skip to: onlinetools | mainnavigation | content | footer
[an error occurred while processing this directive]
Coyote Springs

Before there was a Sandia Labs, before there was a Kirtland Air Force Base, there was Coyote Springs and Greystone Manor. A small community grew up around the springs, which is now within the Sandia Coyote Canyon test site area. Because of the purported healing qualities of the spring's waters, it was a popular spot for health seekers and tourists. Read all about it here.




Lab News -- Aug. 31, 2007

August 31, 2007

LabNews 08/31/2007PDF (1.1 Mb)

MESA, Sandia's largest project, opens

MESA: In simple termsStatue of clean room inventor unveiled MESA fact sheet

Stories by Neal Singer

On a beautiful summer morning, under a tent with rolled-up sides to allow air flow, approximately 100 attendees celebrated the completion of the $518 million Microsystems and Engineering Sciences Applications (MESA) project in a formal dedication on Aug. 23 at Sandia.

Among those speaking were Sen. Pete Domenici, R-N.M., DOE Deputy Secretary Clay Sell, NNSA Administrator Thomas D’Agostino, Sandia President and Labs Director Tom Hunter, and Sandia Deputy Director for Nuclear Weapons Joan Woodard.

The 400,000-square-foot complex was completed in eight years — three years ahead of schedule — and $40 million under budget.

It consists of three discrete buildings: the Microelectronics Development Laboratory and MicroFab, the Microsystems Laboratory, and the Weapons Integration Facility.

It will combine the most advanced design and simulation tools and the most advanced microsystems and nanotechnologies to meet NNSA mission requirements.

Said Labs Director Tom Hunter, “This is an event that truly defines this institution. [It will mean] unquestioned technological leadership in the synthesis of the almost unlimited potential of integrated microsystems and the awesome power of the world’s fastest computers.

“We could have conceded to the easy, taken the road more traveled, [joined with those who are cutting back on their expectations] but not doing so has made all the difference. We join with the yea-sayers — those who had the commitment and conviction to see [this project] done.”

Every speaker praised the team that had completed the complex under budget and ahead of time.

Also unveiled was a seven-foot-tall bronze statue of retired Sandia engineer Willis Whitfield, inventor of the “clean room” technology that made modern microelectronics production — and therefore MESA itself — possible, as well as hospital surgery rooms safer (see “Statue of clean room inventor Willis Whitfield unveiled at MESA opening,” page 6).

The MESA ceremony, which involved both a ribbon-cutting for the buildings and unveiling of the statue, took place at the heart of the space in which the three physically beautiful buildings are housed.

In addition to fabricating electronic circuits, the MESA facility also makes microelectromechanical systems (MEMS) for advanced security systems, sensors, guidance systems, and other applications.

The complex also includes the world’s most complete compound semiconductor fabrication facility. This will produce advanced optoelectronic and custom electronic components for sensors, communications, quantum computing, and other emerging technologies.

While the facility is designed to support NNSA missions, it is expected to have a broad impact on national security technologies beyond nuclear weapons and meet the technical challenges faced by several government agencies. MESA is also expected to be a major scientific research center for micro- and nanotechnologies, and contribute to international competitiveness through partnerships with US companies.

Top of page
Return to Lab News home page

MESA: In simple terms, what it is

Because abstract terminology sometimes conspires with nonreleasable information to make basic Sandia work not as readily understandable as it could be, here is a summary in down-to-earth terms of the importance — current and expected — of MESA.

The MESA project has nuclear origins and financing but projected larger ends.

Nuclear weapons

A major concern of nuclear weapons as a deterrent to enemy attacks is that these potent weapons be protected against circuit failure caused by radiation.

Sandia’s job is to analyze where that radiation might cause failure and protect against it.

The circuitry of a weapon sits within the weapon warhead, itself a radioactive source, for decades.

A launched missile passing beyond Earth’s protective atmosphere exposes circuitry to the harsh radiation of outer space.

Reentering Earth’s atmosphere near a potential target, an adversary with even a tiny nuclear arsenal might feel he has nothing to fear from these weapons because he could explode a nuclear weapon of his own in Earth’s atmosphere. This would emit various forms of radiation, electromagnetic pulses, and pressure bursts from shock waves that would decommission the circuitry of any incoming nuclear weapon, essentially turning it into a dud.

The blast could also disable communications satellites, leaving US military planners blind.

A blast over the continental US could achieve the same ends.

To remove any doubt of the effectiveness of US retaliatory nuclear weapons or its satellite information system, MESA’s upgraded silicon fabrication facility makes chips that retain function in extreme radiation environments.

