
Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

SAND2020-14169 PE

Charon: Basic Introduction Training

Sand ia Nat iona l Labora tor i e s

L a w r e n c e C M u s s o n , G a r y H e n n i g a n , X u j i a o G a o ,
M i h a i N e g o i t a , a n d A n d y H u a n g

What does Charon do?

• Drift-Diffusion PDE solver for modeling charge carrier flow

Conservation

Electric
Potential

Carrier Transport
Equations

Lattice
Heating

TCAD code for modeling semiconductor performance
including ionizing radiation and displacement damage as a
result of radiation

Direct solution of many-body
Schrodinger equation

Quantum Transport

Boltzmann Transport

Drift-Diffusion-Heating PDEs

Hydrodynamic PDEs

Hierarchy of transport models

Se
m

i-
cl

as
si

ca
l

P
D

Es
 (

C
h

ar
o

n
)

Diagram of a Simulation

3

Charon

Paraview

OriginLab,
etc

Cubit

Charon
Interpreter

Charon
input
file

Cubit
journal

file

XML parameter list

Exodus state file

Tabulated I-V text files

Exodus state file

Plots/Figures

visualization

Pre-processing Processing Post-processing

Domain
Decomposition

Charon Files

• Input files
• Contain state file names and a full parametric description of the simulation

• State files
• Input

• Meshing and initial guesses for a simulation

• Output
• Results of a simulation

• Various text files
• Input

• Assorted radiation data: pulse information, etc

• Output
• Tabulated I-V or I-<parameter> data from a transient or parameter sweep simulation

4

Charon Environment & Tutorials

• Copy the tutorial problems to your personal account
• cp -R /tcad-charon/docs/Training/BasicIntroduction.

• Two tutorial directories

• Training slides (pdf)

• Cubit is usually the best option for mesh generation
• Cubit is commercial, but a free limited version is available at:

• https://www.coreform.com/products/coreform-cubit/free-meshing-software/

5

https://www.coreform.com/products/coreform-cubit/free-meshing-software/

Charon Interpreter

• Charon Interpreter
• Python driven front end to Charon

• Simple, readable syntax

• Straightforward formatting

• Available syntax reference, searchable through “less”

• Maps input syntax to Teuchos parameter list (xml) that fully configures a
simulation

• Can execute Charon in parallel or serial

• (in the future) Will perform domain decomposition for parallel simulations

6

CharonInterpreter Help (exercise)

7

Exercise – Run a diode simulation

• In the tutorial #1 directory
• charonInterpreter.py -i pndiode.iv.inp --run

• Open paraview
• Load pndiode.iv.exo

• View potential, electron density, hole density

• Plot the IV curve
• Open the currents-loca.dat file in an editor and place a # on the first line in front of headers

• gnuplot
• gnuplot> set logscale y

• gnuplot> plot ‘currents-loca.dat’ 8

p-Doped n-dopedH

D

Diode exercise—What are the numbers?

• Currents-loca.dat has I-V data
• What are the currents?

• Charon is 2D & 3D only
• 2D: The current values will have units of Amps/cm

width

• 3D: The current values will have units of Amps

• This simulation is set up as a quasi-1D problem
• It is technically 2D, but all the action is in a single

direction—H is an arbitrary length

• Current is contactArea*current/H

9

p-Doped n-dopedH

D

Path to a Full Drift-Diffusion Simulation

• Two steps are required to produce a drift-diffusion (DD) simulation

• Usually, it isn’t possible to go from a null state to a DD state in a single
pass

• A nonlinear Poisson (NLP) solution is computed first for the
electrostatic potential

• This is used as the initial guess for a DD solution

10

Preprocessing NLP DD Further analyses

Cubit—Solid Model & Meshing

• Cubit is the Sandia tool for creating solid models and meshes
• Not much covered in Charon basic introduction training

• Introductory training taught by Cubit team should be sufficient

• Most TCAD solid models are rectangular

11

Meshing the diode

12

}Solid model (use microns)

}Naming Contacts

}Meshing

}Naming geometric regions

}Exporting mesh

anode cathodesi

Always use lower case for names

Charon Input File
• The highlights indicate where information

supplied in the geometry/meshing phase of
preprocessing ties into the Charon input

• The imported state file contains the mesh
and a state—if there is one.

• The remainders are names tied to regions or
boundaries of the device as named during
the meshing phase.

