
SANDIA REPORT

SAND2018-6660
Unlimited Release
Printed June 2018

How to ADAPT

Zachary Jankovsky, Troy Haskin, Matthew Denman

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology

and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone:

Facsimile:

E-Mail:

Online ordering:

(865) 576-8401

(865) 576-5728

reports@adonis.osti.gov

http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone:

Facsimile:

E-Mail:

Online ordering:

(800) 553-6847

(703) 605-6900

orders@ntis.fedworld.gov

http:llwww.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

11

SAND2018-6660

Unlimited Release

Printed June 2018

How to ADAPT

Zachary Jankovsky, Troy Haskin, Matthew Denman

Risk & Reliability Analysis

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-MS0748

Abstract

The ADAPT software allows for the examination of aleatory and epistemic uncertainties in

complex system transients using the Dynamic Event Tree (DET) methodology. This manual

outlines the principles of operation of ADAPT and provides directions for its use. Future plans

for the code are briefly outlined.

iii

iv

Acknowledgments

The authors wish to acknowledge Emily Sandt and Bibiana Seng for their reviews of this doc-
ument and recommendations for improvements.

This work was largely funded through internal Sandia National Laboratories division support.
Incidental feature-specific content was produced under CRADA SC18/1904.00 with Oklo Inc.

v

vi

Contents

Nomenclature xiii
1 Introduction 1

1.1 Definitions
1.2 Probabilistic Risk Assessment
1.3 Dynamic PRA
1.4 ADAPT Overview

1.4.1 General Code Features
1.4.2 Simulator Requirements
1.4.3 Computational Arrangement
1.4.4 A Note on Scoping Branching Rules
1.4.5 ADAPT Publications

2 Running ADAPT
2.1 Configuration Files
2.2 Starting and Stopping ADAPT
2.3 Using the Web Interface

2.3.1 Adding a Simulator
2.3.2 Launching an Experiment
2.3.3 Checking Progress

3 Input Creation
3.1 ADAPT Sample Problem
3.2 Required Input Files

3.2.1 Wrapper File
3.2.2 Branching Rules File (BRF)
3.2.3 Template Simulator Input File (TSIF)

3.3 Using Multiple Simulators
4 Output Processing

4.1 Gathering Outputs
4.1.1 Output Formatting
4.1.2 Gathering Functions

4.2 Plotting Outputs
4.3 Calculating Importance Measures
4.4 Trimming Trees

5 Conclusion
5.1 Concluding Remarks
5.2 Future Work

References

2
2
4
6
6
6
7
8
9
1 1
11
13
14
14
19
20
23
23
25
25
31
32
33
35
35
35
37
38
42
44
49
49
49
5 1

Appendix
A ADAPT Modules 57
B ADAPT Functions 59
C ADAPT Sample Problem Wrapper 77
D ADAPT Sample Problem BRF 85

vii

E ADAPT Sample Problem TSIF 89
F ADAPT Sample Problem Results Analysis 97

F.1 Dynamic Importance Measures 97
F.2 Trimmed Tree 1 00

viii

Figures

1 Illustration of a Fault Tree [2] 3
2 Simplified Event Tree for a Loss of Coolant Accident [2] 4
3 Diagram of DET Branching [8] 5
4 ADAPT Computational Arrangement 7
5 ADAPT Main Menu 14
6 ADAPT Add Simulator 15
7 ADAPT Add Simulator: Files Defined 17
8 ADAPT Add Simulator: Locate Files to Upload 18
9 ADAPT Add Simulator: Located Files to Upload 18
10 ADAPT Add Simulator: Submission Complete 18
11 ADAPT Add Experiment: Choose Simulator Package and Name Experiment 19
12 ADAPT Add Experiment: Locate Files to Upload 19
13 ADAPT Add Experiment: Located Files to Upload 20
14 ADAPT Add Experiment: Submission Complete 20
15 ADAPT List all experiments: all experiments listed 20
16 ADAPT Sample Problem DET Visualization 22
17 ADAPT Sample Problem Nodalization [39] 24
18 Required ADAPT Wrapper Actions 26
19 ADAPT Sample Problem DET Visualization 36
20 S ample adapt-plot-horsetailsPlot 39
21 Sample adapt-plot-horsetailsPlot, Optional Inputs 41
22 Reduce Experiment: Choose Base and Description 44
23 Reduce Experiment: Set Rules 45
24 ADAPT Sample Problem Cv002Pressure Plot 45
25 ADAPT Sample Problem Cv002Pressure Plot, Reduced by Table 9 Rule 46
26 ADAPT Sample Problem DET Visualization, Reduced by Table 9 Rule 48
F.1 Time-Dependent DYI1 for Valve Opening and CV001Pressure 99
F.2 Time-Dependent DYI2 for Valve Opening and CV001Pressure 99
F.3 Time-Dependent DYI3 for Valve Opening and Cv001Pressure 100

ix

Tables

1 Published Analyses using ADAPT 9
2 Other Publications relating to ADAPT 9
3 ADAPT Sample Problem Initial Conditions [39] 23
4 ADAPT Sample Problem Branching Conditions 24
5 ADAPT Data Gathering Functions 37
6 Optional Input for adapt-plot-horsetails 40
7 DYI Dynamic Importance Measures 42
8 DYI Input Example (see Listing 17 for format) 43
9 Sample DET Reduction Rule 47
10 Parameter and Time Operator Values for Reduction Rules. Refers to File variable

in Table 9 47
A.1 ADAPT Executable Modules 57
F.1 Example DET DYI1 Values for Valve Opening on Cv001Pressure 97
F.2 Sample DET DYI3 Values for Cv001Pressure 98
F.3 Sample DET DYI2 Values for CV 0 01Pressure 98
F.4 Sample DET DYI3 Values for CV001Pressure, Reduced by Table 9 Rule 101

x

Listings

1 Modifications to .bashrc for ADAPT 11
2 .adaptrc configuration file, server section 11
3 .adaptrc configuration file, database section 12
4 .adaptrc configuration file, ssh section 12
5 .adaptrc configuration file, webmin section 13
6 adapt-server start command 13
7 adapt-server stop command 13
8 adapt-webmin start command 13
9 adapt-webmin stop command 13
10 ADAPT Root Branch Handling 27
11 ADAPT Wrapper Simulator Execution and Early Termination 28
12 ADAPT Wrapper Determination of Branching Condition and Simulation Time 29
13 ADAPT Wrapper Determination of New Branches 30
14 Sample ADAPT Branching Rule File 31
15 Portion of ADAPT Template Simulator Input File 32
16 ADAPT Plot File Format Example 35
17 DYI Input Format (see Table 8 for sample values) 42

xi

xii

Nomenclature

ADS Accident Dynamics Simulator

APET Accident Progression Event Tree

BRF Branching Rules File

CDF Cumulative Distribution Function

DET Dynamic Event Tree

DPRA Dynamic Probabilistic Risk Assessment

DYI Dynamic Importance

ET Event Tree

ET/FT Event-Tree/Fault-Tree

FT Fault Tree

HPC High Performance Computing

ISLOCA Interfacing System Loss of Coolant Accident

LDRD Laboratory Directed Research and Development

LOFC Loss of Forced Circulation

MAAP4 Modular Accident Analysis Program 4

NPP Nuclear Power Plant

OSU The Ohio State University

PBMR Pebble Bed Modular Reactor

PRA Probabilistic Risk Assessment

PWR Pressurized Water Reactor

RELAP5 Reactor Excursion and Leak Analysis Program 5

SBO Station Blackout

SCP Secure Copy

SFR Sodium-cooled Fast Reactor

SNF Spent Nuclear Fuel

SNL Sandia National Laboratories

SQL Structured Query Language

SSH Secure Shell

TSIF Template Simulator Input File

UTOP Unprotected Transient Overpower

xiv

1 Introduction

ADAPT1 is a piece of software that generates and analyzes Dynamic Event Trees (DETs) to
evaluate aleatory and epistemic uncertainties for Dynamic Probabilistic Risk Assessment (DPRA).
ADAPT was developed under Sandia National Laboratories (SNL) Laboratory Directed Research
and Development (LDRD) project 79780 in cooperation with The Ohio State University (OSU) [1].
ADAPT has been applied to a number of accident scenarios for different nuclear reactor types as
well as non-reactor systems. Broadly, ADAPT can be applied in any case where

• there is a complex system problem that may be represented by an event tree,

• there is a computer code that can capture the likely progression of events, and

• that computer code may be made to stop after designated events occur and restart the analysis
with changed input.

This manual summarizes the method of operation of ADAPT and gives examples of scenarios
that have been analyzed using the code. Also included is a list of references for further reading on
previous analyses. The remaining sections of the manual are arranged as follows:

• Section 2 describes the user interface of ADAPT and walks through how a simulator may be
added and an experiment started.

• Section 3 gives an example of the process of creating ADAPT input.

• Section 4 describes how outputs are gathered from individual sequences and analyzed as a
whole.

• Section 5 concludes the manual with a brief description of future plans for ADAPT and
provides contact information for code requests.

Beyond the main body of the manual are a number of appendices which list the user-accessible
modules and functions in ADAPT as well as give complete input for the sample problem used
throughout the manual:

• Appendix A describes significant executable ADAPT modules.

• Appendix B lists significant ADAPT functions.

• Appendix C gives a sample ADAPT wrapper file.

• Appendix D gives a sample ADAPT Branching Rules File (BRF).

1ADAPT is no longer an acronym.

1

• Appendix E gives a sample ADAPT Template Simulator Input File (TSIF).

• Appendix F walks through an analysis of the sample problem using ADAPT tools.

This chapter serves as an introduction to ADAPT including a short background on DPRA.
Section 1.1 defines some specific terms that are used throughout this manual. Section 1.2 gives
an overview of traditional Probabilistic Risk Assessment (PRA). Section 1.3 describes DPRA and
the DET approach in particular. Section 1.4 outlines the structure of ADAPT as well as the history
of the project. Within this manual, the names of files are given in italics. Modules, functions, and
commands are given in bold italics. Variables within the code are given in a fixed-width font.

1.1 Definitions

Certain terms are used in this manual which have a specific meaning within the context of
ADAPT or dynamic PRA in general.

Branch: a segment of the analysis with a set of uncertain system parameters that remain constant
until a branching condition is reached

Checkpoint: to cause a simulator to close in a way that preserves progress and allows continuation
at a later time

End State: the branch at which an analysis ending condition is reached

Experiment: a dynamic event tree generated by ADAPT

Job: an attempt to run the input associated with a branch on a particular computation host

Sequence: the unique chain of branches from the initiating event to an end state

Simulator: a piece of software that models a physical system

Simulator Package: a set of files that define how ADAPT shall run an experiment

1.2 Probabilistic Risk Assessment

PRA is an analytic tool that seeks answers to three questions:

• What failure events might affect the system?

• What are the possible consequences of an initiating failure event?

• What is the likelihood of each set of consequences?

2

PRA uses Event-Tree/Fault-Tree (ET/FT) analysis to evaluate the impacts of internal or exter-
nal initiating events on a complex system. In a Fault Tree (FT), basic failure events are assembled
using primarily AND/OR logic to determine the combinations of individual component failures
that lead to failure of the system as a whole (a "top evenr). Fault trees are generated for top
events that represent a system failing to meet one or more of its design goals. For example, in
Nuclear Power Plant (NPP) PRA a top event may be "Loss of Electric Power to Engineered Safety
Features" [2] as seen in Figure 1. These fault trees are stored in a database and can be used for a
variety of analyses.

Loss of Electric
Power (EP) to
Engineered
Safety Features
(ESFs)

OR

Loss of AC
Power to ESFs

AND

Loss of
On-Site AC
Power to ESFs

Loss of DC
Power to ESFs

Loss Of
Off-site Power
to ESFs

Figure 1: Illustration of a Fault Tree [2]

An Event Tree (ET) is forward-facing and begins with a single initiating event. An example
of an initiating event is "Small to intermediate pipe breaks (2" to 6" equivalent diameters)" [2] as
seen in Figure 2. From there the analysis considers what event may occur next (based on analyst
knowledge of the system) and branches out among the possible success and failure of a given
event. Each of these intermediate events (e.g., Electric Power in Figure 2) represents the top event
of a fault tree. This branching continues until user-defined end states are realized. End states may
include a safe and stable configuration of the system or any number of differing failure states.
Both fault trees and event trees require basic event probabilities as inputs to provide insight on the
likelihood of different outcomes.

3

A B D E

Pipe
Break

Electric
Power

ECCS
Fission
Product

Contai nrnent
Integrity

Rernoval

Basic Tree

Initiating Event

PA

Branch

Succeeds

Fails

PEi

Fails

PD1

Sequence

Fails

E4

PB

D4
PE8

End State

PA

PA PEI

PA x PD1

PA x PD1 x PE2

PA x PC1

PA x Pc1 PE3

PA x PC1 x PD2

PA x Pci x PD2 x PE4

PA PB

PA x PB x 13E5

PA x PB x PD3

PA x PB x PD3 x PE5

PA x PB x Pc2

PA x PB x Pc2 x PE7

PA x PB x Pc2 x PD4

PA x FIB x Pc2 x PD4 X pEa

Figure 2: Simplified Event Tree for a Loss of Coolant Accident [2]

The end result of a PRA is quantification of the risk of the overall system failing due to a given
initiating event. The use of PRA has increased in recent decades as computational power has made
it feasible to represent more aspects of complex systems including structural, hardware, software,
and human reliability effects. PRA is not discipline specific and has been used in industries such
as nuclear power [2, 3, 4], oil and gas extraction [5], and aerospace [6].

1.3 Dynamic PRA

Two limitations of traditional ET/FT PRA are that the order of events is determined by the
analyst a priori and that the effects of event timing are not explicitly captured [7]. The lack of
a timing consideration also affects the handling of logic loops in which a system may transition
between states multiple times depending on physical conditions. While there are numerous DPRA
methodologies that attempt to solve these weaknesses, ADAPT uses the DET approach as shown
in Figure 3. One advantage of the DET approach is its direct integrability into existing ET/FT
PRA [7]. Subjectivity in the ordering of events is reduced under the DET approach by using the
output of a dynamic system model (simulator) to inform the branching. Branching conditions
are triggered by the existence of a relevant system state in the simulator and therefore only occur
when physically appropriate. The DET approach also allows consideration of both epistemic and

4

aleatory uncertainties on a phenomenologically and stochastically consistent platform. It is im-
portant to note that DETs represent a departure from traditional ETs in that branching in DETs
is based on time-dependent behavior represented by a software simulator while in traditional ETs
branching is based on manual decisions by the risk analyst.

P11111

P1

New simulations are

branched mid-

transient

P111

P11

P1111

P11112

P1112

P1112

P11122

P1121

 ES2

 OK

P112

P11221

P1122

P11222

P11223

P113

P12

to

 >

OK

 ES1

OK

---. OK

am. ES1

- Branching Event 1

Branching Event 2

- Branching Event 3

11 Branching Event 4

- Branching Event 5

Branching Event 6

Branching events

can reoccur

t2

Active/Passive Human

System Behavior Interaction

4 Time-Dependent Branch Parameter-Dependent Branch

Figure 3: Diagram of DET Branching [8]

TIME

The input for a DET consists of a set of branching conditions that are applied to a computer
model of a system. For example, in an NPP DET a branching condition may be to "determine
piping pressure capacity upon overpressurization.” First, the simulator must be made to stop when
the pressure exceeds a pre-set value that represents imminent overpressurization. For the ADAPT
DET driver, the simulator is expected to be programed to do this2. In simulators such as MELCOR,
this behavior is programed using the Control Function module [9]. Similar modules exist in most
other system-level nuclear safety analysis codes. The DET driver must be informed of the exact
branching condition that was reached.

Next, the DET driver reads a database entry for the appropriate branching condition. This
entry contains conditional probabilities and the changes to make to the simulator input file for each
new branch to be created. In the example of determining piping pressure capacity, a Cumulative
Distribution Function (CDF) of the pipe's capacity would be sampled according to some adaptive
or pre-defined binning scheme to address epistemic uncertainty in the pipe's strength. The DET
driver will create a number of new branches in a database each with a conditional probability and

2Some DET driver codes, most notably Accident Dynamics Simulator (ADS), are tightly coupled to the simulator
and can query physical states through shared memory.

5

a set of changes to make to the simulator input file. The new branches are sent to a queue where
they wait until computational resources are available. The process ends when no new branches
are waiting to be run, typically when all sequences have reached the end of the simulation time of
interest. An important corollary is that the maximum simulation time must be chosen such that the
effects of phenomena of interest will be captured. Finding an appropriate maximum simulation
time may require the use of small-scale pilot simulations run manually or as a DET.

1.4 ADAPT Overview

ADAPT is a collection of scripts and functions that are used to schedule jobs and report results
to a central database. Some general features of ADAPT, both as a piece of software and a project,
are outlined in Section 1.4.1. ADAPT was created to be flexible in terms of the simulators that may
be linked. To that end, ADAPT has been designed to have a loose coupling to the simulator [1, 10].
This design decision has led to it being linked to a number of simulators as seen in Table 1. Another
benefit of this method is that the effect of a simulator failure is limited to the immediate branch
that was being run [11]. Nuclear safety simulator codes combine numerous physical models and,
in uncertainty analyses, sets of input parameters may be encountered for which the simulator fails
to converge [12]. In such cases a tight coupling of the DET driver and the simulator may result in
difficulty completing the DET [11].

The basic requirements for linking a simulator to ADAPT are given in Section 1.4.2. ADAPT
allows flexibility in the arrangement of computational hosts as noted in Section 1.4.3. Section 1.4.4
provides a brief reminder of the importance of managing scope when generating DETs. Sec-
tion 1.4.5 tabulates publications relating to the development of ADAPT as well as specific analyses
that have been performed.

1.4.1 General Code Features

ADAPT is written in the Python programming language (minimum 2.7) and consists of a num-
ber of executable scripts as well as user-accessible libraries of functions. As of the time of pub-
lication it has been used under Red Hat type Linux systems and macOS3. It was recently revised
for cross-compatibility between Python 2 and 3 as well as to remove operating system dependent
functions in preparation for a Windows version [13].

ADAPT was put under revision control using Subversion at SNL in December 2015. As of the
time of publication approximately 400 sets of changes have been committed along with descrip-
tions of the motivation of the change. The repository includes a test case (using MELCOR [14]) as
well as template ADAPT configuration files for a number of common computational arrangements.

1.4.2 Simulator Requirements

The basic requirements for linking a simulator to ADAPT, which are similar to those for other
DET driver codes, are that the simulator must:

31n this manual, Linux is used generically to refer to Unix-like operating systems.

6

• accept modified input parameters for its control system upon restart of analysis,

• stop on control system values crossing a pre-defined threshold,

• output the reason for any code stoppage, and

• stop when commanded by ADAPT.

The MELCOR code gained these capabilities shortly before ADAPT was created [15] and
was the first code linked to ADAPT [1]. The process of modifying an existing code to meet the
requirements of ADAPT is described in Reference [16]. The simulator codes linked to ADAPT at
the time of publication are listed in Section 1.4.5.

1.4.3 Computational Arrangement

The typical computational arrangement for ADAPT is diagramed in Figure 4. The web in-
terface is accessible from any operating system. Through the web interface, the user can control
the progress of experiments as well as view basic results. In each application thus far, ADAPT
has been run on a computer cluster running Linux using Secure Shell (SSH) to facilitate commu-
nication between the head node and computation nodes. In cluster arrangements it is typical for
the head node to be the host of the job server (adapt-server), web server (adapt-webmin), and
Structured Query Language (SQL) database which is currently implemented in MySQL. These
services do not necessarily have to be run on the same machine4.

User PC

T

Head Node

ADAPT Job Server

Computer Cluster

Command
 ►

3
MySQL Database

t
 ► ADAPT Web Server

Computation Node 1

 ► Computation Node 2

. Results

 ► Computation Node n

Figure 4: ADAPT Computational Arrangement

ADAPT can use any machine it can reach via an SSH connection as a computation node5. The
head node and computation hosts have been Linux machines thus far, but a Windows version of
ADAPT is in development. The details of running the ADAPT services are given in Section 2.

41t is feasible to run the database, the servers, and computations on the same desktop machine.
5The simulator executable must be capable of running on each desired host machine, which requires the resolution

of prerequisites such as licensing and the availability of code libraries.