The number of these ‘hardened’ circuits needed in weapons and communication satellites is too small and has too stringent a set of requirements to interest an industrial chip manufacturer. So Sandia is the supplier of these circuits, built at MESA, for defense needs.

“We physically made the chips here that will go into the W76-1,” says MESA director Mike Cieslak.

Why redo them? “The physics package is fine,” says Mike. “But our electronic systems are getting older than my kids. Who has the same cell phone or computer, the same oil in their car, as they did five years ago?”

And time has brought social changes as well.

“Since 9/11,” says Mike, “there’s been a reassessment of security threats against many things — metros, power plants, and so on, as well as nuclear weapons. We want our weapons and facilities secure against threats we haven’t even imagined till now.”

All of MESA, he says, will be available to that purpose.

“We’re developing technology options applicable either to RRW or any lifetime extension (the refurbishment of old weapons) deemed by Congress to be appropriate.”

The point to deterrence, he says, is that foes know the weapons would work as designed if used.

“The mission,” he says, “is deterrence.”

Only system studies, not system designs, will be made for the more advanced weapons systems at this time.

Further defense factors

But while weapon survivability is important, so are other factors.

Surveillance devices that can help assess the reliability of these weapons can be built in MESA’s facilities, which include silicon and compound semiconductor materials fabrication. Devices manufactured in these fabs also help monitor subways and ports for dangerous chemical, biological, and radiological devices. A small area permits joint fabrication between the different classes of materials — the only such facility known in the world.

MESA is also available to be a trusted foundry for national security products required by other government agencies such as DoD and others.

“We’re defending against people very different from ourselves,” says Mike. “Our job at Sandia is to imagine every way someone like that could attack us, and create ways to address that possibility.”

Innovative collaboration

Finally, the buildings and their researchers in MESA’s unclassified areas will design innovative products in collaboration with industry and academia. The collaboration helps American companies, as in the much praised collaboration with Goodyear Tire, and also helps national defense.

“Rubber parts aren’t only on tires,” says Mike. “They’re the O-rings and gaskets of our weapon systems. And we use polymeric foams and encapsulants in all of our weapon systems.”

To accomplish this end, MESA has continued its innovative approach of placing researchers from various Sandia line organizations next to each other — if not cheek by jowl, at least in the same common area — instead of maintaining the traditional Sandia approach of pairing like with like from the same organization.

“We did this in our prototype MESA facility (MESA-TOP),” says Mike, “and it worked very well at accelerating the pace of development.” Researchers maintain membership in their line orgs, where their work is still judged.

Research areas in which MESA participates include fluidics, thermal, mechanical, structural, and electrical. The work will involve computational simulations, engineering design, and actual production of parts. Microsystems involving microdevices (such as the gold louvers providing shade for NASA satellite components) as well as microcircuits are included under the MESA umbrella.

“We want to assure the safety, security, reliability, and survivability of our components and weapon systems,” says Mike. “We’d like to be able to have a ‘check weapons’ display like we currently see ‘check oil’ on our dashboards.”

He’s looking for MESA to provide this.

Top of page
Return to Lab News home page

Statue of clean room inventor unveiled

Textbooks usually don’t mention the origin of the clean room technology that makes the modern microelectronics age — let alone nanotechnology — possible. Or they give passing credit to NASA or Bell Labs.

But patents for the clean room were issued in 1962 to Sandia’s Willis Whitfield, who enjoyed some celebrity throughout the 1960s for the achievement. He hobnobbed with astronauts. He was sought after by industrialists wanting to lessen production failure rates as high as 50 percent in the increasing number of enterprises requiring electronics. His work was a factor in significantly lowering infection rates in hospitals because the invention improved the cleanliness of surgery rooms.

It was a small thing to Willis. In his own mind, it was not one of his greater achievements. He simply examined the systems available at the time that were used to keep rooms clean. These included ideas that seem bizarre today: walls sloped to hinder dust from settling on them; perpetual, minute-by-minute maintenance by janitors wielding cleaning cloths. The problem, of course, was that the dust — small by ordinary human standards — loomed big as boulders in etching processes as circuits grew smaller, increasing industrial component failure rates. Many solutions were proposed but nothing sufficed.

Then Willis devised the system still in use today. Like many noteworthy ideas, it was simple. Among the increasingly convoluted efforts of the time, the idea was, you might say, a breath of fresh air. Air, in fact, would be his janitor. By blowing cleansed, monotemperature, unidirectional air not only into the room but through louvers leading from it, he was able to clean rooms yet avoid whorls that would send dust spiraling and depositing. The method, on its initial tests, left rooms a thousand times cleaner than ever before, and that was just the start.

Today the patent — let for free by the Atomic Energy Commission, which oversaw Sandia at the time — is used around the world so casually that few remember the technique had an inventor.

