan_pin_diode.jou

gan_pin_diode_msh.exo

gan_pin_diode_msh.exo.4.0
gan_pin_diode_msh.exo.4.1
gan_pin_diode_msh.exo.4.2
gan_pin_diode_msh.exo.4.2

mesh generation - cubit

mesh decomposition - decomp

Mesh generation and 
decomposition

gan_pin_diode.nlp.inp

gan_pin_diode_msh.exo.4.0
gan_pin_diode_msh.exo.4.1
gan_pin_diode_msh.exo.4.2
gan_pin_diode_msh.exo.4.2

gan_pin_diode.dd.equ.inp

gan_pin_diode.dd.equ.1.inp

gan_pin_diode.dd.equ.2.inp

Build equilibrium solution
by gradually adding models

Poisson equation 

Charon

Drift Diffusion + Poisson

Charon

Breakdown simulation

Drift Diffusion 
+ Poisson
Sweep Loca

Charon

sweep solution

gan_pin_diode.dd.equ.2.exo.4.0
gan_pin_diode.dd.equ.2.exo.4.1
gan_pin_diode.dd.equ.2.exo.4.2
gan_pin_diode.dd.equ.2.exo.4.3

gan_pin_diode.dd.reverse_sweep.inp

gan_pin_diode.dd.reverse_sweep.exo.4.0
gan_pin_diode.dd.reverse_sweep.exo.4.1
gan_pin_diode.dd.reverse_sweep.exo.4.2
gan_pin_diode.dd.reverse_sweep.exo.4.3

currents-loca.dat

Equilibrium
solution

output

Breakdown 
Characteristics
(contact currents)

GaN PIN diode breakdown Simulation Flow