7

1.4.4 A Note on Scoping Branching Rules

Traditional PRAs are limited by the capability of human analysts to apply their knowledge
of accident progression to create new sequences. It is common to bin similar sequences when
analyzing outputs in large-scale analyses. Additionally, sequences of particularly low calculated
consequences may be pruned from the final analysis [4]. In a DET analysis, branching rules are
input and will occur as often as physically appropriate. As such, it is difficult to predict the eventual
size of a DET and it is easy to create input for a DET that will not finish in a reasonable time with
the available computational resources. Previous DET analyses have commented on the scale of
analyses:

• Hakobyan (2006): "In a typical Accident Progression Event Tree (APET), the number of
branches may reach several hundreds or even thousands?' [17]

• Metzroth (2011): "The full calculation of the APET can produce hundreds of thousands of
scenarios which is extremely cumbersome to post-process without some method of filtering
the results?' [18]

• Brunett (2013): "Through the use of the ADAPT DET generation technique, the amount of
data generated and size of trees produced is manageable, and the simulation runtimes are
not overly cumbersome if coupled with a relatively fast running simulator such as MEL-
COW' [19]

• Osborn (2013): "It took approximately 4 months to download and convert all the Test Case
1 ADAPT/MELCOR outputs?' [20]

• Jankovsky (2018): "Currently, 1,448,618 branches have been identified (representing 781,763
sequences) and 697,663 branches have finished running?' [21]

Numerous approaches exist to limit or manage the data produced by a DET. Most DET driver
codes allow the user to enter a cutoff probability below which new branches will not be run [17].
The effect of this threshold can be significant as each terminated branch may have resulted in many
end states. After the DET has finished, the data may be reduced by binning similar sequences [18,
19, 20]. This approach does not save computation time but may retain more of the variability of
outputs of the DET in comparison to a probability threshold.

8

1.4.5 ADAPT Publications

Previous analyses using ADAPT are listed in Table 16. Related analyses are combined to
the best of the authors' knowledge and entries are arranged in order of date of first publication.
Publications focused more on the development of ADAPT than on any particular analysis are
listed in Table 2 along with a short description of the development work.

Table 1: Published Analyses using ADAPT

Years Reactor Type Accident Type Simulator Reference

2006-2011 PWR SBO MELCOR [17, 22, 23, 24, 10, 18]

2009 SFR Aircraft Crash RELAP5 [25]

2013 PWR SBO MELCOR [20, 26]

2013-2014 PWR SBO MELCOR [19, 27]

2014 PBMR LOFC MELCOR [28]

2015-2017 PWR SBO MAAP4 [29]

2015-2017 SFR UTOP SAS4A [8, 16, 30]

2015-2018 PWR ISLOCA MELCOR [31, 32]

2015-2018 BWR SBO MELCOR In Progress

2016-2017 N/A SNF Transport Multiple [33]

Table 2: Other Publications relating to ADAPT

Year Description Reference

2006 ADAPT Software Overview [34]

2006 Visualization of Event Trees [35]

2008 Initial ADAPT LDRD Closeout [1]

2016 Introduce dynamic importance measures [36]

2016 Introduce conditional tree reduction [37]

2016 Introduce multi-simulator operation [38]

2016 General improvements presentation [13]

6A number of terms appear in Table 1 that are not used elsewhere: Pressurized Water Reactor (PWR), Station
Blackout (SBO), Sodium-cooled Fast Reactor (SFR), Reactor Excursion and Leak Analysis Program 5 (RELAP5),
Pebble Bed Modular Reactor (PBMR), Loss of Forced Circulation (LOFC), Modular Accident Analysis Program
4 (MAAP4), Unprotected Transient Overpower (UTOP), Interfacing System Loss of Coolant Accident (ISLOCA),
and Spent Nuclear Fuel (SNF).

9

10

2 Running ADAPT

This section describes how the user interacts with ADAPT to run and check the progress of
cases. Section 2.1 provides template information for the ADAPT configuration files. Section 2.2
describes the commands required to start and stop the long-running ADAPT modules. Finally,
Section 2.3 walks through the steps necessary to add a simulator and run an experiment using the
web interface.

2.1 Configuration Files

Two configuration files (.bashrc and .adaptrc) are required to define ADAPT's general opera-
tion. The first is .bashrc or the equivalent for the shell being used. In addition to the user's existing
.bashrc commands, the content in Listing 1 must appear in order to locate ADAPT executables and
the second configuration file (.adaptrc).

1
2
3
4
5

Listing 1: Modifications to .bashrc for ADAPT

PATH=5PATH:-/ADAPT/ADAPT/server
PATH=5PATH:-/ADAPT/ADAPT/scripts
ADAPTRC= - /ADAPT/ADAPT
export PATH
export ADAPTRC

The content in Listing 1 assumes that the ADAPT repository (see Section 1.4.1) has been
copied to the user's home directory which is represented by -. The server and scripts directories
contain the ADAPT modules and common post-processing tools, respectively, and are added to
the user's PATH environment variable which defines locations to search for executable files (lines
1 and 2). The location of the ADAPT configuration file (.adaptrc) is set as environment variable
ADAPTRC (line 3). The PATH and ADAPTRC variables are made persistent using the export command
(lines 4 and 5).

Listing 2 shows the first section of .adaptrc which defines the location of temporary file di-
rectories and log files. server_webmin defines the location to store files uploaded through the
web interface (line 2). server_adaptemp defines the location of temporary files used to process
finished branches and create new ones (line 3). Files in server_adaptemp are not needed perma-
nently and are purged once no longer necessary. server_log and server_logwebmin define the
locations of log files for adapt-server and adapt-webmin, respectively (lines 4 and 5).

1
2
3
4
5

Listing 2: .adaptrc configuration file, server section

[server]
server_webmin = -/ADAPT/ADAPT/ data /webmin
server_adaptemp = -/ADAPT/ADAPT/ data / adaptemp
server_log = -/ADAPT/ADAFT/ data/adapt-server . log
server_logwebmin = -/ADAPT/ADAPT/ data / adapt -webmin . log

11

The configuration section given in Listing 3 defines the SQL database to be used. The database
does not need to be running on the same machine as adapt-server or adapt-webmin7 . dat aba s e_ho s t
(line 2 in Listing 3) and database_port (line 3) define the location and port to use to access the
SQL database. Creation of the SQL database and user generally must be coordinated with the sys-
tem administrator. This task may be automated with the module adapt-database-admin which is
described in Appendix A. ADAPT is flexible with regard to the database structure and if multiple
users exist, they may share a database or each have their own. database_db (line 4) defines the
name of the database to use for ADAPT. database_user (line 5) and database_pass (line 6)
define the username and password to access the database.

1
2
3
4
5
6

Listing 3: .adaptrc configuration file, database section

[database]
database_host
database_port
database_db =
database_user
database_pass

= localhost
= 3306
adapt_db
= adapt_user
= adapt_pw

The section of .adaptrc in Listing 4 defines the commands to use to run system commands and
copy files, the computation hosts to use, and the directories to use for output data. The syntax
ssh -x -o StrictHostKeyChecking=no (line 2 in Listing 4) is the default used by ADAPT to
execute commands on remote hosts using SSH. The options ensure a consistent and streamlined
connection across different hosts. The syntax scp -q -o StrictHostKeyChecking=no (line 3)
is used by ADAPT to copy files between file systems using Secure Copy (SCP). ssh_hosts (line
4) defines a list of hosts for execution of jobs. Computation host names are repeated for each
execution slot desired on the host and so the input in Listing 4 will allow up to three branches to
run simultaneously on localhost. ssh_directory (line 5) defines the data storage location for
each unique host in ssh_hosts. Regular expressions may be used for matching. For example,
-local : -/data would match any host whose name starts with local to the directory -/data.

1
2
3
4
5

Listing 4: .adaptrc configuration file, ssh section

[ssh]
ssh_ssh = ssh —x —o StrictHostKeyChecking=no
ssh_scp = scp —q —o StrictHostKeyChecking=no
ssh_hosts=localhost localhost localhost
ssh_directory = localhost :-/ADAMADAPT/ data / outputs

Finally, Listing 5 shows the configuration of the web interface. webmin_users (line 2 in
Listing 5) defines pairs of usernames and passwords for authorization to use the web interface.
webmin_port (line 3) defines the port to use for the web interface. Generally, the port must be
opened in the system firewall by an administrator before it can be accessed remotely. webmin_baseurl
(line 4) defines the address that will be used to define paths within the web interface.

7Some organizations prefer to host databases on centralized and/or purpose-selected hardware.

12

1
2
3
4

Listing 5: .adaptrc configuration file, webmin section

[webmin]
webmin_users = userl passl user2 : pass2
webmin_port = 31415
webmin_baseurl = http ://127.0.0.1:31415

2.2 Starting and Stopping ADAPT

The long-running processes of ADAPT must be commanded to start and stop via the command
line and may be done through an SSH connection to the machine that is intended to host adapt-
server and adapt-webmin (see Figure 4). The command adapt-ops start adapt starts the long-
running ADAPT job server as seen in Listing 6. Likewise, as seen in Listing 7 adapt-ops stop
adapt commands the ADAPT job server to shut down. A token is inserted into the SQL database
which the job server recognizes as an instruction to close. The adapt-server process must be
running for ADAPT to prepare and launch jobs to complete branches.

Listing 6: adapt-server start command

1 [user@host -]$ adapt-ops start adapt
2 Started adapt-server at Tue Feb 7 09:43:37 2017.

Listing 7: adapt-server stop command

1 [user@host -]$ adapt-ops stop adapt
2 Stopped adapt-server using adapt-server-halt at Tue Feb 7

09:45:12 2017.

The ADAPT web interface is contained within adapt-webmin. Many user interactions with
ADAPT may be performed through the web interface, although all commands may also be issued
by the command line for ease of automation. adapt-webmin is started and stopped using adapt-
ops: adapt-ops start webmin and adapt-ops stop webmin start and stop it as shown in Listings 8
and 9, respectively. The adapt-webmin process must be running to use the web interface but is not
necessary for jobs to run.

1
2

1
2

Listing 8: adapt-webmin start command

[user@host -]$ adapt-ops start webmin
Started adapt -webmin at Tue Feb 7 09:43:45 2017.

Listing 9: adapt-webmin stop command

[user@host -]$ adapt-ops stop webmin
Stopped adapt-webmin at Tue Feb 7 09:45:17 2017.

13

2.3 Using the Web Interface

The web interface is the primary method of interaction with ADAPT. It contains a number of
menu options as shown in Figure 5 which allow the user to create and utilize simulator packages
for new experiments. In ADAPT, a simulator package is a set of files that are required to generate
a DET. This package includes a simulator executable which is commonly uploaded at the time of
simulator package creation as well as a list of input files that must be uploaded for each new DET.
An experiment (or case) is a set of branching rules and simulator input that can be run under a
simulator package to create a new DET.

In order to access the web interface, the user needs to connect to the host via a web browser and
uses the user name and password as specified in .adaptrc (see Listing 5). Only menu options 1, 2,
and 3 are examined in this brief introduction in Sections 2.3.3, 2.3.2, and 2.3.1, respectively. These
tasks are presented in the expected running order: add a simulator package, launch an experiment,
and check its progress.

ADAPT Main Menu

1. List all experiments.
2. Launch a new experiment using an existing simulator package.
3. Add a new simulator package.
4. Update an existing simulator package.
5. Delete an existing simulator package.
6. Create a slice of an existing experiment using condition-at-time niles

Figure 5: ADAPT Main Menu

2.3.1 Adding a Simulator

If the user chooses to add a simulator package, a page similar to Figure 6 is displayed. The
simulator package is named and files are defined as required. The web wrapper is only required
when using the web interface as it defines how the web interface is to submit the first branch to
the database. The main wrapper is required regardless of the method of submission. Clicking on
Choose File (Chrome)8 or Browse (Firefox) allows the user to navigate the local filesystem for the
appropriate file. The names of files may be defined by the user for all but the web wrapper and the
main wrapper. A typical set of files to be uploaded for a simulator package and an experiment are
given in Section 3.2.

8The ADAPT web interface is browser-independent but the file selection button input type=file is rendered
differently in different browsers.

14

ADAPT Main Menu::add simulator

Name of simulator: I

Web wrapper script: Browse... I No file selected.

Ma:in wrapper script: Browse... No file selected.

Add inputs for simulator:
label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

Submit I Reset

provided by user [w

provided by user [1,

provided by user [1,

provided by user rw

provided by user [wr

provided by user [wr

provided by user I.=

provided by user =

provided by user l'w

provided by user r=

provided by user -

provided by user -

provided by user =

provided by user w

provided by user ,►

provided by user rw

provided by user ['w

provided by user [wr

provided by user [wr

provided by user =

provided by user =

provided by user [...

provided by user [...

provided by User 'I'

provided by user =

Figure 6: ADAPT Add Simulator

15

Next, names are given by the user for other simulator input files. Files that are specific to the
experiment (such as the TSIF, BRF, and restart file) use the type provided by user from the
drop-down menu. Files that do not change between experiments with the same simulator package,
such as the simulator executable, use the type provided by installer and are uploaded at the
point of creating the simulator package. Files that are provided by user are uploaded at the time
of launching an experiment (see Section 2.3.2). Figure 7 shows a fully-defined set of input for an
ADAPT simulator package.

16

ADAPT Main Menu::add simulator

Name of simulator: lanalytic1-11

Web wrapper script: Browse.. rnelcor-wrapper-web

Main wrapper script: Browse... rnelcor-wrapper

Add inputs for simulator:
label for input: analyticl.cor.inp provided by user

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

label for input:

Submit Reset

analyticl_editrules.cor provided by user [.*

analyticl.rst provided by user 1-
rrielcor-checkpoint provided by installed.*

rrielcor provided by installed.*

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

provided by user

Figure 7: ADAPT Add Simulator: Files Defined

A list of the required files for an ADAPT experiment is given in Section 3.2. If an experiment is
launched from the web interface, the web wrapper (melcor-wrapper-web in Figure 7) is required.
The main wrapper (melcor-wrapper) is always required and is described in Section 3.2.1. ana-
lyticLeditrules.cor is a BRF which defines branching behavior (see Section 3.2.2). Only one BRF
is submitted per experiment. analyticl.cor.inp is a TSIF which will form valid simulator input

17

when ADAPT variables are replaced with branching values (see Section 3.2.3). analytic] .rst is a
simulator restart file which allows continuation from a saved state with new input going forward.
The user will upload one TSIF and restart file for each simulator in the package. melcor-checkpoint
is a checkpoint file which defines the command for ADAPT to use to pause the simulator. Gener-
ally, this involves creating a file whose presence the simulator recognizes as a stopping condition.
Checkpointing allows an experiment to be paused in order to let a higher priority experiment run
or accommodate system maintenance Finally, melcor is a simulator executable which will be used
to run branches9.

After naming the files, the user proceeds by clicking Submit. At this point the web wrapper
and main wrapper files are uploaded. The next page allows the user to upload the files marked as
provided by inst aller using the Choose File (Chrome) or Browse (Firefox) options as shown
in Figure 8. Once files are defined their names are printed as shown in Figure 9. Note that the files
uploaded in Figure 9 will be renamed to the names given in Figure 7.

Please input the installer definitions below

input melc or-c heckpoint: Browse... No file selected.

input melc or: Browse... No file selected.

— Submit]

Figure 8: ADAPT Add Simulator: Locate Files to Upload

Please input the installer definitions below

input melc or-checkpo int: Browse... 1 rnelcor-checkpoint

input melc Or: Browse... 1 rnelcor

Submit

Figure 9: ADAPT Add Simulator: Located Files to Upload

Finally, clicking Submit will upload the remaining files and add the simulator to the SQL
database. Figure 10 shows the message that is displayed after submission completes.

Added simulator analytic1-11, ADAPT Main Menu

Figure 10: ADAPT Add Simulator: Submission Complete

9It is not strictly required to upload any of the files that appear under Add inputs for simulator in Figure 7.
Files may be defined in the main wrapper and placed on a common filesystem manually. This method may be more
practical if a large number of files are required.

18

2.3.2 Launching an Experiment

The Launch a new experiment using an existing simulator package option of the web inter-
face (see Figure 5) allows the user to create a new ADAPT experiment (DET). The user chooses
an installed simulator package (see Section 2.3.1) from the drop down menu. The user then names
the experiment as desired and proceeds by clicking Submit as shown in Figure 11.

ADAPT Main Menu::Add Experiment

Choose simulator: analytic1-11

Description of this experiment: IADAPT Sample Problem 5-21-18

Submit

Figure 11: ADAPT Add Experiment: Choose Shnulator Package and Name Experiment

Next, the user adds files for the experiment according to those marked as provided by user
when creating the simulator package (see Figure 7). The interface provides the input file labels as
specified when the simulator package was created as seen in Figure 12.

ADAPT Main Menu::Add Experiment with Simulaton analylic1-11

Upload analyticl.rst:

Upload analyticLcor.inp:

Upload analyticl_editrules.c or:

Browse... I No file selected.

Browse... No file selected.

Browse... J No file selected.

Submit I

Figure 12: ADAPT Add Experiment: Locate Files to Upload

Using the Choose File (Chrome) or Browse (Firefox) buttons, the user finds the appropriate
files on the local file system to be uploaded to the database. Figure 13 shows an experiment with
all required files defined. The user then clicks Submit, and the experiment is sent to the database
queue to be run when resources are available. A successful submission yields a page similar to
Figure 14. At this point the experiment has been added to the ADAPT database. The first branch
of the new experiment will start according to its priority and position in the ADAPT queue. If an
error such as a missing file occurs in submission, ADAPT will present the user with an appropriate
error message. The user may correct the submission and then retry.

19

ADAPT Main Menu: :Add Experiment with Simulator. analyLic1-11

Upload analytic1.rst:

Upload analyticLcor.inp:

Upload analytic1_editrules.cor:

Browse... I arialyticl.rst

Browse... I aiialyticl.cor.inp

Browse... I aiialyticl_editrules.cor

Submit I

Figure 13: ADAPT Add Experiment: Located Files to Upload

Submitted experiment using Simulator analytic1-11. List all experiments_

Figure 14: ADAPT Add Experiment: Submission Complete

2.3.3 Checking Progress

The ADAPT web interface produces a list of currently running and finished experiments under
the List all experiments option in Figure 5. After being selected, a list of experiments run by
the user appears as seen in Figure 15. Experiments are assigned an Experiment # based on their
order of submission. Accompanying the Experiment# are columns for the Name given in the web
wrapper and the Description given when submitting the experiment (see Section 2.3.2). The
State column lists the status of each experiment such as Active, Checkpointed, or Finished.
The number of Total, Completed, and currently Running branches are listed to provide the user
with a brief snapshot of the progress of each experiment. Clicking Runt ime leads the user to a
page that displays the serial and parallel computational time that a simulation has required and the
number of processing slots used. The next column displays Restart, Checkpoint, or nothing
depending on the state of the experiment. If the state is Active, the experiment may be paused by
clicking Checkpoint. If the state is already Checkpointed, clicking Restart will resume it. If
the state is Finished, there is no action to be taken. The final column allows the user to Delete
the experiment from the database.

ADAPT Main Menu::List Experiments frefi

Branches Branches Branches End
Experiment# Name Description State

(Total) (Completed) (Running) States
14 analyticlADAPT Sample Problem 5-18-18 Finished 19 19 0 13 Runtime Delete
16 analyticlADAPT Sample Problem 5-21-18Active 13 5 3 9 RuntimeCheckpointDelete

Figure 15: ADAPT List all experiments: all experiments listed

Selecting the Experiment# link for a certain experiment leads the user to a DET graphic as
seen in Figure 16. The graphic shows the initial branch and all that follow as determined by the
BRF. The DET is color-coded to signify if a branch has already run to completion (green), is
currently running (cyan), is in the queue to run (yellow), or is checkpointed (blue). Examining the
first branch, its unique branch number in the ADAPT database is 522. Its probability is 1 and it is
the root branch of the experiment. All other branches in the experiment will have a sub-branch

20

number such as sb 1 to indicate which child branch of the branching condition is represented (see
BranchProbability in Listing 14)10. The simulator that was run is melcor. The branch ended
in a branching condition and its name is Aleatory valve opening. The branch stopped at a
simulation time of 0 . 01 seconds and the branch took 17 seconds of wall clock time to run.

101\Tote that the sub-branch number is relative to the parent branch and is not unique across the experiment. The
sub-branch number corresponds to the number (1 or 2) seen in the second column of lines 15-22 in Listing 14.