And Willis, who lives quietly with his wife in Albuquerque’s Northeast Heights on a Sandia pension, is more or less anonymous in the world and happy with that status.

But without Willis, there might not have been a MESA. So Sandia decided to honor the quiet inventor, and through him, all engineers, with a unique response: a seven-foot-tall representation of him at the heart of Sandia’s largest project. He is the only Sandian — and one of very few engineers worldwide — ever so honored with a statue.

The statue was unveiled at the MESA ceremonial opening.

Funded by Lockheed Martin and sculpted out of bronze by former Sandian Neal McEwen, it sits outside, near the ceremonial fountain of the MESA center, a testimony to the effect of engineering on the future of humanity.

“I made him bigger than life, in a somewhat casual pose, like a college professor sitting on one edge of a desk lecturing a class, to convey someone with authority but approachable,” says Neal. “We wanted to honor engineers in general through a representation of Willis.”

The document near Willis’ hand is a copy of his initial drawing of a clean room.

Says Sandia Executive VP John Stichman, “We’re fortunate that one of our own invented the absolutely key enabling technology known as the clean room. As a laboratory known for solving important, complex problems through engineering excellence, it is fitting that we honor engineers and this special person on this site. We are especially grateful that Lockheed Martin is sponsoring this tribute.”

At the statue’s base is a brief summary of Willis’ work, and a quote from President Dwight Eisenhower: “Engineers build for the future, not only for the needs of men, but for their dreams as well. Thus, inherently, the engineer’s work is a fearless optimism that life will go forward, and that the future is worth working for.”

Top of page
Return to Lab News home page

MESA fact sheet

-- Neal Singer

Top of page
Return to Lab News home page

Sandia, partners evaluate vehicle barrier performance for borders

By Mike Janes

A joint effort involving a group of Sandians to test and evaluate various types of fencing along the US border with Mexico is helping decision makers determine appropriate fencing solutions.

The effort got under way in April with a series of crash tests to evaluate how the fences will look and perform. The tests stem from the government’s commitment to deploy hundreds of miles of fencing along high-traffic, high-risk stretches of the border.

Sandia was tapped by the Fence Lab, an initiative within SBInet, to help develop and execute its fence evaluation program. A part of the Department of Homeland Security’s Customs and Border Protection (CBP) directorate, SBInet is the technology network component of the Secure Border Initiative (SBI) and is responsible for integrating personnel, infrastructure, technologies, and a rapid response capability into a comprehensive border protection system.

As successful as the fence tests were, Sandia has the capability to include other aspects of intrusion delay and detection and other advanced security technologies, says Brian Damkroger (8130). Brian leads Sandia’s Borders and Maritime Security program, an element of its Homeland Security & Defense Strategic Management Unit, which functions as a virtual organization spanning — and drawing upon — both sites and several centers. Sandia’s border security efforts range from systems analysis and R&D on new detection technologies to field testing of deployed systems.

Brian was originally contacted by Fence Lab project managers in late 2006 to explore potential collaborations. Though CBP program managers were aware of Sandia, notes Brian, they hadn’t yet visited the lab and wanted to learn more about its capabilities. A December meeting convinced CBP that Sandia could clearly provide the technical depth needed for the project.

For the recent Fence Lab activities, the team assembled personnel from 6400, 6700, and 8100, with Mark McAllaster (6422), a member of Sandia’s Active Response and Denial Department, serving as principal investigator. Following the crash tests and initial evaluations, the Sandia team and its collaborators provided their assessments and recommendations on May 11.

“CBP was delighted with our work,” says Mark. He says CBP was particularly impressed with the team’s ability to pull together all the project elements — materials procurement, fence installations, vehicle purchases, and the crash tests themselves — in the required eight-week time frame. “It required an extraordinary effort by a lot of people,” says Mark.

In addition to the tight deadline, weather emerged as a factor in the test and evaluation activities. An unusually wet April and May led to several close calls, Mark says, and a staff member at the Texas Transportation Institute (TTI) is routinely assigned to observe weather radar information to keep test and evaluation staff up to date on changing conditions. Still, tests were occasionally in jeopardy of being postponed, and a severe downpour occurred only 10 minutes after the conclusion of testing on one particular day. “When you have to pull off nine tests in eight weeks, every day on the schedule counts,” Mark says.

Sandia has more than 50 years of experience developing and testing physical security systems for the nation’s nuclear stockpile and facilities, including the execution and documentation of many tests of both commercial and custom vehicle barrier designs. Its researchers conduct physical security activities for DOE facilities as well as special DoD sites.