13

charonInterpreter (chirp) Syntax Reference

• The interpreter can supply a syntax reference on command
• charonInterpreter.py --syntax, or charonInterpreter -s

• Provides an abbreviated help

• charonInterpreter.py --longsyntax, or charonInterpreter -S
• Provides a longer help

• Syntax help can be piped through less to make it scrollable and
searchable
• charonInterpreter.py -S | less -i

• To search: /<search term>

• Exercise: Search the syntax help for “state file”

14

charonInterpreter Syntax Reference

15

Import State File {filename} [at Index {index}]

{} indicates user-supplied entries—these are ALWAYS case sensitive

[] indicates optional entries to the command

charonInterpreter Syntax Reference

16

BC is ohmic for {sidesetID} on {geometryBlock} [fixed at {potential} [swept from {potential1} to {potential2}]]

• Sometimes multiple options are available
• Nested in the reference by [option1 [option2]]
• Voltage on a contact can be fixed at a value
• Voltage can be swept from one value to another

• Such as an IV sweep
• In this instance, at least one of the options must be selected

Input File Structure—Essential Elements
• Import/Export

• Specifies state files to import for geometry, states

• Specifies state files and other variables for export in the state file

• Physics Blocks
• Sets the equations to be solved

• Toggles various physics on & off

• Ties physics to geometry and Material parameters in the Material Block

• Material Blocks
• Defines material properties

• Initial Conditions
• Specify what to use for initial values for variables (electrons, holes, potential, temperature)

• Boundary Conditions
• Contact potentials, boundary temperatures

• Solver Specifications
• Tolerances, preconditioner and solver methods

17

Input File Structure—State file import & Output

• Charon state files contain geometric information and solution
• Exodus formatted

• Geometric information includes the mesh

• State can be null
• File contains only a mesh

• There can be multiple states
• Output from transient or parameter sweep

• File names are specified in the input file for input and output state
files

18

Input File Structure—State file import & Output

• Imports the state file
• Will contain at least the mesh and geometry
• Might contain a state to use as an initial guess

19

• Specifies the output state file name
• Will contain the mesh, geometry and the state just calculated

• Can contain other directives for output of specific variables or tabulated data
from sweeps (Exercise on this later)

Input File Structure—Physics Block

• Physics block contains information about a region
• The block must have its own unique name (semiconductor)
• The corresponding region name from geometry
• The equations to be solved
• The name of the associated material block

20

Input File Structure—Material Block

• Material block contains material property information
• Must have its own unique name

• Specifies a material name for parameters (Silicon)

• Specifies the doping

• Potentially numerous other material properties (mobility) if not defined
internally or a different value from default is desired

21

Input File Structure—Boundary Conditions

• Boundary conditions
• Specifies the voltage on the contacts or heat flux/temperature at a boundary

22

Input File Structure—Initial Conditions

• Specifies initial conditions to the solve
• Could be uninitialized

• Could be a model—an estimation of the solution at equilibrium

• Could be “exodus file” if read from a previous solution

23

Input File Structure—Solver Block

• Solver block specifies solver parameters
• Specifies which solvers and preconditioners to use

• Specifies tolerances for nonlinear solves

24

Exercise—Run a Diode Start to Finish

• From the Tutorial #2 directory, run the full sequence of tools to
produce the same diode data as the first exercise
• Generate the mesh

• Decompose the mesh for a parallel run

• Run the nonlinear Poisson solve

• Run the drift-diffusion solve with anode sweep

25

Exercise—Generate and Decompose the Mesh

• cubit pndiode.jou
• Generates the mesh

• Use cubit to examine (it’s not exciting)

• decomp --processors 4 pndiode.exo
• Decompose the mesh with the decomp tool

26

Exercise—Run the nonlinear Poisson Solve

• charonInterpreter.py -i pndiode.nlp.inp --np 4 --run
• Use paraview to examine the potential field

27

Exercise—Run the Drift-Diffusion Solve

• charonInterpreter.py -i pndiode.iv.inp --np 4 --run
• Note the initial conditions in the input file

• Examine the potential and carrier densities over the sweep in paraview

• Compare the iv data to the first diode exercise

• Use paraview to examine the potential / depletion region

28

Exercise—Extra Credit Problem
• Use the interpreter reference to:

• Name the file for iv output srh-currents.dat
• Add to the output parameters block

• Add srh recombination
• Toggle on srh recombination in the physics block
• Add srh lifetimes to the material block (fixed 1e-9 for both electrons and holes)

• Need only run the iv sweep
• All else including nonlinear Poisson solve remains unchanged

• Compare the iv sweep with and without recombination
• Open the currents-loca.dat file in an editor and place a # on the first line in front of headers
• gnuplot

• gnuplot> set logscale y
• gnuplot> plot ‘currents-loca.dat’,’srh-currents.dat’

29

Exercise—
Extra Credit Problem

30