21

(522) [p=1] root melcor
(Branching Condition: Aleatory valve opening)

(Simulation Time (s): 0.01)
(Simulator CPU Time (s): 17)

(523) [p=0.5] sb 1 melcor
(max_time: 300.482)

(Simulation Time (s): 300.482)
(Simulator CPU Time (s): 21)

(524) [p=0.5] sb 2 melcor
(Branching Condition: Valve opening time)

(Simulation Time (s): 10.0438)
(Simulator CPU Time (s): 22)

(525) [p=0.125] sb 1 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 10.0538) Ai
(Simulator CPU Time (s): 22)

(526) [p=0.125] sb 2 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 20.736)
(Simulator CPU Time (s): 24)

(527) [p=0.125] sb 3 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 30.736)
(Simulator CPU Time (s): 25)

(528) [p=0.125] sb 4 melcor

(529) [p=0.0125] sb 1 melcor

(530) [p=0.1] sb 2 melcor

(531) [p=0.0125] sb 3 melcor

(532) [p=0.0125] sb 1 melcor

(533) [p=0.1] sb 2 melcor

(534) [p=0.0125] sb 3 melcor

(535) [p=0.0125] sb 1 melcor

(536) [p=0.1] sb 2 melcor

(537) [p=0.0125] sb 3 melcor

analyticl (ADAPT Sample Problem 5-21-18) at 2018-05-21T13:07:48 [probability_threshold=0.0]

Figure 16: ADAPT Sample Problem DET Visualization

3 Input Creation

The process of input creation for ADAPT is described in this chapter. A sample problem is
introduced in Section 3.1 based on a standard MELCOR assessment problem from Reference [39].
Section 3.2 describes the input files necessary for the ADAPT sample problem. The full set of
inputs are given in Appendices C, D, and E1 1 . The remainder of this chapter gives examples of
how ADAPT cases are created and run.

3.1 ADAPT Sample Problem

Analytic problem 1 from Reference [39]12 was adapted to be an ADAPT sample problem. The
problem was approved for release and appears in its entirety in Appendix E. Its initial conditions
are tabulated in Table 3. In this problem, two control volumes (Cv001 and Cv002) are initially
separated by a closed valve across a flow path (F L 001) as seen in Figure 17. One volume (Cv001)
is initially full of saturated water at high pressure and the other (Cv002) contains low pressure
steam. The valve opening is explored to produce an ADAPT sample problem. First, branching
occurs on whether the valve will be opened. Next, if the valve will open, the valve opening time
is determined. After branching for time, the valve opening fraction is determined and the valve
is finally opened. The branching conditions for the sample problem are given in Table 4. The
value presented in Table 4 is used in the simulator input, while the probability is tracked in the
ADAPT database. The pressure of each control volume over time will be explored to demonstrate
the output processing capabilities of ADAPT (see Section 4).

Table 3: ADAPT Sample Problem Initial Conditions [39]

Parameter CV001 CV002

Pressure (MPa) 7.999 0.01

Temperature (K) 568.23 568.23

Water Mass (kg) 72240 0.0

Steam Mass (kg) 0.0 152.57

Void Fraction 0.0 1.0

11Another full set of ADAPT input files, representing an SFR accident using SAS4A/SASSYS-1, appear in Refer-
ence [16] with an analysis in Reference [30].

12An older version of the MELCOR analytic assessment problem input appears in Reference [40].

23

Figure 17: ADAPT Sample Problem Nodalization [39]

Table 4: ADAPT Sample Problem Branching Conditions

Branching Condition Value Probability

0.5
Valve Opens (Aleatory) {True

False

lOs

0.5

0.25

20s 0.25
Valve Open Time

30s 0.25

40s 0.25

0.01 0.1

Valve Open Fraction 0.5

0.99

0.8

0.1

24

3.2 Required Input Files

This section describes the requirements for ADAPT input files and gives examples for the
sample problem. Section 3.2.1 describes the wrapper file, Section 3.2.2 describes the BRF, and
Section 3.2.3 describes the TSIF. When submitting an experiment through the web interface,
ADAPT requires the following files:

• Web Wrapper: submits the experiment to the ADAPT database through the web interface

• Wrapper: defines the link between ADAPT and the simulator(s)

• Checkpoint File: defines how ADAPT can pause the simulator

• Branching Rules File (BRF): defines the actions to be taken when a branching condition is
reached

• Simulator Restart File: contains the state of the system at the start of the case

• Template Simulator Input File (TSIF): contains information necessary to run the simulator
with new values after branching

• Simulator Executable: runs the system model from the previously saved state with new input
values

The Web Wrapper, Wrapper, Checkpoint File, and Simulator Executable(s) are submitted as
part of a simulator package before any experiment may launch. The BRF, Simulator Restart File(s),
and TSIF(s) are specific to each experiment.

3.2.1 Wrapper File

The wrapper file links either a simulator or a set of simulators [38] to ADAPT and must be
created once for each unique set of simulators and post-processing activities. It may be reused
for different DETs as long as the simulator has consistent input requirements, simulator output
formats, and desired pre- and post-processing actions. The basic required actions of the wrapper
file are given as Figure 18. If any of these required actions are not met, the experiment will not
progress.

First, the appropriate input files are gathered and the simulator is started. There are three
possible outcomes:

• The simulation may have reached its maximum time which will be detected by the wrapper
and will result in no new branches.

• The simulator may fail which also results in no new branches.

• A branching condition may be indicated in the simulator output.

25

Execute Simulator

Reason for Stopping

Branching Condition
Reached

Update Database
(Code, Time)

Apply Branching
Rules

Simulator Failure

Maximum Simulation
Time Reached

Update Database
(Cause, Time)

End

Figure 18: Required ADAPT Wrapper Actions

26

Failure of the simulator is detected by the exit status of the simulator or by an examination of
the outputs. The results from the simulator are read through specially-created message files and
the main simulator output files. If a branching condition is reached, the branching rules file is read
to determine what variables need to change for sub-branches produced. The variable values and
probabilities of the new (sub-)branches are submitted to the SQL database to join the queue. In
addition, simulator restart and other output files are marked to be copied to the run directory of
each new (sub-)branch. The primary changes to the wrapper for a new simulator are the execution
syntax and the exact location in the message file of the reason and time for stoppage.

The first major operation in the wrapper script is to prepare the root branch. The portion of
the script that performs this task is provided as Listing 10. The wrapper appears in its entirety in
Appendix C. This piece of code is executed only if adapt-server has passed the NCENGINE_ROOT
environment variable with value 1 and the branch is not being restarted from a checkpoint (line 1
in Listing 10). The restart file, TSIF, and BRF are copied from a central location to the directory
of the first branch (lines 3-5). The branching rules are processed using the INIT values for all
variables (lines 7-14) as described in Section 3.2.2.

1

2

3
4

5

6
7

8
9

10
11
12

13
14

15

Listing 10: ADAPT Root Branch Handling

i f s t r (os.getenv('NCENGINE_ROOT')) == '1 '
' NCENGINE_RESUMING_CHECKPOINT ')) == ' 0
print(' initializing edit rules for roo

. asctime ()))
shutil .copy2(os path . join (MELCOR_ROOT,
shutil . c opy 2 (o s path . join (IVIELCOR_ROOT,

this_dir)
shutil .copy2(os path . join (MELCOR_ROOT,

this_dir)

) and (str (os. getenv

)
t job at %s ' % (time

RST), this_dir)
SIM1TEMPLATE) ,

EDITRULES) ,

editrule_cmd = ' adapt—editrule —apply --init %s %s 0 melcor
%s ' % (EDITRULES , BRANCHESF, OTHERTEMP)

print (editrule_cmd)
f = subprocess .Popen(editrule_cmd , shell=True , stdout=

subprocess . PIPE , stderr=subprocess .STDOUT)
f_out = f. stdout . readlines ()

No loop here , because there is only one branch for the
initial simulator for the root branch.

branchesf_content = open(BRANCHESF, 'r ') . readlines () [0]
shutil . copy2(branchesf_content . split () [0] , os . path . join (

this_dir , SIM1INPUT))
os.remove(branchesf_content . split () [0])

27

Listing 11 shows the logic used to start the simulator and terminate the job early if required
by the BRF (see line 23 in Listing 14). Lines 1-3 of Listing 11 give the syntax of running the
MELCOR simulator under ADAPT. Other simulators may require significantly different syntax.
Note that line 3 uses the python subprocess.Popen method which starts a process and does not wait
for a return signal before allowing subsequent code to run. This behavior is important to allowing
early termination of jobs in ADAPT. If the TERMINATE_EARLY variable is passed by adapt-server
with a value greater than 0, the job will run for a number of seconds indicated by the value and
then terminate (lines 4-10).

1
2

3

4

5
6
7
8
9

10

Listing 11: ADAPT Wrapper Simulator Execution and Early Termination

i f THES_EXECUTABLE == ' melc or ' :
siml_exec_command = 'echo E I nice %s %s ' % (os . path . join (

MELCOR ROOT, SIM1EXE) , SIM 1 INPUT)
f = subprocess .Popen(siml_exec_command , shell=True , stdout

=subprocess .PIPE, stderr=subprocess .STDOUT)
i f (o s . g e t e n v (' NCENGINE_TERMINATE_EARLY ') i s n o t None) and (

f 1 o a t (o s . g e t e n v (' NCENONE_TERMINATE_EARLY ')) > 0 . 0) :
time . sleep (float (os . getenv (' NCENGINE_TERMINATE_EARLY ')))
open(' term—early ' , 'a ') . close ()
open(' analytic 1 . stp ' , 'a ') . close ()

if os . path . isfile (' term—early ') :
f = subprocess . call ((' adapt—job—record jobid %s term_early

l' % (jobid)), shell=True)
sys . exit (0)

If the job did not terminate early, the exit status of the simulator is read by the wrapper. If an
error is indicated, the job is marked as a simulator failure and no new branches are created. If the
simulator closed successfully, the branching code (if any) is read from the message file and the sim-
ulation time is determined from the main output file. Listing 12 shows the portion of the wrapper
that determines whether a branching condition was reached (see definition of mystopping_code
in lines 3-6 of Listing 12) and what simulation time was reached (see definition of sim_elapsed in
lines 7-10). Reading the stopping time and branching condition are the most simulator-dependent
tasks of the wrapper as output formatting patterns differ by programming language and developer.

If a branching condition is indicated, the BRF is used as shown in Listing 13. While most
outputs of adapt-editrule-apply are ignored in preparing the root branch (see Listing 10), all are
used in creating child branches (see line 9 in Listing 13). The information is provided as a list of
new branches each with:

• Simulator input file location (line 18 in Listing 13)

• ADAPT variable states (line 15 in Listing 13)

• Branching code of parent (line 23 in Listing 13)

28

• Probability (line 21 in Listing 13)

• Early termination status (line 12 in Listing 13)

• Simulator to run (line 13 in Listing 13)

Listing 12: ADAPT Wrapper Determination of Branching Condition and Simulation Time

1
2

3
4
5
6
7
8
9

10
11
12
13

14
15

melcor_message_file = ' analyticl .mes'
melcor_message_file_contents = open(melcor_message_file , 'r ') .

readlines ()
for line in reversed (melcor_message_file_contents):

if stop_word in line :
mystopping_code = line . split (stop_word) [1]. split () [0]
break

for line in reversed (melcor_message_file_contents):
if line . startswith(' TI1VIE='):

sim_elapsed = float (line . split (' TIME=') [1]. split ()
[0])

break
for line in reversed (melcor_message_file_contents):

if line . startswith(' Normal termination TIME='):
normal_term = float (line . split (' Normal termination

TIME= ') [1] . split () [0])
sim_elapsed = normal_term
break

Characteristics including early termination status (terminate_early), the executable to be
run (news im), the probability (probability), and the branch number (branchnum) are submitted
to the database for each new branch (see definition and execution of adapt-submit in lines 8-26 of
Listing 13)13. The database is updated with every file the new branches will require to run. Small
files are uploaded in their entirety to the database (-handof f) while for large files the location
is submitted (-handof f re f). After finishing this operation, the wrapper closes with exit code 0
which signals adapt-server that the branch is complete and a slot on its computation node may be
marked as available for queued jobs. If a non-zero exit code is returned, the job is marked as failed
and will be retried when a host is available.

13An optional flag may be passed to adapt-submit to define a priority for each new branch. Adding -priority
int will ensure that the branch has priority int and will run before any branches with a lower priority number. By
default, new branches are all given priority 1 and will run in order of submission.

29

1

2
3

4
5
6
7
8
9

10
11
12

13
14

15

16
17

18

19
20

21
22
23
24
25

26
27
28

Listing 13: ADAPT Wrapper Determination of New Branches

editrule_cmd = ' adapt —editrule —apply %s %s %s %s %s ' % (
EDITRULES , BRANCHESF, str (si m_ e 1 ap s ed) , THIS_EXECUTABLE ,
OTHERTEMP)

print (editrule_cmd)
f = subprocess .Popen(editrule_cmd , shell=True , stdout=

subprocess .PIPE , stderr=subprocess .STDOUT)
f_out = f . stdout . readlines ()
branchesf_content = open(BRANCHESF, 'r ') . readlines () [0]
NEWSIM = branchesf_content . split () [7]
branchesf_content = open(BRANCHESF, 'r ') . readlines ()
for line in branchesf_content :

(config , newstate , branchnum , stopcode , branchhit ,
probability , terminate_early , newsim) = line . split ()

"
' adapt—submit
9--terminate_early %s 9 % (

terminate_early)
submit_cmd += '--executable %s 9 % (newsim)
submit_cmd += '--handoff %s %s ' % (EDITRULES ,

EDITRULES)
submit_cmd += '--handoff %s %s . state ' % (newstate ,

EDITRULES)
submit_cmd += '--handoffref %s %s 9 % (RST, RST)
submit_cmd += '--handoffref %s %s 9 % (

SIM1TEMPLATE , SIM1TEMPLATE)
submit_cmd += '--handoff %s %s ' % (config ,

SIM 1INPUT)
if os . path . isfile (' analytic 1 .mes') :

submit_cmd += '--handoffref analytic 1 .mes analytic 1
,

submit_cmd =
submit_cmd +=
submit_cmd +=

mes
submit_cmd += '--probability %s ' % (probability)
submit_cmd += 9 analytic 1
submit_cmd += '" sb %s " 9 % (branchnum)
submit_cmd += 9%s ' % (THISSCRIPT)
f = subprocess .Popen(submit_cmd , shell=True , stdout=

subprocess . PIPE , stderr=subprocess .STDOUT)
f_out = f . stdout . readlines ()
os . remove (newstate)
os . remove (config)

30

3.2.2 Branching Rules File (BRF)

A truncated BRF for MELCOR is given as Listing 14 and appears in full in Appendix D. This
file contains information on how ADAPT should proceed when a branching condition is detected
by the wrapper. A TSIF (see Section 3.2.3) is included in the input at the start of the DET and is
progressively modified for each branching condition. The TSIF is given in the field InputFile
(line 1 in Listing 14). Within the TSIF, ADAPT variables are set off using separators as defined
in VarSeparator (line 3 in Listing 14). The message file associated with the simulator is found
in the StoppingWord field as is a rule for searching the file (line 2 in Listing 14). In Listing 14's
case ADAPT will search for the word LIZARDKING as the 2nd word of the last line in the file
analyticl.mes. If found, ADAPT will recognize that a branching condition was reached. For this
set of branching rules, ADAPT only performs an action if the branching condition is 20004 (lines
15-22 in Listing 14).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Listing 14: Sample ADAPT Branching Rule File

InputFile 1 analytic 1 . cor . inp
StoppingWord 1 analytic 1 .mes LIZARDKING 2
VarSeparator 1 "{" "}"
SimulatorExecutable 1 melcor
InitialSimulator 1
INIT V99999 FALSE
INIT V10000 0.0
INIT V20001 0.0
INIT V20003 TRUE
INIT V20004 FALSE
BranchingSimulator 20004 1
BranchProbability 20004 1 0.5
BranchProbability 20004 2 0.5
BranchingConditionName 20004 Aleatory valve opening
20004 1 V20003 FALSE
20004 1 V20004 FALSE
20004 1 V20011 1. e20
20004 1 V20021 1. e20
20004 1 V99999 FALSE
20004 2 V20003 FALSE
20004 2 V20004 FALSE
20004 2 V99999 FALSE
TerminateEarly 60 20004 1

It is possible to name branching conditions in ADAPT by setting BranchingConditionName
as seen in line 14 of Listing 14. Assigning names to branching conditions will affect the visual-
ization of the DET (see Figure 19). If no name is given, the branching condition identifier (e.g.
2 0 0 0 4) is used in the visualization. It is possible to terminate a job early if its simulator results are
of little interest. The input shown in line 23 of Listing 14 will end a job that follows the first (1)
sub-branch of branching condition 20004 after 60 seconds (see Section 3.2.1).

31

In the case of Listing 14, a branch that ends by meeting condition 20004 will lead to two child
branches (lines 12-13). The branches differ in the values of V20011 and V20021 which represent
triggers for future branching conditions. In both cases the variable V2 0 0 0 3 is changed from a value
of TRUE to a value of FALSE (lines 15 and 20). For this specific input file, that change has the
effect of disabling branching condition 20004 in the future and ensuring that it occurs at most once
in any final state in the DET. Branching conditions that are allowed to occur multiple times in a
DET commonly must be crafted with a refractory period in the simulator input file to avoid their
occurring inadvertently in quick succession. This input is consistent with ADAPT input format
changes introduced in Reference [38].

3.2.3 Template Simulator Input File (TSIF)

The TSIF used with ADAPT does not typically contain all of the input used in the simulation
model. The TSIF in Appendix E does contain all input for the sample problem. The TSIF is only
required to contain the input that is necessary to restart the simulation and that which may change
with branching. Reducing the size of the TSIF may contribute to saving time and disk space over
the course of a DET particularly if the full input is very large and many branches are created.

A portion of the TSIF is given as Listing 15. The text set off by "{ " and "} " (e.g., line 4 of
Listing 15) are ADAPT variables to be defined by the branching rules file (see Listing 14). When
branching condition 20004 from Listing 14 occurs, the second branch replaces fV200031 with
FALSE (line 20 in Listing 14), f V200041 with FALSE (line 21 in Listing 14), and fV999991 with
FALSE (line 22 in Listing 14) to create a valid MELCOR input file for that branch. These changes
take effect in lines 8,10, and 12 of Listing 15, respectively. These changes have the effect of
disabling branching condition 20004 for the future of the DET (V2 0 0 0 3), changing the branch-
ing condition control function's value (V20004) from true to false immediately, and changing the
MELCOR stop control function's value from true to false (V99999).

1
2
3
4
5
6
7
8
9
10
11
12

Listing 15: Portion of ADAPT Template Simulator Input File

Program MELCOR
CF_INPUT
cf_id 'FlowFrac
cf_sai 1.0 0.0
cf_id ' Stp—Alea
cf_sai 1.0 0.0
cf_id ' Stp—Alea
cf_liv {V20003}
cf_id ' Stp—Alea
cf_liv {V20004}
cf_id ' ADAPTCF'
cf_liv {V99999}

' 10000 read
{ V10000 }
—V1v ' 20001 read
{ V20001 }
—Arm' 20003 1—read

—Go' 20004 1—and

99999 L—OR

32

3.3 Using Multiple Simulators

The use of multiple simulators under ADAPT was first described in Reference [38]. This fea-
ture allows a single DET to address more phenomena or address phenomena in greater fidelity than
would be feasible with a single simulator. Care must be taken to consider all intended transitions
between simulators. For example, an analysis linking MELCOR (a severe accident analysis code)
and MACCS (a release consequence analysis code) may allow transitions from MELCOR to MEL-
COR, from MELCOR to MACCS, and from MACCS to MACCS. Due to dependencies, it would
not be expected for most analyses to transition from MACCS to MELCOR. On the other hand, an
analysis that links MELCOR with a fluid dynamics code may transition between the codes multi-
ple times depending on when uncertainties are encountered that may only be resolved by the fluid
dynamics code.

When using multiple simulators, there is still only one BRF required for an experiment. Note
the locations in Listing 14 where an input parameter requires a simulator number. For example, the
TSIF (InputFile), the word to search for to indicate a branching condition (Stoppingword), and
the ADAPT variable separators (VarSeparator) all vary by simulator. A name for each simulator
is defined by SimulatorExecutable (see line 4 in Listing 14). This name is passed to the wrapper
to identify which simulator should be run and how pre- and post-processing should proceed. The
I nit i al Simulator input gives the number of the simulator to run for the first branch of the DET.
The simulator to use for subsequent branches is specified using BranchingSimulator.

