Mitigating Infectious Disease Outbreaks in Medical Facilities with Incomplete Vaccination

Thomas Moore¹, Patrick Finley¹, Katherine Jones¹, Richard Martinello², Carter Mecher², Victoria Davey²
INFORMS 2012
October 17, 2012

¹ Sandia National Laboratories, Albuquerque, NM
² US Veterans Health Administration, Washington, DC
Complex Adaptive Systems exist at a variety of scales

- Cellular signaling
- Biological organisms
- Ecologies
- Cities and Megacities
- Interdependent infrastructure
- Government, political, educational, healthcare, financial, economic systems and their supply networks
- Global energy system and climate change
- Our work focuses on large systems: regional, national, global
- We leverage the scaling properties for inspiration on ways to handle large systems
Infectious Disease Modeling

• Collaboration between VHA and Sandia CASoS Engineering Initiative to model pandemic influenza 2005-present

• Use of community level social network models to evaluate impact of various policy cocktails for control of disease spread

• In the absence of widely available effective vaccination, social distancing efforts need to concentrate on identifiable backbone of infection spread, especially schools

• Similar techniques used to model spread of nosocomial infections and intervention strategies
Varicella

- **Worldwide estimates of Varicella zoster virus**
 - 80% of children under 10 have had varicella
 - 95% of adults are immune

- **Virus highly communicable through breathing or touch**
 - Illness follows 10-21 days after exposure
 - Contagiousness occurs 1-2 days before rash appears, lasts until rash crusts over

- **Complications include pneumonia, brain inflammation, sepsis, bone infections**

- **Immuno-compromised individuals, pregnant women and newborns at higher risk**
• Patient with varicella in VA Community Living Center
• Immunity rates lower than in Continental US
• Infection spread patient-patient, patient-staff
 - 13 cases within a short time – 2 patients, 11 staff
 - Difficulty getting enough vaccine quickly
 - Concern over extended waves of infection
 - Concern for hospital operations caused by vacancies, administrative leave for infected and exposed individuals
• Fast-turn investigation leveraging previous modeling experience
• Rapid response by VA prevented outbreak
Hospital Vaccination Policies

• Variability in policies
 - Complicates universal expectations and policy formulation
 - Non-mandatory vaccination policies result in low vaccination rates for health care workers
 - Networks of hospitals can contribute strongly to HAI incidence

• Heterogeneity in immune status among personnel
 - Medical, technical, administrative, maintenance staff
 - Patients
 - Visitors (teratogenic during pregnancy)
Two Level Modeling Approach

• Which facility-level interventions will be most effective in containing an outbreak of infectious disease?

• What system-level interventions will best mitigate the negative impacts of those interventions

• Example: Furloughing susceptible staff members creates staffing shortages, affecting hospital operations
Clinical Model of Varicella Dynamics

- Social network model with degree distribution dependent on roles of actors
- Investigate the effects of differential topologies, immunity percentages
- Model the contributions of mixes of intervention strategies
 - Prophylactic vaccination
 - Preemptive vaccination
 - Social Distancing
Contagion Model GUI
Facility Operations Model

- Goal: model the impact of interventions on hospital operations
 - Personal Protective Equipment (PPE)
 - Isolation
 - Furloughing staff
- Evaluate higher order impacts of infection-oriented interventions
- Initial version: discrete-event simulation using FlexSim Healthcare
 - Hospital is a large network with interdependent wards
 - Discrete event simulation allows for representation of non-stationary distributions that are difficult to evaluate in closed form
Facility Operations GUI

FlexSim Healthcare 3.1.4
Results – Infection Model

- Staff Immunity is the key to controlling infection
- Immunity above 0.95 minimizes risks
- After event begins, furloughing susceptible staff can increase immunity rate
- Prior knowledge (from serological exams and immunization) is necessary to intervene efficiently
Output – Hospital Operations

• Simulation allows for examination of impacts of interventions (e.g. furlough) focused on different personnel types and hospital units

• Currently represent six active patient tracks and 15 staff types

• Pursuing additional data to increase resolution of the model and validate patient flows
Conclusions

- Interventions done prior to incident are most effective
 - VZV serologic screening at time of employment
 - Immunization requirements
- Interventions can reduce operational effectiveness of facility
 - Reduced ability to identify susceptible personnel with confidence can increase number furloughed
- Transferring in known immune personnel can mitigate operational impacts
 - In extreme cases, some patients may need to be transferred to other facilities