Opinion Dynamics Modeling in Tobacco Control Policy

Patrick D. Finley, Thomas W. Moore, Nancy S. Brodsky, Theresa J. Brown

Sandia National Laboratories

FDA/CTP Modeling Workshop
Rockville, MD

December 5 - 6, 2013

This work was funded by the U.S. Food and Drug Administration through an interagency agreement with the U.S. Department of Energy/Sandia National Laboratories (funding document 224109011).

The information in this presentation is not a formal dissemination of information by the FDA and does not represent agency position or policy. The contents are the responsibility of the authors alone.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Opinion Dynamics Modeling Presentation

- Opinion Dynamics overview
- Tobacco specific features
 - Addiction
 - Media and public-health educational influences
 - Risk and multiple products
- Uncertainty and Validation
- Future Directions
Why Use Opinion Dynamics Modeling?

- Simple and it works
- Applied and validated in many domains
 - Originated from Statistical Physics
 - Applied to voter behavior in UK and Italy
 - Spread of green agricultural processes in Europe
- Sandia Opinion Dynamics experience
 - Extremist group dynamics
 - Obesity-promoting behaviors
 - Afghani tribal politics
 - Gender-based social networks in developing countries
 - Community formation in social networks
Opinion Dynamics Concepts

- Population of software agents representing individuals
- Each individual assigned two values to start:
 - *Opinion*: Positive or negative perception
 - *Tolerance*: Openness to consider other ideas
- At each time step, agents adjust opinion based on opinions of neighbors and their own tolerance
- Opinion clusters form dynamically based on initial opinions, tolerance and network structure
Opinion Dynamics focused on Tobacco

\[x_i(t + 1) = x_i(t) + \frac{1}{|S_i|} \sum_{k \in S_i} \mu_{ik} [x_k(t) - x_i(t)] \]

Update Rule: Adjust individual’s opinion by mean of the differences from neighbors’ opinions

\[\{k \in S_i: |x_i(t) - x_k(t)| \leq \varepsilon_i \} \]

Effect of tolerance: Ignore neighbors whose opinion is outside individual’s tolerance.

\[S_i: \text{Set of out-degree neighbors} \]
\[\varepsilon: \text{Tolerance} \]
\[\mu: \text{Plasticity} \]
\[x: \text{Opinion} \]
A and C are within tolerance bound of red node
B is outside of tolerance bound of red node and is excluded
New value is original value plus scaled mean of neighbors’ opinion

\[
x_i(t) = 0.40
\]
\[
x_i(t + 1) = 0.41
\]

\(\varepsilon\): Tolerance
\(\mu\): Plasticity
\(x\): Opinion
What makes up Opinion about Tobacco?

Social Influences (Affect)
- Sophisticated
- Cool
- Group identity
- Adult
- Independent

Practical Influences (Utility)
- Weight control
- Stress relief
- Concentration

Negative
- SES association
- Addictive
- Smell/taste
- Corporate

- Disease
- Going outside
- Dangers of SHS
Mapping of Opinion to Behavior

- **Nonsmoker if opinion below threshold**
- **Smoker if opinion above threshold**
Mapping of Opinion to Behavior

- **Nonsmoker if opinion below threshold**
- **Smoker if opinion above threshold**

But this mapping does not capture effects of addiction
Opinion to Behavior Mapping with Addiction

- Individual smoking behavior is path-dependent (hysteretic)
- Start smoking when opinion exceeds initiation threshold (solid line)
Individual smoking behavior is path-dependent (hysteretic)

Start smoking when opinion exceeds initiation threshold (solid line)

Quit smoking when opinion falls below cessation threshold (dashed line)
Opinion to Behavior Mapping with Addiction

- Individual smoking behavior is path-dependent (hysteretic)
- Start smoking when opinion exceeds initiation threshold (solid line)
- Quit smoking when opinion falls below cessation threshold (dashed line)
- Magnitude of the hysteresis effect represents strength of addiction
Modeling Media and Education

- Media nodes broadcast messages to individuals or specific groups
- Pro-tobacco media nodes push high-opinion or high-tolerance messages
- Public-health media nodes push low-opinion messages
- Multiple media nodes can act concurrently on population

Directionality of arrows represents nominations; influence flows in opposite direction
Applying the model

Example question:

Does increased quit-line support affect smoking prevalence?

Basic Steps:

- Translate question into model-speak (Quit Supports = Cessation Threshold)
- Parameterize model with inputs which approximate study scenario
- Run model many times with different parameters and random components for exhaustive Sensitivity Analysis and Uncertainty Quantification.
- Generate ranges possible outcomes with explicit reliability bounds
- Visualizing model results often gives a better feel for complex relationships than simple numerical probability estimates
Example Result: Increase Cessation Threshold

Without media influence:

Large changes in cessation threshold may yield only minor changes in prevalence

3-D histograms of model outputs:
Each graphic illustrates 10,000 simulations of 250-node networks
Add Public Health Education

No media

Public Health messaging

With concurrent Public Health education campaign:

Decrease in prevalence with small changes in cessation threshold
Add Pro-smoking Messaging

Adding pro-smoking messaging:

Requires larger change in cessation threshold to achieve similar decreases in prevalence
Modeling Risk

- Risk modeled by adding two new elements
 - Risk affinity: Property of individuals
 - Risk perception: Property of a class of products
- Risk-tolerant individuals ignore potential harm and use products with high perceived risk
- Risk averse individuals will use only products with low perceived risk
- Risk modeling enables analysis of multiple products
Risk-averse individuals are less likely to use cigarettes due to the high perceived risk.

Low perceived risk tobacco products may cause risk-averse individuals to initiate.

Substantial numbers of non-tobacco users may become tobacco users.
Model Validation

- Model verified by comparison of results to synthetic test cases
- Model parameters calibrated by extensive sensitivity analysis, uncertainty quantification and parameter estimation methods
- Ongoing validation through comparison to real-world datasets
 - Add Health survey for behavior and network topology
 - NYTS for dynamic changes in adolescent opinions

Example Add Health adolescent tobacco-use network

Response (by grade level) to 2012 NYTS question: “Have you ever been curious about smoking a cigarette?”
Uncertainty Analysis

- **Sensitivity Analysis: Effects of parametric uncertainty**
 - Identify impact of individual inputs
 - Identify where better data could reduce uncertainty
 - Traditional stats: Rank and stepwise regression
 - Sobol Variance Decomposition
 - ANOVA overlaid on Gaussian process surrogate surfaces
 - Ensemble meta-models (e.g. PCE, TGP, Random Forest, CART classification trees) to map decision fronts and confidence bounds

- **Second-order sensitivity: Both parametric and stochastic uncertainty**

- **Social Network Analysis**
 - Traditional SNA
 - Bayesian methods, ERGMs
Lessons Learned Using Network Models

- Strive for smaller models
- Incorporate uncertainty analysis early in process
 - Sweeping parameter ranges and visualization for intuition
 - Evaluate large ensembles of results instead of single examples
- Use multivariate uncertainty methods
 - Single parameter analysis ignores interactions
 - Time domain multivariate uncertainty methods combine accuracy and interpretability
- Network models need a different type of data
 - Traditional surveys ignore connectivity among respondents
 - Need better surveys and borrowing from web analytics
Conclusions and Future Directions

- Individual-based models used to explore network-based influences on initiation and cessation rates useful for dynamic population models.

- Opinion Dynamics framework enables exploration of possible future market conditions or actions.

- Quantify effects of media and online factors on specific demographic segments.

- Future directions:
 - Extend multiple product modeling capabilities
 - Integrate additional data sources
 - Increase model resolution and scope
Thank You