The user will likely upload a TSIF, a restart file, and an executable for each simulator. Logic
will be required in the wrapper to use different syntax for the different simulators as seen in line 1
of Listing 11. There will likely be different methods required to retrieve the simulation time and
branching condition (if one is met) after the simulator has finished. If a branching condition has
been met, the outputs of the simulator just run may need to be translated in some way to be used
as input to the next simulator to be run. This translation work is not described in this manual as it
will vary significantly between different sets of simulators and for different transitions within the
same set of simulators. Examples of the translation process are given in References [21] and [38].
The files to be passed to each child branch may differ depending on the transition (see Listing 13).
At a minimum, the BRF (line 14 in Listing 13), the state of the ADAPT variables (line 15), the
TSIF for each simulator (line 17), and the branch input file (line 18) should be passed to each child
branch.

33

34

4 Output Processing

This section gives an overview of the output processing capabilities of ADAPT from the com-
mand line. Section 4.1 describes the process of collecting output data from an ADAPT experiment
including defining the format of the output being gathered and describing how to use the functions
to stitch the parent-child relationship of branches together. Section 4.2 describes how to plot the
horsetails of a given experiment. Section 4.3 describes how to apply importance measures to an
experiment to help identify important branching conditions. Most of the these capabilities may be
accessed through the ADAPT web interface which has its own internal help content. These tools
are applied to the sample problem (see Section 3.1) whose complete DET appears in Figure 19.

4.1 Gathering Outputs

The simulator outputs need to be extracted and sorted to allow for subsequent post-processing.
Section 4.1.1 describes how to tell ADAPT the format of the data to be post-processed. Sec-
tion 4.1.2 describes the set of functions needed to sort and define the parent-child relations of the
various branches.

4.1.1 Output Formatting

The built-in ADAPT output processing functions currently expect time-dependent data. ADAPT
expects the data for each variable to be in a separate file. The name of the data file for a particular
variable should be consistent between all branches, i.e., it should not include the branch number or
a time stamp. The requirements for file contents are as follows:

• There are no headers. The first line of the file is the first line of data. The variable should be
indicated by the file name.

• Each line consists of a time string followed by a value string. ADAPT evaluates the strings
as floating point numbers.

• Times and values may be separated by a space (), tab (\t), comma (,), colon (:), or semicolon

(;)•

An example of the expected content format is shown in Listing 16 representing the pressure
of volume Cv001 of the sample problem (see Section 3.1). The Python float function is used to
translate each time or value string to a floating point number.

1
2
3
4

Listing 16: ADAPT Plot File Format Example

30.736031 7999044.0
32.311981 7998665.0
34.102798 7998225.5
36.041069 7997743.5

35

Determine whether
valve opens or not -
no physical change

Inlinlininirranching Condition: Aleatory ralrve openi
(Simulation Time (s): 0.01)

(Simulator CPU Time (s): 17)

Valve does not open - no
physical change before
end of simulation time

• max_ rne: .
Emulation Time (s): 300.4
Simulator CPU Time (s): 2

ja(524) [p=0.5] sb 2 melcor
ching Condition: Valve openin '

imulation Time (s): 10.04
imulator CPU Time (s):

opening time - no
Determine valve

physical change

(525) [v0.125] sh 1 melcor
ranching Condition: Valve open fraction)

(Simulation Time (s): 10.0538)
(Simulator CPU Time (s): 22)

(526) [p=0.125] sb 2 melcor
anching Condition: Valve open fraction)

(Simulation Time (0: 20.736)
(Simulator CPU Time (s): 24)

(527) [p=0.125] sb 3 melcor
anching Condition: Valve open fraction)

(Simulation Time (s): 30.736)
(Simulator CPU Time (s): 25)

Determine valve
open fraction -
open valve

1111111Fr=0.125] sb 4 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 40.736)
(Simulator CPU Time (s): 24)

(529) [p=0.0125] sb 1 melcor
(max_time: 300.439)

(Simulation Time (s): 300.439)
(Simulator CPU Time (s): 25)

(530) [p=0.1] sb 2 melcor
(max_time: 300.113)

(Simulation Time (s): 300.113)
(Simulator CPU Time (s): 23)

(531) [p=0.0125] sb 3 melcor
(max_time: 300.363)

(Simulation Time (s): 300.363)
(Simulator CPU Time (s): 21)

(532) [p=0.0125] sb 1 melcor
(max_time: 300.233)

(Simulation Time (s): 300.233)
(Simulator CPU Time (s): 28)

(533) [p=0.1] sb 2 melcor
(max_time: 300.795)

(Simulation Time (s): 300.795)
(Simulator CPU Time (s): 23)

(534) [v0.0125] sb 3 melcor
(max_tirne: 300.045)

(Simulation Time (s): 300.045)
(Simulator CPU Time (s): 23)

(535) [v0.0125] sb 1 melcor
(max_timei 300.109)

(Simulation Time (s): 300.109)
(Simulator CPU Time (s): 24)

(536) [p=0.1] sb 2 melcor
(max_time: 300.795)

(Simulation Time (0: 300.795)
(Simulator CPU Time (s): 23)

(537) [v0.0125] sb 3 melcor
(max_time: 300.044)

(Simulation Time (s): 300.044)
(Simulator CPU Time (s): 23)

(538) [p=0.0125] sb 1 melcor
(max_time: 300.396)

(Simulation Time (s): 300.396)
(Simulator CPU Time (s): 25)

(539) [p=0.1] sb 2 melcor
(riax_time: 300.567)

(Simulation Time (s): 300.567)
(Simulator CPU Time (s): 22)

(540) [v0.0125] sb 3 melcor
(max_time: 300.652)

(Simulation Time (s): 300.652)
alSimulator CPU Time (s): 20)

analyticl (ADAPT Sample Problem 5-21-18) at 2018-05-21T13:07:48 [probability_thresholc1=0.0]

Figure 19: ADAPT Sample Problem DET Visualization

Green: finished branch, Cyan: running branch, Yellow: queued branch

36

4.1.2 Gathering Functions

ADAPT contains multiple functions that may be used to gather plot file information. Some of
them may be run in parallel for significant time savings over serial operation. These functions are
listed in Table 5 as a quick reference.

Table 5: ADAPT Data Gathering Functions

Function Name Description

getjllot data Retrieves plot information for input hostname and absolute path

Retrieves plot information for input plot file name and branch
get_branchjlot_data

number

Retrieves concatenated plot information from root branch for
get heritage jilot data

input plot file name and branch number

Retrieves concatenated plot information for all sequences for
get exp_heritagejilot_data

input plot file name and experiment number

get_exp_branch_heritage Retrieves branch heritage information for input experiment number

The ADAPT function get jlot_data is used to retrieve formatted information from a single plot
file from a single directory. The host and absolute path must be known. Information is returned by
get jlot_data as a list of lists if the file can be read and is in the expected format (see Listing 16).
The outer list is a set of elements based on the lines of the file. The inner list is the time followed
by the variable value. For example, the information returned from the data file represented by
Listing 16 is:

[[30.736031, 7999044.0], [32.311981, 7998665.0], [34.102798, 7998225.5],
[36.041069, 7997743.5]]

If the file cannot be read or the contents are not in the expected format, getjlot_data returns
False. A related function, get_branchjilot_data, allows the user to specify a plot file and a
branch number in the ADAPT database to find the host and directory for the specified branch.
After finding the host and directory, get_branchjlot_data calls get jlot_data.

The function get_heritage jlot_data concatenates information from the specified plot file for
the specified branch as well as the string of branches leading back to the first branch of the experi-
ment. First, the heritage of the branch is determined using the function get_branch_heritage (see
Appendix B). Next, get_heritagej3lot_data calls get_branchj3lot_data for each branch in the se-
quence. Branches with no valid information for the specified plot file are skipped. The entries are
concatenated and sorted by time. Duplicate entries may occur depending on the plotting mles of
the simulator. These entries are identified by matching both time and value and are eliminated. As
with the previous functions, get_heritage jlot_data will return False if no valid information has
been gathered.

37

The function get_exp_heritage_plot_data concatenates information from all sequences for the
specified plot file and experiment number. This process may become computationally expensive
and steps have been taken to reduce the time required to run. The end branches of the experiment
are identified using get_exp_branch_heritage (see Appendix B)14. A previously-gathered heritage
data file may be used if it exists and use_old_data was specified as True at the time of calling
get_exp_heritage_plot_data. Invoking this option may save significant time for a large experiment
if many variables are to be gathered.

If the information for the specified plot file has been gathered before, it may be re-used. This
feature may be particularly useful when the user desires a snapshot of a DET in progress. Meta-
information is written by get_exp_heritage_plot_data regarding the plot file when it is run. This
information includes the names of branch (job) directories, the size of each plot file, and the mod-
ification time of each plot file. If either no previously-gathered information exists or the user has
not specified to use it, the information is gathered for each end branch. Gathering is accomplished
using get_plot_data which may be run in serial or parallel depending on whether use_processors
was specified with a value of 2 or greater15.

The meta-information and plot information produced by get_exp_heritage_plot_data are stored
in the plot_cache sub-directory within the server_adaptemp directory (see Listing 2). If gathered
for many variables and experiments, this cached information may tax the storage capabilities of
the host machine. All information in this directory may be safely deleted without any loss of
underlying data from the experiment.

4.2 Plotting Outputs

There is an executable script (adapt-plot-horsetails) within ADAPT that produces plots of
time-dependent simulator outputs. This script uses the information retrieved by the tools from
Section 4.1.2 to show the range of a single variable across all sequences in a DET. The required
inputs for adapt-plot-horsetails are an experiment number, a plot file, and a y-axis label. The x-
axis label defaults to "T ime (s)". An example of a plot output is shown in Figure 20 which plots
the pressure of Cv001 in the ADAPT sample problem (see Section 3.1). The top of the plot includes
information such as the plot file used, the time the plot was produced, and the input options used.
In the case of Figure 20, each sequence may be easily matched to the branching conditions from
Table 4.

There are a number of optional inputs to adapt-plot-horsetails which are listed in Table 6.
The calculation of the median and mean values across all sequences at each time step may be
computationally costly. The cost may be somewhat reduced by using multiple processors and by
binning time steps. By default, 100 bins are used to divide the time span linearly. Either of these
parameters may be changed through optional input in Table 6. The plot file information is sorted by
assigning each time step of each sequence to a bin. For the purposes of selecting a 50th percentile

14End branches are those with no identified child branches. A branch is an end branch while running but may no
longer be if it yields one or more child branches.

15This operation is not typically processor-bound on modern systems and the value of use_processors that min-
imizes time required may exceed the number of physical cores.

38

8.0e+06

7.Oe+06

-6.0e+06

-ri73
5.0e+06

z
ln(r)
4.0e+06 -0_

3.0e+06

2.0e+06 -

/home/zkjanko/ADAPT/ADAPT/server/adapt-plot-horsetails 16 analyticl_CVH-P_1 Pressure (Pa) -colorfinished blue -maxx 300.0 -minx 0.0
zkjanko@s986789.srn.sandia.gov:/home/zkjanko/ADAPT/ADAPT/server at Mon May 21 17:01:37 2018

o
o
-2(
o

o

o

o
N

Q.)
o

"1.

r\i N r V N
0 0 0 0
-/- 1- -/- 1-
a) a) a) a)

4r) o 4o 0
"i (Ni r\i -̂i

Time (s)

Figure 20: Sample adapt-plot-horsetails Plot

39

value, if multiple time steps from a sequence are assigned to the same bin they are collapsed into a
single value with the average time and value of the included steps. When calculating the median,
the plot values in each bin are sorted and sequence probabilities are used to find the 50th percentile
sequence. All points from the 50th percentile sequence for each bin are returned for plotting
by adapt-plot-horsetails. When calculating the mean, the weighted average plot value (and time
midpoint) of each bin are returned for plotting.

Table 6: Optional Input for adapt-plot-horsetails

Optional Input
Python

Description
Data Type

-maxy x float Set the upper y-axis window limit to x.

-miny x float Set the lower y-axis window limit to x.

-maxx x float Set the upper x-axis window limit to x.

-minx x float Set the lower x-axis window limit to x.

-colorfinished x str Plot finished sequences in color x.

-colorunfinished x str Plot unfinished sequences in color x.

-useolddata x bool Use old data if it is available.

-useprocessors x int Use x processors if new data must be pulled.

-median x str Plot the median value at each time step in color x.

-mean x str Plot the mean value at each time step in color x.

-bins x int Use x bins for determination of median and mean.

Divide time steps for binning either linear or log-10.
-bintype x str

Options are "lie and "loe.

-legend x bool Do or do not print a legend for mean/median.

Do not print subsequent points in a sequence if there
-maxtimegap x float

is a time gap greater than x.

A plot is shown in Figure 21 with several optional inputs specified. Median values are plotted
in red. The default 100 linearly-divided bins are used. The mean appears as a heavy dashed blue
line.

40

/home/zkjanko/ADAPT/ADAPT/server/adapt-plot-horsetails 16 analyticl_CVH-P_1 Pressure (Pa) -colorfinished blue -median red -mean blue -legend True -maxx 300.0 -minx 0.0 -bins 20
zkjanko@s986789.srn.sandia.gov:/homekkjanko/ADAPT/ADAPT/server at Mon May 21 17:01:04 2018

8.0e+06

7.0e+06

6.0e+06

713
0_

5.0e+06

LI)
(r)

4.0e+06

3.0e+06

2.0e+06

- " . rr N. \ ,..,

♦._
._

`•`
-*•••........

•

— •

•♦or. , „
••,•• -....•

Median

Mean

c.)
o

(7.)
O
O

ti
o

O
4Jri

Figure 21: Sample adapt-plot-horsetails Plot, Optional Inputs

41

4.3 Calculating Importance Measures

The ADAPT function dynamic_importance_measure_cakulation allows the comparison of
values of a consequence measure across different sets of sequences within an experiment. Three
measures called Dynamic Importance (DYI) are currently included and are listed in Table 7. DYI1
calculates the ratio of the expected values of the chosen consequence measure when an event occurs
(x = 1) to when it does not occur (x = 0). An example of a DYI1 calculation may be "the ratio of
expected pressure for valve opening versus no opening."

Table 7: DYI Dynamic Importance Measures

Importance Measure Description

DYI1= R(x =11 Consequence ratio of occurrence to non-occurrenceR(x=0)

DY I2(i) =
R((x x= oi ?

Consequence ratio of occurrence value x = li to non-occurrence

RR((x x= 11))
DY I3(i)= Consequence ratio of occurrence value x = li to all occurrence x = 1

DYI2 calculates the ratio of the expected values of the chosen consequence measure when
an event occurs with some timing or severity i (x = li) to when it does not occur. An example
calculation may be "the ratio of expected pressure for valve opening at lOs versus no opening."
Finally, DYI3 calculates the ratio of the expected values of the chosen consequence measure when
an event occurs with some timing or severity i (x = li) to all instances of occurrence (x = 1). An
example calculation may be "the ratio of expected pressure for valve opening at 20s versus all
opening times." DYI3 applies to any continuous input parameter and does not necessarily need to
represent an "event."

The dynamic_importance_measure_cakulation function requires multiple inputs. A sample
set of input is given in Table 8 corresponding to the format shown in Listing 17. The inputs
scaled, use_old_data, and use_processors are optional. The analysis begins by collecting
all sequences from the input experiment where the input branching condition occurred using the
helper functionfind_var_relevant_branches_and_end_states (see Appendix B). This step returns
both the values of the input ADAPT variable and the probability for each sequence. Sequences
are sorted by the final value of the input ADAPT variable16. This method allows the sorting of
sequences according to whether an event occurred, did not occur, or occurred with some specific
value of timing or severity.

Listing 17: DYI Input Format (see Table 8 for sample values)

dynamic_importance_measure_calculation (expid , bc_chosen ,
var_chosen , DYI_name, DYI_type , consequence_file ,
var_value_nonoccurrence , consequence_type)

16This does not currently recognize the situation where a branching event occurs multiple times. The last value of
the ADAPT variable in the sequence will be used.

42

Table 8: DYI Input Example (see Listing 17 for format)

Input Description Sample Value

expid Experiment number from database 16

bc_chosen Branching condition from BRF ' 20004'

var_chosen ADAPT variable from BRF ' V20011'

DYI_name Descriptive name for calculation 'Valve Opening P1'

DYI_type DYI type (currently 1, 2, 3) 1

consequence_file Name of plot file to use for consequence ' analyticl_CVH-P_1'

Value of var_chosen when an event has
not occurred

Type of calculation (' PEAK',
' VALLEY' ,' LAST' , 'MIDPOINT', 'ALL')

Whether or not to scale consequence to
vary from 0 to 1 (default F a 1 s e)

Whether or not to use old data if
available (default F a 1 s e)

Number of processors to use in gathering
data (default 1)

var_value_nonoccurrence

consequence_type

scaled

use_old_data

use_processors

'1.e20'

'LAST'

False

True

3

Next, information from the input consequence measure file is loaded using get_heritage_plot_data
for the relevant sequences (see Section 4.1.2). Depending on the input consequence type, dy-
namic _importance _measure_calculation will use the final value for each sequence (' LAST'), the
peak value for each sequence (' PEAK'), the lowest value for each sequence (' VALLEY'), the time
midpoint value of each sequence (' MIDPOINT'), or all values for each sequence (' ALL'). Because
plotting time intervals may vary across sequences, if all values are to be used for DYI calculation,
the information is binned. The sequence with the most time steps is used as a reference, and each
time step of each other sequence is matched to one of the reference time steps.

The ADAPT variable values, sequence probabilities, and consequence values are used to cal-
culate the expected value for each set of sequences (e.g., "event occurree) required according to
the input DYI type. The sample event tree given in Figure 19 was subjected to a sample DYI1
calculation in Equation 1. Equation 1 compares the lowest values of the measure when the valve
opens versus when it does not. An interpretation of the results of Equation 1 is that the expected
lowest pressure when the valve opens is 0.21 times the expected lowest pressure when the valve
does not open. Further analysis of this DET using DYIs appears in Appendix F.

43

nx=1

R(x = 1) E Pi .csi (0.5.1659817.9 \
i=1 0.5) 1659817.9

DY Il = = = 0.2075 (1)
R(x = 0) nx=i (0.5.7999044.0) 7999044.0E Pi • Csi \ 0.5

i=1

4.4 Trimming Trees

Just as uncontrolled growth may be detrimental to a forest, an overly large DET may be difficult
to manage. Traditional event trees are commonly broken into sections of at most a few dozen
end states for better readability. The scale of a DET has historically ranged from hundreds to
millions of total branches (see Section 1.4.4). The potential scale of these DETs impedes the
manual simultaneous examination of the entire tree. To increase the tractability of DET output
processing, a tool is included in ADAPT that reduces a DET according to a user-input set of rules
for easier manipulation by the analyst [37]. This tool is accessible from the ADAPT web interface
(see Figure 5). First, a base experiment is chosen and a description of the reduction is given as in
Figure 22.

In order to reduce the copied DET, the user must input decision rules. A rule associated with
the sample problem from Section 3.1 is given in Table 9. The meaning of the valid P aramet er
Operator and Time Operator values are given in Table 1017. In this example, the user wishes
to return only sequences where the time series value of analyticl_CVH-P_2 (which represents
the pressure of Cv002) exceeds 50000 . 0 at a time before 150 s. The user inputs rules in the web
interface as seen in Figure 23.

Figure 24 shows the full plot of CV002 pressure for the ADAPT sample problem. The plot in
Figure 25 has been reduced according to the rule in Table 9. It may be seen by comparing the
figures that the reduction rule eliminated the sequences where the valve did not open and where
it opened with a fraction of 0.01 (see Table 4). The visualization of the reduced DET is given as
Figure 26 (compare to Figure 19). Further analysis of the results of this tree reduction may be seen
in Appendix F.

ADAPT Main Menu::Choose an Experiment to Slice

Multiple sliced copies may be created from the same base experiment. Choose the base experiment of interest.
Slices may be distinguished by their descriptions and start times. Each time you hit Submit, a new experiment will be created.

Choose experiment: 161- l

Name for the sliced copy: lfocus on high CV002 pressure

Submit

Figure 22: Reduce Experiment: Choose Base and Description

171n practice, it is difficult to match an exact time or parameter value (operator value 3). Values are read into
ADAPT as strings and converted to floating point numbers.