Mark and other Sandia team members, including Rita Baca (10248), Ken Black (8134), and Tim Crawford (6755), applied that expertise to the testing of candidate fence technologies at TTI. The tests involved nine separate fences being developed and constructed under the direction of CBP.

The fences, six of which were designed by commercial companies around the country and constructed onsite in Texas (the other three were designed and recommended by CBP), were selected from a much larger group of proposals submitted in response to a solicitation from CBP and Boeing. Last year, Boeing was awarded a contract to perform as the lead system integrator for the overall SBInet effort.

The vehicle barrier component of the fences evaluated by Sandia at TTI came in three varieties: cable-style, surface-mounted, and bollard-style. Though the evaluators aren’t at liberty to reveal how each of the tested fences performed, border locales such as those in El Paso or San Diego have different terrains, population densities, or other environmental factors that necessitate pedestrian fences and vehicle barriers with different characteristics than a barrier that would be deployed in the wide open, rural areas of southern New Mexico.

“The border agents we interacted with were extremely helpful to us,” Mark says. “They gave us some really useful insight into how current barriers are being defeated by the adversaries, intelligence that we can then use when recommending future barrier designs.”

Now that the eight-week first phase of the fence test effort has been completed, Brian and Mark anticipate that the next phase of the Fence Lab project will begin quickly.

“Discussions have already begun around next steps,” Brian says. “A lot of things are happening at once, but we’ll probably be looking at some mix of design, deployment, and additional testing. Right now, we’re waiting for the green light from SBInet management.”

Brian and Mark emphasize that physical fences are only one component of a comprehensive border security system, and only one of several areas where Sandia is involved in border security work.

“Sandia doesn’t merely analyze fence barriers,” Mark says. “Our capabilities are truly state of the art and encompass the full spectrum of physical security, including intrusion detection alarm assessment technologies, performance testing, technology evaluation, vulnerability assessment, design, development, installation, and training.”

“The work along the nation’s borders is just beginning,” Brian adds, “and this Fence Lab testing work is only one component of an integrated technology solution for the problem at hand. We think Sandia can continue to play a valuable role.” -- Mike Janes

Top of page
Return to Lab News home page

Sandia researchers help to make cars smarter

By Chris Burroughs

Editor’s Note: The following story is part of a series of articles on Sandia’s Cognitive Science and Technology Program.

Cars already automatically lock doors when they sense motion and turn on warning lights if they detect potential engine problems.

But they are about to get smarter.

Sandia’s augmented cognition research team is designing cars capable of analyzing human behavior.

The car of the future that the team is developing may, for example, deduce from your driving that you’ve become tired, or during critical situations, tell your cell phone to hold an incoming call so you won’t be distracted.

The project started about five years ago with funding by the Defense Advanced Research Projects Agency (DARPA). Four years ago Sandia partnered with a major commercial automobile manufacturer, and three years ago did actual experiments on European roadways.

“We utilized data that already existed on the car’s computer to collect a wide range of physical data such as brake pedal force, acceleration, steering wheel angle, and turn signaling,” says Kevin Dixon (6341), principal investigator. “And specialized sensors, including a pressure-sensitive chair and an ultrasonic six-degree-of freedom head tracking system, measured driver posture.”

Five drivers were fitted with caps connected to electroencephalogram (EEG) electrodes to gauge electrical activity of the brain as they performed driving functions.

The researchers collected several hours of data in unstructured driving conditions that were imput into Sandia software, referred to as “classifiers,” that categorized driving behavior. These classifiers could detect certain driving situations such as approaching a slow-moving vehicle or changing lanes in preparation to pass another vehicle.

The system detects the difficulty and stress of the task the driver is attempting. It then tries to modify the tasks and/or environment to lower the stress and improve specified performance parameters.

Similar experiments were conducted for off-road driving where conditions were much less structured than typical roadways.

“The beauty of this is that we aren’t doing anything new or different to the car,” Kevin says. “All the software that can make the determination of ‘dangerous’ or ‘safe’ driving situations would all be placed in the computer that already exists in the car. It’s almost like there is another human in the car.”

More recently, the researchers conducted experiments at Camp Pendleton with Marine Corps personnel driving a modified military vehicle. Once again the driver and a passenger sitting in the passenger’s seat were fitted with EEGs. The software classifier determined how difficult the driving situation was and the best person of the two to perform a task. For example, during a difficult driving maneuver, it might be best for the passenger to receive radio transmissions in order to not distract the driver.

“Every year tens of thousands of people die in automobile crashes, many caused by driver distraction,” Kevin says. “If our algorithms can identify dangerous situations before they happen and alert drivers to them, we will help save lives.” -- Chris Burroughs

Top of page
Return to Lab News home page