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Why More Precise Opacities?

 Fundamental Problems: Astro/Atomic/Plasma

— Solar Abundances: C, N, O, Ne lower by ~50%
— Helioseismology: Solar oscillations, sound speed,
boundary of conv/rad zones

— Asteroseismology: Exo-planet host stars
- Atomic/Plasma Physics 2 Resonances and lines

- Missing physics of resonances (Nahar’s talk)
Quasi-Bound states treated as lines in opacities calculations:
Does that lead to “missing” opacity?

- Plasma broadening of autoioninzing resonances
- Equation-of-State (Regner Trampedach)



Stellar Radiation Transport and Opacities

* Convection / Radiation Zones
boundary R(BCZ) is highly
sensitive to opacity:

* Measured = 0.713 +/- 0.001

Theory - 0.726 * R(Sun)

* Helioseismology can reveal
differences at <1%

* KEPLER: Astroseismology
solar-type stars’ mass-radius
(with earth-like planets)

Opacities depend on
(i) Element abundances : Hydrogen to Nickel
(i) Equation-of-state, (iil) Atomic physics: H — Ni
All elements, all ions, all transitions



Stellar Abudances, Opacity, and Seismology

* What is the Sun made of ??

®* Latest determination of solar abundances (Asplund et.al. 2009)
- Spectroscopic measurements and 3D hydro NLTE models
—> 30- 50% lower abundances of C, N, O, Ne,.....
—> Spectroscopy vs. stellar models (Asplund, Pinsonneault)

 Abundances and Helioseismology (sound speed, BCZ, etc.)
— Need opacities higher ¥~30% (Christensen-Dalsgaard et al.2009)
— Inverse relation between opacity and abundance



From C Blancard, P. Cossé anc
G. Faussurier, ApJ 745, 10, 201
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Figure 2. Relative contributions of each element to the OPAS Rosseland mean
opacity of the mixture. Scattering (white), free—free (black), bound—free (blue),
and bound-bound (red) contributions are indicated.



Opacity Problem

 Two independent opacity projects

-The Opacity Project (OP)
(First paper: Seaton, Yu, Mihalas, Pradhan 1994)

Electronic database Ohio Supercomputer Center: OPSERVER
http://opacities.osc.edu (Last paper: Mendoza et al. 2007)

- The LLNL OPAL Project (Rogers and Iglesias 1994)
- Agree to <5% in Rosseland mean opacities

 Other opacities codes (at LULI, LANL, SNL etc.) also largely
agree with one another, but differences up to 25% or more

* Detailed theoretical opacity spectra differ greatly
 Main problem: Models disagree with experiment !!




Z-Opacity vs. Models (Bailey et al., Nature 2015)
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Are exisiting opacities accurate?

Laboratory tests (Bailey et al.)
Uncertainty in heavy element opacities
What might be the problem ?

All opacities codes employ the same basic atomic physics:
similar atomic structure codes

Most resonant excitations treated as lines

Opacity Project (OP): Original Intent — Include resonances in
the bound-free (Ergo: less bound-bound opacity)

R-Matrix codes extended/modified

But owing to computational constraints, OP calculations
included only some outer-shell resonances,

and no inner-shell excitation resonances !



Bound-free opacity:
Photoionization cross sections with Resonances

Phoioionization Cross Sections of O ITL Fe XX1
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Atomic Physics of Opacities
Much of the opacity is through photoabsorption
by inner-shell electrons in heavy ions

Inner-shell excitation leads to resonances in the
bound-free continuum

BUT
These excitations are currently treated as
bound-bound transitions (lines)
Are the two equivalent?



Resonances: Bound and continuum states

(Coupled wavefunctions)

Uncoupled bound states
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Consequences of Resonances in Opacities

* Owing to quantum interference in the bound-
free: channel coupling =2 autoionization

* Intrinsically asymmetric resonance profiles

* Giant PEC resonances = Most of the opacity
may lie in the bound-free

* Monochromatic opacities energy distribution
fundamentally different from lines

e Resonances are broadened, smeared and
wiped out more rapidly than lines

* Continuum lowering of opacity below all
thresholds in each ion



Giant Photoexcitation-of-Core (PEC) Resonances
In Photoionization Cross Sections
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Distribution of absorption oscillator strength varies asymmetrically
by orders of magnitude across the PEC resonance profile(s)