44

Rule 1 name: !high CVDO2 pressure early

Rule 1 parameter (name of data file): lanalytic1_CVH-P_2

Rule 1 value: 50000.0

Rule 1 value operator: 11

Rule 1 time: 150,0

Rule 1 time operator: 12

1.0e+06

8.0e+05

-(3

6.0e+05

a)
L-

4.0e+05

2.0e+05

o
o

Figure 23: Reduce Experiment: Set Rules

/horne/zkjanko/ADAPT/ADAPT/server/ada t-plot-horsetails 16 ana yticlCVH-18 2 Pressure (Pa) -color-brushed blue -rnaxx 300.0 -nninx 0.0
Ajanko@s986789.srn.sandia goso/home/zkjanko/ADAPT/ADAPT/seryer at Tue May 22 13'23 05 2018

o

0.1

ti
<r)
rV

Figure 24: ADAPT Sample Problem Cv002 Pressure Plot

45

1.0e+06

8.0e+05

73a_

6.0e+05

EY

4.0e+05

2.0e+05

/horne/zkjanko/ADAPT/ADAPT/server/adapt-plot-horsetails 27 ana yticl_CVH-P2 Pressure (Pa) -colorfinished blue -ntaxx 300.0 -rninx 0.0
zkjanko@s986789.srn.sandia gov:/horne/zkjanko/ADAPT/ADAPT/server at Tue May 22 13:58:41 2018

Y
o
o

o
O

o
-7(
o

CL;
o

Figure 25: ADAPT Sample Problem CVO 02 Pressure Plot, Reduced by Table 9 Rule

46

Table 9: Sample DET Reduction Rule

Input Field Rule 1

Name High CV002 Pressure Early

File analyticl_CVH-P_2

Parameter Value 50000.0

Parameter Operator 1

Time Value 150 seconds

Time Operator 2

Table 10: Parameter and Time Operator Values for Reduction Rules. Refers to File variable
in Table 9

Operator Intent

1

2

3

File value greater than specified value

File value less than specified value

File value equal to specified value

47

The branch where the
valve does not open
has been eliminated

-P. (426) [p=1] root melcor (428) [p=0.5] sb 2 melcor
CDC

(Branching Condition: Valve opening time (Branching Condition: Valve opening time)
(Simulation Time (s): 0.01) (Simulation Time (s): 10.0438)

(Simulator CPU Time (s): 19) (Simulator CPU Time (s): 22) ill----_____

The branch with 0.01
open fraction has been
eliminated for all
opening times

(429) [p=0.125] sb 1
(Branching Condition: Valve o

(Simulation Time (s): 10.0538)
(Simulator CPU Time (s): 22)

(430) [p=0.125] sb 2 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 20.736)
(Simulator CPU Time (s): 24)

(431) [p=0.125] sb 3 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 30.736)
(Simulator CPU Time (s): 26)

(432) [p=0.125] sb 4 melcor
(Branching Condition: Valve open fraction)

(Simulation Time (s): 40.736)
(Simulator CPU Time (s): 25

(434) [p=0.1] sb 2 melcor
(max_time: 1000.11)

(Simulation Time (s): 1000
(Simulator CPU Time (s):

(435) [13=0.0125] sb 3 mei.
(max_time: 1000.36)

(Simulation Time (s): 1000.36)
(Simulator CPU Time (s): 26)

(437) [p=0.1] sb 2 melcor
(max_time: 1000.8)

(Simulation Time (s): 1000.8)
(Simulator CPU Time (s): 30)

(438) [p=0.0125] sb 3 melcor
(max_time: 1000.04)

(Simulation Time (s): 1000.04)
(Simulator CPU Time (s): 25)

(440) [p=0.1] sb 2 melcor
(max_time: 1000.8)

(Simulation Time (s): 1000.8)
(Simulator CPU lime (s): 26)

(441) [13=0.0125] sb 3 melcor
(max_time: 1000.04)

(Simulation Time (s): 1000.04)
(Simulator CPU Time (s): 25)

(443) [p=0.1] sb 2 melcor
(max_time: 1000.57)

(Simulation Time (s): 1000.1I
(Simulator CPU Time (s):

(444) [p=0.0125] sb 3 mel
(max_time: 1000.65)

(Simulation Time (s): 1000..
Simulator CPU Time s : 23

analyticl (focus on high CV002 pressure reduced copy of ADAPT Sample Problem 5-21-18) at 2018-05-22T13:19:09 [probability_threshold=0.0]

Figure 26: ADAPT Sample Problem DET Visualization, Reduced by Table 9 Rule

Green: finished branch, Cyan: running branch, Yellow: queued branch

5 Conclusion

This manual is to serve as a reference and tutorial for ADAPT as well as a roadmap to the
future of ADAPT. Some brief concluding remarks are given in Section 5.1 and future plans are
outlined in Section 5.2.

5.1 Concluding Remarks

This manual has given a basic introduction to dynamic PRA and ADAPT. ADAPT can be
valuable in discovering insights in complex system transients. Dynamic PRA in general is expected
to take a larger role in the safety analysis of advanced reactors. When compared to traditional
light water reactors, advanced reactor designs tend to credit more natural phenomena (e.g., natural
circulation) in lieu of active safety systems. This is an area where dynamic PRA is recognized as
having advantages over the traditional ETFT method (see Section 1.3).

ADAPT links different simulators in a variety of schemes based on the problem being ana-
lyzed. This manual has described the input and outputs of a simple analysis in order to reflect the
necessary elements. Requests for clarification or proposals for collaboration may be directed to
ADAPT@sandia.gov.

5.2 Future Work

This manual will be updated periodically as the capabilities of ADAPT change. Three signif-
icant changes are in various stages of development as of this writing. The web interface will be
updated to use a dynamic platform which will allow a smoother workflow as well as automatic
refreshing of data. The web interface update will coincide with an overall enhancement of the sta-
tus information provided by the web interface. Measures such as the rate of starting and finishing
jobs will be plotted for ADAPT overall, for each experiment, and for each computation host. Key
diagnostic information will be displayed as well in order to allow the user to mitigate network or
hardware limitations on hosts.

The method by which ADAPT currently launches and tracks jobs provides resilience against
network and hardware errors. However, at larger scales it may tax the host machine, requiring
significant troubleshooting to identify the relevant limitation (e.g., number of files open simulta-
neously). An updated method of launching and tracking jobs is being developed. This updated
method will relay more explicit information about the status of each job to the database while
reducing the load on the host machine.

Significant computational resources exist at SNL and other organizations in the form of High
Performance Computing (HPC) clusters. A method has been developed by which ADAPT may
launch jobs to a set of HPCs through an industry-standard job scheduler (Slurm [41]). This ca-
pability has expanded the potential simultaneous running jobs from approximately 130 on a local
cluster to 10,000+ on institutional HPCs. Work to integrate this capability into ADAPT will coin-
cide with the revision of the job launching and tracking system.

49

The plans noted above have resulted from user needs, which are a primary driver of ADAPT de-
velopment. Requests for additional features or submission of bugs may be directed to ADAP T @ s andia . gov.

50

References

[1] D. M. Kunsman, T. Aldemir, B. Rutt, K. Metzroth, U. Catalyurek, R. Denning,
A. Hakobyan, and S. C. Dunagan, "Development and Application of the Dynamic
System Doctor to Nuclear Reactor Probabilistic Risk Assessments," Sandia National
Laboratories, Albuquerque, NM, SAND2008-4746, May 2008. [Online]. Available:
http://prod.sandia.gov/techlib/access-control.cgi/2008/084746.pdf

[2] "Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear
Power Plants," United States Nuclear Regulatory Commission, Washington, DC, WASH-
1400 (NUREG 75-014), October 1975. [Online]. Available: http://pbadupws.nrc.gov/docs/
ML0706/ML070610293.pdf

"Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants,"
United States Nuclear Regulatory Commission, Washington, DC, NUREG-1150, 1990.
[Online] . Available: http ://www.nrc. gov/reading-rm/doc- collections/nuregs/staff/sr1150/v1/
sr1150v1- intro- and-part- 1.pdf

[4] R. Chang, J. Schaperow, T. Ghosh, J. Barr, C. Tinkler, and M. Stutzke, "State-of-the-Art Re-
actor Consequence Analyses (SOARCA) Report," United States Nuclear Regulatory Com-
mission, Washington, DC, NUREG-1935, November 2012.

[5] "Applications of Risk Analysis to Offshore Oil and Gas Operations - Proceedings of an Inter-
national Workshop," National Bureau of Standards, Gaithersburg, MD, Special Publication
695, May 1985.

[6] M. Stamatelatos and H. Dezfuli, "Probabilistic Risk Assessment Procedures Guide for NASA
Managers and Practitioners," National Aeronautics and Space Administration, Washington,
DC, NASA/SP-2011-3421 Second Edition, December 2011.

[3]

[7] T. Aldemir, "A survey of dynamic methodologies for probabilistic safety assessment of
nuclear power plants," Annals of Nuclear Energy, vol. 52, pp. 113-124, Feb 2013. [Online].
Available: http ://dx .doi . org/10.10 16/j .anucene.2012.08.001

[8] N. S. Martin, M. R. Denman, and T. A. Wheeler, "Pruning of Discrete Dynamic Event Trees
Using Density Peaks and Dynamic Time Warping," in Transactions of the American Nuclear
Society, vol. 115. Las Vegas, NV: American Nuclear Society, Nov 2016, pp. 783-786.

[9] L. Humphries, R. Cole, D. Louie, V. Figueroa, and M. Young, "MELCOR Computer Code
Manuals - Vol. 1: Primer and User's Guide - Version 2.1.6840 2015," Sandia National
Laboratories, Albuquerque, NM, SAND2015-6691R, August 2015. [Online]. Available:
haps ://adamswebsearch2.nrc.gov/webS earch2/view?Acces sionNumber=ML15300A479

[10] U. Catalyurek, B. Rutt, K. Metzroth, A. Hakobyan, T. Aldemir, R. Denning, S. Dunagan,
and D. Kunsman, "Development of a code-agnostic computational infrastructure for
the dynamic generation of accident progression event trees," Reliability Engineering
& System Safety, vol. 95, no. 3, pp. 278-294, Mar 2010. [Online]. Available:
http ://dx.doi . org/10.1016/j .res s .2009.10.008

51

[11] J. LaChance, J. Cardoni, Y. Li, A. Mosleh, D. Aird, D. Helton, and K. Coyne, "Discrete
Dynamic Probabilistic Risk Assessment Model Development and Application," Sandia
National Laboratories, Albuquerque, NM, SAND2012-9346, October 2012. [Online].
Available: http://pbadupws.nrc.gov/docs/ML1230/ML12305A351.pdf

[12] P. Mattie, R. Gauntt, K. Ross, N. Bixler, D. Osborn, C. Sallaberry, and J. Jones,
"State-of-the-Art Reactor Consequence Analyses Project, Uncertainty Analysis of the
Unmitigated Long-Term Station Blackout of the Peach Bottom Atomic Power Station,"
United States Nuclear Regulatory Commission, Washington, DC, NUREG/CR-7155, May
2016. [Online] . Available: http://pbadupws.nrc.gov/docs/ML1318/ML13189A145.pdf

[13] Z. Jankovsky and M. Denman, "Recent Developments in the ADAPT Discrete Dynamic
Event Tree Framework," Sandia National Laboratories, Albuquerque, NM, SAND2016-
7680PE, August 2016.

[14] L. Humphries, B. Beeny, F. Gelbard, D. Louie, and J. Phillips, "MELCOR Computer Code
Manuals - Vol. 1: Primer and User's Guide - Version 2.2.9541 2017," Sandia National
Laboratories, Albuquerque, NM, SAND2017-04550, January 2017. [Online]. Available:
https ://www.nrc.gov/docs/ML1704/ML17040A429.pdf

[15] R. Gauntt, J. Cash, R. Cole, C. Erickson, L. Humphries, S. Rodriguez, and M. Young, "MEL-
COR Computer Code Manuals Vol. 1: Primer and Users' Guide Version 1.8.6 September
2005," Sandia National Laboratories, Albuquerque, NM, NUREG/CR-6119 Vol. 1 Rev. 3,
2005.

[16] Z. K. Jankovsky and M. R. Denman, "Modification of the SAS4A Safety Analysis
Code for Integration with the ADAPT Discrete Dynamic Event Tree Framework," Sandia
National Laboratories, Albuquerque, NM, SAND2017-4764, May 2017. [Online]. Available:
http://prod.sandia.gov/techlib/access- control. cgi/2017/174764.pdf

[17] A. Hakobyan, "Severe Accident Analysis using Dynamic Accident Progression Event
Trees," Ph.D. dissertation, The Ohio State University, 2006. [Online]. Available:
https://etd.ohiolink.edu/!etd.send_file?accession=osul158672136&disposition=inline

[18] K. Metzroth, "A Comparison of Dynamic and Classical Event Tree Analysis for Nuclear
Power Plant Probabilistic Safety/Risk Assessment," Ph.D. dissertation, 2011. [Online].
Available: haps ://etd.ohiolink. edufl etd.send_file?accession=osul306185445&disposition=
inline

[19] A. Brunett, "The Assessment of Low Probability Containment Failure Modes Using
Dynamic PRA," Ph.D. dissertation, The Ohio State University, 2013. [Online]. Available:
https://etd.ohiolink.edu/!etd.send_file?accession=osul373995939&disposition=inline

[20] D. M. Osborn, "Seamless Level 2/Level 3 Probabilistic Risk Assessment using
Dynamic Event Tree Analysis," Ph.D. dissertation, 2013. [Online]. Available: https:
//etd.ohiolink.edu/!etd.send_file?accession=osul372524956&disposition=inline

52

[21] Z. Jankovsky, M. Denman, and T. Aldemir, "A Dynamic Coupled-Code Assessment of Mit-
igation Actions in an Interfacing System Loss of Coolant Accident," in Proceedings of the
International Conference on Probabilistic Safety Assessment and Management (PSAM 14),
Los Angeles, CA, September 2018.

[22] B. Rutt, U. Catalyurek, A. Hakobyan, K. Metzroth, T. Aldemir, R. Denning, S. Dunagan, and
D. Kunsman, "Distributed dynamic event tree generation for reliability and risk assessment,"
in Challenges of Large Applications in Distributed Environments, 2006 IEEE, June 2006.

[23] A. Hakobyan, R. Denning, T. Aldemir, S. Dunagan, and D. Kunsman, "A Methodology for
Generating Dynamic Accident Progression Event Trees for Level-2 PRA," in PHYSOR-2006,
ANS Topical Meeting on Reactor Physics, Vancouver, Canada, September 2006.

[24] A. Hakobyan, T. Aldemir, R. Denning, S. Dunagan, D. Kunsman, B. Rutt, and
U. Catalyurek, "Dynamic Generation of Accident Progression Event Trees," Nuclear
Engineering and Design, vol. 238, no. 12, pp. 3457-3467, Dec 2008. [Online]. Available:
http://dx.doi.org/10.1016/j .nucengdes .2008 .08 .005

[25] R. Winningham, K. Metzroth, T. Aldemir, and R. Denning, "Passive Heat Removal System
Recovery following an Aircraft Crash using Dynamic Event Tree Analysis," in Transactions
of the American Nuclear Society, vol. 100. Atlanta, GA: American Nuclear Society, June
2009, pp. 461-462.

[26] D. M. Osborn, T. Aldemir, R. Denning, and D. Mandelli, "Seamless Level 2/Level 3
Dynamic Probabilistic Risk Assessment Clustering," in ANS PSA 2013 International Topical
Meeting on Probabilistic Safety Assessment and Analysis, Columbia, SC, September 2013.
[Online] . Available: hap ://citeseerx. ist.p su. edu/viewdoc/download?doi=10 .1.1.707.2182&
rep=rep 1 &type=pdf

[27] A. Brunett, R. Denning, and T. Aldemir, "A Reassessment of Low Probability Containment
Failure Modes and Phenomena in a Long-Term Station Blackout," Nuclear Technology, vol.
186, no. 2, pp. 198-215, 2014.

[28] K. Vierow, K. Hogan, K. Metzroth, and T. Aldemir, "Application of Dynamic Probabilistic
Risk Assessment Techniques for Uncertainty Quantification in Generation IV Reactors,"
Progress in Nuclear Energy, vol. 77, pp. 320-328, Nov 2014. [Online] Available:
http://dx.doi.org/10.1016/j.pnucene.2014.04.012

[29] V. Rychkov and K. Kawahara, "ADAPT-MAAP4 Coupling for a Dynamic Event Tree Study,"
in ANS PSA 2015 International Topical Meeting on Probabilistic Safety Assessment and Anal-
ysis, Sun Valley, ID, April 2015.

[30] Z. K. Jankovsky, M. R. Denman, and T. Aldemir, "Dynamic Event Tree Analysis with the
SAS4A/SASSYS-1 Safety Analysis Code," Annals of Nuclear Energy, vol. 115C, pp. 55-72,
2018.

53

[31] M. Denman, P. Turner, R. Williams, J. Cardoni, and T. Wheeler, "Preliminary Cyber-
Informed Dynamic Branch Conditions for Analysis with the Dynamic Simplified Cyber
MELCOR Model," in Transactions of the American Nuclear Society, vol. 115. Las Ve-
gas, NV: American Nuclear Society, November 2016, pp. 787-790.

[32] Z. Jankovsky, M. Denman, and T. Aldemir, "A Dynamic Assessment of Auxiliary
Building Contamination and Failure due to a Cyber-Induced Interfacing System Loss of
Coolant Accidenc in International Conference on Topical Issues in Nuclear Installation
Safety: Safety Demonstration of Advanced Water Cooled Nuclear Power Plants, Vienna,
Austria, June 2017. [Online] . Available: https ://nucleus.iaea.org/sites/gsan/act/CN- 251/
papers/57-0-Jankovsky_ISLOCA.pdf

[33] A. D. Williams, D. Osborn, K. A. Jones, E. A. Kalinina, B. Cohn, M. J. Parks, E. Parks,
B. Jeantete, M. A. Thomas, and A. H. Mohagheghi, "Intermediate Results from a System-
Theoretic Framework for Mitigating Complex Risks in International Transport of Spent Nu-
clear Fuel," in Proceedings of the 58th Annual Meeting of the Institute of Nuclear Materials
Management, Indian Wells, CA, July 2017.

[34] B. Rutt, A. Hakobyan, K. Metzroth, U. Catalyurek, T. Aldemir, D. Kunsman, and S. Dunagan,
"A Software Tool for the Creation and Analysis of Dynamic Event Trees," in Proceedings of
ANS 2006 Winter Meeting, Albuquerque, NM, Nov 2006.

[35] K. Metzroth, U. Catalyurek, T. Aldemir, D. Kunsman, and S. Dunagan, "A Graphical Tool
for the Analysis of Event Trees," in Proceedings of ANS 2006 Annual Meeting, Reno, NV,
June 2006.

[36] Z. Jankovsky, M. Denman, and T. Aldemir, "Dynamic Importance Measures in the ADAPT
Framework," in Transactions of the American Nuclear Society, vol. 115. Las Vegas, NV:
American Nuclear Society, November 2016, pp. 799-802.

[37] Z. Jankovsky, M. Denman, and T. Aldemir, "Conditional Tree Reduction in the ADAPT
Framework," in Transactions of the American Nuclear Society, vol. 115. Las Vegas, NV:
American Nuclear Society, November 2016, pp. 553-556.

[38] Z. Jankovsky, M. Denman, and T. Aldemir, "Extension of the ADAPT Framework for Multi-
ple Simulators," in Transactions of the American Nuclear Society, vol. 115. Las Vegas, NV:
American Nuclear Society, November 2016, pp. 557-560.

[39] L. Humphries, D. Louie, V. Figueroa, M. Young, S. Weber, K. Ross, J. Phillips, and R. Jun,
"MELCOR Computer Code Manuals - Vol. 3: MELCOR Assessment Problems - Version
2.1.7347 2015," Sandia National Laboratories, Albuquerque, NM, SAND2015-6693R,
August 2015. [Online] . Available: https://www.nrc.gov/docs/ML1530/ML15300A476.pdf

[40] L. Kmetyk, "MELCOR Assessment: Gedanken Problems - Volume 1," Sandia National
Laboratories, Albuquerque, NM, SAND92-0762, January 1993. [Online]. Available:
http://prod.sandia.gov/techlib/access-control.cgi/1992/920762-1.pdf

54

[41] "SLURM Reference Manual," Lawrence Livermore National Laboratory, Livermore, CA,
UCRL-WEB-201386, 2006. [Online] Available: hdps://computingilnl.gov/LCdocs/slurnd
slurm.pdf

55

A ADAPT Modules

Table A.1: ADAPT Executable Modules

Module Description

adapt-branch-heritage

adapt-branch-unexecute

adapt-checkhosts

adapt-database-admin

adapt-editrule-apply

adapt-experiment-checkpoint

adapt-experiment-remove

adapt-experiment-restart

(J., adapt-experiment-update

adapt-fixprob

adapt-gather-outputs

adapt-job-record

adapt-load-check

adapt-mysql-cleanup

adapt-ops

adapt-pickle-outputs

adapt-plot-horsetails

adapt-server

adapt-server-halt

adapt-status-check

adapt-submit

adapt-supervisor

adapt-webmin

Retrieves the parentage of the input branch up to the initial branch of the input experiment

Deletes the child branches and the completed jobs associated with the input branch

Checks whether the computation hosts in .adaptrc can be reached

Creates, deletes, or backs up the ADAPT database and user as specified in .adaptrc

Applies the input BRF and branching condition to the input TSIF. Not typically run by the user

Checkpoints the input experiment

Deletes the database entries associated with the input experiment

Restarts the input experiment from a checkpointed condition

Updates the probability threshold for the input experiment

Propagates new conditional probabilities for the input branching condition through the input experiment

Copies the directories of the input experiment to an input local directory

Records the results of the input job number in the database. Not typically run by the user

Checks the load on the computation hosts from .adaptrc

Closes the MySQL connections associated with ADAPT for the user from .adaptrc

Starts and stops the long-running processes of ADAPT

Gathers the input plot file for all branches in the input experiment into a python pickle file

Produces plot images of the input plot file for the input experiment

Waits for new branches to appear in the queue and runs them when resources are available

Commands adapt-server to stop by writing a stop signal to the database

Checks whether adapt-server and adapt-webmin are currently running for the user

Submits a new branch to the database with the input characteristics. Not typically run by the user

Supervises the running of an ADAPT job on a computation host. Not typically run by the user

Provides a web interface to ADAPT

58

B ADAPT Functions

• get_available_executor(needed_host =None)
Purpose:

Identifies a host with open capacity, preferring needed_host if defined.
Inputs:

1. needed host: A desired host

Returns:

1. result: Returns a host with open capacity

• GetDataAccessObjectO
Purpose:

Establishes a connection to the ADAPT database
Inputs:

1. needed_host: A desired host

Returns:

1. get_database_hostname: Returns the hostname for the database connection

2. get_database_port: Returns the port for the database connection

3. get_database_user: Returns the username for the database connection

4. get_database_pass: Returns the password for the database connection

5. get_database_db: Returns the database for the database connection

• CloneDataAccessObjectO
Purpose:

Establishes a copy of the ADAPT database connection for a spawned job
Inputs: None
Returns:

1. Clone : Returns the details of the database connection

• get_platform0
Purpose:

Queries the operating system being used
Inputs: None
Returns:

1. result: Returns the operating system being used

• err(mes sage)
Purpose:

Writes message to st derr using a standard format
Inputs:

1. message: A message to write to stderr

Returns: None

59

• which(filename)

Purpose:
Searches for a location containing filename in the operating system environment variable
PATH

Inputs:

1. filename: A file name to find on the user's PATH

Returns:

1. f: Returns the path if filename was found

2. None: Returns nothing if filename was not found

• requireutil(exe cutables)
Purpose:

Writes an error if required executables are not found using which()
Inputs:

1. executables: An executable file that must be located for job success

Returns: None

• unixfind(path)
Purpose:

Finds all of the directories and files under path, recursively
Inputs:

1. path: A path to check for directories and files

Returns:

1. out: Returns the paths of all directories and files found

• shell_quote(s)
Purpose:

Quotes string s in a way that is safe for Unix shells
Inputs:

1. s: A string to quote

Returns:

1. out: Return the safely quoted string

• shell_unquote(s)
Purpose:

Removes quoting in string s
Inputs:

1. s: A string to quote

Returns:

1. None: Return nothing if the string is only quotes

2. out: Return the unquoted string

• shell_escape(s)

60

Purpose:
Adds escape characters if string s contains non-safe characters for Unix shells

Inputs:

1. s: A string to escape

Returns:

1. out: Returns the escaped string

• parsetime(t imespec)
Purpose:

Parses user-input string t imespec for how long to run ADAPT in wall time
Inputs:

1. timespec: A time for ADAPT to run. t imespe c may contain one special designator.
For example, "30e represents thirty days

Returns:

1. int (timespec [0 : len (timespec) - 1]) : If s designator is used, assume seconds
and return seconds

2. int (timespec [0 : len (timespec) - 1]) 60: If m designator is used, assume
minutes and return seconds

3. int (timespec [0 : len (t ime spec) - 1]) 3600: If h designator is used, assume
hours and return seconds

4. int (timespec [0 : len (t ime spec) - 1]) 3600 * 24: If d designator is used,
assume days and return seconds

• mkdtempold(timespec)
Purpose:

Makes a temporary directory with a known prefix
Inputs: None
Returns:

1. f i 1 e: Return the name of the directory

• load_check(host)
Purpose:

Checks the load average on host
Inputs:

1. host: A hostname to check for cornputational load

Returns:

1. load: Returns the load average

• load check all()
Purpose:

Checks the load average on all ADAPT hosts
Inputs: None
Returns:

61

1. unique_host s, load: Returns the unique hosts and their load averages

• adaptjobs_checkO
Purpose:

Checks the number of jobs running on all ADAPT hosts
Inputs: None
Returns:

1. host_jobs: Returns the running jobs on each host

• free_adapt slots(method)
Purpose:

Checks all ADAPT hosts for free slots.
Inputs:

1. method: Defaults to adapt jobs_check but load_check (host) may also be used

Returns:

1. free slots: Returns the number of free slots on each host

• find_files(dir)
Purpose:

Finds all of the files under dir, recursively
Inputs:

1. dir: A directory to search for files

Returns:

1. out: Returns the paths of all files found

• get_adapt_d_dir()
Purpose:

Checks the ADAPT configuration file for the directory to place experiment input files
Inputs: None
Returns:

1. d: Returns the directory

• checkpoint_branch(branchid, jobid, checkpointscript, hostname, rundir, pid,
wait_completion)
Purpose:

Checkpoints branch branchid on a remote computation host by executing the checkpoint
script in the job run directory

Inputs:

1. branchid: The unique branch number

2. jobid: The unique job number

3. checkpointscript: The location of the file used to checkpoint a job

4. hostname: Computation host of the job

5. rundir: Directory of the job

62

6. pid: Process number of the job

7. wait_completion: Retries up to 10 times if True

Returns: None

• kill_remote_pid_group(hostname, pid, wait_completion)
Purpose:

Kills process number pid on host hostname
Inputs:

1. hostname: Computation host of the process

2. pid: Process number to be killed

3. wait_completion: Retries up to 10 times if True

Returns: None

• checkpoint_or_kill_branch(branchid, wait_completion)
Purpose:

Checkpoints branch branchid if it has not already run. If it is running, kills its job process
Inputs:

1. branchid: Branch to be checkpointed or killed

2. wait_completion: Retries up to 10 times if True

Returns: None

• kill_activejobs(experimentid)
Purpose:

Checkpoints branch branchid if it has not already run. If it is running, kills its job process
Inputs:

1. experimentid: Experiment for which to kill all active jobs. If None, performed for all
experiments

Returns: None

• experiment_stop(experimentid, remove, removefiles)
Purpose:

Stops an experiment, killing all active jobs
Inputs:

1. experimentid: Experiment to stop

2. remove: Deletes the experiment from the database if True

3. removefiles: Deletes files if True

Returns:

1. rc: The return code if any checkpointing scripts were not successful

2. None: If the experiment does not exist

3. None: If removal was not specified

• branch_remove(branchid_input, remove)
Purpose:

63

Identifies and deletes all database entries associated with the input branch
Inputs:

1. branchid_input: Experiment to stop

2. remove: Deletes the experiment from the database if True, defaults to False

Returns:

1. None: If the branch does not exist

2. None: If removal was not specified

• experiment_copy(exp, e xp_r e du c e d_de s c)
Purpose:

Creates a copy of an experiment in the database
Inputs:

1. exp: An experiment to copy

2. exp_reduced_desc: Description of the copy experiment

Returns:

1. exp: The experiment that was copied

2. e xp_r e du c e d_de s c: Description of the copy experiment

3. r educed_experiment: The number of the copy experiment

4. new_experiment_row: The details of the copy experiment from the database

• get_branch_heritage(branchid)
Purpose:

Finds the parentage of the input branch up to the root branch
Inputs:

1. branchid: A branch to find heritage for

Returns:

1. out: The heritage of the input branch

• get_exp_branch_heritage(experimentid)
Purpose:

Finds the heritage of all end branches of an experiment
Inputs:

1. experiment id: An experiment to find all branch heritage for

2. use_old_data: Use a cached copy of the heritage if True, defaults to False

Returns:

1. experiment id: The input experiment

2. root_branch: The first branch of the experiment

3. end_branches: The end branches of the experiment

4. exp_branch_heritage: The heritage of the all end branches in the experiment

• get_plot_data(plot_gather_input)

64

Purpose:
Reads the input plot file according to the ADAPT plot file format

Inputs:

1. plot_gather_input: A tuple containing a host and a file path

Returns:

1. False: If the file exists but holds no data in a known format

2. combined_list: A list of time series data from the plot file

• get_branch_plot_data(branchid, plotfile)
Purpose:

Retrieves plot data for the input file name and branch number
Inputs:

1. branchid: A branch number whose job directory should be searched for the plot file

2. plotfi1e: A plot file to read in the branch's job directory

Returns:

1. False: If the branch has not finished

2. False: If the file exists but holds no data in a known format

3. combined_list: A list of time series data from the plot file

• get_heritage_plot_data(plot_gather_input)
Purpose:

Retrieves plot data for the input file name and branch number up to the root branch
Inputs:

1. plot_gather_input: A tuple containing a branch number and a plot file name

Returns:

1 . plot_values: Return the time series data

• checkjobdirjor_plotfile(check_package)
Purpose:

Checks whether the given file exists in the given branch's job directory
Inputs:

1. check_package: A tuple containing a branch number and a plot file name to check

Returns:

1. branchid: Returns the input branch

2. plot_file_meta: Returns meta information about the plot file or None if it does not
exist

• get_exp_heritage_plot_data(experimentid, plotfile)
Purpose:

Gathers data for the given plot file for all branches in the experiment and assembles them
into a dictionary

Inputs:

65

1. experimentid: The experiment to gather plot data for

2. plotfile: The plot file to gather

3. use_old_data: Use previously-gathered data if True, defaults to False

4. use_processors: Number of processors to use in gathering data, defaults to 1

Returns:

1. plot_values: Returns the time series data for the experiment

• json_exp_heritage_plot_data(experimentid, plotfile, json_location)
Purpose:

Gathers data for the given plot file for all branches in the experiment, assembles them into a
dictionary, and saves the data in a designated location

Inputs:

1. experimentid: The experiment to gather plot data for

2. plotfile: The plot file to gather

3. j s on_location: The directory to output a file of the gathered data

4. use_old_data: Use previously-gathered data if True, defaults to False

5. use_processors: Number of processors to use in gathering data, defaults to 1

Returns: None

• identify_finished_sequences(experimentid)
Purpose:

Identify which end branches in the experiment have finished and which have not
Inputs:

1. experimentid: The experiment to gather status for

2. use_old_data: Use previously-gathered data if True, defaults to False

Returns:

1. end_states: All end branches in the experiment

2. finished_sequences: End branches which have finished

3. unfinished_sequences: End branches which have not finished

• get_safe_branches_to_move(experimentid, move_commit)
Purpose:

Finds branches in the experiment whose files are safe to move because their immediate chil-
dren have completed

Inputs:

1. experimentid: The experiment to check for safe data to move

2. move_commit: Moves data if True, defaults to False

3. remote_server: A server to copy data to

4. r emot e_us er: A username for copying data

5. r emote_base_di r: The base directory on the recipient server

6. branch_limit: The maximum number of branches to move data for at a time

66

Returns:

1. safe_to_move: A list of branches whose data are safe to move

• find_var_relevant_branches_and end_states(experimentid, bc_chosen, var_chosen)
Purpose:

Identifies end states in the experiment where the branching condition occurred and tracks
values of the ADAPT variable

Inputs:

1. experimentid: The experiment to check for instances of the branching condition

2. bc_chosen: The branching condition to check

3. var_chosen: The ADAPT variable to track through branching

4. use_old_data: Use previously-gathered data if True, defaults to False

Returns:

1. relevant_branches: Branches where the branching condition occurred

2. relevant_end_state s: End branches where the branching condition occurred

3. relevant_branch_children• Immediate child branches of branches where the branch-
ing condition occurred

4. child_branch_values: Values of the ADAPT variable for immediate child branches

• get_branch_variable_history(branchid, var_chosen)
Purpose:

Identifies the values of the ADAPT variable for the branch up to the root branch
Inputs:

1. branchid: The branch to check for values of the ADAPT variable

2. var chosen: The ADAPT variable to track through branching

Returns:

1. branchid: The branch to check for values of the ADAPT variable

2. var_chosen: The ADAPT variable to track through branching

3. heritage: The parentage of the branch up to the root branch

4. branch_values: Values of the ADAPT variable for the branch up to the root branch

• get_exp_variable_history(experimentid, var_chosen)
Purpose:

Identifies the values of the ADAPT variable for all branches in the experiment
Inputs:

1. experimentid: The experiment to check for values of the ADAPT variable

2. var_chosen: The ADAPT variable to track through branching

3. use_old_data: Use previously-gathered data if True, defaults to False

Returns:

1. experimentid: The experiment to check for values of the ADAPT variable

2. var_chosen: The ADAPT variable to track through branching

67

3. end_states: The end branches of the experiment

4. exp_br anch_heritage: The heritage of all end branches in the experiment

5. branch_values: Values of the ADAPT variable for all branches in the experiment

• job remove(jobid, commit)
Purpose:

Deletes the job and related entries from the database
Inputs:

1. jobid: The job to remove

2. commit: Commit to removing the job if True, defaults to False

Returns: None

• children_iden4fy(branchid)
Purpose:

Identifies the immediate children of the branch
Inputs:

1. branchid: The branch to check for children

Returns:

1. children: Child branches of the input branch

• identify_resulting_end_states(branchid)
Purpose:

Identifies the end branches that result from the branch
Inputs:

1. branchid: The branch to check for eventual end branches

Returns:

1. resulting_end_states: End branches that stem from the input branch

• get_end_branches(experiment id)
Purpose:

Identifies all end branches for the experiment
Inputs:

1. experimentid: The experiment to check for end branches

Returns:

1. end_branches: End branches in the experiment

• get_end_state_progress(experiment id)
Purpose:

Identifies the simulation time at which each current end branch in the experiment ended
Inputs:

1. exper iment id: The experiment to check for end branch progress

Returns:

68

1. j ob i d_t ime s: End branches and their end simulation times

• dynamic_importance_measure_calculation(experimentid, bc_chosen, var_chosen,
DYI_name, DYI_type, consequence_file, var_value_nonoccurrence,

consequence_type)

Purpose:
Calculates dynamic importance measures

Inputs:

1. experimentid: Experiment to calculate measures for

2. bc_chosen: Branching condition to evaluate

3. var_chosen: ADAPT variable to evaluate

4. DYI_name: Name of the measure to use in displays

5. DYI_type: Type of measure to calculate

6. consequence_file: Plot file to use to measure consequence

7. var_value_nonoccurrence: Value of the ADAPT variable corresponding to non-
occurrence of an event

8. consequence_type: Type of consequence measure to use (e.g., PEAK, LAST, or ALL)

9. use_old_data: Use previously-gathered data if True, defaults to False

10. use_processors: Number of processors to use in gathering data, defaults to 1

Returns:

1. experimentid: Experiment to calculate measures for

2. bc_chosen: Branching condition to evaluate

3. var_chosen: ADAPT variable to evaluate

4. DYI_name: Name of the measure to use in displays

5. DYI_type: Type of measure to calculate

6. consequence_file: Plot file to use to measure consequence

7. var_value_nonoccurrence: Value of the ADAPT variable corresponding to non-
occurrence of an event

8. DYI_value: Value of the importance measure

• pretend_branch_never completed(branchid, commit)
Purpose:

Identify database entries associated with the branch and its children
Inputs:

1. branchid: The branch to evaluate for undoing completion

2. commit: Deletes the job and all children if True, defaults to False

Returns: None

• simulate_execution_timings(experimentid, nprocs, print_info)
Purpose:

Calculates and prints the progress of the experiment with regards to timing of branch com-
pletion and processor use

69

Inputs:

1. experimentid: The experiment to calculate times for

2. nprocs: Number of processors to assume for calculations

3. print_info: Prints output to stdout, defaults to True

Returns:

1. t: Total time the experiment has run in seconds

• simulate_execation_timings_serial_parallel(experimentid, nprocs)
Purpose:

Calculates the difference in wall time required between running the experiment with in par-
allel versus serial

Inputs:

1. experimentid: The experiment to calculate times for

2. nprocs: Number of processors to use in calculating time differences

Returns:

1. t: The calculated single-processor wall time as well as actual tirne required

• get_branch_rundir(id)
Purpose:

Identifies the job directory for a branch
Inputs:

1. id: The branch to find the job run directory for

Returns:

1. rundir: Job directory for the branch

• get_branch_hostname(id)
Purpose:

Identifies the job host for a branch
Inputs:

1. id: The branch to find the job host for

Returns:

1. hostname: Job host for the branch

• get_branchid_from_jobid(jobid)
Purpose:

Identify the branch associated with a job
Inputs:

1. j ob d: The job to find a branch number for

Returns:

1. branchid: The branch associated with the job

• get_branch_scripts(sim)

70

Purpose:
Identifies any special scripts associated with a simulator package in the database

Inputs:

1. s im: The simulator package name to find scripts for

Returns:

1. script: Returns a list of scripts

• run scriptjor_branch(id, script , args)
Purpose:

Runs a script in the job directory for a branch with given arguments
Inputs:

1. id: The branch to run scripts for

2. s cr ipt: The script to be run

3. args: Arguments for the script

Returns:

1. var: Returns stdout from running the script

• get_branch_script_file(name)
Purpose:

Identify all special scripts in the database with a given name
Inputs:

1. name: The name of the script to search for

Returns:

1. script: Returns a list of matched scripts

• get_hostname()
Purpose:

From within a job, get the name of the computation host
Inputs: None
Returns:

1. hostname: Returns the host name

• get_directory()
Purpose:

From within a job, get the run directory
Inputs: None
Returns:

1. directory: Returns the directory

• get_resource_uid()
Purpose:

From within a job, get the ADAPT resource number of the job execution
Inputs: None

71

Returns:

1. resource_uid: Returns the resource number

• jokfinished0
Purpose:

From within a job, determines whether the job has completed
Inputs: None
Returns:

1. status: Returns True if the job is not ninning and False if it is ninning

• job _return_code ()
Purpose:

From within a job, identifies the return code of the job command
Inputs: None
Returns:

1. rc: Returns the return code of the job command process

• job _get cominand()
Purpose:

From within a job, identifies the remotecommand specified in job _start
Inputs: None
Returns:

1. jobcmd: Returns the remote command

• job mark as jailed()
Purpose:

From within a job, marks the job as failed in the database
Inputs: None
Returns: None

• has _resources()
Purpose:

From within a job, identifies whether the job host has open capacity
Inputs: None
Returns:

1. status: Returns True if the host has open capacity and False otherwise

• make _remote _container(name)
Purpose:

Create a job staging directory in the adaptemp directory
Inputs:

1. name: The name of the directory to create. If None, a random name is used

Returns:

1. name: Returns the directory

72

• cleanup remote_container(container)
Purpose:

Deletes the input job staging directory
Inputs:

1. container: The name of the directory to delete

Returns: None

• copy_files_to_remote_container(files, container, make_executable)
Purpose:

Copies files to the job staging directory and optionally makes them executable
Inputs:

1. files: The names of files to copy

2. container: The name of the directory to copy to

3. make_executable: Makes files executable if True, defaults to False

Returns: None

• copy_remote_file_to_local(remote, local)
Purpose:

Copies a file from a remote host to the ADAPT server host
Inputs:

1. remote: The remote file to be copied

2. local: A local path to copy the file to

Returns: None

• copy_reinote_file_to_fileobject(remot e)
Purpose:

Read a remote file to stdout on the ADAPT server host
Inputs:

1 . remote: The file to be read

Returns:

1. stdout: Returns the contents of the file

• remote_file_size(remote)
Purpose:

Finds the size of a remote file
Inputs:

1 . remote: The file to be evaluated

Returns:

1 . s z: Returns the size of the file in bytes

• job_start(remot e command)
Purpose:

Executes a command on the job host

73

Inputs:

1. remote command: The command to be run remotely

Returns: None

• checkhost(ssh, host)
Purpose:

Checks the connection status of a computation host
Inputs:

1. ssh: The method to use to connect to the host

2. host: The host to be checked

Returns:

1. 0: If the connection was successful

2. 2: If key-based authentication is not set up for host

3. 2: If incorrect permissions have been set on SSH configuration files

4. 2: If the host was not found, possibly indicating a mis-spelled hostname in the ADAPT
configuration

5. -1: If the host is known to the network but is down

6. -1: For all other connection failures

• get_up_hosts0
Purpose:

Identifies ADAPT hosts that are available
Inputs: None
Returns:

1. st atus: Returns a list of available hosts

• get_down_hosts0
Purpose:

Identifies ADAPT hosts that are unavailable
Inputs: None
Returns:

1. st atus: Returns a list of unavailable hosts

• get_available_executor(needed_host)
Purpose:

Identifies an available host with open capacity, preferring the input host if defined
Inputs:

1. needed_host: A host to prefer, defaults to None

Returns:

1. result: Returns the name of an available host with open capacity or None if there are
none

• return_executor(executor, disable)

74

Purpose:
Surrenders the ADAPT resource number of the executor back to the pool and disables it if
desired

Inputs:

1. executor: The number of the executor to surrender

2. disable: Marks the executor as unavailable if True, defaults to False

Returns: None

• get_specific_executor(hostname)

Purpose:
Identifies the connection method used for the current host or hostname if defined

Inputs:

1. hostname: A host to check, defaults to None

Returns:

1. ssh_executor: Returns the connection method

75

76

C ADAPT Sample Problem Wrapper

A MELCOR ADAPT wrapper is listed below. Note that line numbers are given on the left.