Plasma Broadening of Autoionizing Resonances

* No analytic theory or computational method

* R-matrix photoionization cross sections
include autoionization broadening ab initio

e No treatment available for

- Electron impact
- Stark
- Doppler (thermal)
(Lorentzian and Gaussian profiles)

* New algorithm for electron impact broadening



Resonance Broadening Processes

Autoionization = R-Matrix (ab initio)

T, Ne dependent processes:

Electron impact = Convolution (Lorentzian)
Stark = Simplified (Dimitrijevic & Konjevic)
Thermal = Doppler (Gaussian)

Debye =2 Length vs. v

- Inter-particle distance vs. effective q.n. of resonance
-T=10°K, Ne =102 /cm3 > R;=4.13a_, , v=8.6



Electron Impact Broadening of Autoionizing Resonances
Log T =6.0, Log Ne =20.0

Electron broadened xsectn of Fe XVII (Log T = 6.0, Log Ne = 20)
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Electron Impact Resonance Broadening

Log (a,2)
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Electron Impact Broadening of Autoionizing Resonances
Log T =6.3, Log Ne =22.0

Electron broadened xsectn of Fe XVII (Log T = 6.0, Log Ne = 21)
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Electron Impact Broadening of Autoionizing Resonances
Log T =6.0, Log Ne =22.0

Electron broadened xsectn of Fe XVII (Log T = 6.0, Log Ne = 22)
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Electron Impact Broadening of Autoionizing Resonances
Log T=6.3, Log Ne =23.0

Electron broadened xsectn of Fe XVII (Log T = 6.3, Log Ne = 23)
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High-Precision Opacities (HIPOP)

RADIATIVE OPACITIES AND ACCELERATIONS

ATOMIC INTERFACE EQUATION
DATA OF STATE
ARCHIVE G, {bb) G.{tf) {MHD)
I |
OPACITY ACCELARATION OPSERVER
K, KK, GnilY) | K, Ky K Godt)

Codes and Atomic Data

ISSUES

* Lines and resonances

* Large-scale atomic
computations

 Resonance broadening
(vs. line broadening)

e Equation-of-state at
high-temperature-density



fraction

S
N

Breit-Pauli R-Matrix Opacities

(with fine structure resonances, Nahar et al. 2011)

°* Monochromatic opacity
Fe XVII, 2.25 MK, 102 cc
* Rosseland Mean with
more extensive resonances
is 12% higher

* BCZ: Iron opacity

Fe XV-XX in progress
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Opacities Work Status

Extended OP opacity tables for astro elements

New Opacity Project (OP) High-Precision codes (HIPOP)
Iron Opacity Project: New Iron atomic data and

—> Relativistic Breit-Pauli R-Matrix (BPRM)

= Ab initio treatment of fine structure

— Autoionization resonance profiles delineated

- Resonance broadening modeling (not Voigt line profiles)

= Order of magnitude more computational effort than OP

- Finer (T,Ne) and 10° photon frequencies (OP, OPAL: 10%)
Publications



Extended OP Tables: Astro Elements

1 2
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Temperature (K)
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NIF — Implosion Plasma Opacity

LLNL-PRES-557971

Optimizing implosion performance requires accurate
opacities and emissivities (Si, C, Ge, Au, U)

= Ablator opacity (C, Si, Ge) is important for tuning
ablation performance, mix and preheat. 300 eV
10° | black body _ i
\ . ;

C, Ge and Si opacity at .1g/cc and 300 eV

» Both NLTE and LTE opacities have been improved
recently (H. Scott, S. Hansen, HEDP 6, (2010). B.G. - By
Wilson, et al PRE 76, 032103 (2007). ) but still DCA
differs from more sophisticated models and EOS
and Opacity are not self consistent.

|
" Preheat
shielding

2

* Important to consider convergence effects in photon
binning and material zoning while considering
effects of Opacity (Hill and Rose).

K (cm?/mole)

" kT=300 eV
p=0.1 g/cc (>~1.8 keV)
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Conclusion and Work in Progress

* |ron Opacity Project: New ab initio calculations
-- Missing resonant opacity (Nahar’s talk)
-- Resonance broadening vs. line broadening

 Compare with Z-pinch and other lab sources
* Higher-Z elements and future experiments