1 #!/ usr /bin /env python
2 # —*— coding : utf —8 —*-
3 import os
4 import sys
5 import time
6 import datetime
7 import shutil
8 import subprocess
9
10 getenv_adaptrc = os . getenv ('ADAPTRC')
11 getenv_path = os . getenv ('PATH')
12 server_path = os . path . j oin (getenv_adaptrc , ' server ')
13 for line in getenv_path . split (' : ') :
14 sys . path . insert (0 , line)
15
16 import adaptlibs
17
18 # BEGIN adapt attributes
19 # checkpoint : melcor —checkpoint
20 # arg 1 : melcor_root (directory which contains melcor ,

analytic 1 . rst , etc .)
21 # END adapt attributes
22
23 checkpoint_name = ' melcor —checkpoint '
24
25 jobid = s t r (os . g e t e n v (' NCENGINE_INTERNAL_JOBID '))
26 print (' jobid=' + jobid)
27 THISSCRIPT = s tr (os . getenv (' THISSCRIPT '))
28 try :
29 i f THISSCRIPT i s None :
30 THISSCRIPT = open(os . path .basename(sys . argv [) , 'r ')

read ()
31 except : pass
32
33 this_dir = os . getcwd ()
34 stop_word = 'LIZARDKING'
35
36 print (' hello , jim jobid %s in %s on %s at %s ' % (jobid ,

this_dir , os .uname () [1]. split (') [0], time . asctime ()))
37

77

38 # Declare files used for this simulator
39 THIS_EXECUTABLE = os . getenv (' NCENGINE_EXECUTABLE ')
40 MELCOR ROOT = os . getenv (' melcor_root ')
41 RST = ' analytic 1 . rst '
42 SIM1TEMPLATE = ' analytic 1 . c or . inp '
43 SIM1INPUT = ' analytic 1 . cor '
44 EDITRULES = ' analytic l_editrules .cor '
45 SIM1EXE = ' melcor '
46 BRANCHESF = ' branches . tmp '
47 OTHERTEIVIP = ' otherbranches .tmp'
48
49 # Check if this is the root branch .
50 if (str (os . getenv ('NCENGINE_ROOT')) == '1 ') and (str (os . getenv

(' NCENGINE_RESUMING_CHECKPOINT ')) == ' 0 '):
51 print (' initializing edit rules for root job at %s ' % (time

. asctime ()))
52 shutil . copy2 (os . path . join (MELCOR ROOT, RST) , this_dir)
53 shutil . copy2 (os . path . join (MELCOR ROOT, SIM1TEMPLATE) ,

this_dir)
54 shutil . copy2 (os . path join (MELCOR_ROOT, EDITRULES) ,

this_dir)
55
56 editrule_cmd = ' adapt—editrule —apply --init %s %s 0 melcor

%s ' % (EDITRULES , BRANCHESF, OTHERTEMP)
57 print (editrule_cmd)
58 f = subprocess . Popen(editrule_cmd , shell=True , stdout=

subprocess .PIPE, stderr=subprocess .STDOUT)
59 f_out = f . stdout . readlines ()
60
61 # No loop here , because there is only one branch for the

initial simulator for the root branch .
62 branchesf_content = open(BRANCHESF, 'r ') . readlines () [0]
63 shutil . copy2 (branchesf_content . split () [0] , os . path . join (

this_dir , SIM1INPUT))
64 os .remove(branchesf_content . split () [0])
65
66
67 i f THIS_EXECUTABLE == ' melc or ' :
68 # Execute MELCOR.
69 print (' started executing rnelcor at %s ' % (tirne . asctime ()))
70 print(' ls is : ')
71 this_dir_list = sorted (os . listdir (this_dir) , key=str . lower

)
72 for listed file in this_dir_list :

78

73 (mode , ino , dev , nlink , uid , gid , size , atime , mtime ,
ctime) = os. stat (str (listed_file))

74 mod_date = datetime . datetime . fromtimestamp (float (mtime
)) . strftime('%B %d %Y %X')

75 print ('Name: %s , Size : %s , Modified: %s ' % (
listed_file , str (size) , mod_date))

76
77 siml_exec_command = ' echo E I nice %s %s ' % (os. path . join (

MELCOR ROOT, SIM1EXE) , SIM1INPUT)
78 f = subprocess .Popen(siml_exec_command , shell=True , stdout

=subprocess .PIPE, stderr=subprocess .STDOUT)
79
80 # Kill off some branches that are slated to terminate early .
81 i f (os . g e t e n v (' NCENONE_TERIVIINATE_EARLY ') i s n o t None) and (

f 1 o a t (os . g e t e n v (' NCENONE_TERMINATE_EARLY')) > 0.0) :
82 time . sleep (float (os . getenv (' NCENGINE_TERNBNATE_EARLY ')))
83 print (' terminating early ! ')
84 open(' term—early ' , 'a ') . close ()
85 open(' analytic 1 . stp ' , 'a ') . close ()
86
87 # If we want to do anything with stdout / stderr from the

simulator , such as detect simulator failures , here it is .
88 # This step will wait until the simulator process has closed .
89 f_out = f . stdout . readlines ()
90 print (' stopped executing %s at %s ' % (THIS_EXECUTABLE, time .

asctime ()))
91 print(' ls is : ')
92 this_dir_list = sorted (os. listdir (this_dir) , key=str . lower)
93 for listed_file in this_dir_list :
94 (mode, ino , dev , nlink , uid , gid , size , atime , mtime ,

ctime) = os. stat (str (listed_file))
95 mod_date = datetime . datetime . fromtimestamp (float (mtime)).

strftime('%B %d %Y %X')
96 print ('Name: %s , Size: %s , Modified: %s' % (listed_file ,

str (size) , mod_date))
97
98 # If we were checkpointed , stop here .
99 if os . path . i s file (' adapt .cp ') :
100 print ('we were checkpointed at %s on %s , removing

analytic 1 . stp ' % (time . asctime () , os .uname() [1]. split

[0]))
101 os . remove (' adapt .cp ')
102 f = subprocess . call (' adapt—checkpoint —note—taken ' , shell=

True)
103 sys . exit (0)

79

104
105 # Stop here if we don ' t care about this branch . Early

termination .
106 if os . path . isfile (' term—early ') :
107 print (' jobid %s terminated early at %s on %s , recording

result to database ' % (jobid , time . asctime () , os .uname
0 [1]. s p lit (') [O]))

108 f = subprocess . call ((' adapt—job—record jobid %s term_early
1 ' % (jobid)) , shell=True)

109 sys . exit (0)
110
111 i f THIS_EXECUTABLE == ' melc or ' :
112 # Truncate restart file to save space .
113 print (' truncating at %s ' % time . asctime ())
114 SIM1INPUT_2 = ' analytic 1 . cor2 '
115 os . rename (' analytic 1 .mes' , ' analytic 1 .mes.tmp ')
116
117 SIM1INPUT_contents = open (SIM1INPUT , ' r ') . read ()
118 SIM1INPUT_contents = SIM1INPUT_contents . replace (" ' !

MEL RFMOD ' newrestart . rst ' —1 " " 'MEL RFMOD
' newrestart . rst ' —1 ' ")

119 f = open (SIM1INPUT_2 , 'w')
120 f . write (SIM1INPUT_contents)
121 f . close ()
122 subprocess . call (' echo E I %s %s' % (os.path. join(

MELCOR ROOT, SIM1EXE) , SIM1INPUT_2) , shell= Tru e)
123 os . rename (' analytic 1 . rst ' , ' analytic 1 —nontruncated . rst ')
124 os . remove(' analytic 1 —nontruncated . rst ')
125 os . rename (' newrestart . rst ' , ' analytic 1 . rst ')
126 os . rename (' analytic 1 .mes.tmp ' , ' analytic 1 .mes ')
127 print (' done truncating at %s ' % time . asctime ())
128
129 # Extracting MELCOR data .
130 extracting_plots = True
131 if (THIS_EXECUTABLE == 'melcor ') and (extracting_plots) :
132 plot_command = " ' \
133 melcor_plot analytic 1 . ptf analytic 1_ separate CVH—P_1

CVH—P_2 CFVALU_10000 CFVALU_20001 CFVALU_20002
CFVALU_20011 CFVALU_20012 CFVALU_20021 CFVALU 20022
CFVALU 99999 \

134 , , ,

135 f = subprocess . call (plot_command , shel 1 =True)
136
137 i f THIS_EXECUTABLE == ' melc or ' :
138 # Gather some attributes about the completed branch .

80

139 melcor_message_file = ' analyticl .mes'
140 melcor_message_file_contents = open(melcor_message_file ,

r ') . readlines ()
141 for line in reversed (melcor_message_file_contents):
142 if stop_word in line :
143 mystopping_code = line . split (stop word) [1]. split ()

[0]
144 break
145 for line in reversed (melcor_message_file_contents) :
146 if line . startswith(' TIME='):
147 sim_elapsed = float (line . split (' TIIVIE=')[1]. split

O [0])
148 break
149 for line in reversed (melcor_message_file_contents) :
150 if line . startswith (' Normal termination TIME='):
151 normal_term = float (line . split (' Normal

termination TIME=') [1]. split () [0])
152 sim_elapsed = normal_term
153 break
154
155 # At this point normal_term , sim_elapsed , and mystopping code

all MAY exist .
156 # See if we have a branching condition
157 submitted_bc = False
158 submitted_terminal = False
159 try :
160 f = subprocess . call ((' adapt—job—record code %s simtime %s '

% (mystopping_code , str (sim_elapsed))) , shell=True)
161 print(' Submitted result of job %s: branching condition %s

at time %s. ' % (jobid , mystopping_code , str (sim_elapsed

)))
162 submitted_bc = True
163 except :
164 pass
165
166 # See if we have normal termination of melcor for max time .
167 try :
168 f = subprocess . call ((' adapt—job—record max_time %s simtime

%s ' % (str (normal term) , str (sim_elapsed))) , shell=
True)

169 print (' Submitted result of job %s : maximum problem tirne %s
. ' % (jobid , str (normal_term)))

170 print (' Exiting job %s , as maximum problem time has been
reached . ' % (jobid))

171 submitted_terminal = True

81

172 except :
173 pass
174
175 if submitted_terminal is True :
176 sys . exit (0)
177
178 print (' submitted_terminal : ' + s tr (submitted_terminal))
179 print (' submitted_bc : ' + str (submitted_bc))
180 # If nothing else has been submitted , we' ve failed somehow.
181 if (submitted_terminal is False) and (submitted_bc is False):
182 try :
183 f = subprocess . call ((' adapt—job—record logical_fail 1

simtime %s ' % (str (sim_elapsed))) , shell=True)
184 print (' Submitted result of job %s: simulator (or

wrapper) failure at time %s . ' % (jobid , str (
sim_elapsed)))

185 print (' Exiting job %s , as a failure occurred in either
the simulator or wrapper . Marking the branch as

finished . ' % (jobid))
186 submitted_terminal = True
187 except :
188 f = subprocess . call ((' adapt—job—record logical_fail

1 ') , shell=True)
189 print (' Submitted result of job %s: simulator (or

wrapper) failure . No time available . ' % (jobid))
190 print (' Exiting job %s , as a failure occurred in either

the simulator or wrapper . Marking the branch as
finished. ' % (jobid))

191 submitted_terminal = True
192
193 if submitted_terminal is True :
194 sys . exit (0)
195
196 # If we reach this line , there is a branching condition to be

handled .
197
198 # Create child branches and submit them to the database . Check

$THIS_EXECUTABLE to send correct simulator just run to the
database .

199 editrule_cmd = ' adapt—editrule —apply %s %s %s %s %s ' % (
EDITRULES , BRANCHESF, str (sim_elapsed) , THIS_EXECUTABLE ,
OTHERTEMP)

200 print (editrule_cmd)
201 f = subprocess .Popen(editrule_cmd , shell=True , stdout=

subprocess .PIPE , stderr=subprocess .STDOUT)

82

,

202 f_out = f . stdout . readlines ()
203
204 # Identify the new simulator .
205 branchesf_content = open(BRANCHESF, 9 r ') . readlines () [0]
206 NEWSIM = branchesf_content . split () [7]
207
208 # Submit new branches .
209 branchesf_content = open(BRANCHESF, 9 r 9) . readlines 0
210 for line in branchesf_content :
211 (config , newstate , branchnum , stopcode , branchhit ,

probability , terminate_early , newsim) = line . split ()
212 submit_cmd = "
213 submit_cmd += ' adapt—submit
214 submit_cmd += '--terminate_early %s 9 % (

terminate_early)
215 submit_cmd += 9--executable %s 9 % (newsim)
216 submit_cmd += '--handoff %s %s 9 % (EDITRULES ,

EDITRULES)
217 submit_cmd += 9--handoff %s %s. state 9 % (newstate ,

EDITRULES)
218 submit_cmd += 9--handoffref %s %s 9 % (RST, RST)
219 submit_cmd += '--handoffref %s %s 9 % (

SIM1TENTPLATE , SIM1TEMPLATE)
220 submit_cmd += 9--handoff %s %s 9 % (config ,

SIM 1INPUT)
221 if os . path . isfile (' analyticl .mes 9) :
222 submit_cmd += '--handoffref analytic 1 .mes analytic 1

mes
223 submit_cmd += 9--probability %s 9 % (probability)
224 submit_cmd += 9 analytic 1
225 submit_cmd += 9" sb %s " 9 % (branchnum)
226 submit_cmd += 9%s ' % (THISSCRIPT)
227 print (submit_cmd)
228 f = subprocess .Popen(submit_cmd , shell=True , stclout=

subprocess .PIPE, stderr=subprocess .STDOUT)
229 f_out = f . stdout . readlines ()
230 os . remove (newstate)
231 os . remove (config)
232 print (Lout)
233
234
235 os . remove (BRANCHESF)
236 print (' goodbye , jim jobid %s in %s on %s at %s ' % (jobid ,

this_dir , os .uname() [1]. split ('. 9) [0] , time . asctime ()))

83

84

D ADAPT Sample Problem BRF

A sample set of MELCOR ADAPT branching rules are listed below. Note that line numbers
are given on the left. Each line of the BRF is evaluated independently and there is no required
order of input.

1 // Name of the simulator template input files with variables
to be replaced by ADAPT.

2 InputFile 1 analytic 1 . cor . inp
3
4 // The files used to determine the branching code :

Stoppingword <simulator > <filename > <magic word> <word on
line that contains magic word>

5 StoppingWord 1 analytic 1 .mes LIZARDKING 2
6
7 // The characters used to designate ADAPT variables in the

simulator template input files .
8 VarSeparator 1 "{" "}"
9
10 // The name of the simulators for the database
11 SimulatorExecutable 1 rnelcor
12
13 // The simulator to run for the root branch .
14 InitialSimulator 1
15
16 // Initial values not tied to a particular branching condition

17 INIT V99999 FALSE / / ADAPT stop CF
18
19 // The valve is initially closed .
20 INIT V10000 0.0
21
22 // The stop for whether to open the valve or not is initially

armed but not triggered .
23 INIT V20001 0.0
24 INIT V20003 TRUE
25 INIT V20004 FALSE
26
27 BranchingSimulator 20004 1
28 BranchProbability 20004 1 0.5
29 BranchProbability 20004 2 0.5
30
31 // Open or do not open , there is no try .
32 // Do not open .

85

33
34
35
36
37
38

20004 1 V20003 FALSE
20004 1 V20004 FALSE
20004 1 V20011 1.e20
20004 1 V20021 1.e20
20004 1 V99999 FALSE
// Do open.

39 20004 2 V20003 FALSE
40 20004 2 V20004 FALSE
41 20004 2 V99999 FALSE
42
43
44 // The stop for valve open

triggered.
time is initially armed but

45 INIT V20011 10.0
46 INIT V20013 TRUE
47 INIT V20014 FALSE
48
49 BranchingSimulator 20014 1
50 BranchProbability 20014 1 0.25
51 BranchProbability 20014 2 0.25
52 BranchProbability 20014 3 0.25
53 BranchProbability 20014 4 0.25
54
55 // When do we open?
56 // lOs
57 20014 1 V20013 FALSE
58 20014 1 V20014 FALSE
59 20014 1 V20021 10.0
60 20014 1 V99999 FALSE
61
62 // 20s
63 20014 2 V20013 FALSE
64 20014 2 V20014 FALSE
65 20014 2 V20021 20.0
66 20014 2 V99999 FALSE
67
68 // 30s
69 20014 3 V20013 FALSE
70 20014 3 V20014 FALSE
71 20014 3 V20021 30.0
72 20014 3 V99999 FALSE
73
74 // 40s
75 20014 4 V20013 FALSE
76 20014 4 V20014 FALSE

86

not

77 20014 4 V20021 40.0
78 20014 4 V99999 FALSE
79
80
81 // The stop for valve open fraction is initially armed but not

triggered .
82 INIT V20021 20.0
83 INIT V20023 TRUE
84 INIT V20024 FALSE
85
86 BranchingSimulator 20024 1
87 BranchProbability 20024 1 0.1
88 // BranchProbability 20024 2 0.355
89 BranchProbability 20024 2 0.8
90 // BranchProbability 20024 4 0.355
91 BranchProbability 20024 3 0.1
92
93 // How wide open?
94 // 0.01
95 20024 1 V20023 FALSE
96 20024 1 V20024 FALSE
97 20024 1 V10000 0.01
98 20024 1 V99999 FALSE
99
100 // // 0.25
101 // 20024 2 V20023 FALSE
102 // 20024 2 V20024 FALSE
103 // 20024 2 V10000 0.25
104 // 20024 2 V99999 FALSE
105
106 // 0.50
107 20024 2 V20023 FALSE
108 20024 2 V20024 FALSE
109 20024 2 V10000 0.50
110 20024 2 V99999 FALSE
111
112 // // 0.75
113 // 20024 4 V20023 FALSE
114 // 20024 4 V20024 FALSE
115 // 20024 4 V10000 0.75
116 // 20024 4 V99999 FALSE
117
118 // 0.99
119 20024 3 V20023 FALSE
120 20024 3 V20024 FALSE

87

121 20024 3 V10000 0.99
122 20024 3 V99999 FALSE
123
124 TerminateEarly 60 20004 1

88

E ADAPT Sample Problem TSIF

A sample MELCOR ADAPT template input file is listed below. Note that line numbers are
given on the left.

1 ! $1d : _M2_GedankenA . inp 6185 2014-08-07 20 :02:55Z llhurnph

2 ! Assessment Report
3 !
4 !(GlobalData
5 MEG_DIAGFILE ' a n a l y t i c 1 . g d i a '
6 MEL_DIAGFILE ' a n a l y t i c 1 . di a '
7 MEG_OUTPUTFILE ' analytic 1 . gout '
8 MEL_OUTPUTFILE ' analytic 1 . o ut '
9 MEG_RESTAR1fILE ' analytic 1 . r s t '
10 MEL_RESTARTFILE ' analytic 1 . r s t ' NCYCLE —1
11 PLOTFILE ' analytic 1 . ptf '

12 MESSAGEFILE ' analytic 1 .mes'

13 STOPFILE ' analytic 1 . stp '
14 EXTDIAGFILE ' analytic 1 . ext '
15 ! MEL RFIVIOD ' newrestart . rst ' —1
16
17 !)
18 Program MELGEN ! (

19 CVH_1NPUT ! (

20 CV_ID ' CV1—CV1 ' 1 ! CVNAIVIE, ICVNUM , 186 name : CV1 !(

21 CV_TYP ' CVTYPEO1 ' ! CVTYP
22 CV_VAT 2 !N CVZ CVVOL

23 1 0 . 0 0 . 0
24 2 10.0 1 0 . 0
25 CV_THR NonEquil FOG ACTWE ! ICVTHR , IPFSW , ICVACT

26 CV_PAS COMIVION OnlyPool SUBCOOLED ! IPORA , Wat erS t ate
27 CV_P1D PVOL 8 . E+06
28 CV_PAD 5 6 8 . 2 3 ! TPOL

29 CV_BND FRAC 1 . 0 0.0 0.0

30 !)
31 CV_ID ' CV2—CV2 ' 2 !CVNAIVIE, ICVNUM , 186 narne : CV2 ! (
32 CV_TYP ' CVTYPEO3 ' ! CVTYP
33 CV_VAT 2 ! N CVZ CVVOL

34 1 0 . 0 0 . 0
35 2 1 0 0 . 0 4 0 0 0 . 0
36 CV_THR NonEquil FOG ACTIVE ! ICVTHR , IPFSW , ICVACT

37 CV_PAS COMIVION OnlyAtm SUPERHEATED ! IPORA , V ap orS tate

38 CV_PTD PVOL 1 0 0 0 . 0
39 CV AAD TATM 5 6 8 . 2 3

89

40 CV_BND PRAC 0 . 0
41 !)
42 !)
43 FL_INPUT ! (
44 FL_ID ' FL 1 —FLOWL' 1 ! (
45 FL_FT ' CV1—CV1 " CV2—CV2 ' 9 . 9
46 FL_GEO 0. 0 2 0. 2
47 FL_JSW 3 NoBubbleRise
48 FL_SEG 1 ! SAREA

SRGH
49 1 0 . 2E-01

0 . 0

10.1

1 . 0

1 . 0
No B ubb leRise ! KFLGFL IBUBF IBUBT

SLEN SHYD
LAIVIFLG SLAIVI /CFNAIVIE

2 . E — 01 1 . 0
5 . E —05 CONST 0. 0

50
51 fl_v1v 1
52 1 ' FlowFrac "FL1—FLOWL'
53
54 !)
55 !)
56 HS_INPUT ! (
57 HS_ID ' HS 10001—HS ' 1 0001
58 HS_GD RECTANGULAR NO

, Steady—state initialization
59 HS_EOD 1 . 0

Orientation Data
HS_MLT 0 . 5 0000000E+03
HS_SRC NO
HS_ND 3

1
2

60
61
62
63
64
65
66
67
68

NoTRIP ' Fl o w Fr a c

!(186 name: HS
! Type of geometry

1 . 0 ! HS Elevation and

! NXVALU NI XVALUE
1 0 .00000000E+00
2 0 . 1 0000000E-04

3 3 0 .20000000E-04
HS_LB CoefTimeTF
HS_LBP EXT 0. 2E-01
HS_LBT 1 00 . 0

1 . 0
69 HS_LBS 1 . 0 1 . 0 1 . 0
70 HS_RB CoefTimeTF
71 HS_RBP EXT 0. 2E-01
72 HS_RBT 1 00 . 0

1 . 0
73 HS_RBS 1 . 0 1 . 0 1 . 0
74 HS_FT OFF
75 !)
76 !)
77 TF_INPUT ! (

! HS
! No

TENH1N
0.56823000E+03
0.56823000E+03
0.56823000E+03

'TF2—HTCOEF"CV1—CV1'
9.8E-01

100.0 1.0

' TF2—HTCOEF" CV2—CV2'
9 . 8 E-01

1 00 . 0

90

1 . 0

Multiplicity
power source
MNINAM

'DUMMY'
'DLMVIY'

YES

YES

78 TF_ID 'TF2—HTCOEF' 1.0 ! 186 name: HTCOEF 1 86
numb: 2

79 TF_TAB 4 ! NTFPAR X
80 1 0.0 1.0
81 2 5 0.0 1.0
82 3 6 0.0 6 0 0.0
83 4 1 0 0 0.0 6 0 0.0
84
85 TF ID 'TF3—RHO' 1.0 ! 1 86 name: RHO 1 86 numb:

3
86 TF TAB 2 ! NTFPAR X
87 1 0.0 4 0 0 0.0
88 2 1 0 0 0.0 4 0 0 0.0
89
90 ! *
91 TF_ID 'TF4—CPS' 1.0 ! 186 name: CPS 186 numb:

4
92 TF TAB 2 ! NTFPAR X
93 1 0.0 1 0.0
94 2 1 0 0 0.0 1 0.0
95
96 ! *
97 TF ID 'TF5—THC' 1.0 ! 18 6 narne: THC 186 numb:

5
98 TF_TAB 2 ! NTFPAR X
99 1 0.0 5 0.0
100 2 1 0 0 0.0 5 0.0
101 !)
102 EXEC_INPUT !(EXEC package start record
103 EXEC_TITLE 'Depressurization (Basecase)' ! Title of the

calculation
104 !EXEC_GLOBAL_DFT 1.8 6
105 !)
106 CVH_INPUT ! CVH package start record
107 ! CVH_SC 1 !SCnumber Value Index
108 ! 1 4407 1 0 0 0.0 1
109 MP_INPUT !(IVIP package start record
110 !* 21 — Number of Materials

111 MP_ID 'ZIRCALOY' ! default
112 MP_ID 'ZIRCONIUM—OXIDE' ! default
113 MP_ID 'URANIUM—DIOXIDE' ! default
114 MP_ID 'STAINLESS—STEEL' ! default
115 MP_ID ' STAINLESS—STEEL—OXIDE' ! default
116 MP_ID 'BORON—CARBIDE' ! default

91

117
118
119
120
121
122
123

MP_ID ' SILVER—INDIUM—CADMIUM' ! d e fault
MP_ID 'URANIUM—METAL' ! default
MP_ID 'GRAPHITE' ! default
MP_ID 'CONCRETE' ! def au 1 t
MP_ID 'ALUMINUM' ! default
MP_ID 'ALUMINUM—OXIDE' ! default
MP_ID 'CADMIUM' ! def au 1 t

124 MP_ID 'STAINLESS—STEEL-304' ! default
125 MP_ID 'LITHIUM—ALUIVIINUM' ! default
126 MP_ID 'URANIUM—ALUMINUM' ! default
127 MP_ID 'CARBON—STEEL' ! d e fault
128 MP_ID 'B4C—INT ' ! default
129 MP_ID 'ZR02—INT ' ! default
130 MP_ID 'UO2—INT ' ! default
131 MP_ID 'DUMIVIY ! redefined
132 MP_PRTF 4 ! NPAR PROPERTY DEFAULT/ TF /CF (may be only for THC)
133 1 ENH DFFAULT
134 2 CPS 'TF4—CPS'
135 3 THC 'TF5—THC' TF
136 4 RHO 'TF3—RHO'
137 !)
138 !)
139
140
141 CF_INPUT
142
143 ! CF to be changed by ADAPT for open fraction of flow path.
144 cf_id 'FlowFrac ' 10000 read
145 cf_sai 1.0 0.0 0.0
146
147 ! Set time to stop for whether valve will open or not.
148 cf_id 'Stp—Alea—Vlv' 20001 read
149 cf_sai 1.0 0.0 1.e20
150
151 ! Trigger for stop for whether valve will open or not.
152 cf_id 'Stp—Alea—Trig ' 20002 1—gt
153 cf_liv FALSE
154 cf_arg 2
155 1 exec—time 1.0 0.0
156 2 cf—valu(' Stp—Alea—Vlv ') 1.0 0.0
157
158 ! Set whether valve opening BC is armed.
159 cf_id 'Stp—Alea—Arm' 20003 1—read
160 cf_liv FALSE
161

92

162 ! Stop in the name of love .
163 cf_id ' Stp—Alea—Go' 20004 1—and
164 c f_li v FALSE
165 cf_msg 2 'LIZARDKING 20004 determine whether valve opens or

not '
166 cf_arg 2
167 1 cf—valu (' Stp—Alea—Trig ')
168 2 cf—valu (' Stp—Alea—Arm')
169
170
171 ! Set time to stop for valve open time .
172 cf_id ' Stp—Time—Vlv ' 20011 read
173 cf_s ai 1.0 0.0 1 . e20
174
175 ! Trigger for stop for valve open time .
176 cf_id ' Stp—Time—Trig ' 20012 1—gt
177 cf_liv FALSE
178 cf_arg
179
180
181
182 ! Set whether valve timing BC is armed .
183 cf_id 'Stp—Time—Arrn' 20013 1—read
184 c f_li v FALSE
185
186 ! Stop in the name of love .
187 cf_id ' Stp —Time—Go' 20014 1—and
188 cf_liv FALSE
189 cf_msg 2 'LIZARDKINIG 20014 determine valve open time '
190 cf_arg 2
191 1 cf—valu (' Stp —Time—Trig ')
192 2 cf—valu (' Stp —Time—Arm ')
193
194
195 ! Set time to stop for valve open fraction .
196 cf_id ' Stp—Frac—Vlv ' 20021 read
197 cf_sai 1.0 0.0 1 . e20
198
199 ! Trigger for stop for valve open fraction .
200 cf_id ' Stp—Frac —Trig ' 20022 1—gt
201 c f_li v FALSE
202 cf_arg 2
203 1 exec—time 1.0 0.0
204 2 cf—valu (' Stp —Frac —Vlv ') 1.0 0.()
205

2
1 exec—time 1.0 0.0
2 cf—valu (' Stp—Time—Vlv ') 1.0 0.0

93

206 ! Set whether valve fraction BC is armed.
207 cf_id 'Stp—Frac—Arm' 20023 1—read
208 cf_liv FALSE
209
210 ! Stop in the name of love
211 cf_id 'Stp—Frac—Go' 20024 1—and
212 cf_liv FALSE
213 cf_msg 2 'LIZARDKING 20024 determine valve open fraction '
214 cf_arg 2
215 1 cf—valu (' Stp—Frac—Trig ')
216 2 cf—valu(' Stp—Frac—Arm')
217
218
219 cf_id 'ADAPTCF' 99999 L—OR
220 cf_liv FALSE
221 cf_arg 3
222 1 cf—valu (' Stp—Alea—Go')
223 2 cf—valu(' Stp—Time—Go')
224 3 cf—valu(' Stp—Frac—Go')
225 !
226
227 END Program MELGEN data
228 Program MELCOR !(
229
230
231 CF_INPUT
232
233 ! CF to be changed by ADAPT for open fraction of flow path
234 cf_id 'FlowFrac ' 10000 read
235 cf_sai 1.0 0.0 {V10000}
236
237 ! Set time to stop for whether valve will open or not .
238 cf_id ' Stp—Alea—Vlv ' 20001 read
239 cf_s ai 1.0 0.0 {V20001 }
240
241 ! Set whether valve opening BC is armed.
242 cf_id 'Stp—Alea—Arm' 20003 1—read
243 cf liv {V20003}
244
245 ! Stop in the name of love .
246 cf_id ' Stp—Alea—Go' 20004 1—and
247 cf_liv {V20004}
248
249
250 ! Set time to stop for valve open time .

94

251 cf_id ' Stp-Time-Vlv ' 20011 read
252 cf_sai 1.0 0.0 {V20011 }
253
254 ! Set whether valve timing BC is armed .
255 cf_id ' Stp-Time-Arm' 20013 1-read
256 cf_liv {V20013 }
257
258 ! Stop in the name of love .
259 cf_id ' Stp-Time-Go' 20014 1-and
260 cf_liv {V20014 }
261
262
263 ! Set time to stop for valve open fraction .
264 cf_id ' Stp-Frac-Vlv ' 20021 read
265 cf_sai 1.0 0.0 {V20021 }
266
267 ! Set whether valve fraction BC is armed .
268 cf_id ' Stp-Frac -Arm' 20023 1-read
269 cf_liv {V20023 }
270
271 ! Stop in the name of love .
272 cf_id ' Stp -Frac -Go ' 20024 1-and
273 cf_liv {V20024 }
274
275
276 cf_id ' ADAPTCF ' 99999 L-OR
277 cf liv {V99999}
278 !
279
280 EXEC_INPUT ! (
281 EXEC_TITLE ' Depressurization (Basecase) ' ! Title of the

calculation
282 EXEC_TEND 1000.0 ! End of calculation time
283 EXEC_STOPCF ' ADAPTCF'
284 EXEC_TIME 4 ! DIMAX DTMIN DTEDT

DTPLT DTRST DCRST
285 1 0.0 0.01 0.005 1.0

0.01 1000.0 1.E+10
286 2 1.0 0.1 0.05 5.0

0.1 1000.0 1.E+10
287 3 10.0 1.0 1.E-01 500.0

2.0 1000.0 1.E+10
288 4 1500.0 5.0 1.E-01 1000.0

5.0 1000.() 1.E+10

95

289 EXEC_CPULEFT 2 0.0 ! cpu sec left at end of
calculation

290 EXEC_CPUL1M 15000.0 ! Maximum number o f CPU s e c o n d s
allowed for this execution

291 EXEC_SOPIDTMIN 1.E-06 5 ! Define conditions

for limited under—run of DTIVIIN
292 EXEC_DTITIVIE 0.1E-01 ! Initial timestep
293 EXEC_CFEXFILE 'dynamicInp '

294 !)

295 !)
296 END Program MELCOR data

96

F ADAPT Sample Problem Results Analysis

These brief analysis of the ADAPT sample problem (see Section 3.1) is given as an example
of the capabilities of ADAPT. DYIs are explored in Section F.1 using the methods introduced in
Section 4.3. A tree reduced according to the method from Section 4.4 is presented and briefly
analyzed in Section F.2.

F.1 Dynamic Importance Measures

The current DYIs from Section 4.3 were applied to the pressure of Cv001 for sample problem
with results shown in Tables F.1 and F.2. The results in Table F.1 are fairly intuitive. Due to the
nature of the problem, opening or not opening the valve does not affect the peak pressure seen
by CVO 01. The lowest pressure of Cv001 always corresponds with its last pressure. The expected
lowest and final values of the pressure when the valve does open are both 0.2075 times the expected
pressure when the valve does not open. At the midpoint (approximately 500s), the pressure when
the valve opens is 0.2213 times the pressure when the valve does not open.

Table F.1: Example DET DYII Values for Valve Opening on C1.70 01 Pressure

Measure Value

Peak 1.0

Valley 0.2955

Last 0.2955

Midpoint 0.5683

Table F.2 compares the branched states of valve opening time and open fraction for their effects
on the consequence measure. Note that DYI3 compares all values of occurrence. An interpretation
of Table F.2 is that when the valve opens at a time of lOs, the final pressure is 0.954 times the final
pressure for all sequences where the valve opens. Similarly, a valve open fraction leads to a final
pressure 3.28 times the expected pressure across all valve open fractions.

Table F.3 also compares the effects of valve opening time and fraction on the pressure of Cv001.
However, in DYI2 each value of occurrence is compared to non-occurrence. An interpretation of
Table F.3 is that when the valve opens at 20s, the midpoint pressure is 0.550 times the pressure in
sequences where the valve does not open. For this simple sample problem, the values in Table F.2
and Table F.3 rise or fall monotonically with increasing valve opening time or open fraction. For
more complex consequence measures or parameter space, non-monotonic relationships may be
seen18.

18See Reference [30] for an application of DYIs to a plant transient DET.

97

Table F.2: Sample DET DYI3 Values for Cv0 01 Pressure

Branching Condition Value Midpoint Final

lOs 0.910 0.954

20s 0.968 0.983
Valve Open Time

30s 1.03 1.02

40s 1.09 1.04

0.01 1.74 3.28

Valve Open Fraction 0.5 0.977 0.779

0.99 0.448 0.489

Table F.3: Sample DET DYI2 Values for Cv0 01 Pressure

Branching Condition Value Midpoint Final

lOs 0.517 0.282

20s 0.550 0.291
Valve Open Time

30s 0.587 0.301

40s 0.619 0.308

0.01 0.989 0.970

Valve Open Fraction 0.5 0.555 0.230

0.99 0.255 0.145

DYIs can also be calculated for each time step in each sequence. This calculation is achieved
using binning of time steps similar to the method explained in Section 4.2 for calculating the
median and mean. Figure F.1 gives the time-dependent DYI1 relationship of the pressure of Cv001
for the event of the valve opening. At the beginning of the analysis, sequences where the valve
opens or does not open are relatively close in pressure. As the analysis progresses, they diverge.

Figure F.2 shows the time-dependent DYI2 relationships. Recall that this compares each stated
condition (e.g. "valve opens at time 20.0s") to the case of the valve not opening. Over this relatively
short time span, sequences where the valve only opens to a fraction of 0.01 give a similar pressure
to those where the valve does not open. On the other hand, sequences with a 0.99 open fraction
quickly drop to a much lower pressure than those where the valve does not open.

98

0
i

50 100 150 200 250 300
Time (s)

Figure F.1: Time-Dependent DYI1 for Valve Opening and Cv0 01 Pressure

1.0

0.8 -

0.4 -

0.2 -

DYI2 Valve Open Fraction 0.01

DYI2 Valve Open Fraction 0.50

DYI2 Valve Open Fraction 0.99

DYI2 Valve Open Time 10.0

DYI2 Valve Open Time 20.0

DYI2 Valve Open Time 30.0

DYI2 Valve Open Time 40.0 ____________
6 501 100 150

Time (s)

200 250 300

Figure E2: Time-Dependent DYI2 for Valve Opening and CVO 01 Pressure

99

7-
o

3.0 -

2.5 -

DYI3 Valve Open Fraction 0.01

DYI3 Valve Open Fraction 0.50

DYI3 Valve Open Fraction 0.99

— DYI3 Valve Open Time 10.0

DYI3 Valve Open Time 20.0

DYI3 Valve Open Time 30.0

DYI3 Valve Open Time 40.0
z

1.5 -

1.0 -

0.5 -

0
I

50 100 150 200 250 300

Time (s)

Figure F.3: Time-Dependent DYI3 for Valve Opening and Cv001 Pressure

Figure F.3 shows the time-dependent DYI3 relationships. It can be seen that sequences where
the valve opens with a 0.01 fraction diverge from the rest around 50s. This divergence occurs be-
cause the pressures of other sequences drop while the pressure in the 0.01 open fraction sequences
stays relatively high (see Figure 20). When evaluating time-dependent DYIs, a trend toward a
higher value indicates a growing divide between the plotted branch of the input parameter and
the others for the chosen consequence measure. In a plant transient analysis this may be helpful
in identifying parameters whose values are determined early in the transient but may not have an
apparent effect until later.

F.2 Trimmed Tree

The reduced DET from Section 4.4 may be interrogated in the same way as its parent. Quan-
titative analyses of the reduced experiment may reveal different insights. DYI calculations are
performed for the reduced experiment in Table F.4 (compare to Table F.2). Note that in Table F.4
there is no valve open fraction of 0.01 because all sequences with an open fraction of 0.01 were
pruned using the rule in Table 9.

100

Table F.4: Sample DET DYI3 Values for CVO 01 Pressure, Reduced by Table 9 Rule

Branching Condition Value Midpoint Final

lOs 0.891 0.933

20s 0.962 0.975
Valve Open Time

30s 1.04 1.03

40s 1.11 1.06

1.06 1.04
Valve Open Fraction {0.5

0.99 0.488 0.656

101

DISTRIBUTION:

1 MS 0748

1 MS 0748

1 MS 0748

1 MS 0899

Zachary Jankovsky, 8851

Troy Haskin, 8852

Matthew Denman, 8851

Technical Library, 9536 (electronic copy)

103

Sandia National Laboratories

104

